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ABSTRACT

Recent advancements in neural rendering for 3D reconstruction have focused on
constructing representations directly from uncalibrated RGB images, bypassing
the need for Structure-from-Motion (SfM) preprocessing. A primary challenge in
this domain is the joint optimization of scene geometry and camera parameters, a
task fraught with inherent ambiguities. Although 3D Gaussian Splatting (3DGS)
has achieved photorealistic reconstruction quality, its discrete, point-based rep-
resentation complicates this joint optimization process. To address these chal-
lenges, we propose a robust, SfM-free framework that leverages pre-trained 3D
feed-forward models within a coarse-to-fine alignment pipeline. Our method in-
troduces Pi3 for scene initialization and proceeds with the joint training of ge-
ometry and camera poses. To enhance the stability of camera pose optimization,
we employ 3D and 2D filters to regularize the gradients from signal alignment.
Furthermore, we incorporate a geometric regularization based on image match-
ing to provide global constraints for camera pose refinement, which significantly
improves both reconstruction quality and pose estimation accuracy. Our method
achieves competitive performance in novel view synthesis and camera pose esti-
mation, demonstrating its robustness across diverse datasets.

1 INTRODUCTION

Neural Radiance Fields (NeRF) (Mildenhall et al., 2021) provide a practical framework for learn-
ing a neural 3D radiance representation from collections of 2D RGB images, and have motivated a
variety of alternative scene representations. NeRF accepts 3D sample points and view directions as
input and predicts radiance and density via a neural network, which are then integrated by volume
rendering. This implicit representation is a principal contributor to the high computational cost of
NeRF-like methods. Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has emerged as
an explicit alternative: it represents a scene as a set of 3D Gaussian primitives and leverages conven-
tional rasterization pipelines on modern GPUs, yielding substantially faster training and rendering.

Most reconstruction methods, including NeRF and 3DGS, require accurate camera intrinsics and ex-
trinsics for the input images. These parameters are commonly obtained through Structure from Mo-
tion (SfM) tools such as COLMAP (Schonberger & Frahm, 2016). However, classical SfM pipelines
have limitations: they depend on sufficient image overlap to establish multiview correspondences
and can fail in challenging scenarios. Recent large multitask models for 3D vision, such as MASt3r
(Duisterhof et al., 2025) and VGGT (Wang et al., 2025a), demonstrate improved precision and ro-
bustness across diverse conditions. Motivated by these advances, we adopt Pi3 (Wang et al., 2025c),
a fully permutation-equivariant architecture, to replace SfM as a preprocessing module.

Directly using the outputs of learned large models introduces additional challenges. Network-based
approaches can infer 2D–3D relations at a high level, but predicting precise numerical camera pa-
rameters (e.g., view matrices) remains difficult in the absence of strict geometric constraints (Wang
et al., 2023a). Inaccurate camera parameters often lead to geometric and photometric degrada-
tions—such as misalignment, skew, or distortion—particularly in scenes with large depth ranges
(e.g., outdoor environments or long image sequences). To address this, we propose Pi3DGS, a joint
training framework that reconstructs 3DGS geometry while simultaneously refining camera poses,
starting from the imperfect camera estimates produced by Pi3.
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Adapting joint optimization strategies from NeRF to 3DGS entails specific difficulties. First, 3DGS
employs an explicit representation composed of Gaussian ellipsoids whose attributes are optimized
and whose population is incrementally densified to recover higher-frequency detail. This densifica-
tion process splits or duplicates primitives when they exceed a threshold. Because 3DGS is prone
to overfitting, primitives created under supervision of inaccurate early-stage cameras can become
trapped in local minima, and there is no inherent mechanism to correct such primitives later in
training.

To mitigate early densification artifacts, and inspired by Mip-Splatting (Yu et al., 2024), we intro-
duce a gradient-smoothing strategy. The key idea is to temporarily scale or blur the Gaussians so
that each primitive influences more pixels during early training, thereby smoothing gradients and
emulating the coarse-to-fine behavior observed in AbsGS (Ye et al., 2024). Consistent with analy-
ses in TensorRF (Chen et al., 2024), this attenuation of high-frequency signals yields more stable
camera alignment and reduces the tendency to converge to poor local minima.

A second challenge is the relative paucity of cross-view constraints during camera optimization.
NeRF-based methods typically sample rays from multiple images per batch, enabling simultaneous
optimization across many cameras and enforcing multi-view consistency. In contrast, 3DGS uses a
differentiable rasterization pipeline in which all primitives are transformed, clipped, rasterized, and
blended to produce pixel colors; this pipeline limits the number of views that can be jointly optimized
per step and, absent explicit geometric coupling, makes cameras susceptible to inconsistent local
groupings.

To provide stronger geometric supervision, and drawing on PoRF (Bian et al.), we integrate an
image-matching-based geometric constraint into the pose refinement process. This constraint sup-
plements the rasterization loss, stabilizes camera optimization (in particular during opacity reset-
ting), and improves final pose accuracy.

Our main contributions can be summarized as follows.

• We present Pi3DGS, a pipeline for reconstructing 3D Gaussian Splatting scenes from RGB
images alone, obviating the need for accurate SfM precomputation. The pipeline com-
bines a learned permutation-equivariant initialization (Pi3) with a joint optimization that
constructs the 3DGS representation while simultaneously refining camera intrinsics and
extrinsics.

• We introduce a filtering strategy based on gradient smoothing to prevent premature and
erroneous densification of Gaussian primitives. By enlarging the effective receptive field of
primitives during early training and attenuating high-frequency signals, this strategy miti-
gates unstable gradients and reduces convergence to poor local minima, thereby enhancing
training stability.

• We incorporate image-matching geometric constraints into the pose-refinement stage to
enforce robust multi-view consistency. This regularization complements the rasterization
loss, stabilizes camera optimization (particularly during opacity resetting), and improves
final pose accuracy and scene fidelity.

2 RELATED WORKS

2.1 NOVEL VIEW SYNTHESIS

Novel view synthesis is a subfield of 3D reconstruction that focuses on producing high-quality im-
ages from viewpoints not present in the input image set. This topic is closely related to inverse
differentiable rendering and other recent trends in neural rendering. Neural Radiance Fields (NeRF)
(Mildenhall et al., 2021) marked a milestone by demonstrating the effectiveness of implicit neu-
ral fields for photorealistic novel view synthesis. Subsequent approaches based on neural signed
distance functions (SDFs) replace radiance-based volumetric representations with surface-centric
formulations (Wang et al., 2021; 2023b; Li et al., 2023), which can be more readily converted to
classical 3D representations such as triangle meshes. Other works organize scene representations
on structured voxel grids to improve efficiency (Deng & Tartaglione, 2023; Takikawa et al., 2021;
Reiser et al., 2021).
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Although MLP-based methods have achieved impressive visual fidelity, they face inherent chal-
lenges in representing high-frequency signals (e.g., complex textures and fine geometric detail) and
often require substantial training time. 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) addresses
some of these limitations by using an explicit representation that models geometry with 3D Gaussian
primitives and encodes appearance via spherical harmonics (Atkinson & Han, 2012). By leveraging
conventional rasterization pipelines, 3DGS attains excellent visual quality while enabling real-time
rendering performance. Consequently, 3DGS has attracted considerable attention and has been ap-
plied to diverse tasks, including autonomous driving (Zhou et al., 2024), deformable human model-
ing (Moreau et al., 2024), and embodied intelligence training (Wang et al., 2025b).

Despite these advances, most novel view synthesis methods still depend on accurate camera poses to
construct reliable scene representations; obtaining such poses remains a critical practical bottleneck
in many real-world scenarios.

2.2 JOINT REFINEMENT ON CAMERA AND SCENE

The feasibility of jointly optimizing scene representation and camera poses was first demonstrated
by BARF (Lin et al., 2021), which trains a neural radiance field from RGB images given only
inaccurate initial camera poses. TensoRF (Chen et al., 2024) introduces Gaussian kernel filtering
of 2D supervision to smooth the optimization landscape for neural radiance fields, thus mitigating
local minima in joint camera–scene optimization. Subsequent work has incorporated additional
priors and geometric cues to stabilize pose estimation: Nope-NeRF (Bian et al., 2023) uses depth
maps as anchors; SC-NeRF (Jeong et al., 2021) and PoRF (Bian et al.) integrate image matching to
refine camera poses.

Recent methods based on 3D Gaussian Splatting (3DGS) aim to address these limitations by leverag-
ing rasterization-friendly primitives. CF-3DGS (Fu et al., 2024) incrementally adds Gaussians and
cameras from a sequence of consecutive frames, but fixes registered cameras in later stages, which
can lead to accumulated registration errors; moreover, when its COLMAP-free template heuris-
tics fail, CF-3DGS requires precomputed camera intrinsics. InstantSplat (Fan et al., 2024) employs
DUSt3r (Wang et al., 2024) for initialization but does not scale well to long image sequences. 3R-GS
(Huang et al., 2025) proposes an alternative pipeline (see the original reference for details). BAD-
Gaussians (Zhao et al., 2024) specifically target scenes affected by motion blur by assigning and
optimizing multiple virtual cameras per view to model blur trajectories. KeyGS (Chang et al., 2025)
adapts the smoothing strategy from TensorRF to 3DGS through Mip-Splatting (Yu et al., 2024), but
continues to rely on the conventional structure-from-motion for initial scene setup.

3 METHOD

As a classic task in computer vision, taking a sequence of plain 2D RGB images {Ii}Ni=1 , Ii ∈
RH×W×3 as input, our goal is to reconstruct the 3D geometry using 3D Gaussian splatting and learn
the extrinsic and intrinsic parameters of the cameras for the corresponding images simultaneously.

3.1 PRELIMINARY: 3D GAUSSIAN SPLATTING

Kerbl et al. (2023) proposed a novel representation for 3D geometry that can be rendered with
photorealistic quality and high performance by leveraging the conventional rasterization pipeline.
The primitive is an ellipsoid formulated with a 3D Gaussian function:

G(x) = exp
(
− 1

2 (x− µ)
T
Σ−1 (x− µ)

)
. (1)

Each 3D Gaussian is parameterized by a mean position µ and a covariance matrix Σ ∈ R3×3. The
ellipsoid defined by Equation 1 is equivalent to a sphere that has been scaled along the coordinate
axes and then rotated. Consequently, the covariance can be expressed as a composition of a scaling
matrix S ∈ R3×3 (typically diagonal) and a rotation R ∈ R3×3, e.g. Σ = RSSTRT , which ensures
that Σ is positive semi-definite.

To render a 3D Gaussian splat (3DGS), it is projected onto the screen (canvas). Given the camera
pose represented by a rigid-body transform W ∈ SE(3) and camera intrinsics K ∈ R3×4, the mean

3
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Figure 1: Overview of our Pi3GS pipeline. The geometry and the cameras are optimized simultane-
ously.

µ is projected to image coordinates x2D
j . The projected covariance is approximated by propagat-

ing the 3D covariance via J , the Jacobian of the camera projection matrix (Zwicker et al., 2001):
Σ2D = J W ΣWTJT , where J denotes the Jacobian of the projection at the Gaussian center. This
approximation yields a 2D Gaussian in image space and enables rasterization without explicit 3D
sampling, making the representation compatible with standard GPU rasterization pipelines.

The appearance of each Gaussian is represented using spherical harmonics: ci = SHi(v), where
v ∈ R3 is the normalized view direction. Parameterized by a low-dimensional feature vector, the
spherical harmonics basis compactly encodes low-frequency, view-dependent color variation.

The final pixel color is obtained by compositing the contributions of individual Gaussians in a front-
to-back order. Denoting the opacity contribution of the i-th Gaussian by αi = oi Gi(x) (where oi
accounts for per-splat opacity), the color is

C =

N∑
i=1

ci αi

i−1∏
j=1

(1− αj) , (2)

which corresponds to standard alpha compositing applied to the 2D Gaussian splats.

3.2 PI3DGS PIPELINE

Our objective is to reconstruct a high-fidelity 3D geometry and shading (3DGS) representation from
a collection of uncalibrated multi-view RGB images. Conventional 3DGS reconstruction typically
requires accurate camera intrinsics and poses, which restricts its applicability for many downstream
tasks. Pi3 (Wang et al., 2025c) is an image-matching model pre-trained on extensive 3D datasets
and thus embodies a strong 3D prior. Given a sequence of 2D images, Pi3 predicts an initial 3D
point cloud and estimates camera intrinsics via reprojection error minimization. Leveraging a large
neural model, Pi3 can produce satisfactory initial point clouds and camera poses in many cases.
However, in the absence of explicit regularization on camera poses, these initializations may contain
non-negligible noise, particularly for outdoor scenes with large depth ranges.

Because Pi3 does not provide dense pixel correspondences, its initialization alone is insufficient
to establish a robust geometric constraint. We therefore employ RoMa (Edstedt et al., 2024), an
efficient and robust image-matching model, to extract pairwise correspondences across the image
sequence and thereby strengthen the geometric supervision.

4
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Camera modeling. We represent each camera pose subject to refinement as the composition of an
initial pose and a trainable corrective transformation:

Ti = ∆Ti T̂i, (3)

where T̂i denotes the Pi3 initialization and ∆Ti is a learnable refinement. To reduce coupling be-
tween rotation and translation during optimization, we parameterize ∆Ti by decoupling its rotation
and translation components: the rotation is represented in the Lie algebra so(3), while the translation
is represented in R3 and multiplied by a learnable scalar s. The scalar s enhances the robustness of
translation optimization across scenes with varying absolute scales.

Initialization. For each input image Ii ∈ {Ii}Ni=1, Pi3 produces a local point map XN
i ∈

RH×W×3 and an approximate camera pose T̂i = [Ri | ti]. The intrinsic matrix Ki is not pro-
vided and must be estimated. Given the approximate extrinsics T̂i, we estimate Ki by minimizing
the reprojection error between the 3D points and their observed image projections.

Let x3D
j ∈ XN

i be a 3D point and x2D
j ∈ R2 its observed image location. In homogeneous coordi-

nates the projection relation is
x̄2D
j ∼ Ki [Ri | ti] x̄3D

j , (4)

where x̄2D
j and x̄3D

j denote homogeneous coordinates, Ki is the intrinsic matrix, and [Ri | ti] are
the extrinsics from Pi3. The intrinsics are recovered by minimizing the reprojection error:

Ki = argmin
K

∑
j

∥∥π(K [Ri | ti] x̄3D
j

)
− x2D

j

∥∥2, (5)

where π(·) denotes perspective division. This problem can be linearized and solved in a least-squares
sense to obtain an initial estimate of Ki. If all cameras are assumed to share identical intrinsics, the
shared intrinsic matrix K is estimated jointly over the entire sequence.

3.3 ALIGNMENT WITH SMOOTHED GRADIENT

3D Gaussian blurring can be formulated as a smooth operator acting on the scale component of a
3DGS. Concretely,

Gi(x) =

√
|Σ|

|Σ+ ϵ2i I|
exp

(
− 1

2 (x− µ)⊤(Σ + ϵ2i I)
−1(x− µ)

)
. (6)

This operation increases the effective covariance of each Gaussian and attenuates its peak amplitude,
thereby simulating a spatial spread of the underlying density.

To ensure consistent blurring of projected Gaussians in image space, we set the blur magnitude ϵi
proportionally as

ϵi = ϵbase · di, (7)

where di denotes the depth of the Gaussian center in camera coordinates (i.e., its z coordinate). This
depth-proportional scaling balances sampling density across the image plane and applies a scale-
appropriate blur to each Gaussian, yielding more stable and consistent training dynamics.

For 2D supervision, rendered images are smoothed by convolution with a 2D Gaussian kernel. By
scheduling the intensity of both the 3D and 2D blurring terms, we realize a coarse-to-fine alignment
strategy: stronger blurring is applied early to suppress high-frequency noise, and the blur is grad-
ually reduced to handle finer signals. Following the analysis of TensorRF (Chen et al., 2024), this
controlled blurring of high-frequency content promotes robust and stable camera-pose alignment
and regularizes the frequency spectrum of the 3DGS primitives.

3.4 IMAGE MATCHING BASED GEOMETRIC REGULATION

Although Pi3 has provided a strong prior on various 3D information including point cloud, camera
poses. However, according to our observation, several problems arise in supplying these initializa-
tions directly to the 3DGS reconstruction pipeline. Pi3 does not output correspondence like other

5
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Figure 2: Effect of camera perturbations in the absence of geometric regularization. From left to
right: ground truth, rendered result, and error map. From top to bottom: (a) an outlier camera that
fails to align the ground-truth and rendered views; (b) artifacts resulting from misaligned cameras;
(c) results produced when our geometric constraint is applied. Zoom in for finer details.

Figure 3: Visualization of epipolar and reprojection geometry. When camera motion exhibits a small
baseline, the epipolar lines become nearly parallel, which reduces the effectiveness of the epipolar
constraint (left). Therefore, we report the reprojection error as a more direct measure (right). Colors
map error magnitude from blue (low) to red (high).

large 3D models, we exploit RoMa (Edstedt et al., 2024), a robust but accurate pre-trained image
matching model to acquire pairwise correspondences.

Based on the correspondences, we implement our framework with both the Sampson epipolar dis-
tance and reprojection error to maintain the relationship between the cameras. This improves the
global stability for the cameras in searching for blurred phrases. Specifically, the former is a robust
and symmetric version of the epipolar distance. The latter is a more sensitive regulation based on
image matching, which is more effective for low-baseline scenarios.

Lmatch =
λepi∑N
i=1 ci

N∑
i=1

ci · depi (xi,x
′
i) +

λreproj∑N
i=1 ci

N∑
i=1

ci · dreproj (xi,x
′
i) (8)

Here, depi (xi,x
′
i) and dreproj (xi,x

′
i) represent the symmetric Sampson distance and reprojection

error of correspondence (xi,x
′
i) in pixel coordinates.

Additionally, regularly resetting the opacity is a common scheme to reduce artifacts by removing
wrongly generated floater Gaussians. This operation produces a large fluctuation to the RGB gradi-
ent, causing unsteadiness or even mis-convergence to the cameras.
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3.5 TOTAL TRAINING LOSS

The overall training objective comprises three terms: the 3DGS rendering loss, a geometric regular-
ization term based on image matching, and a scale regularization term:

Ltotal = Lrgb + Lmatch + Lscale reg. (9)

The photometric rendering loss follows standard practice and combines an L1 term with a structural
similarity term:

Lrgb = (1− λSSIM)L1 + λSSIM LSSIM, (10)
where λSSIM = 0.2 balances the two components. To prevent degenerate or ill-conditioned Gaus-
sian primitives, we introduce a scale regularization term that constrains the aspect ratio of each
Gaussian’s principal axes:

Lscale reg =
1

N

N∑
i=1

[
max

(
max(Si)

min(Si)
, r

)
− r

]
+

, (11)

where Si ∈ Rd is the vector of scale parameters (the lengths of the principal axes) for the i-th
Gaussian, r > 1 denotes the allowable maximum aspect ratio, and [ · ]+ = max(·, 0) ensures the
term is nonnegative.

Table 1: Novel view evaluation on Tanks and Temples dataset. The best results are highlighted in
bold.

Method Ours KeyGS CF-3DGS Nope-NeRF

PSNR↑ SSIM↑ LPIPS↓ PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Chruch 31.61 0.95 0.04 30.62 0.92 0.06 30.23 0.93 0.11 25.17 0.73 0.39
Barn 33.61 0.94 0.03 34.25 0.95 0.04 31.23 0.90 0.10 26.35 0.69 0.44
Museum 35.85 0.97 0.01 33.46 0.94 0.03 29.91 0.91 0.11 26.77 0.76 0.35
Family 34.54 0.97 0.02 33.05 0.95 0.04 31.27 0.94 0.07 26.01 0.74 0.41
Horse 35.02 0.97 0.02 33.65 0.96 0.03 33.94 0.96 0.05 27.64 0.84 0.26
Ballroom 36.63 0.98 0.01 33.70 0.95 0.02 32.47 0.96 0.07 25.33 0.72 0.38
Francis 35.07 0.96 0.05 34.45 0.93 0.08 32.72 0.91 0.14 29.48 0.80 0.38
Ignatius 33.29 0.96 0.03 30.85 0.92 0.06 28.43 0.90 0.09 23.96 0.61 0.47

Mean 34.45 0.96 0.03 33.00 0.94 0.05 31.28 0.93 0.09 26.34 0.74 0.39

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Metrics. We evaluate our method on two datasets. The Tanks and Temples dataset
(Knapitsch et al., 2017) contains large-scale reconstruction scenarios covering both indoor and out-
door environments. CO3Dv2 (Reizenstein et al., 2021) comprises numerous multi-view captures of
common objects. We compare against CF-3DGS (Fu et al., 2024), NoPe-NeRF (Bian et al., 2023),
and keyGS (Chang et al., 2025).

Evaluation addresses both novel-view synthesis and camera-pose estimation; an ablation study quan-
tifies the contribution of individual components. For novel view synthesis we report PSNR, SSIM,
and LPIPS as measures of photometric and perceptual quality. Camera pose accuracy is assessed
using translational and rotational relative pose error (RPEt and RPEr) as well as the absolute tra-
jectory error (ATE).

Implementation Details. Our implementation is built on Nerfstudio (Tancik et al., 2023) with the
gsplat extension (Ye et al., 2025), which provides a flexible framework for constructing a custom
3DGS reconstruction pipeline. To jointly optimize the 3DGS representation and camera poses, we

7
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tune several hyperparameters. For camera optimization we employ exponential decay schedules,
using base learning rates of 1 × 10−5 and 5 × 10−5 for rotation and translation, respectively, to
balance their relative update magnitudes.

4.2 RESULTS AND COMPARISONS

Novel view synthesis. We first evaluate on a Tanks and Temples version preprocessed by CF-
3DGS (Fu et al., 2024), which provides densely sampled frames extracted from short video clips.
As reported in Table 1, our approach achieves superior visual-quality metrics in the majority of cases
compared to the baselines.

On the CO3Dv2 dataset, we further evaluate the effectiveness of our approach under large camera
motions. This dataset provides frames that capture objects over camera trajectories exceeding 180
degrees in most cases. As reported in Table 2, our method demonstrates robust performance and
maintains competitive visual quality for novel view synthesis under these challenging conditions.

Table 2: Novel view evaluation on CO3Dv2 dataset. The best results are highlighted in bold.

Method Ours KeyGS CF-3DGS

PSNR↑ SSIM↑ LPIPS↓ PSNR SSIM LPIPS PSNR SSIM LPIPS

Apple 33.98 0.94 0.07 33.53 0.94 0.07 29.69 0.89 0.29
Bench 31.75 0.92 0.10 26.35 0.73 0.30 26.21 0.73 0.32
Hydrant 28.66 0.91 0.07 25.33 0.80 0.15 22.14 0.64 0.34
SkateBoard 34.51 0.94 0.11 32.74 0.93 0.16 27.24 0.85 0.30
Teddybear 33.89 0.94 0.09 32.67 0.93 0.09 27.75 0.86 0.20

Mean 32.56 0.93 0.09 30.12 0.87 0.15 26.61 0.79 0.29

Camera pose estimation. We include KeyGS for reference only, since it is initialized with
COLMAP results, which serves as ground-truth camera poses in our evaluation. As reported in
Table 3, our method achieves the best performance in estimating the translation component of cam-
era poses, which explains the superior visual quality observed in the novel view synthesis.

Table 3: Camera poses estimation on Tanks and Temples dataset. The best results are highlighted in
bold except “KeyGS*” method as it is initialize with COLMAP sequence mode.

Method ours Nope-NeRF CF-3DGS KeyGS*

RPEt↓ RPEr↓ ATE↓ RPEt RPEr ATE RPEt RPEr ATE RPEt RPEr ATE

Church 0.007 0.034 0.000 0.008 0.018 0.002 0.034 0.008 0.008 0.006 0.013 0.000
Barn 0.007 0.036 0.000 0.034 0.034 0.003 0.046 0.032 0.004 0.008 0.016 0.001
Museum 0.024 0.039 0.001 0.052 0.215 0.005 0.207 0.202 0.020 0.025 0.025 0.002
Family 0.012 0.033 0.000 0.022 0.024 0.002 0.047 0.015 0.001 0.012 0.012 0.000
Horse 0.082 0.037 0.001 0.112 0.057 0.003 0.179 0.017 0.003 0.078 0.002 0.001
Ballroom 0.015 0.033 0.000 0.037 0.024 0.003 0.041 0.018 0.002 0.015 0.014 0.000
Francis 0.008 0.036 0.001 0.029 0.154 0.006 0.057 0.009 0.005 0.007 0.016 0.001
Ignatius 0.008 0.033 0.001 0.033 0.032 0.005 0.026 0.005 0.002 0.001 0.010 0.001

mean 0.020 0.035 0.000 0.0409 0.0698 0.0036 0.080 0.038 0.006 0.019 0.014 0.001

4.3 ABLATION STUDY

In this section, we highlight the contributions of the key components and strategies of our proposed
approach. All experiments were conducted on the Tanks and Temples dataset. As summarized
in Table 4, gradient smoothing (GS) and geometry regularization (Geo-Reg) are evaluated both

8
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Figure 4: Comparison of image-matching approaches for correspondence extraction. For scenes
with larger inter-view camera motion, we employ RoMa (Edstedt et al., 2024) to obtain more reliable
correspondences.

individually and jointly. The results show that each component yields measurable improvements in
visual quality on its own and that applying both components together produces further gains across
the evaluated quantitative metrics.

Table 4: Ablation study of model components.

GS Geo-Reg PSNR↑ SSIM↑ LPIPS↓

33.98 0.93 0.08
✓ 34.12 0.94 0.05

✓ 34.24 0.93 0.07
✓ ✓ 34.45 0.96 0.03

According to our analysis, initialization plays a key role in reconstruction quality. The 3DGS rep-
resentation is sensitive to initial camera estimates and has limited ability to correct erroneously
initialized Gaussian ellipsoids. Table 5 compares several initialization strategies: COLMAP, repre-
senting a conventional SfM pipeline, and MASt3r, representing a learning-based dense reconstruc-
tion method. The results demonstrate that our proposed initialization outperforms these baselines
across the evaluated metrics in terms of both reconstruction accuracy and visual fidelity.

Table 5: Ablation study of initialization strategies. The “MASt3r” initialization employs correspon-
dences extracted by MASt3r.

Method Geo-Reg PSNR↑ SSIM↑ LPIPS↓

COLMAP 31.76 0.91 0.09
MASt3r ✓ 32.73 0.93 0.05
Ours 34.12 0.94 0.05
Ours ✓ 34.45 0.96 0.03

5 CONCLUSION

3D reconstruction is a fundamental problem in computer vision. We propose Pi3DGS, an efficient
yet robust framework that jointly optimizes camera poses and the 3D Gaussian Splatting (3DGS)
representation from uncalibrated multi-view images. We investigate the impact of camera pose op-
timization on 3DGS reconstruction and further introduce two key contributions: (i) leveraging the
large-scale 3D model Pi3 to enhance representation quality, and (ii) a gradient-smoothed pipeline
with regularization guided by image matching. Experimental results demonstrate that our frame-
work achieves superior performance in both novel view synthesis and pose estimation compared to
existing approaches.
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A APPENDIX

A.1 USE OF LLMS

With respect to the involvement of large language models (Liu et al., 2024; Achiam et al., 2023)
in this research, their use was limited to grammatical review and stylistic polishing to increase
formality. They were not employed to generate scientific content, design experiments, analyze data,
or interpret results; all substantive intellectual contributions were made by the authors.
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