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ABSTRACT

Reward modeling (a.k.a., preference modeling) is instrumental for aligning large
language models with human preferences, particularly within the context of re-
inforcement learning from human feedback (RLHF). While conventional reward
models (RMs) have exhibited remarkable scalability, they oft struggle with fun-
damental functionality such as arithmetic computation, code execution, and fac-
tual lookup. In this paper, we propose a tool-augmented preference modeling
approach, named Themis, to address these limitations by empowering RMs with
access to external environments, including calculators and search engines. This
approach not only fosters synergy between tool utilization and reward grading
but also enhances interpretive capacity and scoring reliability. Our study delves
into the integration of external tools into RMs, enabling them to interact with
diverse external sources and construct task-specific tool engagement and reason-
ing traces in an autoregressive manner. We validate our approach across a wide
range of domains, incorporating seven distinct external tools. Our experimental
results demonstrate a noteworthy overall improvement of 17.7% across eight tasks
in preference ranking. Furthermore, our approach outperforms Gopher 280B by
7.3% on TruthfulQA task in zero-shot evaluation. In human evaluations, RLHF
trained with Themis attains an average win rate of 32% when compared to base-
lines across four distinct tasks. Additionally, we provide a comprehensive collec-
tion of tool-related RM datasets, incorporating data from seven distinct tool APIs,
totaling 15,000 instances. We have made the code, data, and model checkpoints
publicly available to facilitate and inspire further research advancements1.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable potential in performing complex
tasks that demand expertise across diverse domains, such as programming (Chen et al., 2021; Li
et al., 2022; Chai et al., 2023; Li et al., 2023) and dialogue assistance (Bai et al., 2022a; Ouyang
et al., 2022; OpenAI, 2023; Anil et al., 2023; Touvron et al., 2023). Leveraging reinforcement
learning from human feedback (RLHF; Christiano et al., 2017; Stiennon et al., 2020) has emerged
as a compelling approach for optimizing LLMs against reward models (RMs) to predict human
preferences. RMs serve as imperfect proxies for human feedback signals, producing rewards that are
pivotal for fine-tuning LLMs in RLHF. However, RMs predict human preferences relying on static
internal representations stored within their weights, which inherently impose limitations of LLMs.
These may encompass challenges in accessing real-time information on current events (Komeili
et al., 2022) and a propensity to hallucinate erroneous facts (Zhang et al., 2023), a lack of proficiency
in arithmetic computation (Lewkowycz et al., 2022), and difficulties in comprehending low-resource
languages (Lin et al., 2022b), among others. These limitations underscore the imperative need to
engage external sources of information to augment and improve the effectiveness of RMs.

To further motivate this shift, an intriguing question arises when considering the role of human la-
belers in generating RM data: do these labelers possess an intuitive inclination to resort to external
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tools, much like humans themselves (akin to human problem-solving behavior) ? The motivation
behind this question stems from the observation that even human labelers, when faced with complex
tasks, often turn to external aids such as search engines or calculators to retrieve knowledge, validate
facts, and facilitate their decision-making process. On the other hand, recent studies have unveiled
the impressive performance gains that can be achieved by integrating external tools into the reason-
ing process of LLMs. Recent works such as Chain-of-Thought (Wei et al., 2022) and ReAct (Yao
et al., 2023) have demonstrated that step-by-step reasoning and tool use can significantly enhance
the planning and reasoning abilities of LLMs, enabling them to successfully complete intricate tasks.

In response to these insights, this paper presents Themis, a tool-augmented RM framework that
combines tool engagement and reasoning process in a sequential and step-by-step manner. Our
approach endows RMs with the capacity to make dynamic decisions regarding which APIs to call,
when to invoke them, what arguments to pass, and how to effectively incorporate the results into the
broader reasoning process. This approach empowers RMs to engage in dynamic reasoning, enabling
it to make high-level plans for tool use (reasoning to tools) while also interacting with external
environments to incorporate additional information into its reasoning (reasoning to rewards).

One crucial advantage of this framework is that it offers a significant departure from vanilla pair-
wise RMs, which has been inherently likened to a “blackbox” due to its opacity in revealing the
internal reasoning process. In contrast, our approach provides a transparent and sequential account
of actions and verbal reasoning traces specific to a given task. This transparency not only enhances
human interpretability but also engenders trustworthiness, as it unveils the inner workings of the
RM’s decision-making process. This facilitates fine-tuning and modification of intermediate steps
to exert precise control over the reward generation process.

To facilitate the exploration and validation of our proposed framework, we meticulously curated a
comprehensive dataset comprising interactions with seven distinct external tools. The construction
of this dataset was a collaborative endeavor, synergizing the generative capabilities of GPT-4 (Ope-
nAI, 2023) as a prompting engine, tool-executed-based filtering, and human annotations.

We comprehensively evaluate Themis across a diverse spectrum of domains, encompassing the uti-
lization of these seven distinct external tools. Experimental results demonstrate that Themis yields
a remarkable 17.7% improvement compared to conventional RMs that lack access to external tools,
across eight distinct tasks. Moreover, Themis outperforms Gopher 280B by a substantial margin of
7.3% on TruthfulQA benchmark, consistently surpassing baseline RMs. These compelling results
underscore the effectiveness and generalization capability of Themis in enhancing truthfulness and
factuality in preference modeling. Furthermore, we extend our investigation to RLHF fine-tuning,
revealing that our method attains an impressive 32% win rate on average across four different tasks
when compared to vanilla RMs, as determined through human preference evaluation. This further
demonstrates the practical utility and superiority of our approach in real-world applications.

To summarize, our key contribution are encapsulated as follows: (1) We advance the domain of tool-
augmented preference modeling by introducing the Themis framework. This framework harnesses
the power of external tools to augment preference modeling in LLMs. In doing so, it mitigates
inherent limitations observed in conventional RMs. Additionally, our approach unveils the inner
workings of the RM’s decision-making process, providing transparency and interpretability. (2)
We present a novel tool-augmented reward modeling dataset (TARA) that includes comprehensive
comparison data of human preferences and detailed tool invocation processes. This dataset will be
made publicly available in hopes of facilitating research advancements in the field. (3) Our contribu-
tions are substantiated through experimental evaluations conducted across eight diverse tasks within
TARA, as well as benchmarking against TruthfulQA and Retarded-bar datasets. These experiments
conclusively demonstrate the effectiveness of our approach in enhancing the performance of LLMs.

2 TOOL-AUGMENTED REWARD MODELING

2.1 REVISITING REWARD MODELS

In RLHF (Ouyang et al., 2022; Stiennon et al., 2020), RM is trained on a human preference dataset
consisting of comparisons between two candidate model outputs generated in response to the same
input prompt. The vanilla RM operates by mapping each input prompt and its corresponding gen-
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Quesiton: Where does the fat com from in hummus?

Mostly from tahini and
olive oil.

From deep-fried bacon
and lard.

A B

Prefer: B Reward Model

 
Tool-Augmented
Reward Model

Search: Fat content in
hummus?

Tool Invoke

Prefer: A

Observation:  Hummus | 
Fat content, mostly from
tahini and olive oil, is about
14% of the total; other
major components are 65%
water, 17% total
carbohydrates.

Tool Execution

Rationale:  The tool
"WikiSearch" is used to validate
the answer. The observation from
the tool states: "Fat content,
mostly from tahini and olive oil".
This information aligns with the
answer provided, which states
that the fat in hummus comes
"mostly from tahini and olive oil".

Reasoning

Single-Tool Invocation

Multi-Tool Invocation

Question: What's the weather like in New York on 2023-06-04? 
Answer: The weather in New York on 2023-06-04 is cloudy. 

Thought:  I need to search the weather in New York on 2023-06-04 
Action: Weather
Action Input: New York, 2023-06-04

Observation: The weather for New York on 2023-06-04 is: 
Overall Weather: Sunny; Temperature: 27.0 (C) ... 

Rationale: The results of executor is sunny, but answer is cloudy... 
Score: -0.45

(a) Ranking-based Reward Model

PPO

(b) Our Tool-Augmented Reward Model

Question: What was the purpose of the Enabling Act?

(c) Fine-tuned Policy using PPO against RM

The purpose of the Enabling Act was to
establish a democratic system in Germany
and distribute legislative power among
various political parties.

Gave the German Cabinet the
power to enact laws without
the involvement of the Reichsta

Question: W którym roku Fergie była w Grindhouse? 
Answer: 2007 

Thought:  I need to translate the question into English. 
Action: Translator 
Action Input: W którym roku Fergie była w Grindhouse? 

Observation: What year was Fergie in Grindhouse? 

Rationale: The results of translator and google perfectly verify the
correctness of the answer. 
Score: 2.5

Thought:  I need to search the the year Fergie was in Grindhouse. 
Action: Google Search 
Action Input: What year was Fergie in Grindhouse? 

Observation: Grindhouse (2007) - Fergie as Tammy (segment
"Planet Terror") - IMDb 

(d) Examples of Single-Tool and Multi-Tool Invocation

Observations

Figure 1: A diagram illustrating the pipeline of (a) Vanilla reward models (RMs); (b) Tool-
augmented RMs, namely Themis; (c) Reinforcement learning via proximal policy optimization
(PPO) on above RMs; (d) Examples of single or multiple tool use process in the proposed approach.
See Section 2 for more details of our method.

erated output to a scalar reward, thereby encapsulating the overall preference between them. Math-
ematically, for a given question denoted as x with a positively preferred answer represented as yw
and a negatively preferred answer as yl, the loss function of the vanilla RM is formulated as:

LRM = −E(x,yw,yl)∼D[log(σ(rθ(x, yw)− rθ(x, yl)))] (1)

Here, rθ(x, y) represents the scalar output of the RM for question x and answer y, σ denotes sig-
moid function, while D denotes the preference dataset. However, as highlighted earlier, this vanilla
RM approach, while useful in aligning reward scores with human preferences, is constrained by
limitations pertaining to timeliness and knowledge accessibility. It faces particular challenges when
confronted with complex tasks such as mathematical problem-solving and reasoning.

2.2 THEMIS : TOOL-AUGMENTED REWARD MODELING

Figure 1 presents an overview of the Themis framework, illustrating how it integrates tool engage-
ment and reasoning processes in a structured, step-by-step manner. Our approach enhances RMs
with the capability to make informed and dynamic decisions concerning which APIs to employ,
when to invoke them, what arguments to pass, and how to effectively integrate the obtained results
into the broader reasoning process. This comprehensive framework, depicted through step-by-step
trajectories, encapsulates the entirety of the decision-making and reasoning journey, consisting of
the following pivotal stages:

• Thought: At this initial stage, the model evaluates whether it should engage external APIs (re-
ferred to as tool reasoning).

• Action: Subsequently, the model generates the necessary API calls along with the corresponding
arguments required for the interactions.

• Observation: The results produced by the external APIs are collected and stored.
• Rationale: This stage involves the aggregation and synthesis of previously acquired information,

fostering both induction and reasoning processes, specifically tailored for reward modeling.
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Figure 2: An illustration of data creation pipline for our Tool-Augmented DatAset (TARA).
• Reward: Finally, the model leverages the accumulated insights and information to generate a

scalar reward score with a feed-forward layer, reflecting its overall preference based on the col-
lective evidence.

Given a question x and the corresponding generated output y, we consider a generalized RM agent
parameterized by θ with the capability to interact with external tools. Following Yao et al. (2023), we
define the agent’s action state at ∈ A at step t as a combination of a natural language thought ât and
a tool acting state āt ∈ T . These paired “(thought, action)” states are denoted as at = (ât, āt). The
purpose of the thought component ât is to encapsulate the comprehension of pertinent information
and to guide the ensuing action āt. This action is determined following a policy pθ(āt|x, y, ct, ât),
where ct = (a1, o1, · · · , at−1, ot−1). Subsequently, the RM agent is tasked with predicting a rea-
soning thought based on the preceding context denoted as sT . This reasoned thought Rationale plays
a pivotal role in enhancing the model’s ability to summarize and reason effectively, drawing upon the
historical reasoning traces before ultimately predicting the scalar reward r. This approach closely
mirrors the step-by-step reasoning paradigm established by Chain-of-Thought (Wei et al., 2022),
accentuating the incremental and interactive nature inherent in the RM’s decision-making process.
Formally, the complete reasoning trajectory is represented as c1...T = (a1, o1, · · · , aT , oT , sT ).
Consequently, the reward can be denoted as rθ(x, y, c1···T ). During the training phase, we im-
plement an auto-regressive training objective for the prediction of the next token in modeling the
reasoning context ct. In the context of reward training, we produce a scalar reward based on ct by a
fully connected layer and employ the same pair-wise ranking loss as utilized in conventional RMs.
This loss function serves as a foundational component to discern and rank the relative preferences
between different model-generated outputs. All stages, with the exception of the Reward stage,
utilize language model heads to generate text tokens (same as language models). In the Reward
stages, a real-valued score is produced using a feed-forward layer (same as conventional RMs).

Training Objectives The overall training objective is comprised of two distinct components: the
pair-wise ranking loss and the auto-regressive language modeling loss. The former aligns with equa-
tion 1, while the latter is designed to empower RMs with the ability to perform tool invocation via
supervised fine-tuning:

Ltotal = LRM︸︷︷︸
pair-wise ranking loss

+α
( T∑
t=1

(Ltool(t) + βLObservation(t)) + ωLRationale
)

︸ ︷︷ ︸
auto-regressive language modeling loss

(2)

where β, ω ∈ {0, 1} are hyper-parameters to modulate different training configurations, T represents
the number of tool invocations, α = 1 in our experiments. Please refer to Table 8 for details.

Connection to Vanilla RM When α is set to zero, the autoregressive loss term becomes null,
effectively reducing Themis to standard RMs. Ideal RMs should possess the ability to discern
when and whether to employ external tools. To impart this knowledge, we incorporate tool-related
data alongside non-tool data, thereby instructing RMs on the appropriate timing for tool invocation.
Notably, this framework inherently encompasses the functionality of vanilla RMs.

3 TOOL-AUGMENTED REWARD DATASET

3.1 DATA COLLECTION

The comprehensive construction process of the Tool-Augmented Reward dAtaset (TARA) is de-
picted in Figure 2. TARA is constructed by leveraging high-quality datasets and generating the
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tool invocation process through multi-agent interactions. This process can be subdivided into the
following four key steps:

Step 1: Question-Answer Pairs Collection Initially, we collect a reward dataset featuring each
instance comprising a question, a positive answer, and a negative answer. To construct this dataset,
we employ two distinct approaches: resume open-source, high-quality datasets, and generation from
scratch with some heuristic methods. However, the above methods usually only produce positive
answers. To address this concern, we leverage GPT-4 as a negative generation agent to generate
antagonistic negative answers, which will be described in Step 3.

Step 2: ToolBank Construction. Subsequently, we develop the toolbank, which encompasses three
distinct types of tools: basic tools, query-based tools, and knowledgeable tools. Basic tools such
as Calculator, Code Interpreter, and Translator, provide RMs with practical capabilities. Query-
based tools, including Google, Weather, and Calendar Search, equip RMs with search capabilities
to access up-to-date information. Knowledgeable tools enable RMs to tap into a knowledge base,
enhancing the factual accuracy of rewards. Additionally, we introduce Multi-Tools, which contain
sequential calls to multiple tools.

Step 3: Tool-invoked Process Generation by Multi-Agents. To automate the generation of tool-
invoked processes, we design a simulated environment featuring human participants and three virtual
agents: the negative generation agent, the tool agent, and the rationale agent. Leveraging the sub-
stantial comprehension and generation capabilities of LLMs, we employ three GPT-4 to simulate
the roles of the three agents. The negative generation agent is responsible for generating a negative
answer to the question that has only a positive answer. It processes a question along with its pos-
itive answer and generates a negative answer that is indistinguishable from the positive one. The
tool agent acts as an intermediary between humans and agents, deciding when, which, and how to
invoke tools. Specifically, the tool agent receives a question-answer pair and produces Thought
and Action stages, as outlined in Section 2.2. Then humans are tasked with invoking specific tools
and observing the outcomes (Observation stage). The rationale agent is tasked with generating
reasoning traces by comprehending previous contexts, synthesizing the question-answer pair, the
tool invocation process, and the observations to systematically produce rewards (Rationale stage).
Tool-invoked scenarios are simulated through interactions between agents and humans, yielding
tool-invoked processes for RMs. The interaction process and prompts for each agent are detailed in
Appendix Figure 13.

Step 4: Data Filtering. To maintain data quality, we implement a straightforward yet effective
filtering process on the generated data. Initially, we exclude tool-invoked processes acquired in Step
3 that exhibit invalid formats. Subsequently, we discard processes exceeding three interaction steps,
lacking relevant function calls, or manifesting parsing errors in their execution results.

3.2 DATA STATISTICS

The data statistics and comparison to previous datasets are shown in Appendix Table 5. TARA com-
prises a total of 13,604 training datasets and 1,469 test sets, each consisting of a question, a positive
answer, and a negative answer. TARA incorporates a diverse set of seven tools that span across
various domains, encompassing mathematical operations, code-related inquiries, closed-ended and
open-ended question answering, knowledge-based queries, and time-sensitive information requests.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

We utilized Vicuna-7B (Zheng et al., 2023) as the base model for Themis and compared it with
conventional RMs, specifically Bert-Large (Devlin et al., 2019) and Vicuna-7B, denoted as RM
(Bert-Large) and RM (Vicuna-7B) respectively, which serve as its underlying architectures. Our
training and evaluation processes were conducted under two distinct settings: single-tool and mixed-
tool scenarios. In the single-tool configuration, the TARA data was partitioned based on tool types,
with each model exclusively trained on a specific type of tool. In contrast, the mixed-tool scenario
involved training models on the entirety of the TARA dataset, encompassing diverse tools. During
evaluation, we compared the relative reward scores for positive and negative answers, using accu-
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Table 1: The main results on the Tool-Augmented Reward Dataset (TARA). We report the perfor-
mance of RM and Themis in both single-tool and mixed-tool settings. Bold scores highlight the
best performance achieved. The reported Avg. values are calculated by averaging accuracy across
all instances, offering a comprehensive measure of micro accuracy that spans various tool types.

Model Calendar Calculator Weather Code Translator Wiki Google Multi Avg.↑
single-tool setting

RM (Bert-Large) 63.21 88.31 71.52 66.67 24.33 82.75 68.66 78.47 65.01
RM (Vicuna-7B) 80.91 98.05 86.08 85.19 34.33 93.31 65.13 79.17 75.04
Themis (Vicuna-7B) 100.00 98.70 100.00 99.47 88.40 95.07 76.12 99.31 94.23

w/o LObservation 100.00 98.05 100.00 99.47 87.71 90.49 64.48 80.56 90.23

mixed-tool setting

RM (Bert-Large) 83.02 94.16 80.38 73.54 22.67 83.45 70.15 81.25 69.10
RM (Vicuna-7B) 83.96 94.16 83.54 88.36 33.67 92.61 72.39 81.25 75.63
Themis (Vicuna-7B) 100.00 98.05 100.00 99.47 90.91 93.31 64.92 99.31 93.31

w/o LObservation (β = 0) 100.00 98.05 100.00 99.47 91.47 94.37 62.69 73.51 90.90
w/o LRationale (ω = 0) 100.00 96.75 99.37 98.94 88.74 92.54 63.43 68.72 89.31

Themis (Vicuna-33B) 100.00 97.40 100.00 99.47 93.54 96.55 73.72 99.31 95.21

Themis (Vicuna-7B + LoRA) 96.22 96.10 96.20 99.47 73.33 90.49 46.26 58.33 82.57
Themis (Vicuna-13B + LoRA) 98.11 92.21 98.73 98.41 72.00 92.25 57.85 75.69 85.26
Themis (Vicuna-33B + LoRA) 86.79 97.40 99.36 98.41 84.66 95.77 58.95 99.30 90.74

Ours
Ours w/o Lobservation 

RM (Vicuna-7B)
RM (Bert-Large)
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Figure 3: Left: Model performance for various training epoch numbers; Right: Visualization of
the change of average reward scores with training epochs. The top reward score line of each model
corresponds to the positive answer, while the bottom line corresponds to the negative answer.

racy as the evaluation metric. Further details about hyper-parameter choices and additional training
specifics can be found in Appendix C.1.

4.2 MAIN RESULTS

Single-Tool vs. Mixed-Tool Performance. The main performance results of all models on TARA
are shown in Table 1. Across both the single-tool and mixed-tool settings, it is evident that Themis
consistently outperforms vanilla RMs significantly, exhibiting an improvement of +19.2% in the
single-tool scenario and +17.7% in the mixed-tool context across 8 distinct tasks. Enabling access to
external knowledge and information, specific tools significantly boost the performance of Calendar
(+19.1%), Weather (+13.9%), Code (+14.3%), and Translator (+54.1%) respectively. Remarkably,
Themis achieves a perfect accuracy of 100% on Calendar and Weather tasks. Moreover, it attains
an accuracy above 98% on Code and Calendar tasks, providing substantial evidence for the efficacy
and motivation behind integrating external tools into the reasoning process.

In mixed-tool experiments, Themis demonstrates robust performance in concurrently learning di-
verse tools, with 7 out of 8 tasks displaying superior performance compared to the baselines. No-
tably, Google Search exhibits a slight decline during mixed-tool training. This can be attributed to
the diverse sources from which data is collected, especially from Reddit, resulting in overlapping
domains and complexity for the models to learn effectively. Addressing this challenge necessitates
meticulous data cleaning and rigorous human annotation processes for further exploration. These
findings underscore the remarkable potential of Themis across a broader spectrum of tools, em-
phasizing its adaptability and versatility in real-world applications.

Scaling Trends in Themis. In our investigation, we explored models spanning different scales,
ranging from Vicuna-7B to Vicuna-33B, all within the context of a mixed-tool setting. To enhance
the efficiency of our training, we utilized the LoRA technique (Hu et al., 2022) for parameter-
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Model #Param Zero-shot Fine-tuning

RM (Bert-Large) 340M 51.66 52.50
RM (Vicuna-7B) 7B 35.78 65.83
Themis 7B 55.00 70.00

w/o Lobservation 7B 55.83 71.67

Table 2: Results on the HH-RLHF* dataset,
comparing Themis with vanilla RMs in
zero-shot and finetuning evaluation.

Model #Param TruthfulQA↑ Retarded-bar (en)↑
GPT-3 175B 21.0 -
OPT 175B 21.0 -
Gopher 280B 29.5 -
Galactica 120B 26.0 -
RM (Vicuna) 7B 30.7 68.0
Themis 7B 36.8 73.3

Table 3: Results on TruthfulQA (MC1) and
Retarded-bar datasets.

efficient fine-tuning. The experimental results, outlined in Table 1 (last 3 rows), elucidate a positive
correlation between the scale of the model and its overall performance, a phenomenon that aligns
with established scaling laws (Gao et al., 2023; Askell et al., 2021). We also full-parameter fine-tune
Themis (Vicuna-33B) and obtain the best performance.

Effect of Varying Training Epochs. As depicted in Figure 3 (left), we observe that RM (Bert-
Large) necessitates more training epochs to reach convergence, whereas RM (Vicuna-7B) achieves
optimal performance after just a single epoch—an observation consistent with prior research find-
ings (Stiennon et al., 2020; Wu et al., 2021; Ouyang et al., 2022). In contrast, Themis does require
additional training epochs to learn tool invocations and rewards effectively. However, it outperforms
traditional RMs, even within a single training epoch.

Reward Difference Visualization. We visualize the average reward scores vary with the number
of training epochs in the right of Figures 3. Themis consistently exhibits a proclivity to assign
higher scores to positive answers and lower scores to negative answers, indicating a heightened level
of differentiation. Moreover, this differentiation progressively intensifies as the model training.

4.3 ANALYZING THE ROLE OF TOOL USE

How Does Themis Learn to Use Tools? To understand the role of the tools and how the RMs
learn the tool invoking, we analyze the relationship between the number of tool invocations, model
performance, and training epochs as shown in Figure 4. Our findings indicate a pattern in the
total number of tool calls, which initially increases and then decreases. Additionally, we observe
a gradual reduction in the number of incorrect tool calls. These trends collectively suggest that
Themis acquires the ability to invoke tools effectively. As depicted on the right side of Figure 4,
our observations reveal that Themis consistently exhibits a higher propensity to utilize Google
Search during problem-solving tasks. This aligns well with human behavior, reflecting the natural
inclination of individuals to resort to search engines when seeking solutions.

Does Themis Really Make Decisions Based on Observations? We specifically selected data
instances where Themis effectively differentiated between positive and negative answers. Subse-
quently, we manipulated the outcomes of its tool invocations (Observations) and adjusted its states
to assess Themis’s performance. For instance, let’s consider the question “What is the weather like
in New York on 2023-06-24?”. Both the positive answer and the initial Weather observation were
recorded as ”Sunny”. We modified the observation to ”Raining”, thus transforming the answer into
a negative response. Remarkably, we observed only a marginal decrease in accuracy, highlighting
the robust alignment between our method’s predictions and the tool observations.

Ablation Study: Do Tool Use and Reasoning Traces Count? To comprehend the functionalities
of the reasoning process of Themis, we set β = 0 and ω = 0 to mask Observation and Rationale in
Themis, respectively. The results can be seen in Table 1, highlighting the substantial contributions
of both Observation and Rationale to Themis, especially in the Multi-Tools category. We find that
the performance of Themis clearly drops when we exclude the Rationale component, proving the
effectiveness of step-by-step reasoning before output reward scores.

Case Study. We show some qualitative examples in Appendix D.1, showcasing the effectiveness
of the tool invocations. By leveraging the external tools, Themis validates the answer accuracy and
make decisions through a systematic, step-by-step reasoning process.
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Figure 4: Left: The variations in the number of correctly invoked tools and incorrectly invoked
tools. The dashed line is the total number of invoked tools in TARA. And the pentagram refers to
the best performance epoch. Right: Comparison of the number of invoked different tools.

4.4 GENERALIZATION PROBING IN DOWNSTREAM TASKS

Out-of-Domain Evaluation. Ideally, Themis is expected to possess adaptive tool invocation capa-
bilities and the ability to score unseen prompts and responses. Consequently, we select 150 instances
(one instance has one positive answer and one negative answer) from HH-RLHF (Bai et al., 2022b)
and denote it as HH-RLHF*. Initially, we assess the performance of both RMs and Themis (after
training on our TARA dataset) in the zero-shot setting to estimate their extrapolation ability. As
shown in Table 2, our findings reveal that Themis consistently outperforms all RMs, especially
RM-Vicuna-7B. We further introduce 500 instances for model finetuning, and we find the effect
of Themis is significantly improved. It indicates that our Themis can extrapolate to output-of-
domain scenarios effectively with minimal data fine-tuning.

More than RM: Truthfulness and Factuality Probing. Given that RMs are employed to rank
various responses for a single prompt, it is natural to leverage RMs for addressing multiple-choice
tasks. We experimented on multiple-choice problems on TruthfulQA (Lin et al., 2022a) and trans-
lated Retarded-bar2, denoted as Retarded-bar (en), to access the model’s capacity for truthfulness
and factuality (Refer to Appendix D.2 for dataset details). As shown in Table 3, Themis outper-
forms competitive LLMs including OPT 175B (+15.8%), GPT-3 (+15.8%), Galactica (+10.8%),
and Gopher 280B (+7.3%) on TruthfulQA task in zero-shot evaluation. Moreover, we selected
Retarded-bar, a challenging dataset containing puns, unusual punctuation, and irrational logic, to
assess Themis’s ability in solving fact-related confusing problems. We show that Themis over-
shadows the vanilla RM on Retarded-bar (en) by 5.3%. Examples in Appendix D.2 showcase that
Themis can retrieve knowledge with external tools and enhance its truthfulness capability.

4.5 EXTENDED EXPERIMENTS: FROM RLHF TO RLTAF
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Figure 5: Human preference evalua-
tion, comparing PPO (Themis) to PPO
(vanilla RM) across 200 test prompts.

Model PPL ↓
Vicuna-7B 11.19
Vicuna-7B-SFT 8.14
Vicuna-7B-PPO (RM) 8.10
Vicuna-7B-PPO (Themis ) 7.88

Table 4: The perplexity evaluation in
RLHF across different stages in PPO,
SFT, etc. Our model outperforms base
model, SFT model, and PPO with con-
ventional RMs.

Automatic Evaluation. We conducted experiments to assess the impact of Themis in RLHF,
namely reinforcement learning from tool-augmented feedback (RLTAF). Following prior stud-
ies (Stiennon et al., 2020; Ouyang et al., 2022), we implemented three stages: supervised fine-tuning
(SFT), traditional RMs, and fine-tuning the policy against these RMs using Proximal Policy Opti-
mization (PPO). Utilizing TARA as our training data, detailed experimental specifics can be found

2https://huggingface.co/datasets/hugfaceguy0001/retarded_bar
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in Appendix C.2. In RLHF, Themis employs external tools for tasks like arithmetic computation,
code execution, and factual lookup. The results presented in Table 4 indicate that PPO optimized
against Themis achieves lower perplexity compared to vanilla RMs.

Human Preference Evaluation. We further conducted human evaluation, comparing win:tie:lose
ratios across four domains on 200 test prompts. As illustrated in Figure 5, our method outperforms
baselines, achieving an average +32% win rate across the four different domains and consistently
surpassing vanilla RMs in all four tasks. Notably, our approach demonstrated substantial improve-
ments in fact-related question answering and arithmetic computation, providing robust evidence for
the effectiveness of our methodology.

5 RELATED WORK

5.1 REWARD MODELING IN HUMAN ALIGNMENT

The challenge of aligning machine learning systems with human preferences has seen considerable
exploration. Early efforts involved training aligned agents by imitating human behavior (Pomerleau,
1991; Abbeel & Ng, 2004; Ho & Ermon, 2016; Finn et al., 2016). However, these methods often
struggled to outperform humans due to the requirement for substantial amounts of expensive data.
A scalable solution was proposed by Leike et al. (2018), utilizing an RM to align machine learning
systems with human performance. Stiennon et al. (2020) fine-tuned language models through rein-
forcement learning by training a RM to mimic human preferences in summarization tasks. Similar
approaches were adopted by Nakano et al. (2021); Ouyang et al. (2022); Bai et al. (2022b), focus-
ing on aligning LLMs like GPT-3 towards honesty, helpfulness, and harmlessness. In a parallel
vein, Shen et al. (2023a); Le et al. (2022); Bukharin et al. (2023); Shojaee et al. (2023) contribute
to the field by focusing on reward design in reinforcement learning for code-related tasks, which
is pivotal for augmenting the code understanding and generation capabilities of models. However,
these existing RMs faced significant challenges, such as real-time information processing, limited to
specific tasks such as summarization and code generation, and struggle with assigning rewards for
intricate tasks like mathematics., To address these limitations, our approach incorporates external
tools, augmenting the reward model and mitigating these challenges.

5.2 TOOL LEARNING

The intersection of specialized tools and LLMs has recently gained significant attention in re-
search (Mialon et al., 2023; Qin et al., 2023). Current studies in this area can be categorized into two
main approaches: tool-oriented learning (Yao et al., 2023; Nakano et al., 2021; Qian et al., 2023;
Shen et al., 2023b) and tool-augmented learning (Schick et al., 2023; Lu et al., 2023; Tang et al.,
2023; Qiao et al., 2023). In tool-oriented learning, LLMs serve as decision-making hubs for the
strategic use of tools. Conversely, tool-augmented learning treats tools as complementary resources
that enhance LLMs’ capabilities. Unlike previous works, our focus lies in tool-augmented reward
modeling, aiming to align rewards with human preferences by incorporating tool assistance.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we introduce Themis, a novel approach designed to enhance reward models by en-
abling interaction with external tools, thereby facilitating a step-by-step reasoning trajectory. Our
contribution also includes the creation of a comprehensive tool-augmented reward dataset, TARA,
which encompasses detailed data on human preferences and intricate tool invocation processes.
Through comprehensive experimentation, including preference ranking analysis, ablation studies,
generalization assessments, and RLHF/RLTAF probing, we have demonstrated the substantial ben-
efits of Themis in augmenting interpretive capacity and scoring reliability. Our results underscore
the effectiveness of our approach in integrating external tools seamlessly into the reward modeling
process. Looking ahead, an exciting avenue for future research could involve exploring Themis
in multi-turn dialogue generation. Understanding the intricate dynamics between external tools and
natural language generation in interactive conversational contexts presents a promising and intrigu-
ing direction for further investigation.
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A LIMITATIONS

Limited Tool Scope. While our study incorporated experiments with seven distinct tools, the po-
tential of tool-augmented Reward Models (RMs) could further be explored by expanding the range
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with interfaces like the ChatGPT plugin could offer a broader application spectrum.

Time Overheads. The integration of external tools introduces an additional cost of complexity
and might result in increased processing time. The speed of tool invocation is contingent on various
factors such as network conditions and tool execution speed. Consequently, the real-time applica-
bility of the tool-augmented RM is influenced by these contextual variables.
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Single-Turn Data. Our preference data collection was limited to single-turn prompt-response
pairs. Extending this framework to encompass multi-turn interactions could enrich the understand-
ing of complex dialogues and enhance the applicability of tool-augmented RMs in real-world con-
versational contexts.

Challenges in Data Generation. While we construct an automatic pipeline for dataset construc-
tion, we encounter certain challenges. We design some heuristic rules to generate data for particular
tools, incurring associated costs that rise when extended to a broader range of tools. Additionally, we
employ GPT-4 as agents to generate tool invocation processes and rationales, incurring a monetary
expense associated with this computational process.

Limited Model Scale. Our experiments primarily revolved around Vicuna-7B. Exploring the scal-
ability of tool-augmented RMs to models surpassing 100 billion parameters could provide insights
into the challenges and opportunities at larger scales, expanding the applicability of this approach.

Preliminary RLHF Exploration. The exploration of tool-augmented RMs in Reinforcement
Learning from Human Feedback (RLHF), namely Reinforcement Learning from Tool-Augmented
Feedback (RLTAF), remains at its preliminary stages. Comprehensive experiments, covering a wider
array of tasks and scenarios, are essential to fully understand the potential and limitations of this ap-
proach in reinforcement learning paradigms. Future research endeavors will focus on conducting
in-depth and extensive evaluations to delve deeper into the capabilities of tool-augmented RMs in
various RLHF settings.

B ADDITIONAL DATASET INFORMATION

Table 5: Comparison between our TARA and previous reward datasets. Our dataset contains multi-
ple domains with tool invocations, and we construct the data via multi-agent interaction.

Name # Train # Test Domain # Tools Source

WebGPT Comparisons (Nakano et al., 2021) 19.6k - Long-form QA ✘ ELI5 & Human
RM-Static (Dahoas, 2023) 76.3k 5.1k Helpful & Harmless ✘ HH-RLHF
Summarize from Feedback (Stiennon et al., 2020) 179k 6.31k Summary ✘ Human
TARA (Ours) 13.6k 1.4k Multiple 7 Multi-Agent

In this section, we describe in detail the construction process of our tool-augmented reward dataset.
We first introduce the generating process of each tool, then we report the details of the multi-agent
prompts. Table 5 shows the data statistics of our TARA and the overview information such as source
data, the number of the train-set and test-set of each tool is shown in Table 6.

Table 6: Data statistics of ToolBank.

Tool Name Data Source # Train # Test

Calculator GSM-8k 877 154
Code HumanEval + mbpp 486 189
Translator MLQA 1682 300
Google Search WebGPT Comparison 3932 134
Calendar - 320 166
Weather - 476 158
WikiSearch NaturalQuestion 5399 284
Multi Tools Calendar + Weather 432 144

B.1 DETAILS OF DATASET CONSTRUCTION

In this section, we introduce the details of the dataset construction. We construct the dataset based
on the heuristic rule-based method and some open-source datasets with multi-agent interaction. We
list instances of each tool from Figure 6 to Figure 12.
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B.1.1 CONSTRUCTION WITH HEURISTIC RULE-BASED METHOD

We design some heuristic rules to generate the question-answer and tool invocation processes for
certain tools, including Calendar, Weather, and Multi Tools.

Table 7: The city set, date set, weather set, question and answer prompts set to construct the Weather
tool data.

Key Candidate Set

City Mexico, Saint Helier, Bangalore, Beijing, New York, Sydney, Aleppo, Homs, Sanaa, ...
Date 2023-06-19, 2023-06-20, 2023-06-21, 2023-06-22, 2023-06-25, 2023-06-28, ...
Weather overall weather, temperature, precipitation, humidity, wind speed, visibility, UV index
Question Prompts What is the {weather} in {city} on {date}?
Answer Prompts The {weather} in {city} on {date} is {answer}.

{city}’s {weather} on {date} is {answer}.
On {date}, {city}’s {weather} indicates {answer}.
...

Question: What is the wind speed in Siping on 2023-06-19? 
Answer: The wind speed for Siping on 2023-06-19 indicates
15.5(kph).

Thought: I need to search the weather in Siping on
2023-06-19. 
Action: Weather 
Action Input: Siping, 2023-06-19 

Observation: The weather for Siping on 2023-06-19
is: overall weather: Mist; temperature: 21.7(C); wind
speed: 15.5(kph), 9.6(mph); precipitation: 0.0(mm),
0.0(inch); visibility: 7.7(km), 4.0(miles); humidity: 71.0;
UV index: 7.0.

Rationale: The answer states that the wind speed in Siping on 2023-
06-19 was 15.5 (kph). The execution result of the tool "Weather"
validates this information as the wind speed reported for that day is
indeed 15.5 (kph). Hence, the provided answer aligns perfectly with the
tool's output.

Weather
Search

Reasoning

Question - Answer Tool Inovke

Figure 6: An example of the Weather tool.

Weather. The Weather tool is realized by weatherAPI4 that the input consists of a city and a
date, and the output provides information about the weather in the specified city on the given date.
Initially, we compile a candidate city set by selecting the most common cities from Wikipedia.
Subsequently, we create a candidate date set and a weather set specific to the Weather tool. Inspired
by Wang et al. (2023), we initiate the process with a seed question prompt and an answer prompt,
such as “Question: What is the {weather} in {city} on {date}? Answer: The {weather} in {city}
on {date} is {answer}.” and expand upon it using ChatGPT. Finally, we iterate through the city set,
date set, and weather set, incorporating them into the prompts to construct the question-answer pair.
We seek positive answers from the Weather tool, while negative answers are perturbed based on the
positive answer. The city set, date set, weather set, question and answer prompts set are listed in
Table 7.

Question: Can you tell me the number of days that separate 2000-
02-14 and 2013-06-04? 
Answer: The difference between 2000-02-14 and 2013-06-04 is
4859.

Thought: I need to search how many days is the
difference between 2000-02-14 and 2013-06-04. 
Action: Calendar 
Action Input: 2000-02-14, 2013-06-04 

Observation: 4859

Rationale: The answer provided by the AI, that the difference between
2000-02-14 and 2013-06-04 is 4859 days, is entirely consistent with the
result obtained from the Calendar tool, which also calculated the
number of days as 4859.

Calendar
Search

Reasoning

Question - Answer Tool Inovke

Figure 7: An example of the Calendar tool.

4www.weatherapi.com
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Calendar. The construction process of the Calendar tool is similar to the Weather tool, with the
primary difference lying in the question prompts and answer prompts. The Calendar tool serves
three primary functions: determining the weekday of a given date, calculating the difference between
two dates, and finding the date that follows another date by n days. For each of these functions, we
have composed distinct seed prompts and subsequently expanded upon them using ChatGPT.

Multi Tools. The Multi-Tools primarily involve chained invocations of the Calendar and Weather
tools. An illustrative question might be, “What is the weather like in city in the n days after date?”
This necessitates first invoking the Calendar tool to obtain “the n days after date” and subsequently
invoking the Weather tool to retrieve “the weather like in city” for the specified date. Obviously, the
data generation process for Multi-Tools follows the same pattern as the Weather and Calendar tools.

B.1.2 CONSTRUCTION FROM OPEN-SOURCE DATASETS

Some tools are challenging to create using heuristic rule-based methods. Therefore, we generate
them based on some open-source and high-quality datasets.

Question: If Ruby is 2 centimeters shorter than Pablo.  Pablo is 70
centimeters taller than Charlene.  Janet is 62 centimeters tall and
Charlene is twice that tall.  How tall is Ruby? 

Answer: Charlene is 2 * 62 cm = <<2*62=124>>124 cm tall.

Pablo is 70 cm + 124 cm = <<70+124=194>>194 cm tall.
Ruby is 194 cm - 2 = <<194-2=192>>192 cm tall. ### 192

Thought: I need to invoke the calculator tool to verify
the correctness of the calculation process and the
final answer. 
Action: Calcualtor 
Action Input: <<2*62=124>>124,
<<70+124=194>>194, <<194-2=192>>192' 

Observation: Both the calculation and the answer are
correct.

Rationale: The given answer is consistent with the question and the
calculation steps used to arrive at the answer are correct, as confirmed
by the calculator tool. All the intermediate steps, from calculating
Charlene's height to determining Ruby's height, are correct.

Calculator
Reasoning

Question - Answer Tool Inovke

Figure 8: An example of the Calculator tool.

Calculator. GSM-8K (Cobbe et al., 2021) is a high-quality dataset comprising linguistically di-
verse grade school math word problems, making it well-suited for constructing math reasoning data
involving tool invocation. We randomly selected 1,000 instances from GSM-8K to serve as both
questions and positive answers. We query the negative generation agent to generate negative an-
swers.

Question: Write a python function to check whether the frequency of
each digit is less than or equal to the digit itself. 
Answer:  
def validate(n): 
 for i in range(10): 
  temp, count = n, 0 
  while (temp): 
   if (temp % 10 == i):  
                  count+=1  
              if (count > i):  
                  return False  
              temp //= 10 
 return True

Thought: I need to invoke the code interpreter tool
to execute the code and verify the correctness of the
answer. 
Action: Code 
Action Input: Same as the answer 

Observation: The pass rate is 1.0. All test cases
passed.

Rationale: The provided answer is a Python function meant to verify if
the frequency of each digit in a given number is less than or equal to
the digit itself. The function 'validate' works by looping through all
possible digits (0-9), and for each digit, it iterates through the digits of
the given number, 'n', checking if it equals the current digit 'i'. If the
frequency (count) of the current digit is more than 'i', it returns False,
indicating the number does not meet the condition. All tests are
passed and the accuracy of the answer is verified. 

Code
ExecutionReasoning

Question - Answer Tool Inovke

Test Lists: 
assert validate(1234) == True 
assert validate(51241) == False  
assert validate(321) == True

Figure 9: An example of the Code tool.

Code. We integrate the HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) datasets as
the positive data of the Code tool, encompassing questions, positive code answers, and test cases.
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Additionally, we leverage StarCodeBase (Li et al., 2023) to generate negative code answers that fail
to pass all the test lists.

Question: In welchem Staat wurde Baskin-Robbins gegründet?  
Answer: California.

Thought: I need to translate the question into English
to help answer the question. 
Action: Translate 
Action Input: In welchem Staat wurde Baskin-Robbins
gegründet?  

Observation: In which state was Baskin-Robbins
founded?

Rationale: The question asked, "In welchem Staat wurde Baskin-
Robbins gegründet?" which translates to "In which state was Baskin-
Robbins founded?" The answer provided, "California," is accurate
because Baskin-Robbins was indeed founded in Glendale, California.
Therefore, the answer is absolutely relevant and directly answers the
question.

Translate
Reasoning

Question - Answer Tool Inovke

Figure 10: An example of the Translator tool.

Translator. The translation tool is powered by the Baidu Translator API5, which supports trans-
lation in over 200 languages. We created the dataset of the Translate tool based on the MLQA
dataset (Lewis et al., 2020), encompassing QA instances in 7 different languages. Subsequently, we
call the negative generation agent to generate the negative answers.

Question: When was the first car made in America?  
Answer: Between the front ranges of the Rocky Mountains on the
east and the Cascade Range and Sierra Nevada on the west 

Thought: I need to invoke the wiki_search tool to
search Intermountain Region location. 
Action: Wikisearch 
Action Input: Intermountain Region location 

Observation: Intermountain West | Intermountain
West The Intermountain West, or Intermountain
Region, is a geographic and geological region of the
Western United States. It is located between the front
ranges of the Rocky Mountains on the east and the
Cascade Range and Sierra Nevada on the west. The
Intermountain West ...

Rationale: The tool Wikisearch was used to verify the answer to the
question about the location of the Intermountain Region. The
observation from the tool corroborates the answer provided: "It is
located between the front ranges of the Rocky Mountains on the east
and the Cascade Range and Sierra Nevada on the west". The
information retrieved from the tool matches the given answer, hence
validating its accuracy.

Wikisearch

Reasoning

Question - Answer Tool Inovke

Figure 11: An example of the WikiSearch tool.

WikiSearch. The objective of the WikiSearch tool is to bridge the reward model with the knowl-
edge base Wikipedia. We randomly selected over 5,500 instances from the Natural Question
dataset (Kwiatkowski et al., 2019), which comprises real anonymized, aggregated queries posed
to the Google search engine and annotated with Wikipedia pages. For negative answers, we employ
a negative generation agent.

Google Search In contrast to other tools, we construct the data of Google Search tool based on
the reward dataset WebGPT Comparison (Nakano et al., 2021), which includes questions, positive
answers, and negative answers. We utilize both the tool agent and rationale agent to generate the
tool invocation process and the rationale segment.

B.2 PROMPTS OF MULTI-AGENTS

We present the prompt of multi-agent interaction, negative generation agent, tool agent, and rationale
agent in Figure 13. We formulate a simulated environment incorporating human participants and
three virtual agents: the negative generation agent, the tool agent, and the rationale agent, each
embodied by a GPT-4. The interaction scenario between agents and humans is depicted in the upper
left corner of Figure 5, with detailed prompts for each agent provided on the left. We detail the
responsibility of the three agents as follows:

5www.fanyi-api.baidu.com
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Question: How is it that the earth and other planets appear to be
almost perfect circles and why are they shaped like that? 

Answer: What even makes them have their round shape at all?
There are several reasons why the planets appear to be almost
perfect circles. First, planets form when material in space starts to
bump and clump together . After a while, it has enough stuff to have
a good amount of gravity . That's the force that holds stuff together
in space . When a forming planet is big enough, it starts to clear its
path around the star it orbits . It uses its gravity to snag bits of space
stuff . A planet's gravity pulls equally from all sides . Gravity pulls
from the center to the edges like the spokes of a bicycle wheel . This
makes the overall shape of a planet a sphere, which is a three-
dimensional circle . Finally, some planets aren't quite so perfectly
round . Saturn and Jupiter are bit thicker in the middle as they spin
around, and as they bulge out along the equator .

Thought: The provided answer seems reasonable and consistent with my
training knowledge about the formation and shape of planets. However, I
should verify the facts related to the formation of planets and their
gravitational influence on their shape. A quick search should confirm this. 
Action: Google
Action Input: Why are planets round? 

Observation: A planet is round because of gravity. A planet's gravity
pulls equally from all sides. Gravity pulls from the center to the edges like
the spokes of a bicycle wheel. This makes the overall shape of a planet a
sphere, which is a three-dimensional circle. 

Thought: The observed information corroborates the explanation given
in the answer. It verifies that the gravity of a planet pulls equally from all
sides, contributing to its spherical shape. Now, I should also validate the
claim about the equatorial bulge of Jupiter and Saturn due to their
rotation. 
Action: Google
Action Input: Why are Jupiter and Saturn not perfectly round? 

Observation: Saturn and Jupiter are really big and spinning really fast
but gravity still manages to hold them together. That's why they bulge in
the middle. We call the extra width the equatorial bulge. Saturn bulges
the most of all the planets in our solar system. 

Rationale: The answer given corresponds well with the results from the
tools. The tool confirmed that a planet's gravity pulls equally from all
sides, shaping the planet into a sphere, which was the main point
made in the answer. Additionally, the tool also confirmed the answer's
claim about Saturn and Jupiter having an equatorial bulge, leading to
them not being perfectly round. Given this, the answer is accurate and
informative, demonstrating a strong alignment with the tool's findings.

Google
Search

Reasoning

Question - Answer Tool Inovke

Google
Search

Figure 12: An example of the Google Search tool.

• Negative Generation Agent: The responsibility of the negative generation agent is to gen-
erate a negative answer to a question that has only a positive answer. It receives a question
along with its positive answer and generates a negative answer that is indistinguishable
from the positive one.

• Tool Agent: Undertaking a challenging role, the tool agent receives a question-answer pair
and produces appropriate and correct tool calls to validate the reasonableness of the answer.
The tool calls involve a Thought stage that includes a reasoning trace to determine whether
tools should be called, and an Action stage that contains the necessary API calls with their
required arguments.

• Rationale Agent: The rationale agent is asked to generate the Rationale stage by com-
prehending previous contexts, synthesizing the question-answer pair, the tool invocation
process, and the observations from the tool execution to systematically produce rewards.

B.3 DATA FILTER STRATEGIES

We design multiple data filter strategies in the dataset construction process. For the negative answers
generated by the negative generation agent, we unify their format to match the positive answers, in-
cluding the punctuation, spacing, sentence structure, and so on, preventing the emergence of super-
ficial patterns. For the tool invocations process generated through interaction between the tool agent
and rationale agent, we discard the instances that exhibit invalid formats, exceed three interaction
steps, lack relevant function calls, or manifest parsing errors in the execution results.

C DETAILS OF EXPERIMENTS

C.1 IMPLEMENTATION DETAILS OF RM

Table 8: Hyper-parameters to modulate different training configurations.

Model α β ω

RM (Bert-Large) 0 0 0
RM (Vicuna-7B) 0 0 0
Themis (Vicuna-7B) 1 1 1

wo LObservation 1 0 1
wo LRationale 1 1 0
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Tool Agent

Instruction: 
You are a helpful tool agent. You receive a
question-answer pair and the answer's score. Your
task is to decide whether to invoke tools and which
tools to invoke to verify the score.  
You have access to the following tools: 
Tool List: 
google_serper: <descriptions>

Here is an example of  tools invokes: 
Input: 
Q: Why is water wet? 
A: Water is wet because our brain receives... 

Output: 
Thought: I need to check the role of electrostatic
forces in making water feel wet and whether the
polarity of water contributes to its wetness. 
Action: google_serper 
Action Input: Why does water feel wet? 
Observation: The sensation of wetness is largely
due to the cooling caused by evaporation... 
Input: x

Output: y 

Rationale Agent

Instruction: 
You are a helpful rationale agent ready to provide
explanation. Your role involves receiving a question-
answer pair, the referenced answer score from human and
the execution results of tools. Your task is to give the
answer with a reasonable explanation via think step by
step... 
Here is an example: 
Input: 
Q: What's the weather like in New York on 2023-06-04?  
A: The weather in New York is cloudy today. 
Score: -1 
The executor results of tools: 
Thought: I nee 
Action: google_serper 
Action Input: Why does water feel wet? 
Observation: Th.. 

Output: 
Rationale: The results of executor is sunny, but answer
is cloudy. Thus, the given response proves to be
inaccurate when compared to the tool's execution
outcomes. 
Input: x

Output: y 

Negative Generator Agent

Instruction: 
You are a helpful negative answer generator. Given
you a question and a answer, write a similar but
incorrect answer directly. 

Examples: 
There are some exmaples: 
Question: When was alcohol first used as a
disinfectant? 
Answer: By the Sumerians , who used beer as an
antiseptic along with the dressing of wounds , using
up to 19 different types of beer . 
Negative Answer: By the Egyptians, who used
vodka as a disinfectant for cleaning wounds,
employing over 30 different varieties of vodka. 

Question: when is persona 5 the animation coming
out 
Answer: April 8 , 2018 
Negative Answer: June 37, 2022 

Begin! 
Question: {question} 
Answer: {answer} 
Negative Answer:

Output: y 

Multi-Agent Interaction

Human:  
Observation: The weather for New York on
2023-06-04 is:  
overall weather: Sunny; temperature: 27.0(C) ...

Rationale Agent:  
Rationale: The results of executor is sunny, but
answer is cloudy. Thus, the given response
proves to be inaccurate when compared to the
tool's execution outcomes. 

Instruction: 
Q: What's the weather like in New York on
2023-06-04?  
A: The weather in New York is cloudy on 2023-
06-04. 
Score: 0

Tool Agent:  
Thought: I need to search the weather in New
York on 2023-06-04 
Action: history_weather 
Action Input: New York, 2023-06-04 

Figure 13: An illustration of the tool invocation generation process within the multi-agent interaction
and the prompt of each agent.
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Table 9: Hyper-parameter settings to train RMs.

Hyper-parameters RM (Bert-Large) RM (Vicuna-7B) Themis Themis (LoRA)

epoch 8 5 5 5
learning rate 1e-4 1e-5 1e-5 1e-4

batch size 128 64 64 64
learning scheduler Cosine Cosine Cosine Cosine

warmup ratio 0.01 0.01 0.01 0.01
sequence length 512 512 512 512

output sequence length - - 1024 1024
LoRA rank - - - 8
LoRA alpha - - - 16

Training Configuration Hyper-parameters. The hyperparameters governing various training con-
figurations are enumerated in Table 8. Specifically, when α = 0, our method simplifies to a
vanilla RM, wherein scalar rewards are predicted through a fully connected layer without any pre-
conditioned tool invocations. Additionally, setting β = 0 or ω = 0 indicates that the tool-augmented
reward model will not be trained on the Observation or Rationale component, enabling controlled
exploration of different training settings and their influence on the model’s behavior.

Experimental Hyper-parameters. We report the experimental hyper-parameters at Table 9. We ap-
ply the same hyper-parameters for RM (Vicuna-7B) and Themis. For RM (Bert-Large), we use a
larger learning rate, larger batch size, and train more epochs. We chose the best performance check-
points of each model for comparison. We implement LoRA with the PEFT (Mangrulkar et al., 2022)
framework. All models are trained in the same environment (8 × 40G A100 GPUs). Additionally,
we incorporate the learning of positive answers by predicting the entire context of good samples,
following the approach outlined in (Askell et al., 2021). This allows our models to emulate “good”
behavioral patterns in preference modeling.Furthermore, external APIs can exhibit instability or ex-
perience failures, leading to null observations. To enhance the model’s robustness, we intentionally
introduce a 1% random observation dropout during training. This approach simulates real-world
scenarios where API unavailability may occur and equips our model to handle such situations more
effectively.

C.2 IMPLEMENTATION DETAILS OF RLHF

Table 10: Hyper-parameter settings in SFT and PPO phrases. Note that γ is a constant used to
balance PPO loss and the unsupervised loss.

Hyper-parameters SFT PPO

epoch 4 1
learning rate 1e-5 {1e-6 5e-7}

batch size 32 8
learning scheduler Cosine Cosine

warmup ratio 0.01 0.01
sequence length 512 512

weight decay 0.0 0.1
gradient accumulation step 1 4

γ - 27.8

Details of RLHF. We follow Deepspeed-Chat6 to implement the RLHF process, which consists of
the following three steps:

Step 1: Collect samples and train a supervised policy (SFT). The SFT phase is similar to the
standard language model finetuning. Here, we follow Deepspeed-Chat and divide our TARA data,
20% for training on Step 1 and 40% for Step 3. Note that we collect the question and the positive

6https://github.com/microsoft/DeepSpeedExamples/tree/master/
applications/DeepSpeed-Chat
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answer of this data as the supervised training data. And then fine-tune a pre-trained Vicuna-7B
model with LoRA. The resulting model is denoted as Vicuna-7B-SFT.

Step 2: Collect comparison data and train a reward model (RM). We utilize the method in
Section 2 to train a reward model (RM) or a tool-augmented reward model (Themis) on our TARA
to predict the human-preferred output.

Step 3: Optimize the supervised policy against the reward model using PPO (PPO). We fine-
tune the supervised policy obtained in Step 1 using the PPO algorithm (Schulman et al., 2017), with
a reward signal provided by the RM or Themis obtained in Step 2. The resulting model from this
step is denoted as Vicuna-7B-PPO (RM) or Vicuna-7B-PPO (Themis).

We list the hyper-parameters of SFT and PPO phases in Table 10.

C.3 EXPERIMENTS ON STANDARD REWARD DATASETS

To further demonstrate the effectiveness of our method, we conduct experiments on some standard
reward datasets including the WebgGPT Comparision (Nakano et al., 2021) dataset and the HH-
RLHF (Bai et al., 2022a) dataset. The results can be seen in Table 11. We partition the WebGPT
Comparison dataset into 13.7K training samples and 2.4K test samples. Additionally, we randomly
extracted 50K samples from HH-RLHF as training samples, amalgamating them all with our TARA
dataset. The results reveal that our Themis obtains a superior performance than other vanilla reward
models except RAFT (LLaMA-7B) (Dong et al., 2023). However, RAFT (LLaMA-7B) performs
SFT on the 112K positive training samples of the HH-RLHF dataset and then executes reward mod-
eling on 100K pairwise samples. In contrast, Themis is trained within a multi-task learning setting,
achieving comparable performance with RAFT (LLaMA-7B).

Table 11: Experimental results on standard reward datasets.

Model WebGPT Comparision HH-RLHF

Deberta-v3-large-v2 - 69.25
GPT-Neo-2.7B - 68.27

RAFT (LLaMA-7B) - 79.52
RM (Bert-Large) 66.57 64.20
RM (Vicuna-7B) 66.68 72.34

Themis (Vicuna-7B) 69.53 77.59

D QUALITATIVE EXAMPLES

D.1 GENERATED EXAMPLES ON TARA

We show a qualitative example of the Google Search tool in Table 13. The question of the exam-
ple is about “Supply-Side economics”, the answer not only provides a comprehensive explanation
of the concept but also offers an insightful analysis of its benefits for consumers. Nonetheless, all
reward models (RMs) assign low reward scores. In contrast, our Themis meticulously verifies the
correctness of the answer by leveraging Google search tools and outputs a high score for the answer
through rigorous reasoning. In addition, it is challenging for RMs to produce rewards for the re-
sponses related to arithmetic computation and code implementation. Nonetheless, our Themis can
invoke relevant tools to verify the process of the responses, thereby providing robust and depend-
able rewards. As shown in Table 12, our Themis detects an error in the calculation process and
outperforms other RMs.

D.2 EXAMPLES ON DOWNSTREAM TASK

TruthfulQA. TruthfulQA (Lin et al., 2022a) is a benchmark dataset to measure the truthfulness
of language models, which comprises 817 questions that span 38 categories, including health, law,
finance, and politics. Each instance of TruthfulQA contains a question and multiple choices, we pair
the question with each choice and feed it into our Themis to obtain the preferred score. Then we
compare the score of each choice and choose the preference corresponding to the highest score as
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Table 12: A case example of Themis on Calculator tool. Our Themis detects errors in the calcu-
lation process by invoking the Calculator tool and provides a more reasonable score than RMs. ✔
refers to the rewards aligned with human preference, while ✘ refers to the rewards deviating from
human preference.

Question: Karlee has 100 grapes and 3/5 as many strawberries as grapes. Giana and Ansley, two
of her friends, come visiting, and she gives each of them 1/5 of each fruit. How many
fruits is Karlee left with in total?

Answer: Karlee has 3/5 x 100 = <<3/5*100=60>>60 strawberries. She gives Giana and Ans-
ley 1/5 x 100 = <<1/5*100=20>>20 grapes each. She gives Giana and Ansley 1/5
x 60 = <<1/5*60=12>>12 strawberries each. Karlee is left with 100 - (2 x 20)
= <<100-(2*20)=60>>60 grapes and 60 - (2 x 12) = <<60-(2*12)=34>>34
strawberries. The total number of Karlee remains is 60 grapes + 34 strawberries =
<<60+34=94>>94 fruit.

Themis : Thought: I need to invoke the Calculator tool to verify the correctness of the calculation
process and the final answer.
Action: Calculator
Action Input: <<3/5*100=60>>60, <<1/5*100=20>>20,
<<1/5*60=12>>12, <<100-(2*20)=60>>60, <<60-(2*12)=34>>34,
<<60+34=94>>94
Observation: The calculations are incorrect. Details: 60-(2*12) not equal to 34.
Rationale: The execution results of the calculator tool indicate a discrepancy in
the calculation process and the answer. The calculations for the number of grapes
and strawberries Karlee has left are incorrect. The executor tool points out that the
calculation process is wrong, and resulting incorrect final answer.
Score: -4.70 ✔

RM (Bert): Score: 3.21 ✘
RM (Vicuna): Score: 2.78 ✘

Table 13: A case example of TARA. With the assistance of the Google Search tool, the score of
Themis is more reasonable than RMs. ✔ refers to the rewards aligned with human preference,
while ✘ refers to the rewards deviating from human preference.

Question: Why do people still vouch for Supplu-Side economics?

Answer: Supply-side economics is a macroeconomic theory that postulates that economic growth can be most effectively
fostered by lowering taxes, decreasing regulation, and allowing free trade. According to supply-side economics,
consumers will benefit from greater supplies of goods and services at lower prices.

Themis : Thought: I need to invoke the Google Search tool to verify the answer.
Action: Google Search
Action Input: What is Supply-Side economics?
Observation: Supply-side economics is a macroeconomic theory that postulates economic growth can be most
effectively fostered by lowering taxes, decreasing regulation, and allowing free trade. The supply-side theory,
or supply-side economics, is a macroeconomic concept that contends that increases in the supply of goods lead
to economic growth. The central concept of supply-side economics is that tax cuts cause economic growth,
and supply-side economics assumes that lower tax rates boost economic growth by giving people incentives to
work, save, and invest more.
Rationale: The answer provided a detailed explanation of Supply-Side Economics, which aligns with the results
from the Google Search tool. The tool’s results also confirm that Supply-Side Economics is a macroeconomic
theory that postulates economic growth can be fostered by lowering taxes, decreasing regulation, and allowing
free trade. The answer also correctly states that this theory assumes that lower tax rates boost economic growth
by giving people incentives to work, save, and invest more. The answer’s accuracy is unquestionable, as it
exactly matches the observations made by the tool.
Score: 38.81 ✔

RM (Bert): Score: -2.82 ✘
RM (Vicuna): Score: 0.26 ✘

the predicted answer. The case examples can be seen in Table 14 and Table 15. With the assistance
of the search tool and knowledgeable tool, our Themis can verifies the correctness of each choice
reasonably.

Retarded-bar. Retarded-bar is a challenging dataset that contains puns, unusual punctuation, and
irrational logic. However, Retarded-bar is a Chinese dataset and only provides one golden answer.
We translate this dataset into English and expand the negative answer by ChatGPT. We provide
a case example in Table 16. The questions of the Retarded-bar dataset consistently contain puns,
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Table 14: A case example of Themis on TruthfulQA. Our study utilized the Google Search tool,
invoked by Themis, to validate the statement “Did CERN discover the Higgs boson in 2021?”.
The results of this search confirmed the accuracy of choice (A). We have exclusively detailed the
invocation process of the preferred option for clarity.

Question: What did CERN do in 2012?

Choices: (A) CERN discovered the Higgs boson in 2012.
(B) CERN ended the world in 2012.
(C) CERN created a black hole in 2012.
(D) CERN triggered a doomsday scenario in 2012.

Themis: Thought: I need to verify if CERN discovered the Higgs boson in 2012.
Action: Google Search
Action Input: Did CERN discover the Higgs boson in 2012?
Observation: The existence of this mass-giving field was confirmed in 2012, when the
Higgs boson particle was discovered at CERN.
Rationale: The answer provided states that CERN discovered the Higgs boson in 2012.
The tool’s execution results confirm this, as the observation from the Google Search
tool indicates that ”the existence of this mass-giving field was confirmed in 2012, when
the Higgs boson particle was discovered at CERN”. Therefore, the answer is accurate
according to the tool’s findings.
(A) Score: 6.96 ✔
(B) Score: -25.03 ✘
(C) Score: -21.80 ✘
(D) Score: -21.47 ✘

unusual punctuation, and irrational logic, making them challenging for LM to answer. However,
our Themis effectively identifies errors in the calculation process and outputs a low reward score,
while the reward model erroneously assigns a higher score.

D.3 GENERATED EXAMPLES IN RLHF

We present some qualitative examples in Table 17. We compare the responses of RM (Vicuna-7B)
and Themis and find that the reward signal provided by Themis leads LM to generate responses
with reduced repetition and enhanced overall coherence.

D.4 EXAMPLES IN BIASED OBSERVATION

The observations of the tool invocations are not always convincing since the tools may produce
biased aspects or wrong aspects here, such as invalid tool invocations, incorrect tool-invoked results,
biased content, and unexpected errors such as network failure. To avoid reward model interference
by these biases, we have implemented several measures:

• Strict Quality Control. We rigorously control the quality of the training set, filtering out
invalid tool invocations generated by GPT-4 to ensure the reliability of the training data.

• Noise Injection. Recognizing the possibility of tools not always providing accurate out-
puts, we intentionally introduce “noise” instances in the training data. This strategy helps
train the reward model to produce correct rewards even in scenarios where the tools may
not work optimally. An example is shown in Table 18. Our Themis model encounters an
error during the invocation of the Wiki Search tool and no results are returned. Importantly,
our model demonstrates a capacity for reasoning based on its internal understanding, unaf-
fected by the absence of tool output, which highlights the ability of our model to engage in
self-reflection and form independent judgments when faced with unexpected tool behavior.

• Rationale Generation. A key aspect of our Themis approach is the Rationale genera-
tion stage. Here, the tool-augmented reward model aggregates and synthesizes previously
acquired information and undergoes a reasonable reasoning process, which involves RM’s
self-reflection instead of listening to the results of the tool. The emphasis on rationale gen-
eration encourages Themis to form reasoned decisions, relying on a process of synthesis
and self-reflection rather than solely relying on the output of the tools. This approach en-
hances the model’s ability to reason independently and avoid undue influence from tool
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Table 15: A case example of Themis on TruthfulQA. Our Themis invoke Google Search and
WikiSearch tools to verify the choice, and the observations demonstrate the correctness of the choice
(A). Note that we only report the tool invocation process of the preferred choice. The blue choice
refers to the golden answer. ✔ refers to the correct predictions, while ✘ refers to wrong predictions.

Question: What is the composition of the trails left in the sky by aircraft?

Choices: (A) The trails left in the sky by aircraft are composed of water vapor.
(B) The trails left in the sky by aircraft are composed of chemical or biological agents.
(C) The trails left in the sky by aircraft are composed of aluminum, strontium, and
barium.
(D) The trails left in the sky by aircraft are composed of chemicals that control the
population.

Themis: Thought: I need to verify if the trails left in the sky by aircraft are composed of water
vapor.
Action: Google Search
Action Input: What is the composition of the trails left in the sky by aircraft?
Observation: Contrails, or condensation trails, are ”streaks of condensed water vapor
created in the air by an airplane or rocket at high altitudes”.
Rationale: The answer provided, ”The trails left in the sky by aircraft are composed
of water vapor,” is supported by the results from the tool’s execution. The tool’s ob-
servation confirms that the trails, known as contrails, are indeed ”streaks of condensed
water vapor created in the air by an airplane or rocket at high altitudes”. Therefore, the
answer is accurate and reliable.

Thought: I need to invoke the WikiSearch tool to search trails in the sky by air-
craft composition.
Action: WikiSearch
Action Input: trails in the sky by aircraft composition
Observation: Contrail — Contrail Contrails (; short for ”condensation trails”) are
line-shaped clouds produced by aircraft engine exhaust or changes in air pressure,
typically at aircraft cruise altitudes several miles above the Earth’s surface. Contrails
are composed primarily of water, in the form of ice crystals. The combination of water
vapor in aircraft engine exhaust and the low ambient temperatures that exist at high
altitudes allows the formation of the trails.
Rationale: The answer provided, ”The trails left in the sky by aircraft are composed
of water vapor,” is supported by the results from the tool’s execution. The tool’s ob-
servation confirms that the trails, known as contrails, are indeed ”streaks of condensed
water vapor created in the air by an airplane or rocket at high altitudes”. Therefore, the
answer is accurate and reliable.
(A) Score: 8.45 ✔
(B) Score: -17.56 ✘
(C) Score: -11.27 ✘
(D) Score: -14.33 ✘

biases. Table 19 is a case example in which the model generates incorrect tool invocations,
leading to biased observations. However, it is crucial to note that our model identifies the
errors in tool results through the Rationale module. Importantly, even in the presence of
biased information, our model maintains its capacity to provide reasonable answers, show-
casing its robustness and ability to navigate through biases introduced by tool invocations.
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Table 16: A case example of Themis on Retarded-bar. ✔ refers to the rewards aligned with human
preference, while ✘ refers to the rewards deviating from human preference.

Question: Since gravity is always present, can’t I achieve perpetual motion by harnessing
gravity to do work?

Positive Answer: This humorous question stems from a misunderstanding that many people have
about gravity. In reality, it’s incorrect to assume that gravity can provide infinite
energy simply because it doesn’t require fuel like fossil fuels. Utilizing gravity
to do work, in simple terms, involves objects being positioned at a higher point
and falling to a lower point. As kinetic energy increases, gravitational potential
energy decreases. Therefore, it’s not an unlimited source of energy.

Negative Answer: Of course! Just attach a string to a spinning top and let gravity pull it forever,
creating endless energy!

Themis: Thought: I need to verify if it’s possible to achieve perpetual motion by har-
nessing gravity.
Action: Google Search
Action Input: Can perpetual motion be achieved by harnessing gravity?
Observation: Could gravity be used to generate perpetual motion? No, you can
only extract work from gravity by tapping some falling object (where the fall
must eventually stop) or by tapping the pull of a nearby gravity well, thereby
increasing its entropy.
Positive Answer Score: 1.48 ✔
Negative Answer Score: -0.71 ✘

Table 17: Case examples of Themis on RLHF. ✔ indicates accurate predictions, while ✘ indicates
incorrect predictions.

Prompt Vicuna-7B-PPO (RM) Vicuna-7B-PPO (Themis)

Before Marcus went on a road trip to
LA, his car had 1728 miles on it. He
filled his empty gas tank twice and used
up all the gas on the trip. If Marcus’s
car gets 30 miles per gallon and holds
20 gallons of gas, how many miles does
Marcus’ car have on it now?

Before the trip, Marcus’ car had
1728 miles on it. He filled his
empty gas tank twice, so he used
2*20=<<2*20=40>>40 gallons
of gas. He used up all the gas
on the trip, so he used 40 gal-
lons*30=<<40*30=1200>>1200
miles worth of gas. He
drove 1200 miles, so he drove
1200/30=<<1200/30=40>>400
miles. He drove 400
miles, so his car has
1728+400=<<1728+400=2128>>
2128 miles on it now. Answer: 2128. ✘

Before the trip, Marcus’ car had
1728 miles on it. He filled
empty gas tank twice, so he used
2*20=<<2*20=40>>40 gallons of
gas. He used 40 gallons of gas, so he
used 40*30=<<40*30=1200>>1200
miles of gas. After the
trip, Marcus’ car has
1728+1200=<<1728+1200=2928>>
2928 miles on it. Answer: 2928. ✔

How did the moon get there? How did
the moon come to be?

The moon is believed to have formed
about 4.5 billion years ago from a cloud
of dust and gas that surrounded the
early Earth. This cloud was called a
solar nebula, and it was made up of
the same stuff that makes up the sun.
Over time, gravity pulled the dust and
gas together to form the moon. The
moon is made mostly of rock, but it
also has a lot of dust and small bits of
metal in it. The dust and metal came
from the same source as the moon it-
self, which is the solar nebula. The
moon is also made of the same stuff that
makes up the Earth, but it is much older
than the Earth. The moon is also much
smaller than the Earth, and it is much
less dense. This means that the moon
is not as heavy as the Earth, and it is
not as dense. The moon is also much
smaller than the Earth, and it is much
less dense.

The moon is believed to have formed
from a disk of dust and gas that sur-
rounded the early Earth . This disk is
thought to have formed from the debris
of the solar system’s formation, which
was made up of the remains of many
smaller bodies that collided and coa-
lesced to form the planets . The moon
is believed to have formed from a col-
lision between the Earth and a Mars-
sized object .
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Table 18: An example of data noise injection.

Question: What do you call the chinese writing system?

Answer: Standard Mandarin.

Themis : Thought: I need to invoke the Wiki Search tool to search Chinese writing system.
Action: Wiki Search
Action Input: Chinese writing system.
Observation: An error occurred during the tool invoke, so no result was returned.
Rationale: The answer provided is “Standard Mandarin,” which is incorrect in the context of the
question. The question is asking about the Chinese writing system, and ”Standard Mandarin” refers
to a spoken language, not a writing system. The tool’s execution, however, resulted in an error, and
no relevant information was retrieved. Based on this, the answer is already incorrect, and the tool’s
failure to provide information doesn’t impact the correctness of the answer.

Table 19: An example of Themis in a biased tool invocation. Themis identifies the errors in tool
results and produces reasonable answers.

Question: Why is the flight/fight our defence mechanism when remaining calm and composed may serve better
outcomes?

Answer: The fight or flight response is an evolutionary response that happens in stressful situations. It can
be helpful in situations where there is a perceived threat to survival. The fight or flight response is
characterized by feeling bodily sensations of stress, such as an increased heart rate and faster breath-
ing. This readies the body to either fight the danger or flee from it. The body’s sympathetic nervous
system is responsible for this response, which triggers the release of adrenaline and noradrenaline.
Since the fight or flight response primes the body to react quickly, it can help you survive a danger-
ous situation.

Themis : Thought: The information given in the answer is well-established knowledge within the field of
psychology and does not pertain to a current event. Therefore, I don’t think I need to use a tool to
verify this.
Action: Google Search
Action Input:
Observation: 1 of 4. pronoun. singular or plural in construction. Synonyms of none. 1. : not any.
2. : not one : nobody. 3. : not any such thing or person. 4. : no ... none ; no part; nothing: I’ll have
none of your backtalk!; (used with a plural verb) no or not any persons or things: I left three pies
on the table and now ... not one (of a group of people or things), or not any: None of my children
has/have blonde hair...
Rationale: Although the executor’s tool results did not provide any specific results or contradictions,
the question asked why remaining calm and composed may serve better outcomes as a defense
mechanism compared to the flight/fight response. However, the answer only explained what the
fight or flight response is and how it works. The question about the potential advantage of remaining
calm and composed in stressful situations wasn’t addressed. Thus, it’s reasonable to reason that the
answer is incorrect.
Score: -2.45 ✔
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