Gompertz Linear Units: Leveraging Asymmetry for Enhanced Learning Dynamics

Indrashis Das

University of Freiburg dasi@cs.uni-freiburg.de

Mahmoud Safari

University of Freiburg safarim@cs.uni-freiburg.de

Steven Adriaensen

University of Freiburg adriaens@cs.uni-freiburg.de

Frank Hutter

Prior Labs & ELLIS Institute Tübingen & University of Freiburg fh@cs.uni-freiburg.de

Abstract

Activation functions are fundamental elements of deep learning architectures as they significantly influence training dynamics. ReLU, while widely used, is prone to the dying neuron problem, which has been mitigated by variants such as LeakyReLU, PReLU, and ELU that better handle negative neuron outputs. Recently, self-gated activations like GELU and Swish have emerged as state-of-the-art alternatives, leveraging their smoothness to ensure stable gradient flow and prevent neuron inactivity. In this work, we introduce the Gompertz Linear Unit (GoLU), a novel self-gated activation function defined as GoLU(x) = x Gompertz(x), where $Gompertz(x) = e^{-e^{-x}}$. The GoLU activation leverages the right-skewed asymmetry in the Gompertz function to reduce variance in the latent space more effectively compared to GELU and Swish, while preserving robust gradient flow. Extensive experiments across diverse tasks, including Image Classification, Language Modeling, Semantic Segmentation, Object Detection, Instance Segmentation, and Diffusion, highlight GoLU's superior performance relative to state-of-the-art activation functions, establishing GoLU as a robust alternative to existing activation functions.

1 Introduction

Developing effective activation functions has been a longstanding area of research in deep learning. In the early days, the Sigmoid [Verhulst, 1838, Rumelhart et al., 1986] and Tanh [LeCun et al., 2002] functions were popular choices. However, these activations can suffer from the vanishing gradient problem due to their tendency to saturate. The introduction of ReLU [Nair and Hinton, 2010] marked a turning point, as it allowed for more efficient training by alleviating the vanishing gradient problem and inducing intensity equivariance [Nair and Hinton, 2010]. However, ReLU comes with its own challenges, notably the dying-ReLU problem. To address these challenges, several ReLU variants have been developed, including LeakyReLU [Maas et al., 2013], PReLU [He et al., 2015] and ELU [Clevert et al., 2015]. Despite the emergence of these alternatives, ReLU remains one of the most widely used activation functions today, owing to its simplicity as a piecewise linear function and its computational efficiency.

In the deep learning community, the landscape of activation functions has gradually shifted towards self-gated activations such as Gaussian Error Linear Units (GELU) [Hendrycks and Gimpel, 2016], Swish [Ramachandran et al., 2017], and Mish [Misra, 2019]. These activations provide probabilistic interpretations while enhancing robustness when combined with normalization techniques [Ioffe and Szegedy, 2015, Ba et al., 2016, Ulyanov et al., 2016, Wu and He, 2018, Zhang and Sennrich, 2019]. Unlike ReLU, which strictly enforces gradient preservation due to its piecewise-linear nature, Swish, Mish and GELU, as smooth activation functions, relax these constraints. Their smoothness allows for improved gradient flow without strictly adhering to intensity equivariance.

In this work we introduce Gompertz Linear Units (GoLU), a new activation function of the self-gated family based on the Gompertz function [Gompertz, 1825] as its gating mechanism. The Gompertz function was initially developed to model human mortality rates, and has since been widely applied in biology. Notably, it also possesses a probabilistic interpretation, as it represents the cumulative distribution function (CDF) of the standard Gumbel distribution. While both the Sigmoid function and the Gaussian CDF exhibit reflection symmetry around the point (0, 0.5), the Gompertz function manifests a subtle rightward asymmetry, leading to distinct qualitative behavior.

Our experiments indicate that GoLU, compared to existing self-gated activations, effectively *reduces variance* in the latent representation. Moreover, it contributes to a *smoother loss landscape*, making it less sensitive to small perturbations in the model parameters. Additionally, an analysis of the learned weights in our trained models reveals that GoLU induces a more *spread weight distribution* compared to commonly used activations (see Section 2.2 for details).

A more spread weight distribution may indicate the network's ability to capture a diverse range of features from the data. On the other hand, variance reduction in activation outputs can help eliminate irrelevant information, allowing the network to focus on distinguishing patterns and potentially mitigate overfitting. However, overly broad weight distributions may introduce instability, while excessive variance reduction could result in underfitting and the loss of essential features, ultimately degrading performance.

Extensive, task-specific evaluations, suggest that GoLU effectively addresses this trade-off by achieving a balanced level of both weight distribution and variance reduction, leading to improved performance over baseline activations (see Section 3). To facilitate reproducibility, we have made our code available at https://github.com/automl/GoLU.

2 Gompertz Linear Unit

2.1 Definition and Properties

In this section, we introduce the GoLU activation function and discuss its properties. GoLU is defined through Equations 1 and 2 and visualized in Figure 1 (Left) as the red curve, alongside other activation functions for comparison.

$$GoLU(x) = x Gompertz(x)$$
 (1)

$$Gompertz(x) = e^{-e^{-x}}$$
 (2)

The gate function Gompertz(x) refers to the Gompertz function introduced in [Gompertz, 1825] and is plotted in red in Figure 1 (Right), alongside the gate functions of other gated activations. The Gompertz function can also be interpreted probabilistically, as it corresponds to the CDF of the standard Gumbel distribution, Gumbel(0, 1), with probability density function

$$Gumbel(x) = e^{-(x+e^{-x})}$$
(3)

From Equations 1, 2 and Figure 1, we understand that, contrary to ReLU and its variants which are monotonic and non-smooth at zero, GoLU is a smooth and non-monotonic self-gated activation, similar to Swish and GELU. In fact the formulation of GoLU using exponentials makes it infinitely differentiable. However, in contrast to Sigmoid and the Gaussian CDF (i.e. the gate functions of Swish and GELU), the Gompertz function is asymmetric, as it does not mirror evenly around a central point¹.

¹Formally, we refer to a scalar function f(x) as symmetric if there exists a point x^* such that for any input x we have $f(x^* + x) - f(x^*) = f(x^*) - f(x^* - x)$.

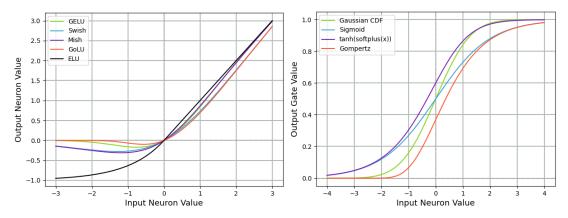


Figure 1: Activation functions (Left) and their corresponding gates (Right). GoLU and its gate, the Gompertz function, are highlighted in red. Note the slight rightward shift of the Gompertz gate.

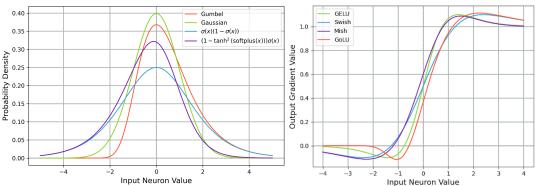


Figure 2: Comparison of the distributions underlying the gate functions (Left) and the gradients (Right) of various gated activations. The Gumbel distribution exhibits a slight rightward skew.

This asymmetry, which has a bias towards the right, arises from the inherent asymmetry of the Gumbel distribution, which favors positive input values, as illustrated in Figure 2 (Left). In fact, the right-leaning asymmetry of the Gumbel distribution leads to smaller gate values across the entire input range, inducing a compression effect on the output distribution. This behavior extends to GoLU, yielding output values closer to zero, both for positive and negative inputs, when compared to other gated activation functions, effectively reducing the magnitude of the activation output. We note that, while Mish also exhibits an asymmetric distribution, it is skewed to the left, producing the opposite effect relative to GoLU².

From a more localized perspective, the Gompertz gate exhibits a reduced value in particular at the origin. This leads to a decreased steepness of GoLU near this point, as indicated by $\operatorname{GoLU}'(0) = \operatorname{Gompertz}(0)$ from Equation 1. This property of reduced slope magnitude is not confined to the origin but extends to a neighborhood around it and spans a substantial portion of the negative input domain, as shown in Figure 2 (Right). Additional details are provided in Appendix A.

In the large negative region, the Gompertz gate, and consequently the GoLU activation, decays extremely rapidly as a double exponential, suppressing unimportant features like ReLU, while maintaining smoothness, unlike ReLU.

Compared to the Gaussian CDF and the Sigmoid function, the Gompertz gate initially exhibits a flat plateau, followed by a steeper growth rate that aligns more closely with the Gaussian CDF. As the input values become large and positive, the growth rate flattens and resembles the Sigmoid function, with the difference falling off as $\mathcal{O}(e^{-2x})$ (see Appendix A).

²See Appendix B for an interesting case of flipped Mish distribution with right-leaning asymmetry.

2.2 Effects on Training Dynamics

The distinctive properties of GoLU influence the training dynamics, as we will outline here.

Variance reduction As illustrated in Figure 1 (Left), GoLU exhibits a profile that remains closest to the x-axis across the entire input range. Moreover, its slope, particularly near the origin and over a substantial portion of the negative input domain, is smaller in magnitude compared to other gated activations, as pointed out in Section 2.1. These characteristics suggest a reduced sensitivity of the activation output to variations in the input. In fact, for a scalar activation function f the variance of its output can be shown to be approximately proportional to the square of its slope

$$Var[f(x)] \approx f'(\mu)^2 \sigma^2 \tag{4}$$

where μ and σ^2 denote the mean and variance of the input, respectively (see Appendix A for the derivation). This analytic relation explains more directly how the smaller slope of GoLU contributes to a lower variance in its output. As a result, GoLU effectively reduces variance in the latent representations, and promotes smoother activation outputs, enhancing the model's ability to distinguish between strong and weak features.

To visually illustrate this phenomenon, we process Figure 3 (Left) through a 3×3 2D Convolution followed by 2D Batch Normalization. The resulting pre-activation is then passed through various activation functions, and the pixel distributions of the normalized pre-activation and activation maps are plotted for GoLU, GELU, and Swish in Figure 3 (Right). As observed, GoLU exhibits a distinctive "squeezing effect", compressing the same distribution into a smaller output range, and reducing variance most, compared to GELU and Swish.

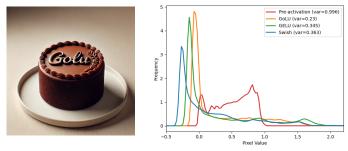


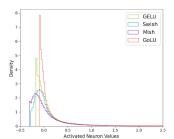
Figure 3: Image created by Dall-E 3 (Left) and kernel density estimation curves for distributions of activation outputs for the image (Right). GoLU reduces variance most compared to baseline activations.

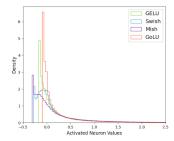
To further substantiate this observation, we randomly sample four images from the CIFAR-10 dataset, apply the same preprocessing pipeline, and pass the results through different activation functions. The variances of the activated signals, summarized in Table 1, highlight GoLU's ability to achieve a notable reduction in variance compared to widely-used activations, enabling smoother data representation. This effect is not limited to CIFAR-10, as we also observe a similar trend on ImageNet. Finally, to illustrate this effect in a fully trained model, we randomly sample three images from the ImageNet-1k dataset and pass them through a ResNet-50 model trained on ImageNet-1k. As shown in Figure 4, the output distributions of the final activations demonstrate that GoLU produces a more peaked distribution compared to other activation functions, highlighting this distinctive effect on latent representations. We note that this effect is not limited to the final activation, as shown in Figure 4, but is consistently observed across intermediate layers of ResNet-50 as well. This lower activation variance can be seen as a form of implicit regularization as the network's representation of the input becomes smoother, focusing on the core patterns rather than fine-grained details or noise.

Smooth loss landscape Reduced activation variance results in less noisy and more consistent gradients. This typically means that the loss function changes more smoothly with respect to model parameters. As a result, the optimizer is more likely to converge to flatter regions of the loss landscape with smaller curvature. This is expected to result in better robustness to small perturbations of the

Table 1: Variances of randomly sampled images from CIFAR-10 after applying a 3x3 Convolution followed by Batch Normalization and further passing the feature maps through different activations.

Activation		No.	· M	
ReLU	0.3024	0.3063	0.3627	0.3594
LeakyReLU	0.3055	0.3100	0.3639	0.3626
ELU	0.5677	0.6227	0.4699	0.6418
GELU	0.2995	0.3102	0.3583	0.3701
Swish	0.2685	0.2872	0.3332	0.3399
Mish	0.3448	0.3700	0.3677	0.4200
GoLU	0.2133	0.2150	0.3213	0.2783





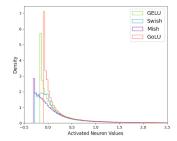


Figure 4: Distributions of final activation outputs of ResNet-50 trained on ImageNet-1k for three randomly sampled images from ImageNet-1k. GoLU leads to a more peaked distribution for the final activation output.

model parameters. We explore this by adding two different Standard Normal noise terms, scaled independently by α , β , to the weights of ResNet-20 trained on CIFAR-10. We compute the test loss across a grid of scaling factors α , β for the two terms, while keeping the noises constant (refer to Appendix C for more details). ResNet-20 with GoLU shows relatively smoother, less-spiked loss landscapes compared to other activations (Figure 5) which is consistent with GoLU's better generalization gains reported in the next section. Additionally, GoLU exhibits a lower average loss, as shown in Figure 5. We note that Figure 5 offers qualitative insight into the smoothness of the loss landscape along a 2D random subspace and is not intended as a rigorous or quantitative analysis. Figure 9 in Appendix C presents a comparison of loss value distributions across the loss landscape, indicating that GoLU yields lower loss variance compared to other activation functions.

Spread weight distribution In contrast to the reduced variance in the latent space, we observe a wider distribution in the learned weights of our models trained with GoLU, at least in the region where most weights are concentrated. Figure 6 compares non-normalization³ weight distributions of ResNet-50 and ViT-B/32 trained on ImageNet-1k and GPT2-S (124M) trained on OpenWebText, with different activation functions. The broader weight distribution for GoLU around the peak suggests that the network has learned more diverse transformations, enhancing its capacity to distinguish between features in the data.

This may reflect the network's response to reduced activation variance, counterbalancing it by spreading the weights around the peak to maintain representational diversity. Specifically, reduced output variance naturally leads to more uniform gradients, which in turn encourages a broader spread of weights.

Notice that a wider weight distribution around the peak does not necessarily translate to a larger *overall* variance. However, focusing on the bulk of the distribution⁴, we find that GoLU consistently achieves the highest variance. This behavior suggests that networks trained with GoLU effectively

³As learned transformations in the model are mainly encoded in the weights of fully connected, convolutional or attention layers, it is more meaningful to exclude parameters of Batch Normalization and Layer Normalization layers, although including these parameters we obtain qualitatively similar distributions.

⁴Specifically, we take the intersection of the middle 98% intervals of the parameter distributions of an architecture trained with each activation.

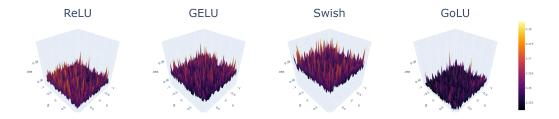


Figure 5: The loss landscape on the test set of ResNet-20 trained on CIFAR-10 with ReLU, GELU, Swish and GoLU after adding random, scaled perturbations to the learned weights (refer to Appendix C for more details).

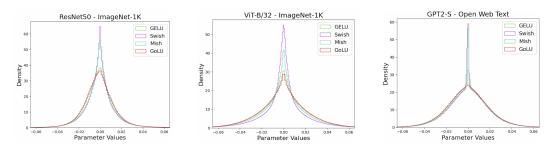


Figure 6: Learned-weight distribution of ResNet-50 and ViT- B/16 trained on ImageNet-1k and GPT2-S trained on OWT. GoLU leads to a more spread weight distribution. The range of parameters is clipped for better visualization.

suppress density in extreme values while expanding the distribution around the peak. Such a pattern implies that the model captures a broader range of *meaningful* transformations without over-reliance on extreme parameter values or certain features.

We emphasize that the effects attributed to GoLU, as described above, are not guaranteed to hold universally across all scenarios but rather represent general trends observed in our empirical findings.

Moreover, while asymmetry has been highlighted as a distinctive feature of GoLU, it is important to note that its high performance, detailed in the next section, cannot be solely attributed to asymmetry, but arises from an intricate interplay of properties, described in Section 2.1.

3 Experiments and Results

3.1 Overview of Experiments

We conducted experiments across various architectures and datasets, spanning a diverse range of tasks in both vision and language modeling. We begin with image classification, training ResNet-18, 34, 50 [He et al., 2016], WideResNet-50-2 [Zagoruyko and Komodakis, 2016], DenseNet-121 [Huang et al., 2017], EfficientNet-B0 [Tan and Le, 2019], TinyViT Wu et al. [2022], ViT-B/32 and ViT-B/16 [Dosovitskiy et al., 2020] on ImageNet-1k Deng et al. [2009].

We then extend our experiments to language modeling. We train babyGPT on the TinyStories (TS) [Eldan and Li, 2023] dataset and GPT2-S [Radford et al., 2019] on the OpenWebText (OWT) [Gokaslan et al., 2019] dataset, leveraging the nanoGPT repository Karpathy [2023].

Additionally, we assess GoLU's performance on Semantic Segmentation (DeepLabV3 Chen et al. [2017]), Object Detection (Faster R-CNN-FPN Ren et al. [2015], RetinaNet-FPN Lin [2017]), and Instance Segmentation (Mask R-CNN-FPN He et al. [2017]) on MS-COCO Lin et al. [2014], leveraging our pre-trained ResNet-50 backbone on ImageNet-1k. Further, we test GoLU on Denoising Diffusion Probabilistic Models Ho et al. [2020] on the CelebA Liu et al. [2015] dataset.

We closely follow established baselines for all model architectures and tasks, ensuring that the integration of GoLU is the primary change. Hyperparameters, optimizers, learning rate schedules,

Table 2: Top-1 test accuracy of ResNets 18, 34 and 50, WideResNet-50-2, DenseNet-121, EfficientNet-B0, TinyViT, ViT-B/32 and ViT-B/16 on ImageNet-1k.

Architecture	ReLU	LeakyReLU	ELU	GELU	Swish	Mish	GoLU
RN-18	69.74±0.07	69.78±0.04	67.10±0.07	70.66±0.05	70.60±0.06	70.53±0.06	70.76±0.06
RN-34	73.26±0.01	73.25±0.03	69.27±0.09	73.44±0.04	72.74±0.05	72.73±0.07	73.71±0.04
RN-50	75.44±0.07	75.67±0.08	71.87±0.09	76.07±0.06	75.17±0.14	75.53±0.09	76.63±0.03
WRN-50-2	76.96±0.07	77.17±0.12	71.90±0.01	76.72±0.01	75.41±0.03	75.75±0.19	77.37±0.03
DN-121	74.95±0.09	75.03±0.06	68.95±0.04	74.64±0.11	72.81±0.06	72.97±0.10	75.25±0.03
EN-B0	76.52±0.07	76.65±0.04	76.21±0.04	76.90±0.01	76.84±0.02	76.76±0.06	76.86±0.04
TinyViT	82.91±0.02	82.83±0.03	80.29±0.07	83.05±0.03	82.92±0.06	83.01 ± 0.02	83.21±0.02
ViT-B/32	74.51±0.04	74.53±0.03	65.82±0.07	75.48±0.05	72.31±2.15	75.16±0.07	75.74±0.09
ViT-B/16	80.06±0.05	79.93±0.02	73.36±0.16	79.39±0.99	79.19±0.94	77.97±1.95	80.72±0.04

and other training settings are aligned with the standard practices for each task. All our experiments are conducted on three seeds and the results are averaged out and reported with the standard error.

In Appendix E we further present a Critical Difference analysis to systematically compare the overall performance of activation functions. In Appendix I, we assess the performance of GoLU on a machine translation task, using the WMT14 English–German benchmark. Finally, in Appendix J, we explore the application of GoLU to the task of learning curve extrapolation.

3.2 Image Classification

We evaluate GoLU's performance in image classification tasks on ImageNet-1k, comparing it against six state-of-the-art activation functions, ReLU, LeakyReLU, ELU, GELU, Swish and Mish. Table 2 presents the top-1 test accuracies with standard errors for ResNets 18, 34 and 50, WideResNet-50-2, DenseNet-121, EfficientNet-B0, ViT-B/32, ViT-B/16 and TinyViT Wu et al. [2022]. The training settings, detailed in Appendix G.1, are adopted from Torchvision TorchVision [2016] for all experiments except EfficientNet-B0 which is taken from the timm library Wightman [2019] and TinyViT which is taken from Wu et al. [2022]. As highlighted, GoLU consistently outperforms the standard activation functions across all architectures, with the exception of EfficientNet-B0, where the performance difference is minimal. Notice that EfficientNet-B0 is an exception because its nonlinearity arises not only from activation functions (which are replaced) but also from a squeeze-and-excitation block, which remains unchanged in our experiments. For ResNet-50 and ViT-B/32, test loss and test accuracy curves are shown in Figures 17 and 18, respectively, where GoLU consistently delivers lower test loss and higher top-1 accuracy over the epochs. GELU is generally the second-best performer, while ELU performs worst across most architectures.

We further evaluate GoLU on CIFAR-10, comparing it against top baseline activations. We report in Table 3 the results of image classification on CIFAR-10, with ResNets 20, 32, 44, 56, and 110, WideResNet28-2, DenseNet40 and ViT-Ti/16-224. GoLU consistently outperforms the standard baselines across all tested architectures. We have further underlined the second-best activations for each model. No single activation consistently ranks second.

Table 3: Top-1 test accuracy on CIFAR-10. GoLU consistently outperforms baselines. Second best activations are underlined.

Arch.	ReLU	LeakyReLU	GELU	Swish	GoLU
RN-20	91.41±0.1	91.60±0.0	91.62±0.0	91.64±0.1	91.77±0.1
RN-32	92.21±0.1	92.40±0.0	92.54±0.1	92.16±0.0	92.69±0.1
RN-44	92.58±0.0	92.78±0.0	92.78±0.8	92.51±0.0	92.85±0.0
RN-56	92.80±0.1	92.75±0.1	92.86±0.1	92.93±0.1	93.15±0.1
RN-110	93.21±0.0	93.18±0.1	92.75±0.1	92.23±0.0	93.25±0.0
WRN-28-2	94.96±0.0	94.81±0.0	94.55±0.1	93.58±0.1	95.03±0.0
DN-40	93.13±0.1	93.13±0.1	93.41±0.0	93.30±0.1	93.44±0.1
ViT-Ti	91.74±0.06	91.61±0.18	91.37±0.11	88.61±0.16	92.60±0.05

Table 4: Test perplexity score and test token accuracy of babyGPT and GPT2-S trained on TS and OWT respectively.

Activation	babyGPT	- TinyStories	GPT2-S - OpenWebText	
Activation	Perplexity	Token Accuracy	Perplexity	Token Accuracy
ReLU	4.519±0.006	61.243±0.030	17.845±0.078	44.059±0.079
LeakyReLU	4.516±0.005	61.237±0.032	17.778±0.125	44.103±0.074
ELU	4.872±0.005	59.859±0.027	18.375±0.035	43.721±0.040
GELU	4.462±0.005	61.465±0.034	17.525±0.015	44.262±0.042
Swish	4.535±0.004	61.178±0.032	17.785±0.026	44.155±0.025
Mish	4.539±0.007	61.135±0.036	17.797±0.086	44.104±0.081
GoLU	4.444±0.005	61.545±0.029	17.297±0.023	44.413±0.023

Table 5: Test loss and test mIoU of DeepLabV3 ResNet-50 trained on MS-COCO.

Activation	LR=0.02		LR=0.01	
Activation	Test Loss	Test mIoU	Test Loss	Test mIoU
ReLU	0.344±0.003	64.99±0.173	0.350±0.004	65.11±0.326
LeakyReLU	0.342±0.003	64.79±0.122	0.350±0.002	65.55±0.131
ELU	0.367±0.001	59.31±0.065	0.358±0.001	60.70±0.089
GELU	0.341±0.002	64.53±0.136	0.341±0.003	65.59±0.162
Swish	0.348±0.003	62.52±0.034	0.345±0.002	64.14±0.135
Mish	0.344±0.001	62.97±0.022	0.342±0.002	64.40±0.144
GoLU	0.339±0.000	64.98±0.129	0.341±0.001	65.98±0.124

Table 6: Test Box mAP of Faster R-CNN-FPN ResNet-50 and RetinaNet-FPN ResNet-50 trained on MS-COCO.

Activation	Box mAP			
Activation	Faster R-CNN	RetinaNet		
ReLU	37.44±0.146	39.90±0.063		
LeakyReLU	37.41±0.140	39.87±0.041		
ELU	35.36±0.041	37.43±0.041		
GELU	38.16±0.044	40.68±0.090		
Swish	37.28±0.078	40.27±0.087		
Mish	37.71±0.087	40.45±0.093		
GoLU	38.31±0.058	40.77±0.065		

3.3 Language Modeling

We train babyGPT on TS and GPT2-S (124M) on OWT, both sourced from the nanoGPT repository Karpathy [2023]. As shown in Table 4, GoLU demonstrates superior performance, achieving lower perplexity and higher token accuracy on both babyGPT and GPT2-S. GoLU's superiority is also evident in the test loss curves in Figures 19 and 20. The general trend of GELU being the second-best activation function holds in language modeling as well. Appendix G.3 outlines the architectural details and provides additional information on the datasets and training settings.

3.4 Semantic Segmentation

For Semantic Segmentation, we train DeepLabV3 on the MS-COCO dataset with PASCAL-VOC labels, from the Torchvision benchmark (see Appendix G.4). We employ our ResNet-50 backbone, pre-trained on ImageNet-1k.

Table 5 (Left) presents the test loss and test mIoU using the original learning rate of 0.02. GoLU achieves the lowest test loss, whereas ReLU attains the highest mIoU, with GoLU ranking second. However, the difference in mIoU between ReLU and GoLU is statistically insignificant.

We conduct a small ablation study on the learning rate and find that lr=0.02 is suboptimal for training the model. Instead, lr=0.01 yields the best performance across all activation functions (see heatmap 10 in Appendix D for full results). Table 5 (Right) reports the results with lr=0.01, where GoLU consistently outperforms other activation functions in terms of mIoU. Additionally, the inference loss and test mIoU curves over epochs, shown in Figures 21 and 22, further emphasize GoLU's strong performance in semantic segmentation.

3.5 Object Detection

For Object Detection, we train Faster R-CNN-FPN and RetinaNet-FPN on the MS-COCO dataset. As shown in Table 6 and Figure 23, GoLU outperforms all activation functions on object detection as well, with higher Box mAP (AP @ IoU=0.50:0.95, area=all, maxDets=100) across both Faster R-CNN-FPN and RetinaNet-FPN architectures, while GELU ranks second. Appendix G.5 outlines experimental details.

Table 7: Test Box mAP and Mask mAP of Mask R-CNN-FPN ResNet-50 trained on MS-COCO.

Activation	LR=0.02		LR=0.03	
Activation	Box mAP	Mask mAP	Box mAP	Mask mAP
ReLU	38.33±0.133	34.19±0.129	38.25±0.144	34.28±0.116
LeakyReLU	38.31±0.230	34.19±0.160	38.42±0.105	34.26±0.065
ELU	36.41±0.087	32.81±0.082	35.85±0.069	32.38±0.043
GELU	39.00±0.073	34.73±0.024	39.12±0.028	34.93±0.061
Swish	38.19±0.224	33.99±0.168	38.10±0.187	33.95±0.112
Mish	38.76±0.036	34.70±0.026	38.56±0.138	34.64±0.078
GoLU	38.96±0.101	34.54±0.083	39.36±0.192	34.97±0.146

Table 8: Test Loss at LR=0.0003 and LR=0.001 of Denoising Diffusion Probabilistic Model trained on CelebA.

Activation	Test Loss			
Activation	LR=0.0003	LR=0.001		
ReLU	0.0200255±0.0	0.0192820±0		
LeakyReLU	0.0200307±0.0	0.0192812±0		
ELU	0.0200398±0.0	0.0193941±0		
GELU	0.0196956±0.0	0.0190221±0		
Swish	0.0196364±0.0	0.0190055±0		
Mish	0.0196865±0.0	0.0190657±0		
GoLU	0.0196419±0.0	0.0189506±0		

3.6 Instance Segmentation

For Instance Segmentation, we train Mask R-CNN-FPN with a ResNet-50 backbone from the Torchvision benchmark on the MS-COCO dataset (see Appendix G.6 for training settings). As shown in Table 7 (Left), GELU achieves the best performance in this setting (with the default lr=0.02), with GoLU ranking second in Box mAP and third in Mask mAP (both implying AP @ IoU=0.50:0.95, area=all, maxDets=100). However, Figure 24, which depicts test Box mAP and Mask mAP over epochs, reveals that GoLU generally outperforms GELU and ReLU throughout the training process. We perform a learning rate ablation study and observe that, similar to the Semantic Segmentation task, a learning rate of 0.02 is suboptimal for this specific architecture—dataset combination. In contrast, increasing the learning rate to 0.03 leads to improved performance across all activation functions (see heatmaps 12 and 13). Surprisingly, at the optimal learning rate of 0.03, GoLU outperforms all baseline activations, as shown in Table 7 (right).

3.7 Denoising Diffusion Probabilistic Models

We train a Denoising Diffusion Probabilistic Model on the CelebA dataset (see Appendix G.7). As shown in Table 8, for the default lr=0.0003, gated activations perform comparably to the baseline activation, Swish, which achieves the best performance, with GoLU ranking a close second. Figure 25 (Left) further illustrates the test loss over epochs. Similar to our findings in semantic segmentation and instance segmentation, we conduct a learning rate ablation study. Results, summarized in heatmap 11 in Appendix D, indicate that increasing the lr from the default value of 0.0003 to 0.0004, 0.0005 and 0.001 progressively improves performance across all activations. Notably, for lr values of 0.0004, 0.0005 and 0.001, GoLU achieves the lowest final test loss. Results for the optimum lr=0.001 are highlighted in the right column of Table 8 and Figure 25 (Right). These findings are in line with the trend observed in semantic segmentation and instance segmentation, where GoLU outperforms baseline activations under optimal lr configurations.

4 Training and Inference Speed

Existing activation functions in PyTorch leverage CUDA kernels in Eager mode to achieve optimal speedup. To ensure a fair comparison of training and inference speeds, we developed a CUDA-optimized kernel for GoLU, which was used for all training experiments described in the previous sections. Table 9 in Appendix F presents the relative training and inference speeds of GoLU compared to the default activation function across various tasks.

Our results show that GoLU achieves a speed comparable to that of the default activation function across all architectures. The only exception is DeepLabV3-ResNet-50 trained on MS-COCO, where GoLU incurs slightly higher training time. However, this is consistent with other activation functions, all of which exhibit increased training times relative to ReLU in this specific architecture.

5 Conclusions

We have introduced GoLU, a new self-gated activation function based on the CDF of the Gumbel distribution as its gate function. Through extensive analysis and experiments, we have demonstrated

that GoLU provides a regularising effect by reducing variance in the activation output, it enables the representation of diverse features through a more distributed weight pattern, and encourages a smoother and more robust loss landscape. Notably, our results show that GoLU generally outperforms state-of-the-art baseline activation functions across a wide range of tasks and domains, from computer vision to language modeling. Additionally, we implemented a custom CUDA kernel to optimize training and inference efficiency, minimizing latency and enhancing scalability. GoLU offers a robust, efficient, and scalable alternative to existing activation functions. Its integration into state-of-the-art neural networks has the potential to improve performance across various applications, positioning GoLU as a promising standard in modern deep learning.

Acknowlwdgements

This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant number 539134284, through EFRE (FEIH_2698644) and the state of Baden-Württemberg.

The authors gratefully acknowledge the computing time made available to them on the high-performance computer NHR@KIT Compute Cluster at the NHR Center NHR@KIT. These Centers are jointly supported by the Federal Ministry of Education and Research and the state governments participating in the NHR (www.nhr-verein.de/unsere-partner). We acknowledge funding by the European Union (via ERC Consolidator Grant DeepLearning 2.0, grant no. 101045765). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer JUWELS at Jülich Supercomputing Center (JSC) and SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.de). The authors acknowledge support by the state of Baden-Württemberg through bwHPC. We acknowledge the EuroHPC Joint Undertaking for awarding this project access to the EuroHPC supercomputer LEONARDO, hosted by CINECA (Italy) and the LEONARDO consortium through an EuroHPC Extreme Access grant EHPC-EXT-2023E02-068. Frank Hutter acknowledges the financial support of the Hector Foundation. We also thank Jörg Franke, Edward Bergman, Arbër Zela, André Biedenkapp and Lennart Purucker for their constructive feedback throughout the development of this work.

References

Steven Adriaensen, Herilalaina Rakotoarison, Samuel Müller, and Frank Hutter. Efficient bayesian learning curve extrapolation using prior-data fitted networks. *Advances in Neural Information Processing Systems*, 36, 2024.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint* arXiv:1607.06450, 2016.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image segmentation. *arXiv preprint arXiv:1706.05587*, 2017.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learning by exponential linear units (elus). *arXiv preprint arXiv:1511.07289*, 2015.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment: Learning augmentation strategies from data. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 113–123, 2019.

- Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated data augmentation with a reduced search space. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops*, pages 702–703, 2020.
- Janez Demšar. Statistical comparisons of classifiers over multiple data sets. *J. Mach. Learn. Res.*, 7: 1–30, December 2006. ISSN 1532-4435.
- Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*, pages 248–255. IEEE, 2009.
- Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv* preprint arXiv:2010.11929, 2020.
- Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak coherent english? *arXiv preprint arXiv:2305.07759*, 2023.
- Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http://Skylion007.github.io/OpenWebTextCorpus, 2019.
- Benjamin Gompertz. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. in a letter to francis baily, esq. frs &c. *Philosophical transactions of the Royal Society of London*, (115):513–583, 1825.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In *Proceedings of the IEEE international conference on computer vision*, pages 1026–1034, 2015.
- Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.
- Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *Proceedings of the IEEE international conference on computer vision*, pages 2961–2969, 2017.
- Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.
- Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lecture 6a overview of mini-batch gradient descent. *Cited on*, 14(8):2, 2012.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
- Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4700–4708, 2017.
- Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In *International conference on machine learning*, pages 448–456. pmlr, 2015.
- Andrej Karpathy. nanogpt. https://github.com/karpathy/nanoGPT, 2023. Accessed: 2024-09-10.
- Jongbeom Kim. Ddpm. https://github.com/KimRass/DDPM/tree/main, 2023. Accessed: 2024-09-13.
- Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In *Neural networks: Tricks of the trade*, pages 9–50. Springer, 2002.
- T Lin. Focal loss for dense object detection. arXiv preprint arXiv:1708.02002, 2017.

- Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European conference on computer vision*, pages 740–755. Springer, 2014. doi: 10.1007/978-3-319-10602-1_48.
- Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In *Proceedings of International Conference on Computer Vision (ICCV)*, December 2015.
- Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. *arXiv preprint* arXiv:1711.05101, 5, 2017.
- Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural network acoustic models. In *Proc. icml*, volume 30, page 3. Atlanta, GA, 2013.
- Diganta Misra. Mish: A self regularized non-monotonic activation function. arXiv preprint arXiv:1908.08681, 2019.
- Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter. Transformers can do bayesian inference. *arXiv preprint arXiv:2112.10510*, 2021.
- Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th international conference on machine learning (ICML-10), pages 807–814, 2010.
- Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In *Proceedings of NAACL-HLT 2019: Demonstrations*, 2019.
- Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
- Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. *arXiv* preprint *arXiv*:1710.05941, 2017.
- Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. *Advances in neural information processing systems*, 28, 2015.
- David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-propagating errors. *nature*, 323(6088):533–536, 1986.
- Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 2818–2826, 2016.
- Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In *International conference on machine learning*, pages 6105–6114. PMLR, 2019.
- Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. *Advances in neural information processing systems*, 30, 2017.
- TorchVision. Torchvision: Pytorch's computer vision library. https://github.com/pytorch/vision, 2016. Accessed: 2024-09-10.
- Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient for fast stylization. *arXiv preprint arXiv:1607.08022*, 2016.
- Pierre François Verhulst. Notice sur la loi que la population poursuit dans son accroissement. Correspondance Mathématique et Physique, 10:113–121, 1838.
- Ross Wightman. Pytorch image models. https://github.com/huggingface/pytorch-image-models, 2019.

- Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu, Bin Xiao, Jianlong Fu, and Lu Yuan. Tinyvit: Fast pretraining distillation for small vision transformers. In *European conference on computer vision (ECCV)*, 2022.
- Yuxin Wu and Kaiming He. Group normalization. In *Proceedings of the European conference on computer vision (ECCV)*, pages 3–19, 2018.
- Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable features. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 6023–6032, 2019.
- Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint arXiv:1605.07146*, 2016.
- Biao Zhang and Rico Sennrich. Root mean square layer normalization. *Advances in Neural Information Processing Systems*, 32, 2019.
- Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical risk minimization. In *International Conference on Learning Representations*, 2017.

A Properties of GoLU: Further Details

To further elucidate the concepts presented in Section 2.1 and gain deeper insights into the properties of GoLU, we present additional details and visualizations in this section.

Figure 7 compares the GoLU activation with GELU, highlighting how the right-leaning inclination of the Gumbel distribution, in contrast to the symmetric Gaussian distribution (Left column), results in a smaller value of the Gompertz gate at the origin compared to the Gaussian CDF (Middle column). In fact, this behavior is not confined to the origin, and the Gompertz gate remains smaller than the Gaussian CDF across the entire input range.

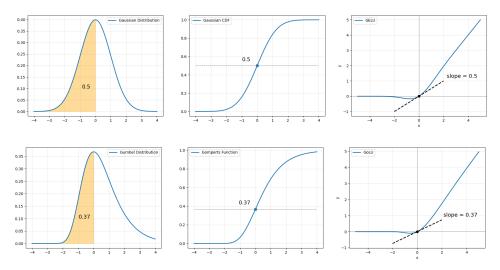


Figure 7: Top row, from left to right: Gaussian distribution, Gaussian CDF, GELU. Bottom row, from left to right: Gumbel distribution, Gompertz function, GoLU.

This reduced value of the Gompertz gate at the origin directly translates into a lower slope for GoLU compared to GELU, as illustrated in Figure 7 (Right column). This can be readily seen by taking the derivative of the GoLU activation and evaluating it at zero

$$GoLU'(x) = x Gompertz'(x) + Gompertz(x)$$
 (5)

$$GoLU'(0) = Gompertz(0)$$
 (6)

which shows that the slope of GoLU at the origin corresponds to the value of the Gompertz gate at the origin. Similarly, the slope of GELU at the origin is determined by the Gaussian CDF at the origin.

Assuming the input distribution resembles a zero-centered, nearly-Gaussian form, which is likely particularly when employing batch normalization and appropriate weight initialization, the activations can be approximated by their tangents at the origin. Therefore a reduced slope at the origin translates into decreased sensitivity to input variations and lower output variance. We note that GoLU exhibits a lower slope magnitude not only in a neighborhood around the origin but across a significant portion of the negative input domain as illustrated in Figure 2.

More generally, it can be shown analytically that for a given activation function f that is smooth in a neighborhood of its input mean, and for a sufficiently localized input distribution, the variance of the activation output is approximately proportional to the square of its slope evaluated at the mean input μ , with the input variance σ^2 serving as the proportionality constant

$$Var[f(x)] \approx f'(\mu)^2 \sigma^2 \tag{7}$$

This formally demonstrates how smaller activation slopes result in reduced output variance.

To derive this connection, we apply the definition of variance to a scalar activation function f(x):

$$Var[f(x)] = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$
(8)

Expanding f(x) and $f(x)^2$ in a Taylor series around the mean input μ , gives:

$$f(x) = f(\mu) + f'(\mu)(x - \mu) + \frac{1}{2}f''(\mu)(x - \mu)^2 + \cdots$$
(9)

$$f(x)^{2} = f(\mu)^{2} + 2f(\mu)f'(\mu)(x-\mu) + f'(\mu)^{2}(x-\mu)^{2} + f(\mu)f''(\mu)(x-\mu)^{2} + \cdots$$
 (10)

Taking expectations and using $\mathbb{E}[(x-\mu)] = 0$ and $\mathbb{E}[(x-\mu)^2] = \sigma^2$ leads to:

$$\mathbb{E}[f(x)] = f(\mu) + \frac{1}{2}f''(\mu)\sigma^2 + \cdots$$
(11)

$$\mathbb{E}[f(x)^2] = f(\mu)^2 + f'(\mu)^2 \sigma^2 + f(\mu)f''(\mu)\sigma^2 + \cdots$$
 (12)

Substituting these into the definition of the variance, and simplifying while retaining only the leading-order term, we obtain:

$$\operatorname{Var}[f(x)] = (f(\mu)^{2} + f'(\mu)^{2}\sigma^{2} + f(\mu)f''(\mu)\sigma^{2} + \cdots) - (f(\mu) + \frac{1}{2}f''(\mu)\sigma^{2} + \cdots)^{2}$$
(13)

$$= (f(\mu)^{2} + f'(\mu)^{2}\sigma^{2} + f(\mu)f''(\mu)\sigma^{2} + \cdots) - (f(\mu)^{2} + f(\mu)f''(\mu)\sigma^{2} + \cdots)(14)$$

$$\approx f'(\mu)^{2}\sigma^{2}$$
(15)

which completes the proof.

Finally, a Taylor expansion of the Sigmoid and Gompertz gate functions for large positive input values demonstrates that these two functions converge to each other exponentially fast in this regime, as pointed out in Section 2.1.

$$Sigmoid(x) - Gompertz(x) = \frac{1}{1 + e^{-x}} - e^{-e^{-x}}$$
(16)

$$= (1 - e^{-x} + \mathcal{O}(e^{-2x})) - (1 - e^{-x} + \mathcal{O}(e^{-2x}))$$
 (17)

$$= \mathcal{O}(e^{-2x}) \tag{18}$$

B Flipped Mish: a new self-gated activation with right-leaning distribution

Throughout this work, we have emphasized the influence of right-skewed asymmetry in the underlying distribution associated with an activation on model performance. To further explore this property, we leverage the left-skewed distribution underlying Mish to construct a new self-gated activation function exhibiting right-skewed asymmetry. This is achieved by reflecting the Mish-associated distribution about the vertical axis. Specifically, denoting the Mish distribution by D(x) and its corresponding gate function by g(x), the gate function for the flipped distribution $\tilde{D}(x) = D(-x)$ is given by $\tilde{g}(x) = 1 - g(-x)$, as shown by the following derivation:

$$\tilde{g}(x) = \int_{-\infty}^{x} dy \, \tilde{D}(y) = \int_{-\infty}^{x} dy \, D(-y) = \int_{-x}^{\infty} dy \, D(y) = \int_{-\infty}^{\infty} dy \, D(y) - \int_{-\infty}^{-x} dy \, D(y) = 1 - g(-x)$$
(19)

where in the third equation we have redefined the dummy integration variable $y \to -y$ and in the last equation we have used the fact that the integral of the distribution D(y) over its entire domain is equal to 1. The resulting activation function, which we refer to as Flipped Mish (FMish), is thus defined as:

$$FMish(x) = x(1 - \tanh(softplus(-x)))$$
(20)

Figure 8 compares FMish with GoLU, including their respective gate functions and the associated distributions.

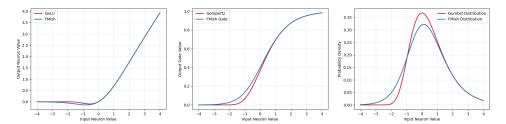


Figure 8: Comparison of activations (left), gate functions (middle), and associated distributions (right) for FMish and GoLU.

We evaluated FMish on ResNet18, ResNet50 and ViT-B/32 trained on ImageNet-1k. Remarkably, it outperformed all baseline activations except GoLU, achieving 70.73 ± 0.05 for ResNet18, 76.20 ± 0.01 for ResNet50 and 75.67 ± 0.04 for ViT-B/32 (compare with results in Table 2). This outcome aligns with expectations, as the slope of FMish at the origin is 0.4, lower than that of sigmoid and Gaussian CDF (0.5) but slightly higher than GoLU (0.37). These results further highlight the significance of right-leaning asymmetry and the resulting variance reduction.

Furthermore, we note that the Flipped Mish distribution does not decay as rapidly as the Gumbel distribution for large negative inputs, which may also contribute to its performance.

C Details of the loss landscape experiment

We analyze the loss landscape of a neural network by quantitatively measuring and visualizing how the loss changes as the network's parameters are perturbed. Smoothness in the loss landscape often indicates that small perturbations in the parameters do not cause large changes in the loss, which can make optimization more stable.

Specifically, we generate two random perturbation directions d_1 and d_2 , each matching the shape of the model parameters. The elements of these directions are independently sampled from a Standard Normal distribution. To ensure controlled magnitudes, each perturbation direction is subsequently normalized.

We perturb the weights of the model along these directions in a linear combination:

$$W_{\text{perturbed}} = W_{\text{trained}} + \alpha d_1 + \beta d_2 \tag{21}$$

where W_{trained} are the trained weights of the model and α and β are scalar values that determine the perturbation magnitude and are chosen as $\alpha, \beta \in [-1, 1]$. For each pair of values (α, β) , we compute the loss using the perturbed weights $W_{\text{perturbed}}$ on the full test set of the CIFAR-10 dataset. We then repeat this for a grid of (α, β) values to create a 3D surface plot as shown in Figure 5.

To provide a more quantitative understanding of the loss landscapes in Figure 5, we have plotted the density functions of the loss values for each activation function and computed their variance. The results, shown in Figure 9, indicate that GoLU achieves both a lower average loss and smaller variance compared to other activations, consistent with the observations from the 3D plots in Figure 5.

D Learning Rate ablation

For various tasks, we conduct a focused search over the learning rate to determine whether the default setting represents the optimal value and to assess its impact on the performance of models trained with different activation functions. Figures 10 and 11 present heatmaps of test results for Semantic Segmentation and Diffusion tasks, comparing models trained with various activation functions across different learning rates. Figures 12 and 13 show similar heatmaps for the Instance Segmentation task, reporting box mAP and mask mAP, respectively. For these tasks, the default learning rate, highlighted by a black box, differs from the optimal learning rate, indicated by a green box. Notably, while GoLU performs slightly below the best-performing activation under the default learning rate, it outperforms all other activation functions when evaluated at the optimal learning rate, which is consistent across all activations.

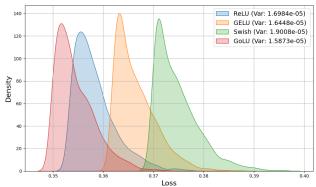


Figure 9: Comparison of loss value distributions across the loss landscape. GoLU achieves both a lower loss mean and variance.

Figure 10: Test mIoU - DeepLabV3 on MS-COCO. The default learning rate is 0.02 which is colored in black and the best learning rate is 0.01 which is colored in green.

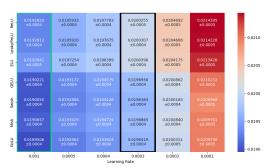


Figure 11: Test Loss - DDPM on CelebA. The default learning rate is 0.0003 which is colored in black and the best learning rate is 0.001 which is colored in green.

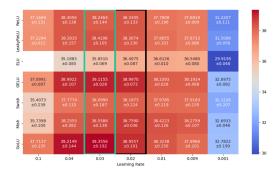
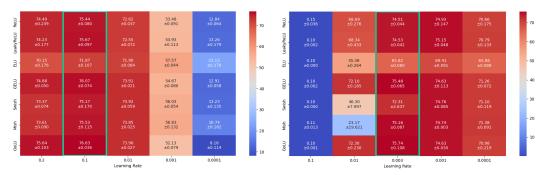


Figure 12: Test Box mAP - Mask R-CNN-PFN ResNet-50 on MS-COCO. The default learning rate is 0.02 which is colored in black and the best learning rate is 0.03 which is colored in green.

Figure 13: Test Mask mAP - Mask R-CNN-PFN ResNet-50 on MS-COCO. The default learning rate is 0.02 which is colored in black and the best learning rate is 0.03 which is colored in green.

Motivated by these results, we further investigate the impact of learning rate on image classification tasks where GoLU demonstrated superior performance compared to baseline activations. Figures 14 and 15 present heatmaps of test accuracies for ResNet-50 and ViT-B/32 on ImageNet-1k.



which is also the best and is colored in green.

Figure 14: Test accuracies - ResNet-50 on Figure 15: Test accuracies - ViT-B/32 on ImageNet-1k. The default learning rate is 0.1 ImageNet-1k. The default learning rate is 0.003 which is also the best and is colored in green.

Notably, we observe that the optimal learning rate aligns with the default learning rate in this case. These findings reinforce the broader trend that, with few exceptions, GoLU consistently outperforms baseline activation functions across tasks when evaluated at the optimal learning rate.

\mathbf{E} **Critical Difference Analysis**

In this section, we conduct a Critical Difference analysis following Demšar [2006] to systematically rank activation functions based on experiments performed on ImageNet-1k, MS-COCO, OWT, TS, and CelebA. As shown in Figure 16, GoLU achieves the highest rank, followed by GELU. Notice that the confidence interval in this analysis is independent of the variance across multiple runs with different random seeds. Instead, it is determined by the number of models and datasets, as well as the significance level, which is set to $\alpha = 0.05$ here.

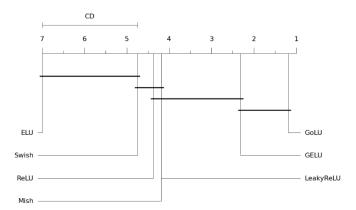


Figure 16: Critical Difference diagram, ranking activation functions based on average performance.

Training and inference times

Table 9 reports relative training and inference times with respect to baseline activations for our trained models. On average, GoLU achieves training and inference speeds on par with default activation functions, while offering improved performance. This makes GoLU a practical and effective alternative for training deep learning models.

G **Experimental Details**

This section outlines detailed information about the datasets and training pipelines used for the various tasks studied in this work. All experiments in this section were conducted on NVIDIA A100

Table 9: Relative training and inference time with respect to baseline activations for our trained architectures.

Architecture	Dataset	Baseline Activation	Relative Training Speed	Relative Inference Speed
ResNet-18	ImageNet-1k	ReLU	1.00x	1.00x
ResNet-34	ImageNet-1k	ReLU	1.01x	1.00x
ResNet-50	ImageNet-1k	ReLU	1.01x	1.01x
WideResNet-50-2	ImageNet-1k	ReLU	1.03x	1.02x
DenseNet-121	ImageNet-1k	ReLU	1.02x	1.02x
EfficientNet-B0	ImageNet-1k	Swish	1.00x	1.00x
TinyViT	ImageNet-1k	GELU	0.99x	0.98x
ViT-B/32	ImageNet-1k	GELU	0.99x	0.99x
ViT-B/16	ImageNet-1k	GELU	0.98x	0.98x
babyGPT	TinyStories	GELU	1.00x	1.00x
GPT2-S	OpenWebText	GELU	1.01x	1.01x
DeepLabV3	MS-COCO	ReLU	1.14x	1.04x
RetinaNet	MS-COCO	ReLU	1.00x	1.00x
FasterRCNN	MS-COCO	ReLU	1.03x	1.00x
MaskRCNN	MS-COCO	ReLU	1.05x	1.02x
DDPM	CelebA	Swish	0.97x	0.97x
Average	-	-	1.01x	1.00x

GPUs, with an approximate total compute time of 112K GPU hours, except for TinyViT, which was executed on an NVIDIA H100 GPU with a total runtime of 455 GPU hours.

G.1 Image Classification - ImageNet

In image classification experiments on ImageNet-1k, ResNets 18, 34, 50, WideResNet-50-2 and DenseNet-121 are trained for 90 epochs with a batch size of 256, SGD with momentum=0.9 (Nesterov for WRN-50-2 and DN-121), learning rate 0.1, and weight decay 1×10^{-4} . Further, a Step learning rate scheduler is applied that reduces the learning rate by a gamma = 0.1 after every 30 epochs. EfficientNet-B0 is trained using the timm library for 450 epochs with a batch size of 1536 using RMSProp Hinton et al. [2012] with an initial learning rate of 0.048 and a weight decay of 1×10^{-5} . ViT models are trained for 300 epochs with a batch size of 4096 using AdamW Loshchilov and Hutter [2017] with an initial learning rate of 3×10^{-3} and weight decay of 0.3. Various regularization techniques are applied, including Exponentially Moving Averaged Weights Tarvainen and Valpola [2017], AutoAugment Cubuk et al. [2019] (ImageNet policy for ViTs), RandAugment Cubuk et al. [2020], MixUp Zhang et al. [2017], CutMix Yun et al. [2019] and Label Smoothing Szegedy et al. [2016] for EfficientNet-B0 and ViT models. ViT-B/16 shows slight instability for seed 1 for GELU. Hence we further average seeds 2 and 3 for both GELU and GoLU. We find that GELU shows a top-1 accuracy of 80.61 ± 0.06 while GoLU shows top-1 accuracy of 80.69 ± 0.07 which is higher than GELU.

G.2 Image Classification - CIFAR-10

The ResNet 20, 32, 44, 56 and 110 models are trained for 164 epochs with a batch size of 128, a learning rate of 0.1, and SGD with momentum 0.9. A weight decay of 1×10^{-4} is applied, along with a MultiStep learning rate scheduler with a gamma factor of 0.1 at epochs 81 and 122 (with an initial learning rate of 0.01 and additional gamma factor of 10 at epoch 2 for ResNet-110).

WideResNet28-2 and DenseNet40, were trained for 200 and 300 epochs, and batch sizes of 128 and 64, respectively. We employ SGD with Nesterov momentum 0.9 for both architectures, using a learning rate of 0.1. The weight decays are 5×10^{-4} for WideResNet28-2 and 1×10^{-4} for DenseNet40. Similar to ResNets, both WideResNet28-2 and DenseNet40 use the MultiStep learning rate scheduler. However, WideResNet28-2 reduces the learning rate by a factor of 0.2 at epochs 60, 120, and 160, while DenseNet40 reduces the learning rate by 0.1 at epochs 150 and 225. To train ViT-Ti/16-224 from scratch, we leverage the Timm library.

G.3 Language modeling

Both, TinyStories and OpenWebText datasets are popular benchmarks for training language models. The TinyStories dataset consists of 2,119,719 data points in the training set and 21,990 in the test set, while the OpenWebText dataset has 8,009,762 data points in the training set and 4,007 data points in the test set. Both babyGPT and nanoGPT have a vocabulary size of 50,304 and a maximum sequence length of 1024.

The babyGPT version of the GPT-2 series consists of 6 layers, 6 attention heads, and an embedding dimension of 384, with a feed-forward expansion dimension of 1536 output features. The model is trained for 10,000 iterations with a batch size of 640, using the AdamW optimizer. The initial learning rate is 1×10^{-3} , with a minimum learning rate of 1×10^{-4} , a weight decay of 0.1, and a gradient clipping norm of 1.0. A Cosine learning rate scheduler is applied with a linear warmup for the first 100 iterations.

Similarly, the GPT2-S model consists of 12 layers, 12 attention heads, and an embedding dimension of 768. It trains for 600,000 iterations with a batch size of 480, using the AdamW optimizer (with $\beta_2=0.95$). The initial learning rate is 6×10^{-4} , with a minimum learning rate of 6×10^{-5} , a weight decay of 0.1, and a gradient clipping norm of 1.0. The Cosine learning rate scheduler is employed with a linear warmup for the first 2,000 iterations.

G.4 Semantic Segmentation

The MS-COCO dataset with PASCAL-VOC labels contains 92,518 data points in the training set and 5,000 data points in the test set. The original MS-COCO dataset contains 117,266 data points in the training set. However, the existing benchmark pre-processes and removes images that either lack valid annotations or contain only small objects with an area coverage of less than 1,000 pixels. This ensures the retention of meaningful data points for training the model.

The DeepLabV3-ResNet-50 model is trained for 30 epochs with a batch size of 32, using SGD with momentum 0.9, a learning rate of 2×10^{-2} , weight decay of 1×10^{-4} , and a polynomial learning rate scheduler with a power of 0.9.

G.5 Object Detection

Unlike Semantic Segmentation, the MS-COCO dataset for object detection contains 117,266 images in the training set and 5,000 images in the test set. Additionally, we do not apply any pre-processing that removes images from the training or test sets.

Faster R-CNN-FPN ResNet-50 and RetinaNet-FPN ResNet-50 are trained for 26 epochs with a batch size of 16, an aspect ratio group factor of 3, no frozen batch normalization, and a MultiStep learning rate scheduler that reduces the initial learning rate by a factor of 0.1 at epochs 16 and 22. Specifically, Faster R-CNN-FPN ResNet-50 uses SGD with momentum 0.9, a learning rate of 2×10^{-2} , and a weight decay of 1×10^{-4} , while RetinaNet-FPN ResNet-50 uses the AdamW optimizer with a learning rate of 1×10^{-4} and a weight decay of 5×10^{-2} .

G.6 Instance Segmentation

The MS-COCO dataset for instance segmentation uses the same train and test sets as those used for Object Detection. Additionally, it trains with the exact same configurations used for Faster R-CNN-FPN in the previous subsection G.5.

G.7 Denoising Diffusion Probabilistic Models

The CelebA dataset, comprises of 162,770 training images and 19,867 test images of human faces. The Denoising Diffusion Probabilistic Model is trained on the CelebA dataset for 50 epochs with a batch size of 32 leveraging the DDPM Kim [2023] repository. The AdamW optimizer with a learning rate of 0.0003, Cosine learning rate scheduler, and linear learning rate warmup for the first 1,000 iterations are applied.

H Test Loss Curves

To provide a more comprehensive view of GoLU's test performance over the course of training, this section presents test curves, including loss and task-specific metrics, comparing GoLU with ReLU and GELU, and illustrating how their performance evolves throughout training.

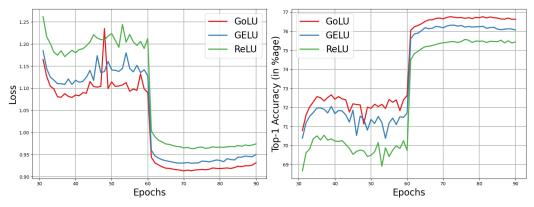


Figure 17: ResNet-50 test loss (Left) and test top-1 accuracy (Right) on ImageNet-1k.

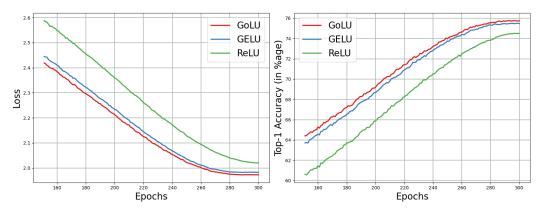


Figure 18: ViT-B/32 test loss (Left) and test top-1 accuracy (Right) on ImageNet-1k.

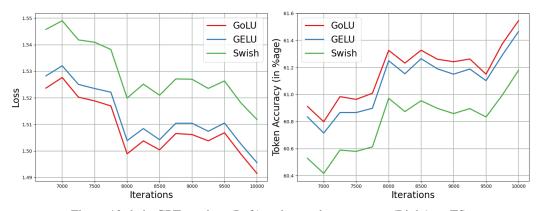


Figure 19: babyGPT test loss (Left) and test token accuracy (Right) on TS.

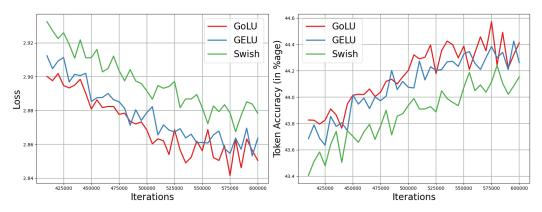


Figure 20: GPT2-S test loss (Left) and test token accuracy (Right) on OWT.

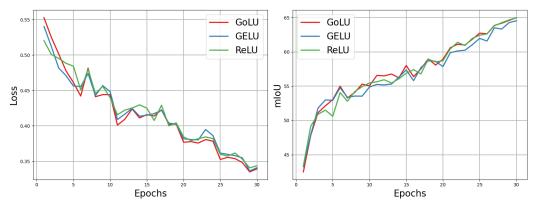


Figure 21: DeepLabV3 ResNet-50 test loss (Left) and test mIoU (Right) on MS-COCO with lr=0.02.

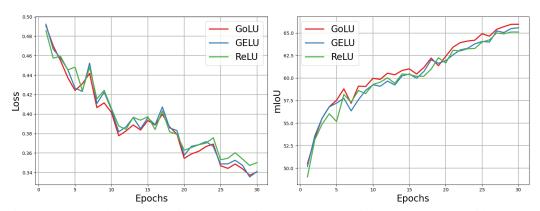


Figure 22: DeepLabV3 ResNet-50 test loss (Left) and test mIoU (Right) on MS-COCO with lr=0.01.

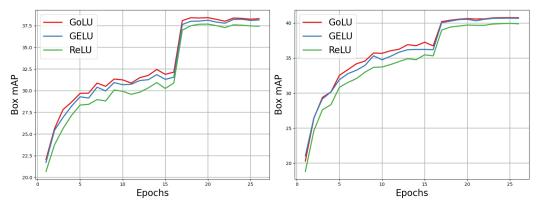


Figure 23: Faster R-CNN-FPN ResNet-50 (Left) and RetinaNet-FPN ResNet-50 (Right) test Box mAP on MS-COCO.

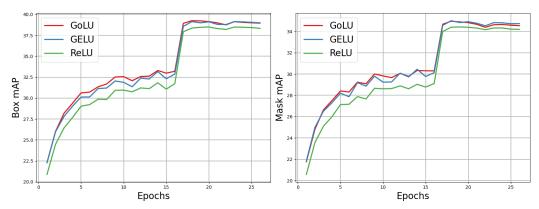


Figure 24: Test Box mAP (Left) and test Mask mAP (Right) for Mask R-CNN-FPN ResNet-50 trained on MS-COCO.

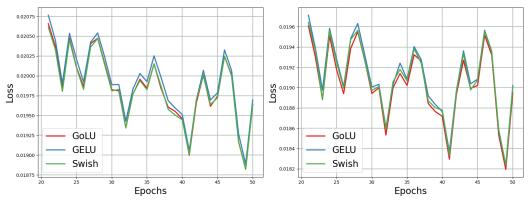


Figure 25: Test loss for Denoising Diffusion Probabilistic Model trained on CelebA at LR=0.0003 (Left) and LR=0.001 (Right).

I Machine Translation

To further assess GoLU across diverse tasks, we evaluated its performance on machine translation using the WMT14 English–German benchmark, with approximately 4.5 million training pairs. Specifically, we trained Transformer-Big models using the Fairseq framework [Ott et al., 2019], comparing GoLU against baseline activations including ReLU, which is the default in this architecture. The architecture follows the standard configuration with 6 encoder and 6 decoder layers, 1024-dimensional embeddings, 16 attention heads, and a feed-forward hidden size of 4096. Models

were trained with three different random seeds for 50 epochs using the Adam optimizer ($\beta_1=0.9$, $\beta_1=0.98$), an inverse square root learning rate schedule (base LR = 5×10^{-4} , 4000 warm-up steps), label smoothing of 0.1, and gradient accumulation of 16 to simulate large-batch training. Evaluation was conducted using beam search with BLEU4 as the performance metric. All runs were executed on a single NVIDIA L40S GPU with a total runtime of roughly 1750 GPU hours. As shown in Table 10, GoLU outperforms standard activation functions in terms of mean BLEU4 score, which highlights its effectiveness in sequence modeling as well.

Table 10: Mean and standard error of BLEU4 scores for Transformer-Big on the WMT14 English-German translation task.

Activation	Test BLEU4
ReLU	28.33±0.14
LeakyReLU	28.26±0.04
ELU	27.49±0.08
GELU	28.20±0.04
Swish	28.34±0.08
Mish	28.31±0.10
GoLU	28.44±0.15

J Case Study: Bayesian Learning Curve Extrapolation using Prior-data fitted Networks

In this section, we present an additional experiment on GoLU, initially conducted as an internal validation study. We report this as a "negative" result, with GoLU ranking second-to-last under the optimal learning rate. Due to the unconventional experimental setup, its niche focus, and suboptimal hyperparameter tuning, we have included these findings in the appendix rather than in the main text.

Experimental Details In this experiment, we assessed all 7 activation functions (including GoLU) considered in the main article as activations for LC-PFN Adriaensen et al. [2024]. LC-PFN is a prior-data fitted network Müller et al. [2021] that functions as a decoder-only transformer, trained for in-context Bayesian prediction for a specific prior dataset distribution. Specifically, LC-PFN is trained for Bayesian Learning Curve extrapolation. We adopted the same setup used to train the best model presented in the original paper, a decoder-only transformer having 26.79M trainable parameters, 12 layers, 4 attention heads, an embedding dimension of 512, and a feed-forward expansion dimension of 1024 output features. It was trained using 10M synthetically generated learning curves, (each containing 100 observations), employing the Adam optimizer (with a default learning rate of 0.0001 and a batch size of 100), using a cosine scheduler with a linear warmup during the first 25,000 steps (25%) of the training. At test time, it takes a partial learning curve as input, and predicts the posterior predictive distribution (PPD) for possible continuations. The test performance of the final model was measured using the log-score, which represents the log-likelihood of the true continuation, under the PPD, averaged across all 99 cutoffs for 10,000 curves from the prior.

Results Figure 26 presents the log-scores for the final models, utilizing all 7 activation functions at 5 different learning rates, averaged over 3 training runs. At the original and optimal learning rate of 0.0001, GoLU ranks 6th among the 7 activations. However, a closer examination reveals that the choice of activation function seems to have minimal impact, as the differences between GoLU and the best (ELU) and worst (Swish) activation are within a single standard error. The learning rate ablation shows that GoLU ranks first at the highest stable learning rate (0.001), supporting previous findings that GoLU thrives in the high learning rate regime.

K Limitations

The effects attributed to GoLU, as described in Section 2.2, are not guaranteed to hold universally but rather represent general trends observed in our empirical findings. Moreover, while asymmetry has been highlighted as a distinctive feature of GoLU, its high performance, detailed in Section 3,

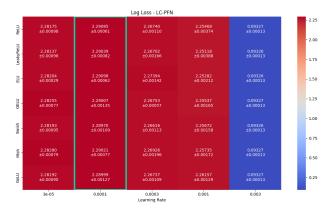


Figure 26: Test log scores - LC-PFN. The default learning rate is 0.0001, which is also optimal, is highlighted in green.

cannot be solely attributed to asymmetry, but instead arises from an intricate interplay of properties described in Section 2.1.

Additionally, we note the importance of learning rate tuning in realizing the full benefits of GoLU. Although we generally observed that, under a tuned learning rate, which also improves the performance of all baseline activations, GoLU achieves superior results, it is not guaranteed to outperform baseline activation functions under default hyperparameter settings.

L Broader Impact

This paper introduces GoLU, a novel activation function designed to advance the field of Machine Learning. The primary objective of this work is to improve the performance and robustness of state-of-the-art neural networks across diverse domains, including computer vision, natural language processing, and generative modeling. The societal impact of this work is primarily tied to the downstream applications of machine learning models that may incorporate GoLU. By enhancing the robustness and performance of models, our activation function has the potential to positively influence critical areas such as medical imaging, autonomous systems, and other technologies that drive societal progress. While there are no immediate or direct societal concerns specific to GoLU itself, as with any development in machine learning, there is a possibility of misuse. We therefore emphasize the importance of ethical and responsible deployment of machine learning technologies enhanced by our contributions.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction are supported in the main paper and appendix particularly in Sections 2 and 3.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed throughout the paper and summarized in Appendix K.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: We include the full derivation of equation 4 in Appendix A.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section G provides the experimental details to reproduce the results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: At the end of the introduction we provide the link to our GitHub repository https://github.com/automl/GoLU which includes complete instructions to run the experiments.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Section G provides the details of the experimental settings. We further provide the link to our public repository.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard errors for all the results in the paper, and this is highlighted in Section 3.1. In Section E, we further provide a Critical Difference analysis to rank activation functions and illustrate the corresponding confidence intervals.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: See Sections G and I.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully conforms with the NeurIPS Code of ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: See Section L.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All creators or original owners of the assets used in the paper are properly cited, and all assets are covered by open-access licenses.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: The new asset introduced in the paper is the code for GoLU, which is currently provided through the GitHub repository https://github.com/automl/GoLU and is well documented.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.

- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.