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Abstract

Activation functions are fundamental elements of deep learning architectures as they
significantly influence training dynamics. ReLU, while widely used, is prone to the
dying neuron problem, which has been mitigated by variants such as LeakyReLU,
PReLU, and ELU that better handle negative neuron outputs. Recently, self-gated
activations like GELU and Swish have emerged as state-of-the-art alternatives,
leveraging their smoothness to ensure stable gradient flow and prevent neuron
inactivity. In this work, we introduce the Gompertz Linear Unit (GoLU), a novel
self-gated activation function defined as GoLU(x) = xGompertz(x), where
Gompertz(x) = e−e−x

. The GoLU activation leverages the right-skewed asym-
metry in the Gompertz function to reduce variance in the latent space more ef-
fectively compared to GELU and Swish, while preserving robust gradient flow.
Extensive experiments across diverse tasks, including Image Classification, Lan-
guage Modeling, Semantic Segmentation, Object Detection, Instance Segmentation,
and Diffusion, highlight GoLU’s superior performance relative to state-of-the-art
activation functions, establishing GoLU as a robust alternative to existing activation
functions.

1 Introduction

Developing effective activation functions has been a longstanding area of research in deep learning.
In the early days, the Sigmoid [Verhulst, 1838, Rumelhart et al., 1986] and Tanh [LeCun et al., 2002]
functions were popular choices. However, these activations can suffer from the vanishing gradient
problem due to their tendency to saturate. The introduction of ReLU [Nair and Hinton, 2010] marked
a turning point, as it allowed for more efficient training by alleviating the vanishing gradient problem
and inducing intensity equivariance [Nair and Hinton, 2010]. However, ReLU comes with its own
challenges, notably the dying-ReLU problem. To address these challenges, several ReLU variants
have been developed, including LeakyReLU [Maas et al., 2013], PReLU [He et al., 2015] and ELU
[Clevert et al., 2015]. Despite the emergence of these alternatives, ReLU remains one of the most
widely used activation functions today, owing to its simplicity as a piecewise linear function and its
computational efficiency.
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In the deep learning community, the landscape of activation functions has gradually shifted towards
self-gated activations such as Gaussian Error Linear Units (GELU) [Hendrycks and Gimpel, 2016],
Swish [Ramachandran et al., 2017], and Mish [Misra, 2019]. These activations provide probabilistic
interpretations while enhancing robustness when combined with normalization techniques [Ioffe and
Szegedy, 2015, Ba et al., 2016, Ulyanov et al., 2016, Wu and He, 2018, Zhang and Sennrich, 2019].
Unlike ReLU, which strictly enforces gradient preservation due to its piecewise-linear nature, Swish,
Mish and GELU, as smooth activation functions, relax these constraints. Their smoothness allows for
improved gradient flow without strictly adhering to intensity equivariance.

In this work we introduce Gompertz Linear Units (GoLU), a new activation function of the self-gated
family based on the Gompertz function [Gompertz, 1825] as its gating mechanism. The Gompertz
function was initially developed to model human mortality rates, and has since been widely applied
in biology. Notably, it also possesses a probabilistic interpretation, as it represents the cumulative
distribution function (CDF) of the standard Gumbel distribution. While both the Sigmoid function
and the Gaussian CDF exhibit reflection symmetry around the point (0, 0.5), the Gompertz function
manifests a subtle rightward asymmetry, leading to distinct qualitative behavior.

Our experiments indicate that GoLU, compared to existing self-gated activations, effectively reduces
variance in the latent representation. Moreover, it contributes to a smoother loss landscape, making it
less sensitive to small perturbations in the model parameters. Additionally, an analysis of the learned
weights in our trained models reveals that GoLU induces a more spread weight distribution compared
to commonly used activations (see Section 2.2 for details).

A more spread weight distribution may indicate the network’s ability to capture a diverse range of
features from the data. On the other hand, variance reduction in activation outputs can help eliminate
irrelevant information, allowing the network to focus on distinguishing patterns and potentially
mitigate overfitting. However, overly broad weight distributions may introduce instability, while
excessive variance reduction could result in underfitting and the loss of essential features, ultimately
degrading performance.

Extensive, task-specific evaluations, suggest that GoLU effectively addresses this trade-off by achiev-
ing a balanced level of both weight distribution and variance reduction, leading to improved perfor-
mance over baseline activations (see Section 3). To facilitate reproducibility, we have made our code
available at https://github.com/automl/GoLU.

2 Gompertz Linear Unit

2.1 Definition and Properties

In this section, we introduce the GoLU activation function and discuss its properties. GoLU is
defined through Equations 1 and 2 and visualized in Figure 1 (Left) as the red curve, alongside other
activation functions for comparison.

GoLU(x) = xGompertz(x) (1)

Gompertz(x) = e−e−x

(2)
The gate function Gompertz(x) refers to the Gompertz function introduced in [Gompertz, 1825]
and is plotted in red in Figure 1 (Right), alongside the gate functions of other gated activations. The
Gompertz function can also be interpreted probabilistically, as it corresponds to the CDF of the
standard Gumbel distribution, Gumbel(0, 1), with probability density function

Gumbel(x) = e−(x+e−x) (3)

From Equations 1, 2 and Figure 1, we understand that, contrary to ReLU and its variants which are
monotonic and non-smooth at zero, GoLU is a smooth and non-monotonic self-gated activation,
similar to Swish and GELU. In fact the formulation of GoLU using exponentials makes it infinitely
differentiable. However, in contrast to Sigmoid and the Gaussian CDF (i.e. the gate functions of
Swish and GELU), the Gompertz function is asymmetric, as it does not mirror evenly around a central
point1.

1Formally, we refer to a scalar function f(x) as symmetric if there exists a point x∗ such that for any input x
we have f(x∗ + x)− f(x∗) = f(x∗)− f(x∗ − x).
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Figure 1: Activation functions (Left) and their corresponding gates (Right). GoLU and its gate, the
Gompertz function, are highlighted in red. Note the slight rightward shift of the Gompertz gate.

Figure 2: Comparison of the distributions underlying the gate functions (Left) and the gradients
(Right) of various gated activations. The Gumbel distribution exhibits a slight rightward skew.

This asymmetry, which has a bias towards the right, arises from the inherent asymmetry of the
Gumbel distribution, which favors positive input values, as illustrated in Figure 2 (Left). In fact, the
right-leaning asymmetry of the Gumbel distribution leads to smaller gate values across the entire
input range, inducing a compression effect on the output distribution. This behavior extends to GoLU,
yielding output values closer to zero, both for positive and negative inputs, when compared to other
gated activation functions, effectively reducing the magnitude of the activation output. We note that,
while Mish also exhibits an asymmetric distribution, it is skewed to the left, producing the opposite
effect relative to GoLU2.

From a more localized perspective, the Gompertz gate exhibits a reduced value in particular at the
origin. This leads to a decreased steepness of GoLU near this point, as indicated by GoLU′(0) =
Gompertz(0) from Equation 1. This property of reduced slope magnitude is not confined to the
origin but extends to a neighborhood around it and spans a substantial portion of the negative input
domain, as shown in Figure 2 (Right). Additional details are provided in Appendix A.

In the large negative region, the Gompertz gate, and consequently the GoLU activation, decays
extremely rapidly as a double exponential, suppressing unimportant features like ReLU, while
maintaining smoothness, unlike ReLU.

Compared to the Gaussian CDF and the Sigmoid function, the Gompertz gate initially exhibits a flat
plateau, followed by a steeper growth rate that aligns more closely with the Gaussian CDF. As the
input values become large and positive, the growth rate flattens and resembles the Sigmoid function,
with the difference falling off as O(e−2x) (see Appendix A).

2See Appendix B for an interesting case of flipped Mish distribution with right-leaning asymmetry.
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2.2 Effects on Training Dynamics

The distinctive properties of GoLU influence the training dynamics, as we will outline here.

Variance reduction As illustrated in Figure 1 (Left), GoLU exhibits a profile that remains closest
to the x-axis across the entire input range. Moreover, its slope, particularly near the origin and over a
substantial portion of the negative input domain, is smaller in magnitude compared to other gated
activations, as pointed out in Section 2.1. These characteristics suggest a reduced sensitivity of the
activation output to variations in the input. In fact, for a scalar activation function f the variance of
its output can be shown to be approximately proportional to the square of its slope

Var[f(x)] ≈ f ′(µ)2σ2 (4)

where µ and σ2 denote the mean and variance of the input, respectively (see Appendix A for
the derivation). This analytic relation explains more directly how the smaller slope of GoLU
contributes to a lower variance in its output. As a result, GoLU effectively reduces variance in the
latent representations, and promotes smoother activation outputs, enhancing the model’s ability to
distinguish between strong and weak features.

To visually illustrate this phenomenon, we process Figure 3 (Left) through a 3× 3 2D Convolution
followed by 2D Batch Normalization. The resulting pre-activation is then passed through various
activation functions, and the pixel distributions of the normalized pre-activation and activation
maps are plotted for GoLU, GELU, and Swish in Figure 3 (Right). As observed, GoLU exhibits a
distinctive “squeezing effect", compressing the same distribution into a smaller output range, and
reducing variance most, compared to GELU and Swish.

Figure 3: Image created by Dall-E 3 (Left) and kernel density estimation curves for distributions
of activation outputs for the image (Right). GoLU reduces variance most compared to baseline
activations.

To further substantiate this observation, we randomly sample four images from the CIFAR-10
dataset, apply the same preprocessing pipeline, and pass the results through different activation
functions. The variances of the activated signals, summarized in Table 1, highlight GoLU’s ability
to achieve a notable reduction in variance compared to widely-used activations, enabling smoother
data representation. This effect is not limited to CIFAR-10, as we also observe a similar trend on
ImageNet. Finally, to illustrate this effect in a fully trained model, we randomly sample three images
from the ImageNet-1k dataset and pass them through a ResNet-50 model trained on ImageNet-1k. As
shown in Figure 4, the output distributions of the final activations demonstrate that GoLU produces a
more peaked distribution compared to other activation functions, highlighting this distinctive effect
on latent representations. We note that this effect is not limited to the final activation, as shown in
Figure 4, but is consistently observed across intermediate layers of ResNet-50 as well. This lower
activation variance can be seen as a form of implicit regularization as the network’s representation of
the input becomes smoother, focusing on the core patterns rather than fine-grained details or noise.

Smooth loss landscape Reduced activation variance results in less noisy and more consistent
gradients. This typically means that the loss function changes more smoothly with respect to model
parameters. As a result, the optimizer is more likely to converge to flatter regions of the loss landscape
with smaller curvature. This is expected to result in better robustness to small perturbations of the
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Table 1: Variances of randomly sampled images from CIFAR-10 after applying a 3x3 Convolution
followed by Batch Normalization and further passing the feature maps through different activations.

Activation

ReLU 0.3024 0.3063 0.3627 0.3594
LeakyReLU 0.3055 0.3100 0.3639 0.3626

ELU 0.5677 0.6227 0.4699 0.6418
GELU 0.2995 0.3102 0.3583 0.3701
Swish 0.2685 0.2872 0.3332 0.3399
Mish 0.3448 0.3700 0.3677 0.4200

GoLU 0.2133 0.2150 0.3213 0.2783

Figure 4: Distributions of final activation outputs of ResNet-50 trained on ImageNet-1k for three
randomly sampled images from ImageNet-1k. GoLU leads to a more peaked distribution for the final
activation output.

model parameters. We explore this by adding two different Standard Normal noise terms, scaled
independently by α, β, to the weights of ResNet-20 trained on CIFAR-10. We compute the test
loss across a grid of scaling factors α, β for the two terms, while keeping the noises constant (refer
to Appendix C for more details). ResNet-20 with GoLU shows relatively smoother, less-spiked
loss landscapes compared to other activations (Figure 5) which is consistent with GoLU’s better
generalization gains reported in the next section. Additionally, GoLU exhibits a lower average loss,
as shown in Figure 5. We note that Figure 5 offers qualitative insight into the smoothness of the loss
landscape along a 2D random subspace and is not intended as a rigorous or quantitative analysis.
Figure 9 in Appendix C presents a comparison of loss value distributions across the loss landscape,
indicating that GoLU yields lower loss variance compared to other activation functions.

Spread weight distribution In contrast to the reduced variance in the latent space, we observe
a wider distribution in the learned weights of our models trained with GoLU, at least in the region
where most weights are concentrated. Figure 6 compares non-normalization3 weight distributions of
ResNet-50 and ViT-B/32 trained on ImageNet-1k and GPT2-S (124M) trained on OpenWebText, with
different activation functions. The broader weight distribution for GoLU around the peak suggests
that the network has learned more diverse transformations, enhancing its capacity to distinguish
between features in the data.

This may reflect the network’s response to reduced activation variance, counterbalancing it by
spreading the weights around the peak to maintain representational diversity. Specifically, reduced
output variance naturally leads to more uniform gradients, which in turn encourages a broader spread
of weights.

Notice that a wider weight distribution around the peak does not necessarily translate to a larger
overall variance. However, focusing on the bulk of the distribution4, we find that GoLU consistently
achieves the highest variance. This behavior suggests that networks trained with GoLU effectively

3As learned transformations in the model are mainly encoded in the weights of fully connected, convolutional
or attention layers, it is more meaningful to exclude parameters of Batch Normalization and Layer Normalization
layers, although including these parameters we obtain qualitatively similar distributions.

4Specifically, we take the intersection of the middle 98% intervals of the parameter distributions of an
architecture trained with each activation.
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Figure 5: The loss landscape on the test set of ResNet-20 trained on CIFAR-10 with ReLU, GELU,
Swish and GoLU after adding random, scaled perturbations to the learned weights (refer to Appendix
C for more details).

Figure 6: Learned-weight distribution of ResNet-50 and ViT- B/16 trained on ImageNet-1k and
GPT2-S trained on OWT. GoLU leads to a more spread weight distribution. The range of parameters
is clipped for better visualization.

suppress density in extreme values while expanding the distribution around the peak. Such a pattern
implies that the model captures a broader range of meaningful transformations without over-reliance
on extreme parameter values or certain features.

We emphasize that the effects attributed to GoLU, as described above, are not guaranteed to hold
universally across all scenarios but rather represent general trends observed in our empirical findings.

Moreover, while asymmetry has been highlighted as a distinctive feature of GoLU, it is important to
note that its high performance, detailed in the next section, cannot be solely attributed to asymmetry,
but arises from an intricate interplay of properties, described in Section 2.1.

3 Experiments and Results

3.1 Overview of Experiments

We conducted experiments across various architectures and datasets, spanning a diverse range of tasks
in both vision and language modeling. We begin with image classification, training ResNet-18, 34,
50 [He et al., 2016], WideResNet-50-2 [Zagoruyko and Komodakis, 2016], DenseNet-121 [Huang
et al., 2017], EfficientNet-B0 [Tan and Le, 2019], TinyViT Wu et al. [2022], ViT-B/32 and ViT-B/16
[Dosovitskiy et al., 2020] on ImageNet-1k Deng et al. [2009].

We then extend our experiments to language modeling. We train babyGPT on the TinyStories
(TS) [Eldan and Li, 2023] dataset and GPT2-S [Radford et al., 2019] on the OpenWebText (OWT)
[Gokaslan et al., 2019] dataset, leveraging the nanoGPT repository Karpathy [2023].

Additionally, we assess GoLU’s performance on Semantic Segmentation (DeepLabV3 Chen et al.
[2017]), Object Detection (Faster R-CNN-FPN Ren et al. [2015], RetinaNet-FPN Lin [2017]),
and Instance Segmentation (Mask R-CNN-FPN He et al. [2017]) on MS-COCO Lin et al. [2014],
leveraging our pre-trained ResNet-50 backbone on ImageNet-1k. Further, we test GoLU on Denoising
Diffusion Probabilistic Models Ho et al. [2020] on the CelebA Liu et al. [2015] dataset.

We closely follow established baselines for all model architectures and tasks, ensuring that the
integration of GoLU is the primary change. Hyperparameters, optimizers, learning rate schedules,
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Table 2: Top-1 test accuracy of ResNets 18, 34 and 50, WideResNet-50-2, DenseNet-121, EfficientNet-
B0, TinyViT, ViT-B/32 and ViT-B/16 on ImageNet-1k.

Architecture ReLU LeakyReLU ELU GELU Swish Mish GoLU
RN-18 69.74±0.07 69.78±0.04 67.10±0.07 70.66±0.05 70.60±0.06 70.53±0.06 70.76±0.06
RN-34 73.26±0.01 73.25±0.03 69.27±0.09 73.44±0.04 72.74±0.05 72.73±0.07 73.71±0.04
RN-50 75.44±0.07 75.67±0.08 71.87±0.09 76.07±0.06 75.17±0.14 75.53±0.09 76.63±0.03

WRN-50-2 76.96±0.07 77.17±0.12 71.90±0.01 76.72±0.01 75.41±0.03 75.75±0.19 77.37±0.03
DN-121 74.95±0.09 75.03±0.06 68.95±0.04 74.64±0.11 72.81±0.06 72.97±0.10 75.25±0.03
EN-B0 76.52±0.07 76.65±0.04 76.21±0.04 76.90±0.01 76.84±0.02 76.76±0.06 76.86±0.04

TinyViT 82.91±0.02 82.83±0.03 80.29±0.07 83.05±0.03 82.92±0.06 83.01± 0.02 83.21±0.02
ViT-B/32 74.51±0.04 74.53±0.03 65.82±0.07 75.48±0.05 72.31±2.15 75.16±0.07 75.74±0.09
ViT-B/16 80.06±0.05 79.93±0.02 73.36±0.16 79.39±0.99 79.19±0.94 77.97±1.95 80.72±0.04

and other training settings are aligned with the standard practices for each task. All our experiments
are conducted on three seeds and the results are averaged out and reported with the standard error.

In Appendix E we further present a Critical Difference analysis to systematically compare the overall
performance of activation functions. In Appendix I, we assess the performance of GoLU on a machine
translation task, using the WMT14 English–German benchmark. Finally, in Appendix J, we explore
the application of GoLU to the task of learning curve extrapolation.

3.2 Image Classification

We evaluate GoLU’s performance in image classification tasks on ImageNet-1k, comparing it against
six state-of-the-art activation functions, ReLU, LeakyReLU, ELU, GELU, Swish and Mish. Table
2 presents the top-1 test accuracies with standard errors for ResNets 18, 34 and 50, WideResNet-
50-2, DenseNet-121, EfficientNet-B0, ViT-B/32, ViT-B/16 and TinyViT Wu et al. [2022]. The
training settings, detailed in Appendix G.1, are adopted from Torchvision TorchVision [2016] for
all experiments except EfficientNet-B0 which is taken from the timm library Wightman [2019] and
TinyViT which is taken from Wu et al. [2022]. As highlighted, GoLU consistently outperforms the
standard activation functions across all architectures, with the exception of EfficientNet-B0, where
the performance difference is minimal. Notice that EfficientNet-B0 is an exception because its
nonlinearity arises not only from activation functions (which are replaced) but also from a squeeze-
and-excitation block, which remains unchanged in our experiments. For ResNet-50 and ViT-B/32, test
loss and test accuracy curves are shown in Figures 17 and 18, respectively, where GoLU consistently
delivers lower test loss and higher top-1 accuracy over the epochs. GELU is generally the second-best
performer, while ELU performs worst across most architectures.

We further evaluate GoLU on CIFAR-10, comparing it against top baseline activations. We report
in Table 3 the results of image classification on CIFAR-10, with ResNets 20, 32, 44, 56, and 110,
WideResNet28-2, DenseNet40 and ViT-Ti/16-224. GoLU consistently outperforms the standard
baselines across all tested architectures. We have further underlined the second-best activations for
each model. No single activation consistently ranks second.

Table 3: Top-1 test accuracy on CIFAR-10. GoLU consistently outperforms baselines. Second best
activations are underlined.

Arch. ReLU LeakyReLU GELU Swish GoLU
RN-20 91.41±0.1 91.60±0.0 91.62±0.0 91.64±0.1 91.77±0.1
RN-32 92.21±0.1 92.40±0.0 92.54±0.1 92.16±0.0 92.69±0.1
RN-44 92.58±0.0 92.78±0.0 92.78±0.8 92.51±0.0 92.85±0.0
RN-56 92.80±0.1 92.75±0.1 92.86±0.1 92.93±0.1 93.15±0.1
RN-110 93.21±0.0 93.18±0.1 92.75±0.1 92.23±0.0 93.25±0.0

WRN-28-2 94.96±0.0 94.81±0.0 94.55±0.1 93.58±0.1 95.03±0.0
DN-40 93.13±0.1 93.13±0.1 93.41±0.0 93.30±0.1 93.44±0.1
ViT-Ti 91.74±0.06 91.61±0.18 91.37±0.11 88.61±0.16 92.60±0.05
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Table 4: Test perplexity score and test token accuracy of babyGPT and GPT2-S trained on TS and
OWT respectively.

Activation babyGPT - TinyStories GPT2-S - OpenWebText
Perplexity Token Accuracy Perplexity Token Accuracy

ReLU 4.519±0.006 61.243±0.030 17.845±0.078 44.059±0.079
LeakyReLU 4.516±0.005 61.237±0.032 17.778±0.125 44.103±0.074

ELU 4.872±0.005 59.859±0.027 18.375±0.035 43.721±0.040
GELU 4.462±0.005 61.465±0.034 17.525±0.015 44.262±0.042
Swish 4.535±0.004 61.178±0.032 17.785±0.026 44.155±0.025
Mish 4.539±0.007 61.135±0.036 17.797±0.086 44.104±0.081
GoLU 4.444±0.005 61.545±0.029 17.297±0.023 44.413±0.023

Table 5: Test loss and test mIoU of
DeepLabV3 ResNet-50 trained on MS-
COCO.

Activation LR=0.02 LR=0.01
Test Loss Test mIoU Test Loss Test mIoU

ReLU 0.344±0.003 64.99±0.173 0.350±0.004 65.11±0.326
LeakyReLU 0.342±0.003 64.79±0.122 0.350±0.002 65.55±0.131

ELU 0.367±0.001 59.31±0.065 0.358±0.001 60.70±0.089
GELU 0.341±0.002 64.53±0.136 0.341±0.003 65.59±0.162
Swish 0.348±0.003 62.52±0.034 0.345±0.002 64.14±0.135
Mish 0.344±0.001 62.97±0.022 0.342±0.002 64.40±0.144
GoLU 0.339±0.000 64.98±0.129 0.341±0.001 65.98±0.124

Table 6: Test Box mAP of Faster R-CNN-
FPN ResNet-50 and RetinaNet-FPN ResNet-
50 trained on MS-COCO.

Activation Box mAP
Faster R-CNN RetinaNet

ReLU 37.44±0.146 39.90±0.063
LeakyReLU 37.41±0.140 39.87±0.041

ELU 35.36±0.041 37.43±0.041
GELU 38.16±0.044 40.68±0.090
Swish 37.28±0.078 40.27±0.087
Mish 37.71±0.087 40.45±0.093
GoLU 38.31±0.058 40.77±0.065

3.3 Language Modeling

We train babyGPT on TS and GPT2-S (124M) on OWT, both sourced from the nanoGPT repository
Karpathy [2023]. As shown in Table 4, GoLU demonstrates superior performance, achieving lower
perplexity and higher token accuracy on both babyGPT and GPT2-S. GoLU’s superiority is also
evident in the test loss curves in Figures 19 and 20. The general trend of GELU being the second-best
activation function holds in language modeling as well. Appendix G.3 outlines the architectural
details and provides additional information on the datasets and training settings.

3.4 Semantic Segmentation

For Semantic Segmentation, we train DeepLabV3 on the MS-COCO dataset with PASCAL-VOC
labels, from the Torchvision benchmark (see Appendix G.4). We employ our ResNet-50 backbone,
pre-trained on ImageNet-1k.

Table 5 (Left) presents the test loss and test mIoU using the original learning rate of 0.02. GoLU
achieves the lowest test loss, whereas ReLU attains the highest mIoU, with GoLU ranking second.
However, the difference in mIoU between ReLU and GoLU is statistically insignificant.

We conduct a small ablation study on the learning rate and find that lr=0.02 is suboptimal for training
the model. Instead, lr=0.01 yields the best performance across all activation functions (see heatmap
10 in Appendix D for full results). Table 5 (Right) reports the results with lr=0.01, where GoLU
consistently outperforms other activation functions in terms of mIoU. Additionally, the inference loss
and test mIoU curves over epochs, shown in Figures 21 and 22, further emphasize GoLU’s strong
performance in semantic segmentation.

3.5 Object Detection

For Object Detection, we train Faster R-CNN-FPN and RetinaNet-FPN on the MS-COCO dataset.
As shown in Table 6 and Figure 23, GoLU outperforms all activation functions on object detection
as well, with higher Box mAP (AP @ IoU=0.50:0.95, area=all, maxDets=100) across both Faster
R-CNN-FPN and RetinaNet-FPN architectures, while GELU ranks second. Appendix G.5 outlines
experimental details.
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Table 7: Test Box mAP and Mask mAP of
Mask R-CNN-FPN ResNet-50 trained on MS-
COCO.

Activation LR=0.02 LR=0.03
Box mAP Mask mAP Box mAP Mask mAP

ReLU 38.33±0.133 34.19±0.129 38.25±0.144 34.28±0.116
LeakyReLU 38.31±0.230 34.19±0.160 38.42±0.105 34.26±0.065

ELU 36.41±0.087 32.81±0.082 35.85±0.069 32.38±0.043
GELU 39.00±0.073 34.73±0.024 39.12±0.028 34.93±0.061
Swish 38.19±0.224 33.99±0.168 38.10±0.187 33.95±0.112
Mish 38.76±0.036 34.70±0.026 38.56±0.138 34.64±0.078
GoLU 38.96±0.101 34.54±0.083 39.36±0.192 34.97±0.146

Table 8: Test Loss at LR=0.0003 and
LR=0.001 of Denoising Diffusion Probabilis-
tic Model trained on CelebA.

Activation Test Loss
LR=0.0003 LR=0.001

ReLU 0.0200255±0.0 0.0192820±0
LeakyReLU 0.0200307±0.0 0.0192812±0

ELU 0.0200398±0.0 0.0193941±0
GELU 0.0196956±0.0 0.0190221±0
Swish 0.0196364±0.0 0.0190055±0
Mish 0.0196865±0.0 0.0190657±0
GoLU 0.0196419±0.0 0.0189506±0

3.6 Instance Segmentation

For Instance Segmentation, we train Mask R-CNN-FPN with a ResNet-50 backbone from the
Torchvision benchmark on the MS-COCO dataset (see Appendix G.6 for training settings). As shown
in Table 7 (Left), GELU achieves the best performance in this setting (with the default lr=0.02), with
GoLU ranking second in Box mAP and third in Mask mAP (both implying AP @ IoU=0.50:0.95,
area=all, maxDets=100). However, Figure 24, which depicts test Box mAP and Mask mAP over
epochs, reveals that GoLU generally outperforms GELU and ReLU throughout the training process.
We perform a learning rate ablation study and observe that, similar to the Semantic Segmentation task,
a learning rate of 0.02 is suboptimal for this specific architecture–dataset combination. In contrast,
increasing the learning rate to 0.03 leads to improved performance across all activation functions
(see heatmaps 12 and 13). Surprisingly, at the optimal learning rate of 0.03, GoLU outperforms all
baseline activations, as shown in Table 7 (right).

3.7 Denoising Diffusion Probabilistic Models

We train a Denoising Diffusion Probabilistic Model on the CelebA dataset (see Appendix G.7). As
shown in Table 8, for the default lr=0.0003, gated activations perform comparably to the baseline
activation, Swish, which achieves the best performance, with GoLU ranking a close second. Figure
25 (Left) further illustrates the test loss over epochs. Similar to our findings in semantic segmentation
and instance segmentation, we conduct a learning rate ablation study. Results, summarized in heatmap
11 in Appendix D, indicate that increasing the lr from the default value of 0.0003 to 0.0004, 0.0005
and 0.001 progressively improves performance across all activations. Notably, for lr values of 0.0004,
0.0005 and 0.001, GoLU achieves the lowest final test loss. Results for the optimum lr=0.001 are
highlighted in the right column of Table 8 and Figure 25 (Right). These findings are in line with
the trend observed in semantic segmentation and instance segmentation, where GoLU outperforms
baseline activations under optimal lr configurations.

4 Training and Inference Speed

Existing activation functions in PyTorch leverage CUDA kernels in Eager mode to achieve optimal
speedup. To ensure a fair comparison of training and inference speeds, we developed a CUDA-
optimized kernel for GoLU, which was used for all training experiments described in the previous
sections. Table 9 in Appendix F presents the relative training and inference speeds of GoLU compared
to the default activation function across various tasks.

Our results show that GoLU achieves a speed comparable to that of the default activation function
across all architectures. The only exception is DeepLabV3-ResNet-50 trained on MS-COCO, where
GoLU incurs slightly higher training time. However, this is consistent with other activation functions,
all of which exhibit increased training times relative to ReLU in this specific architecture.

5 Conclusions

We have introduced GoLU, a new self-gated activation function based on the CDF of the Gumbel
distribution as its gate function. Through extensive analysis and experiments, we have demonstrated
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that GoLU provides a regularising effect by reducing variance in the activation output, it enables
the representation of diverse features through a more distributed weight pattern, and encourages a
smoother and more robust loss landscape. Notably, our results show that GoLU generally outperforms
state-of-the-art baseline activation functions across a wide range of tasks and domains, from computer
vision to language modeling. Additionally, we implemented a custom CUDA kernel to optimize
training and inference efficiency, minimizing latency and enhancing scalability. GoLU offers a robust,
efficient, and scalable alternative to existing activation functions. Its integration into state-of-the-art
neural networks has the potential to improve performance across various applications, positioning
GoLU as a promising standard in modern deep learning.
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A Properties of GoLU: Further Details

To further elucidate the concepts presented in Section 2.1 and gain deeper insights into the properties
of GoLU, we present additional details and visualizations in this section.

Figure 7 compares the GoLU activation with GELU, highlighting how the right-leaning inclination of
the Gumbel distribution, in contrast to the symmetric Gaussian distribution (Left column), results in a
smaller value of the Gompertz gate at the origin compared to the Gaussian CDF (Middle column).
In fact, this behavior is not confined to the origin, and the Gompertz gate remains smaller than the
Gaussian CDF across the entire input range.

Figure 7: Top row, from left to right: Gaussian distribution, Gaussian CDF, GELU. Bottom row, from
left to right: Gumbel distribution, Gompertz function, GoLU.

This reduced value of the Gompertz gate at the origin directly translates into a lower slope for GoLU
compared to GELU, as illustrated in Figure 7 (Right column). This can be readily seen by taking the
derivative of the GoLU activation and evaluating it at zero

GoLU′(x) = xGompertz′(x) + Gompertz(x) (5)
GoLU′(0) = Gompertz(0) (6)

which shows that the slope of GoLU at the origin corresponds to the value of the Gompertz gate at the
origin. Similarly, the slope of GELU at the origin is determined by the Gaussian CDF at the origin.

Assuming the input distribution resembles a zero-centered, nearly-Gaussian form, which is likely
particularly when employing batch normalization and appropriate weight initialization, the activations
can be approximated by their tangents at the origin. Therefore a reduced slope at the origin translates
into decreased sensitivity to input variations and lower output variance. We note that GoLU exhibits
a lower slope magnitude not only in a neighborhood around the origin but across a significant portion
of the negative input domain as illustrated in Figure 2.

More generally, it can be shown analytically that for a given activation function f that is smooth in a
neighborhood of its input mean, and for a sufficiently localized input distribution, the variance of the
activation output is approximately proportional to the square of its slope evaluated at the mean input
µ, with the input variance σ2 serving as the proportionality constant

Var[f(x)] ≈ f ′(µ)2σ2 (7)

This formally demonstrates how smaller activation slopes result in reduced output variance.

To derive this connection, we apply the definition of variance to a scalar activation function f(x):

Var[f(x)] = E[(f(x)− E[f(x)])2] = E[f(x)2]− E[f(x)]2 (8)
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Expanding f(x) and f(x)2 in a Taylor series around the mean input µ, gives:

f(x) = f(µ) + f ′(µ)(x− µ) +
1

2
f ′′(µ)(x− µ)2 + · · · (9)

f(x)2 = f(µ)2 + 2f(µ)f ′(µ)(x− µ) + f ′(µ)2(x− µ)2 + f(µ)f ′′(µ)(x− µ)2 + · · · (10)

Taking expectations and using E[(x− µ)] = 0 and E[(x− µ)2] = σ2 leads to:

E[f(x)] = f(µ) +
1

2
f ′′(µ)σ2 + · · · (11)

E[f(x)2] = f(µ)2 + f ′(µ)2σ2 + f(µ)f ′′(µ)σ2 + · · · (12)

Substituting these into the definition of the variance, and simplifying while retaining only the
leading-order term, we obtain:

Var[f(x)] = (f(µ)2 + f ′(µ)2σ2 + f(µ)f ′′(µ)σ2 + · · · )− (f(µ) +
1

2
f ′′(µ)σ2 + · · · )2 (13)

= (f(µ)2 + f ′(µ)2σ2 + f(µ)f ′′(µ)σ2 + · · · )− (f(µ)2 + f(µ)f ′′(µ)σ2 + · · · )(14)

≈ f ′(µ)2σ2 (15)

which completes the proof.

Finally, a Taylor expansion of the Sigmoid and Gompertz gate functions for large positive input
values demonstrates that these two functions converge to each other exponentially fast in this regime,
as pointed out in Section 2.1.

Sigmoid(x)−Gompertz(x) =
1

1 + e−x
− e−e−x

(16)

=
(
1− e−x +O(e−2x)

)
−

(
1− e−x +O(e−2x)

)
(17)

= O(e−2x) (18)

B Flipped Mish: a new self-gated activation with right-leaning distribution

Throughout this work, we have emphasized the influence of right-skewed asymmetry in the underlying
distribution associated with an activation on model performance. To further explore this property,
we leverage the left-skewed distribution underlying Mish to construct a new self-gated activation
function exhibiting right-skewed asymmetry. This is achieved by reflecting the Mish-associated
distribution about the vertical axis. Specifically, denoting the Mish distribution by D(x) and its
corresponding gate function by g(x), the gate function for the flipped distribution D̃(x) = D(−x) is
given by g̃(x) = 1− g(−x), as shown by the following derivation:

g̃(x) =

∫ x

−∞
dy D̃(y) =

∫ x

−∞
dy D(−y) =

∫ ∞

−x

dy D(y) =

∫ ∞

−∞
dy D(y)−

∫ −x

−∞
dy D(y) = 1−g(−x)

(19)
where in the third equation we have redefined the dummy integration variable y → −y and in the
last equation we have used the fact that the integral of the distribution D(y) over its entire domain
is equal to 1. The resulting activation function, which we refer to as Flipped Mish (FMish), is thus
defined as:

FMish(x) = x(1− tanh(softplus(−x))) (20)

Figure 8 compares FMish with GoLU, including their respective gate functions and the associated
distributions.
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Figure 8: Comparison of activations (left), gate functions (middle), and associated distributions (right)
for FMish and GoLU.

We evaluated FMish on ResNet18, ResNet50 and ViT-B/32 trained on ImageNet-1k. Remarkably, it
outperformed all baseline activations except GoLU, achieving 70.73±0.05 for ResNet18, 76.20±0.01
for ResNet50 and 75.67± 0.04 for ViT-B/32 (compare with results in Table 2 ). This outcome aligns
with expectations, as the slope of FMish at the origin is 0.4, lower than that of sigmoid and Gaussian
CDF (0.5) but slightly higher than GoLU (0.37). These results further highlight the significance of
right-leaning asymmetry and the resulting variance reduction.

Furthermore, we note that the Flipped Mish distribution does not decay as rapidly as the Gumbel
distribution for large negative inputs, which may also contribute to its performance.

C Details of the loss landscape experiment

We analyze the loss landscape of a neural network by quantitatively measuring and visualizing how
the loss changes as the network’s parameters are perturbed. Smoothness in the loss landscape often
indicates that small perturbations in the parameters do not cause large changes in the loss, which can
make optimization more stable.

Specifically, we generate two random perturbation directions d1 and d2, each matching the shape of
the model parameters. The elements of these directions are independently sampled from a Standard
Normal distribution. To ensure controlled magnitudes, each perturbation direction is subsequently
normalized.

We perturb the weights of the model along these directions in a linear combination:
Wperturbed = Wtrained + αd1 + βd2 (21)

where Wtrained are the trained weights of the model and α and β are scalar values that determine the
perturbation magnitude and are chosen as α, β ∈ [−1, 1]. For each pair of values (α, β), we compute
the loss using the perturbed weights Wperturbed on the full test set of the CIFAR-10 dataset. We then
repeat this for a grid of (α, β) values to create a 3D surface plot as shown in Figure 5.

To provide a more quantitative understanding of the loss landscapes in Figure 5, we have plotted
the density functions of the loss values for each activation function and computed their variance.
The results, shown in Figure 9, indicate that GoLU achieves both a lower average loss and smaller
variance compared to other activations, consistent with the observations from the 3D plots in Figure
5.

D Learning Rate ablation

For various tasks, we conduct a focused search over the learning rate to determine whether the default
setting represents the optimal value and to assess its impact on the performance of models trained
with different activation functions. Figures 10 and 11 present heatmaps of test results for Semantic
Segmentation and Diffusion tasks, comparing models trained with various activation functions across
different learning rates. Figures 12 and 13 show similar heatmaps for the Instance Segmentation task,
reporting box mAP and mask mAP, respectively. For these tasks, the default learning rate, highlighted
by a black box, differs from the optimal learning rate, indicated by a green box. Notably, while GoLU
performs slightly below the best-performing activation under the default learning rate, it outperforms
all other activation functions when evaluated at the optimal learning rate, which is consistent across
all activations.
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Figure 9: Comparison of loss value distributions across the loss landscape. GoLU achieves both a
lower loss mean and variance.

Figure 10: Test mIoU - DeepLabV3 on MS-
COCO. The default learning rate is 0.02 which
is colored in black and the best learning rate is
0.01 which is colored in green.

Figure 11: Test Loss - DDPM on CelebA. The
default learning rate is 0.0003 which is colored in
black and the best learning rate is 0.001 which is
colored in green.

Figure 12: Test Box mAP - Mask R-CNN-PFN
ResNet-50 on MS-COCO. The default learning
rate is 0.02 which is colored in black and the best
learning rate is 0.03 which is colored in green.

Figure 13: Test Mask mAP - Mask R-CNN-PFN
ResNet-50 on MS-COCO. The default learning
rate is 0.02 which is colored in black and the best
learning rate is 0.03 which is colored in green.

Motivated by these results, we further investigate the impact of learning rate on image classification
tasks where GoLU demonstrated superior performance compared to baseline activations. Figures 14
and 15 present heatmaps of test accuracies for ResNet-50 and ViT-B/32 on ImageNet-1k.
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Figure 14: Test accuracies - ResNet-50 on
ImageNet-1k. The default learning rate is 0.1
which is also the best and is colored in green.

Figure 15: Test accuracies - ViT-B/32 on
ImageNet-1k. The default learning rate is 0.003
which is also the best and is colored in green.

Notably, we observe that the optimal learning rate aligns with the default learning rate in this case.
These findings reinforce the broader trend that, with few exceptions, GoLU consistently outperforms
baseline activation functions across tasks when evaluated at the optimal learning rate.

E Critical Difference Analysis

In this section, we conduct a Critical Difference analysis following Demšar [2006] to systematically
rank activation functions based on experiments performed on ImageNet-1k, MS-COCO, OWT, TS,
and CelebA. As shown in Figure 16, GoLU achieves the highest rank, followed by GELU. Notice
that the confidence interval in this analysis is independent of the variance across multiple runs with
different random seeds. Instead, it is determined by the number of models and datasets, as well as the
significance level, which is set to α = 0.05 here.

Figure 16: Critical Difference diagram, ranking activation functions based on average performance.

F Training and inference times

Table 9 reports relative training and inference times with respect to baseline activations for our
trained models. On average, GoLU achieves training and inference speeds on par with default
activation functions, while offering improved performance. This makes GoLU a practical and
effective alternative for training deep learning models.

G Experimental Details

This section outlines detailed information about the datasets and training pipelines used for the
various tasks studied in this work. All experiments in this section were conducted on NVIDIA A100
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Table 9: Relative training and inference time with respect to baseline activations for our trained
architectures.

Architecture Dataset Baseline Relative Relative
Activation Training Speed Inference Speed

ResNet-18 ImageNet-1k ReLU 1.00x 1.00x
ResNet-34 ImageNet-1k ReLU 1.01x 1.00x
ResNet-50 ImageNet-1k ReLU 1.01x 1.01x

WideResNet-50-2 ImageNet-1k ReLU 1.03x 1.02x
DenseNet-121 ImageNet-1k ReLU 1.02x 1.02x

EfficientNet-B0 ImageNet-1k Swish 1.00x 1.00x
TinyViT ImageNet-1k GELU 0.99x 0.98x
ViT-B/32 ImageNet-1k GELU 0.99x 0.99x
ViT-B/16 ImageNet-1k GELU 0.98x 0.98x
babyGPT TinyStories GELU 1.00x 1.00x
GPT2-S OpenWebText GELU 1.01x 1.01x

DeepLabV3 MS-COCO ReLU 1.14x 1.04x
RetinaNet MS-COCO ReLU 1.00x 1.00x

FasterRCNN MS-COCO ReLU 1.03x 1.00x
MaskRCNN MS-COCO ReLU 1.05x 1.02x

DDPM CelebA Swish 0.97x 0.97x
Average - - 1.01x 1.00x

GPUs, with an approximate total compute time of 112K GPU hours, except for TinyViT, which was
executed on an NVIDIA H100 GPU with a total runtime of 455 GPU hours.

G.1 Image Classification - ImageNet

In image classification experiments on ImageNet-1k, ResNets 18, 34, 50, WideResNet-50-2 and
DenseNet-121 are trained for 90 epochs with a batch size of 256, SGD with momentum=0.9 (Nesterov
for WRN-50-2 and DN-121), learning rate 0.1, and weight decay 1× 10−4. Further, a Step learning
rate scheduler is applied that reduces the learning rate by a gamma = 0.1 after every 30 epochs.
EfficientNet-B0 is trained using the timm library for 450 epochs with a batch size of 1536 using
RMSProp Hinton et al. [2012] with an initial learning rate of 0.048 and a weight decay of 1× 10−5.
ViT models are trained for 300 epochs with a batch size of 4096 using AdamW Loshchilov and Hutter
[2017] with an initial learning rate of 3 × 10−3 and weight decay of 0.3. Various regularization
techniques are applied, including Exponentially Moving Averaged Weights Tarvainen and Valpola
[2017], AutoAugment Cubuk et al. [2019] (ImageNet policy for ViTs), RandAugment Cubuk et al.
[2020], MixUp Zhang et al. [2017], CutMix Yun et al. [2019] and Label Smoothing Szegedy et al.
[2016] for EfficientNet-B0 and ViT models. ViT-B/16 shows slight instability for seed 1 for GELU.
Hence we further average seeds 2 and 3 for both GELU and GoLU. We find that GELU shows a top-1
accuracy of 80.61± 0.06 while GoLU shows top-1 accuracy of 80.69± 0.07 which is higher than
GELU.

G.2 Image Classification - CIFAR-10

The ResNet 20, 32, 44, 56 and 110 models are trained for 164 epochs with a batch size of 128, a
learning rate of 0.1, and SGD with momentum 0.9. A weight decay of 1× 10−4 is applied, along
with a MultiStep learning rate scheduler with a gamma factor of 0.1 at epochs 81 and 122 (with an
initial learning rate of 0.01 and additional gamma factor of 10 at epoch 2 for ResNet-110).

WideResNet28-2 and DenseNet40, were trained for 200 and 300 epochs, and batch sizes of 128
and 64, respectively. We employ SGD with Nesterov momentum 0.9 for both architectures, using
a learning rate of 0.1. The weight decays are 5 × 10−4 for WideResNet28-2 and 1 × 10−4 for
DenseNet40. Similar to ResNets, both WideResNet28-2 and DenseNet40 use the MultiStep learning
rate scheduler. However, WideResNet28-2 reduces the learning rate by a factor of 0.2 at epochs 60,
120, and 160, while DenseNet40 reduces the learning rate by 0.1 at epochs 150 and 225. To train
ViT-Ti/16-224 from scratch, we leverage the Timm library.
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G.3 Language modeling

Both, TinyStories and OpenWebText datasets are popular benchmarks for training language models.
The TinyStories dataset consists of 2,119,719 data points in the training set and 21,990 in the test set,
while the OpenWebText dataset has 8,009,762 data points in the training set and 4,007 data points in
the test set. Both babyGPT and nanoGPT have a vocabulary size of 50,304 and a maximum sequence
length of 1024.

The babyGPT version of the GPT-2 series consists of 6 layers, 6 attention heads, and an embedding
dimension of 384, with a feed-forward expansion dimension of 1536 output features. The model
is trained for 10,000 iterations with a batch size of 640, using the AdamW optimizer. The initial
learning rate is 1× 10−3, with a minimum learning rate of 1× 10−4, a weight decay of 0.1, and a
gradient clipping norm of 1.0. A Cosine learning rate scheduler is applied with a linear warmup for
the first 100 iterations.

Similarly, the GPT2-S model consists of 12 layers, 12 attention heads, and an embedding dimension
of 768. It trains for 600,000 iterations with a batch size of 480, using the AdamW optimizer (with
β2 = 0.95). The initial learning rate is 6×10−4, with a minimum learning rate of 6×10−5, a weight
decay of 0.1, and a gradient clipping norm of 1.0. The Cosine learning rate scheduler is employed
with a linear warmup for the first 2,000 iterations.

G.4 Semantic Segmentation

The MS-COCO dataset with PASCAL-VOC labels contains 92,518 data points in the training set
and 5,000 data points in the test set. The original MS-COCO dataset contains 117,266 data points in
the training set. However, the existing benchmark pre-processes and removes images that either lack
valid annotations or contain only small objects with an area coverage of less than 1,000 pixels. This
ensures the retention of meaningful data points for training the model.

The DeepLabV3-ResNet-50 model is trained for 30 epochs with a batch size of 32, using SGD with
momentum 0.9, a learning rate of 2× 10−2, weight decay of 1× 10−4, and a polynomial learning
rate scheduler with a power of 0.9.

G.5 Object Detection

Unlike Semantic Segmentation, the MS-COCO dataset for object detection contains 117,266 images
in the training set and 5,000 images in the test set. Additionally, we do not apply any pre-processing
that removes images from the training or test sets.

Faster R-CNN-FPN ResNet-50 and RetinaNet-FPN ResNet-50 are trained for 26 epochs with a batch
size of 16, an aspect ratio group factor of 3, no frozen batch normalization, and a MultiStep learning
rate scheduler that reduces the initial learning rate by a factor of 0.1 at epochs 16 and 22. Specifically,
Faster R-CNN-FPN ResNet-50 uses SGD with momentum 0.9, a learning rate of 2 × 10−2, and
a weight decay of 1 × 10−4, while RetinaNet-FPN ResNet-50 uses the AdamW optimizer with a
learning rate of 1× 10−4 and a weight decay of 5× 10−2.

G.6 Instance Segmentation

The MS-COCO dataset for instance segmentation uses the same train and test sets as those used
for Object Detection. Additionally, it trains with the exact same configurations used for Faster
R-CNN-FPN in the previous subsection G.5.

G.7 Denoising Diffusion Probabilistic Models

The CelebA dataset, comprises of 162,770 training images and 19,867 test images of human faces.
The Denoising Diffusion Probabilistic Model is trained on the CelebA dataset for 50 epochs with a
batch size of 32 leveraging the DDPM Kim [2023] repository. The AdamW optimizer with a learning
rate of 0.0003, Cosine learning rate scheduler, and linear learning rate warmup for the first 1,000
iterations are applied.
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H Test Loss Curves

To provide a more comprehensive view of GoLU’s test performance over the course of training, this
section presents test curves, including loss and task-specific metrics, comparing GoLU with ReLU
and GELU, and illustrating how their performance evolves throughout training.

Figure 17: ResNet-50 test loss (Left) and test top-1 accuracy (Right) on ImageNet-1k.

Figure 18: ViT-B/32 test loss (Left) and test top-1 accuracy (Right) on ImageNet-1k.

Figure 19: babyGPT test loss (Left) and test token accuracy (Right) on TS.
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Figure 20: GPT2-S test loss (Left) and test token accuracy (Right) on OWT.

Figure 21: DeepLabV3 ResNet-50 test loss (Left) and test mIoU (Right) on MS-COCO with lr=0.02.

Figure 22: DeepLabV3 ResNet-50 test loss (Left) and test mIoU (Right) on MS-COCO with lr=0.01.
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Figure 23: Faster R-CNN-FPN ResNet-50 (Left) and RetinaNet-FPN ResNet-50 (Right) test Box
mAP on MS-COCO.

Figure 24: Test Box mAP (Left) and test Mask mAP (Right) for Mask R-CNN-FPN ResNet-50
trained on MS-COCO.

Figure 25: Test loss for Denoising Diffusion Probabilistic Model trained on CelebA at LR=0.0003
(Left) and LR=0.001 (Right).

I Machine Translation

To further assess GoLU across diverse tasks, we evaluated its performance on machine translation
using the WMT14 English–German benchmark, with approximately 4.5 million training pairs.
Specifically, we trained Transformer-Big models using the Fairseq framework [Ott et al., 2019],
comparing GoLU against baseline activations including ReLU, which is the default in this architecture.
The architecture follows the standard configuration with 6 encoder and 6 decoder layers, 1024-
dimensional embeddings, 16 attention heads, and a feed-forward hidden size of 4096. Models
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were trained with three different random seeds for 50 epochs using the Adam optimizer (β1 = 0.9,
β1 = 0.98), an inverse square root learning rate schedule (base LR = 5×10−4, 4000 warm-up steps),
label smoothing of 0.1, and gradient accumulation of 16 to simulate large-batch training. Evaluation
was conducted using beam search with BLEU4 as the performance metric. All runs were executed on
a single NVIDIA L40S GPU with a total runtime of roughly 1750 GPU hours. As shown in Table 10,
GoLU outperforms standard activation functions in terms of mean BLEU4 score, which highlights its
effectiveness in sequence modeling as well.

Table 10: Mean and standard error of BLEU4 scores for Transformer-Big on the WMT14 En-
glish–German translation task.

Activation Test BLEU4
ReLU 28.33±0.14

LeakyReLU 28.26±0.04
ELU 27.49±0.08

GELU 28.20±0.04
Swish 28.34±0.08
Mish 28.31±0.10
GoLU 28.44±0.15

J Case Study: Bayesian Learning Curve Extrapolation using Prior-data fitted
Networks

In this section, we present an additional experiment on GoLU, initially conducted as an internal
validation study. We report this as a “negative” result, with GoLU ranking second-to-last under the
optimal learning rate. Due to the unconventional experimental setup, its niche focus, and suboptimal
hyperparameter tuning, we have included these findings in the appendix rather than in the main text.

Experimental Details In this experiment, we assessed all 7 activation functions (including GoLU)
considered in the main article as activations for LC-PFN Adriaensen et al. [2024]. LC-PFN is a
prior-data fitted network Müller et al. [2021] that functions as a decoder-only transformer, trained for
in-context Bayesian prediction for a specific prior dataset distribution. Specifically, LC-PFN is trained
for Bayesian Learning Curve extrapolation. We adopted the same setup used to train the best model
presented in the original paper, a decoder-only transformer having 26.79M trainable parameters, 12
layers, 4 attention heads, an embedding dimension of 512, and a feed-forward expansion dimension
of 1024 output features. It was trained using 10M synthetically generated learning curves, (each
containing 100 observations), employing the Adam optimizer (with a default learning rate of 0.0001
and a batch size of 100), using a cosine scheduler with a linear warmup during the first 25,000 steps
(25%) of the training. At test time, it takes a partial learning curve as input, and predicts the posterior
predictive distribution (PPD) for possible continuations. The test performance of the final model was
measured using the log-score, which represents the log-likelihood of the true continuation, under the
PPD, averaged across all 99 cutoffs for 10,000 curves from the prior.

Results Figure 26 presents the log-scores for the final models, utilizing all 7 activation functions at
5 different learning rates, averaged over 3 training runs. At the original and optimal learning rate
of 0.0001, GoLU ranks 6th among the 7 activations. However, a closer examination reveals that the
choice of activation function seems to have minimal impact, as the differences between GoLU and
the best (ELU) and worst (Swish) activation are within a single standard error. The learning rate
ablation shows that GoLU ranks first at the highest stable learning rate (0.001), supporting previous
findings that GoLU thrives in the high learning rate regime.

K Limitations

The effects attributed to GoLU, as described in Section 2.2, are not guaranteed to hold universally
but rather represent general trends observed in our empirical findings. Moreover, while asymmetry
has been highlighted as a distinctive feature of GoLU, its high performance, detailed in Section 3,
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Figure 26: Test log scores - LC-PFN. The default learning rate is 0.0001, which is also optimal, is
highlighted in green.

cannot be solely attributed to asymmetry, but instead arises from an intricate interplay of properties
described in Section 2.1.

Additionally, we note the importance of learning rate tuning in realizing the full benefits of GoLU.
Although we generally observed that, under a tuned learning rate, which also improves the perfor-
mance of all baseline activations, GoLU achieves superior results, it is not guaranteed to outperform
baseline activation functions under default hyperparameter settings.

L Broader Impact

This paper introduces GoLU, a novel activation function designed to advance the field of Machine
Learning. The primary objective of this work is to improve the performance and robustness of
state-of-the-art neural networks across diverse domains, including computer vision, natural language
processing, and generative modeling. The societal impact of this work is primarily tied to the
downstream applications of machine learning models that may incorporate GoLU. By enhancing
the robustness and performance of models, our activation function has the potential to positively
influence critical areas such as medical imaging, autonomous systems, and other technologies that
drive societal progress. While there are no immediate or direct societal concerns specific to GoLU
itself, as with any development in machine learning, there is a possibility of misuse. We therefore
emphasize the importance of ethical and responsible deployment of machine learning technologies
enhanced by our contributions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are supported in the main
paper and appendix particularly in Sections 2 and 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed throughout the paper and summarized in Appendix
K.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We include the full derivation of equation 4 in Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section G provides the experimental details to reproduce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: At the end of the introduction we provide the link to our GitHub repository
https://github.com/automl/GoLU which includes complete instructions to run the
experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section G provides the details of the experimental settings. We further provide
the link to our public repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report standard errors for all the results in the paper, and this is highlighted
in Section 3.1. In Section E, we further provide a Critical Difference analysis to rank
activation functions and illustrate the corresponding confidence intervals.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Sections G and I.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research fully conforms with the NeurIPS Code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section L.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators or original owners of the assets used in the paper are properly
cited, and all assets are covered by open-access licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new asset introduced in the paper is the code for GoLU, which is currently
provided through the GitHub repository https://github.com/automl/GoLU and is well
documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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