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Abstract

Generating adversarial scenes that potentially fail autonomous driving systems provides an
effective way to improve their robustness. Extending purely data-driven generative models,
recent specialized models satisfy additional controllable requirements such as embedding a
traffic sign in a driving scene by manipulating patterns implicitly at the neuron level. In this
paper, we introduce a method to incorporate domain knowledge explicitly in the generation
process to achieve Semantically Adversarial Generation (SAG). To be consistent with the
composition of driving scenes, we first categorize the knowledge into two types, the property
of objects and the relationship among objects. We then propose a tree-structured variational
auto-encoder (T-VAE) to learn hierarchical scene representation. By imposing semantic rules
on the properties of nodes and edges into the tree structure, explicit knowledge integration
enables controllable generation. To demonstrate the advantage of structural representation,
we construct a synthetic example to illustrate the controllability and explainability of our
method in a succinct setting. We further extend to realistic environments for autonomous
vehicles, showing that our method efficiently identifies adversarial driving scenes against
different state-of-the-art 3D point cloud segmentation models and satisfies the traffic rules
specified as explicit knowledge.

1 Introduction

According to the report published by the California Department of Motor Vehicle (DMV, 2022), there were at
least five companies (Waymo, Cruise, AutoX, Pony.AI, Argo.AI) that made their autonomous vehicles (AVs)
drive more than 10,000 miles without disengagement. It is a great achievement that current AVs succeed
in normal cases trained by hundreds of millions of miles of training. However, we are still unsure about
their safety and robustness in rare but critical driving scenes, e.g., the perception system fails to detect a
pedestrian that is partially blocked by a surrounding vehicle. One promising solution could be artificially
generating driving scenes in simulations to find potential failures of AV systems. The biggest difficulty of
creating such adversarial scenes is incorporating traffic rules and semantic knowledge to make the generation
realistic and controllable.

The recent breakthrough in machine learning enables us to learn complex distributions with sophisticated
models, which uncover the data generation process so as to achieve controllable data generation (Abdal
et al., 2019; Tripp et al., 2020; Ding et al., 2021). Deep Generative Models (DGMs) (Goodfellow et al., 2014;
Kingma & Welling, 2013), approximating the data distribution with neural networks (NN), are representative
methods to generate data targeting a specific style or category. However, existing controllable generative
models focus on manipulating implicit patterns at the neuron or feature level. For instance, Bau et al. (2020)
dissects DGMs to build the relationship between neurons and generated data, while Plumerault et al. (2020)
interpolates in the latent space to obtain vectors that control the poses of objects. One main limitation is
that they cannot explicitly incorporate semantic rules, e.g., cars follow the direction of lanes, which may lead
to meaningless data that violates common sense. In light of the limitation, we aim to develop a structural
generative framework to integrate explicit knowledge (Dienes & Perner, 1999) during the generation process
and thus control the generated driving scene to be compliant with semantic rules.
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Figure 1: Diagram of SAG. Training stage. Train the tree generative model to learn the representation of
structured data. Generation stage. Integrate node-level and edge-level knowledge during the generation to
create adversarial samples for the victim model.

Driving scenes can be described with objects and their various relationships (Amizadeh et al., 2020). Thus,
in this paper, we categorize the semantic knowledge that helps scene generation into two types. The first
type denoted as node-level knowledge represents the properties of single objects and the second type denoted
as edge-level knowledge represents the relationship among objects. We observe that tree structure is highly
consistent with this categorization for constructing scenes, where nodes of the tree represent objects and
edges the relationship. We can explicitly integrate the node-level and edge-level knowledge by manipulating
the tree structure during the generation.

In this paper, we propose the framework Semantically Adversarial Generation (SAG) as shown in Figure 1.
SAG contains two stages to separate the learning of data distribution of real-world driving scenes and the
searching of adversarial scenes with knowledge as constraints. In the training stage, we train a tree-structured
generative model that parameterizes nodes and edges of trees with NN to learn the representation of structured
data. In the generation stage, explicit knowledge is applied to different levels of the learned tree model to
achieve knowledge-guided generation for reducing the performance of victim algorithms.

To verify our method, we first construct a synthetic reconstruction example to illustrate its advantages and
provide an analysis of its controllability and explainability. With SAG, it is possible to generate natural
scenes that follow semantic rules, e.g., boxes with the same color should be positioned close to each other.
To demonstrate the practicality of SAG, we conduct extensive experiments on adversarial LiDAR scene
generation against 3D segmentation models. We show that our generated driving scenes successfully attack
victim models and meanwhile follow the specified traffic rules. In addition, compared with traditional attack
methods, scenes generated by our method achieve stronger adversarial transferability across different victim
models. Our technical contributions are summarized below:

• We propose a semantically adversarial generative framework (SAG) via integrating explicit knowledge and
categorizing the knowledge into two types according to the composition of driving scenes.

• We propose a tree-structured generative model based on our knowledge categorization and construct a
synthetic example to demonstrate the effectiveness of our knowledge integration.

• We propose Scene Attack, the first semantic adversarial point cloud attack based on SAG, against
state-of-the-art segmentation algorithms, which demonstrates several essential properties.

2 Related Work

Semantically adversarial attacks. Traditional adversarial attack methods focused on the pixel-wise
attack in the image field, where Lp-norm is used to constrain the adversarial perturbation. For the sake of
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the interpretability of adversarial samples, recent studies begin to consider semantic attacks. They attack
the rendering process of images by modifying the light condition (Liu et al., 2018; Zeng et al., 2019) or
manipulating the position and shape of objects (Alcorn et al., 2019; Xiao et al., 2019; Jain et al., 2019). This
paper explores the generation of adversarial point cloud scenes, which already have similar prior works (Tu
et al., 2020; Abdelfattah et al., 2021; Sun et al., 2020a). Tu et al. (2020) and Abdelfattah et al. (2021) modify
the environment by adding objects on top of existing vehicles to make them disappear. Sun et al. (2020a)
create a ghost vehicle by adding an ignorable number of points; however, they modify a single object without
considering the structural relationship of the whole scene.

Semantic driving scene generation. Existing ways of scene generation focus on sampling from pre-defined
rules and grammars, such as probabilistic scene graphs used in Prakash et al. (2019) and heuristic rules
applied in Dosovitskiy et al. (2017). These methods rely on domain expertise and cannot be easily extensible
to large-scale scenes. Recently, data-driven generative models (Devaranjan et al., 2020; Tan et al., 2021;
Para et al., 2020; Li et al., 2019; Kundu et al., 2018) are proposed to learn the distribution of objects and
decouple the generation of scenes into sequence (Tan et al., 2021) or graphs (Para et al., 2020; Li et al.,
2019). Although they reduce the gap between simulation and reality, generated scenes cannot satisfy specific
constraints. Another substantial body of literature (Eslami et al., 2016; Kosiorek et al., 2018; Gu et al., 2019)
explores directly learning scene graphs from images via an end-to-end framework. Their generalization to
high-dimensional data is very challenging, making them less effective than modularized methods proposed
by Kundu et al. (2018); Wu et al. (2017); Devaranjan et al. (2020).

Structural deep generative models. Most of DGMs, such as Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014) and Variational Auto-encoder (VAE) (Kingma & Welling, 2013), are
used for unstructured data. They leverage the powerful feature extraction of NNs to achieve impressive
results (Karras et al., 2019; Brock et al., 2018). However, the physical world is complex due to the diverse
and structural relationships of objects. Domain-specific structural generative models are developed via tree
structure e.g., RvNN-VAE (Li et al., 2019) or graph structure e.g., Graph-VAE (Simonovsky & Komodakis,
2018). Rule-based generative models are also explored by sampling from pre-defined rules (Kusner et al.,
2017; Kar et al., 2019; Devaranjan et al., 2020). One practical application of structural DGMs is generating
samples to satisfy requirements of downstream tasks (Engel et al., 2017; Tripp et al., 2020). Abdal et al.
(2019) and Abdal et al. (2020) search in the latent space of StyleGAN (Karras et al., 2019) to obtain images
that are similar to a given image. For structured data, such a searching framework transforms discrete space
optimization to continuous space optimization, which was shown to be more efficient (Luo et al., 2018).
However, it may not guarantee the rationality of generated structured data due to the loss of interpretability
and constraints in the latent space (Dai et al., 2018).

Incorporating knowledge into neural networks. Integrating knowledge into data-driven models has been
explored in various forms from training methods, meta-modeling, and embedding to rules used for reasoning.
(Hu et al., 2016) distills logical rules with a teacher-student framework under Posterior Regularization (Ganchev
et al., 2010). Another way of knowledge distillation is encoding knowledge into vectors and then refining
the features from the model that are in line with the encoded knowledge (Gu et al., 2019). These methods
need to access Knowledge Graphs (Ehrlinger & Wöß, 2016) during the training, which heavily depends on
human experts. Meta-modeling of complex fluid is integrated into the NN to improve the performance of
purely data-driven networks in (Mahmoudabadbozchelou et al., 2021). In addition, (Yang & Perdikaris, 2018)
restricts the output of generative models to satisfy physical laws expressed by partial differential equations.
In the reinforcement learning area, reward shaping (Ng et al., 1999) is also recognized as one technique to
incorporate heuristic knowledge to guide the training.

3 Semantically Adversarial Generation Framework

We define the driving scene x ∈ X in the physical world, which contains a group of objects and their properties
such as positions and colors. The goal of our framework is to generate x so that to reduce the performance
Lt(x) of the victim model t ∈ T , as well as satisfying semantic loss LK(x):

x = arg min
x
Lt(x), s.t. LK(x) ≤ 0, (1)
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where K is knowledge rules. Due to the structure of driving scenes, it is usually difficult to directly search x
in the data space, so we consider a generative model that creates x with learnable parameters.

In this section, we first describe the tree-based generative model for learning the hierarchical representations
of x, which is important and necessary for applying knowledge to achieve semantic controllability (Section 3.1).
Then we explain the two types of knowledge to be integrated into the generative model together with the
generation stage that uses explicit knowledge as constraints (Section 3.2).

3.1 Tree-structured Variational Auto-encoder (T-VAE)

VAE (Kingma & Welling, 2013) is a powerful model that combines auto-encoder and variational inference (Blei
et al., 2017). It estimates a mapping between data point x ∈ X and latent code z ∈ Z to find the low-
dimensional manifold of the data space. The objective function of training VAE is to maximize a lower bound
of the likelihood of training data, which is the so-called Evidence Lower Bound (ELBO)

ELBO = Eq(z|x;ϕ) [log p(x|z; θ)]−KL(q(z|x; ϕ)||p(z)), (2)

where KL is Kullback–Leibler (KL) divergence. q(z|x; ϕ) is the encoder with parameters ϕ, and p(x|z; θ) is the
decoder with parameters θ. The prior distribution of the latent code p(z) is usually a Gaussian distribution
for simplification of KL divergence calculation.

3.1.1 Tree structure design

One typical characteristic of driving scenes is that the data dimension varies with the number of objects. Thus,
it is challenging to represent objects with a fixed number of parameters as in traditional models (Kingma
& Welling, 2013). Graphs are commonly used to represent structured data (Liao et al., 2019) but are too
complicated to describe the hierarchy and inefficient to generate. As a special case of graphs, trees naturally
embed hierarchical information via recursive generation with depth-first-search traversal (Jin et al., 2018; Mo
et al., 2020). This hierarchy is highly consistent with natural physical scenes and makes it easier to apply
explicit knowledge, supported by previous works in cognition literature (Malcolm et al., 2016).

In this work, we propose a novel tree generative model that handles scenes with varying numbers of objects.
Assume we have a stick with length W and we recursively break it into segments w(n,i) with

W = w(1,1) = w(2,1) + w(2,2) = · · · =
Kn∑
i=1

w(n,i), (3)

where (n, i) means the i-th segment of the n-th break. Kn is the total number of segments in the n-th break.
The index starts from 1 thus index (1, 1) means the entire stick. The recursive function of breaking the stick

w(n+1,j) = α(n,i)w(n,i), w(n+1,j+1) = (1− α(n,i))w(n,i), (4)

where α(n,i) ∈ [0, 1] is the splitting ratio for segment w(n,i). Segment w(n+1,j) is the first segment of w(n,i) in
the (n + 1)-th break. Intuitively, this breaking process creates a tree structure where segments are nodes in
the tree and the i-th break is corresponding to the i-th layer of the tree.

We extend the above division to 2-dimensional space as shown in the left of Figure. 1. To generate trees of
driving scenes, we define three types of nodes, namely Quad (generates four child nodes), Object (describes
one kind of object), and Empty (works as a placeholder). When there is more than one object in the region,
the Quad node is used to divide the region and expand the tree to one more depth. Since the expansion
always has four child nodes but not all nodes contain objects, the Empty node is used for filling the region
with no object. If there is only one object in the region, the Object node is used to represent the property of
this object and end the expansion of the tree. Different types of nodes can appear in the same layer and we
follow Recursive Neural Networks (RvNN) (Socher et al., 2011) to build the tree structure recursively. Please
refer to Appendix A.2 for a detailed example.
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Figure 2: An example of the encoding and decoding processes of the proposed T-VAE model.

3.1.2 Model Implementation

We now introduce how to implement the encoding and decoding processes for a tree structure. Assuming
there are M types of objects (including Quad and Empty) in the scene, we use a set of encoders {Em}M

m=1
and decoders {Dm}M

m=1 to construct each kind of nodes in the entire N layer tree. {Em}M
m=1 create the

encoder tree in a bottom-up manner and end at the latent variables z, while {Dm}M
m=1 reconstruct the decoder

tree in a top-down manner. The relationship between the n-th layer and the (n + 1)-th layer in the encoder
tree and the decoder tree are respectively:

f (n,i) = Em([f (n+1,j), · · · , f (n+1,j+3), g(n,i)]; ϕm),
[f̂ (n+1,j), · · · , f̂ (n+1,j+3), ĝ(n,i)] = Dm(f̂ (n,i); θm),

(5)

where f (n,i) is named as the feature vector that passes the messages through the tree structure. g(n,i) is
named as the property vector of node (n, i) that stories properties such as the color of the object generated
by node (n, i). In the bottom-up encoder tree, the selection of node type is accessible in the structured
data, while in the top-down decoder tree, the selection does not have the reference. Therefore, a Classifier is
required to determine the child node type ĉ(n,i):

ĉ(n,i) = Classifier(f (n,i); θc). (6)

Between the encoders and decoders, the latent code z is sampled according to parameters [zµ, zσ], which are
estimated by a Sampler by the reparameterization trick (Blei et al., 2017):

[zµ, zσ] = Sampler(f (1,1); ϕs). (7)

Finally, we can summarize all model parameters with q(z|x; ϕ) and p(x|z; θ), where ϕ = {ϕ1, · · · , ϕm, ϕs} and
θ = {θ1, · · · , θm, θc}.

3.1.3 Model Training

According to the implementation introduced above, the input scene x to the encoder tree can be represented
by the node type c and property g of all nodes.

x = {c, g} = {c(1,1), · · · , c(N,KN ), · · · , g(1,1), · · · , g(N,KN )}, (8)
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Correspondingly, the output from the decoder tree is x̂ = {ĉ, ĝ} Assume c and g are conditionally independent
given z, we get the objective of T-VAE following the ELBO of VAE (2)

max
ϕ,θ

Eq [log p(c|z; θ)]︸ ︷︷ ︸
−LC(ĉ,c)

+Eq [log p(g|z; θ)]︸ ︷︷ ︸
−LR(ĝ,g)

−KL (N (zµ, zσ)∥ N (0, I)) . (9)

The first term LC represents the cross-entropy loss (CE) of the Classifier

LC(ĉ, c) = 1∑N
n Kn

N∑
n=1

Kn∑
i=1

CE(ĉ(n,i), c(n,i)). (10)

To make the decoder tree have the same structure as the encoder tree, we use Teacher Forcing (Williams
& Zipser, 1989) during the training stage. However, in the generation stage, we select the node with the
maximum probability as the child to expand the tree. The second term LR uses mean square error (MSE) to
approximate the log-likelihood of node properties from all decoders

LR(ĝ, g) =
M∑

m=1

1
Nm

N∑
n=1

Kn∑
i=1

1
[
c(n,i) = m

]
∥ĝ(n,i) − g(n,i)∥2

2, (11)

where Nm is the times that node type m appears in the tree and 1 [·] is the indicator function. In (11), we
normalize the MSE with Nm instead of

∑N
n Kn to avoid the influence caused by imbalanced node type in

the tree. To help understand the encoding and decoding process, we use a synthetic scene as an example to
show the encoding and decoding processes in Figure 2, where the original data point is stored in the tree
structure and the generated data is also a tree structure.

The advantage of this hierarchical structure is that the root node stores the global information, and other
nodes only contain local information, making it easier for the model to capture the feature from multiple
scales in the scene. In addition, this tree structure makes it possible to explicitly apply semantic knowledge
in the generation stage, which will be explained in Section 3.2.

3.2 Knowledge-guided Generation

Algorithm 1: Apply Knowledge
Input: K, Decoder tree x̂
Output: Modified decoder tree x̂′

Function ApplyK(K, x̂)
for each knowledge k(n) ∈ K do

x̂′ ← modify x̂ according to k(n)

end
if x has child nodes then

for all child nodes x̂i of x̂ do
x̂′

i ← ApplyK(K, x̂i)
Add node x̂′

i as a child to x̂′

end
end
return x̂′

In the generation stage, we aim to create an adversarial scene x to
decrease Lt(x) by searching in the latent space of the decoder tree
obtained in the previous training stage. Meanwhile, we use the
knowledge K, which represents traffic rules, to guide the search for
a low knowledge loss LK. We formulate this process as a constraint
optimization problem in the latent space that uses the knowledge
LK ≤ 0 as constraints to minimize Lt(x). The general idea is
shown in Figure. 3(b).

3.2.1 Knowledge representation

We first provide a formal definition to describe the knowledge that
we use in the decoder tree. Suppose there is a function set F ,
where the function f(A) ∈ F returns true or false for a given input
node A of a tree x. Then, we define the two types of propositional
knowledge K for a particular victim model t using the first-order logic (Smullyan, 1995) as follows.

Definition 1 (Knowledge Set) The node-level knowledge kn is denoted as f(A) for a function f ∈ F ,
where A is a single node. The edge-level knowledge ke is denoted as f1(A) → ∀j f2(Bj) for two functions
f1, f2 ∈ F , where we apply knowledge f2 to all child nodes Bj of A. Then, The knowledge set is constructed
as K = {k(1)

n , · · · , k
(1)
e , · · · }.

In the tree context, kn describes the properties of a single node, and ke describes the relationship between
the parent node and its children. Specifically, in order to satisfy f(A) in kn, we locate node A in the tree x
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Algorithm 2: SAG Framework
Input: Dataset D, Task loss Lt(x), budget B,

Knowledge set K
Output: Generated scene x̂
Stage 1: Train T-VAE

Initialize model parameters {θ, ϕ}
for x in D do

Encode z ← q(z|x; ϕ)
Decode x̂← p(x|z; θ)
Update parameters {θ, ϕ} by maximizing
ELBO (9)

end
Store the learned decoder p(x|z; θ)

Stage 2: Knowledge-guided Generation
Initialize latent code z ∼ N (0, I)
while B is not used up do

if Lt(x) is differentiable then
z ← z − η∇Lt(p(x|z; θ))

else
z ← Black-box Optimization

end
x̂′ ← ApplyK(K, x̂), x̂← p(x|z; θ)
z ← proxLK

(z, x̂, x̂′) with (13)
end

Decode the scene x̂ = p(x|z; θ)

and change the property vector from g to g′. Similarly, in order to satisfy f1(A)→ f2(Bj), after traversing x
to find node A that satisfy f1 in ke, we change the type vector from c to c′ or the property vector from g
to g′ for all A’s children so that f2(Bj) holds true. The reference vectors c′ and g′ are pre-defined by the
knowledge set K. We summarized the process of applying knowledge in Algorithm 1.

One running example is that the explicit knowledge described as “if one node represents blue, its child nodes
should represent red” is implemented by the following operations. Starting from the root, we find all nodes
whose colors are blue and collect the property vectors g of its child nodes; then we change g to g′, representing
the red color. This process is illustrated in Figure 3(a).

3.2.2 Adversarial Generation

Figure 3: (a) The knowledge integration example de-
scribed in Section 3.2: the child nodes of the blue color
node should be red. (b) Illustration of the knowledge-
guided generation process by proximal optimization.

To minimize the adversarial loss and satisfy the con-
straints of knowledge, we combine them to the new
objective L(x) = Lt(x) +LK, where the second term
represents the mismatch between the original decoder
tree x̂ and the modified tree x̂′ (shown in Figure 3(a))

LK(x̂, x̂′) = MSE(ĝi, ĝ′
i) + CE(ĉi, ĉ′

i), ∀x̂i ̸= x̂′
i.
(12)

Usually, Lt(x) requires large computations, while LK
is efficient to evaluate since it only involves the infer-
ence of p(x|z; θ). Therefore, we resort to Proximal
algorithms (Parikh & Boyd, 2014), which alterna-
tively optimize Lt(x) and LK. In our setting, explicit
knowledge is regarded as the trusted region to guide
the optimization of Lt(x). The knowledge loss and
adversarial objective are alternatively optimized un-
der the proximal optimization framework as shown
in Figure 3(b). In the step of optimizing Lt(x) (pink
arrow), we can either use gradient descent for a differentiable Lt(x) or change to black-box optimization
methods (Audet & Hare, 2017) when Lt(x) is non-differentiable. Then, in the step of the optimizing LK (blue
arrow), we use Algorithm 1 to get the modified decoder tree x̂′ and use the following proximal operator

z′ = proxLK
(z, x̂, x̂′) = arg min

z′

(
LK(x̂, x̂′) + 1

2∥z − z′∥2
2

)
(13)

to project the latent code z to z′ so that p(x|z′; θ) satisfies the knowledge rules. The second term in (13) is a
regularize to make the projected point also close to the original point. The equation (13) can be solved by
gradient descent since the decoder p(x|z; θ) of T-VAE is differentiable. In summary, The entire training and
generation stages are shown in Algorithm 2.
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Figure 4: Results of synthetic scene reconstruction experiment from 5 methods with random and good
initialization. I shows the results of T-VAE using SAG. With the combination of knowledge 1⃝ 2⃝ 3⃝, we can
almost reach the optimal solution even from a random initialization, while baseline methods can realize the
target only when starting from the good initialization.

4 Experiments

In the experiment, we first design a synthetic scene to illustrate the controllability and explainability of the
proposed framework. The synthetic physical scene provides a simplified setting to unveil the essence of the
knowledge-guided generation. After that, we evaluate the performance of SAG on realistic driving scenes
represented by point clouds. Based on SAG, we propose a new adversarial attack method, Scene Attack,
against multiple point cloud segmentation methods.

4.1 Synthetic Scene Reconstruction

4.1.1 Task description

In this task, we aim to reconstruct a scene to match a given image. The objective is the reconstruction error
Lt(x) = ∥S −R(x)∥2, where R is a differentiable image renderer (Kato et al., 2018) and S is the image of
target scene. Under this succinct setting, it is possible to analyze and compare the contribution of explicit
knowledge integration since we can access the optimal solution, which usually cannot be obtained in an
adversarial attack. According to the understanding of the target scene, we define three knowledge rules: 1⃝
The scene has at most two plates; 2⃝ The boxes that belong to the same plate should have the same color; 3⃝
The boxes belong to the same plate should have distance smaller than a threshold γ.

4.1.2 Experiment settings

We synthesize the dataset by randomly generating 10,000 samples with a varying number of boxes and plates.
We compare our method with the following baselines: Direct Search (DS) directly optimizes the positions
and colors of boxes and plates in the data space. Direct Search with constraints (DS-C) modifies DS by
adding knowledge constraints 1⃝ 2⃝ to the objective function. VAE (Kingma & Welling, 2013) is a well-known
generative model that supports the latent space searching for sample generation. VAE-WR (Tripp et al.,
2020) simultaneously updates the shape of latent space during the searching process. SPIRAL (Ganin et al.,
2018) generates one object at one time to create the scene in an autoregressive manner. L2C (Ding et al.,
2020) uses autoregressive structure to generate objects in the scene. Grammar-VAE (GVAE) (Kusner
et al., 2017) uses pre-defined rules (shown in Appendix A.4) to generate the structural scene. T-VAE only
uses the tree structure to build the model; the searching is done in the latent space without any knowledge
integration.

Among these methods, DS, DS-C, VAE, and VAE-WR need to access the number of boxes and plates in the
target image (e.g., two plates and eight boxes) to fix the dimension of the input feature. To get good initial
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Figure 5: (a) Knowledge loss of integrating semantic rules 1⃝ 2⃝ 3⃝ separately. (b) The influence of knowledge
on the trajectories with the same initialization. (c) After applying explicit knowledge, optimization trajectories
are diverse when starting from different initialization.

points for DS and DS-C, we add a small perturbation to the positions and colors of all objects in the target
scene. Similarly, we add the perturbation to the optimal latent code for other methods, which is obtained by
passing the target scene to the encoder to get good initialization.

4.1.3 Evaluation results

Table 1: Reconstruction Error
Initialization

Method Random Good
DS 86.0±9.4 7.9±1.2

DS-C 90.6±13.1 8.1±1.4
VAE 110.4±10.6 13.4±6.1

VAE-WR 105.9±24.6 13.2±8.4
SPIRAL 95.2±21.9 23.6±5.5

L2C 115.4±13.8 14.1±7.1
GVAE 123.7±9.5 19.7±10.2
T-VAE 135.1±16.9 14.1±2.5

T-VAE-SAG 14.5±1.3 11.8±2.1

We show the generated samples from five representative meth-
ods in Figure 4 and show the final errors of all methods in
Table. 1. With good initialization, all models find a similar
scene to the target one, while with random initialization, all
models are trapped in local minimums. However, obtaining
good initialization is not practical in most real-world applica-
tions, indicating that this task is non-trivial and all models
without knowledge cannot solve it. After integrating the knowl-
edge into the T-VAE model, we obtain I of Figure 4. We
can see that all three knowledge have positive guidance for
the optimization, e.g., the boxes concentrate on the centers of
plates with knowledge 3⃝ When combining the three rules of
knowledge, even from a random initialization, our T-VAE can
finally find the target scene, leading to a small error in Table. 1.
We also want to mention that it is also possible to apply simple
knowledge to GVAE during the generation. However, the advantages of our method are that (1) we can
integrate any constraints as long as they can be represented by Definition 1. In contrast, GVAE can only
apply hard constraints to objects with co-occurrences.

4.1.4 Analysis of knowledge and controllability

To analyze the contribution of each knowledge, we plot the knowledge losses of 1⃝ 2⃝ 3⃝ in Figure 5(a) together
with the adversarial loss. All knowledge losses decrease quickly at the beginning and guide the search in the
latent space. Next, we made ablation studies to explore why knowledge helps the generation. In Figure 5(b),
we compare the optimization trajectories of T-VAE (red→yellow) and T-VAE-SAG (blue→green) with the
same initialization. For T-VAE, the generated samples are diverse but totally different from the target scene,
while for T-VAE-SAG, the trajectories go in another direction and the generated samples are good. However,
note that although the knowledge helps us find good scenes, it does not reach the same point in the latent
space with the trajectories from good initialization (cyan→purple).
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Figure 6: Top: The IoU values during the attack process of four victim models on two backgrounds. Bottom:
The ratio of rules violation of all methods, on two backgrounds. Although Pose Attack outperforms our Scene
Attack in terms of the IoU value in some cases, it also has a large ratio of rules violation, which means the
scenes generated by Pose Attack are not realistic as shown in Figure 7.

This result can be explained by the entanglement of the latent space (Locatello et al., 2019), which makes
multiple variables control the same property. To further study this phenomenon, we plot Figure 5(c), where
we use 3 different initialization for T-VAE-SAG. The result shows that all three cases find the target scene
but with totally different trajectories, which supports our conjecture. In summary, we believe the contribution
of knowledge can be attributed to the entanglement of the latent space, which makes the searching easily escape
the local minimum and find the nearest optimal points.

4.2 Adversarial Driving Scenes Generation

4.2.1 Task description

In this task, we aim to generate realistic driving scenes against segmentation algorithms as well as satisfy
specific semantic knowledge rules. The adversarial scenes are defined as scenes that reduce the performance
of victim models. To generate adversarial LiDAR scenes containing various fore-/background rather than
the point cloud of a single 3D object as existing studies (Lang et al., 2020; Sun et al., 2020b), a couple of
challenges should be considered: First, LiDAR scenes with millions of points are hard to be directly operated;
Second, generated scenes need to be realistic and follow traffic rules. Since there are no existing methods to
compare with directly, we compare three methods: (1) Point Attack: a point-wise attack baseline (Xiang
et al., 2019) that adds small disturbance to points; (2) Pose Attack: a scene generation method developed
by us that searches pose of vehicles in the scene; (3) Scene Attack: a semantically controllable generative
method based on our T-VAE and SAG.

We explore the attack effectiveness against different models of these methods and their transferability. For
Pose Attack and Scene Attack, we implement an efficient LiDAR model R(x, B) (Möller & Trumbore, 1997)
(refer to Appendix A.1 for details) to convert the generated scene x to a point cloud scene with a background
B. The task objective minLt(x) = maxLP (R(x, B)) is defined by maximizing the loss function LP of
segmentation algorithms P . We design three explicit knowledge rules: 1⃝ roads follow a given layout (location,
width, and length); 2⃝ vehicles on the lane follow the direction of the lane; 3⃝ vehicles should gather together

10



Under review as submission to TMLR

Figure 7: Scenarios from three adversarial generation methods for PointNet++ model in Highway and
Intersection backgrounds. Red points represent vehicles. Scenes generated by Scene Attack are complicated
and follow basic traffic rules, while scenes generated by Pose Attack violate physical laws and traffic rules.

but keep a certain distance. 1⃝ 2⃝ ensure generated vehicles follow the layout of the background B and 3⃝
makes the scene contain more vehicles.

4.2.2 Experiment settings

We select four point cloud segmentation algorithms, PointNet++ (Qi et al., 2017), PolarSeg (Zhang et al.,
2020), SqueezeSegV3 (Xu et al., 2020), Cylinder3D (Zhou et al., 2020) as our victim models, all of which are
pre-trained on the Semantic Kitti dataset (Behley et al., 2019). We use two backgrounds B (Highway and
Intersection) collected from the CARLA simulator (Dosovitskiy et al., 2017) as scene templates. Since it is
usually unable to access the parameters of segmentation algorithms, we focus on the black-box attack in
this task. The Point Attack optimizes Lt(x) with SimBA (Guo et al., 2019), while Pose Attack and Scene
Attack optimizes Lt(x) with Bayesian Optimization (BO) (Pelikan et al., 1999). For the training of T-VAE,
we build a dataset by extracting the pose information of vehicles together with road and lane information
from the Argoverse dataset (Chang et al., 2019).

Table 2: Transferability of Adversarial Scenes (Point Attack IoU / Scene Attack IoU). Scene Attack has lower
IoU for all evaluation pairs, which demonstrates its better adversarial transferability.

Source \ Target PointNet++ SqueezeSegV3 PolarSeg Cylinder3D

PointNet++* - / - 0.916 / 0.768 0.936 / 0.854 0.955 / 0.918
SqueezeSegV3 0.954 / 0.606 - / - 0.932 / 0.855 0.956 / 0.892

PolarSeg 0.952 / 0.528 0.904 / 0.753 - / - 0.953 / 0.908
Cylinder3D 0.951 / 0.507 0.903 / 0.688 0.934 / 0.877 - / -

* The IoU for Point Attack is obtained after 20,000 iterations.

4.2.3 Result Analysis

Effective of Adversarial Attack. We use Intersection over Union (IoU) for the vehicle as the metric
to indicate the performance of segmentation algorithms. We show the results as well as the ratio of rules
violation (ratio of objects that violate knowledge 1⃝ 2⃝) during the attack in Figure 6. Generally, it is harder
to find adversarial scenes in the highway background than in the intersection background since the latter
has much more vehicles. Within 100 iterations, the Point Attack method nearly has no influence on the
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Table 3: Detection Results (IoU) with Adversarial Training
Method Pose Pose w/ AT Pose-C Pose-C w/ AT SAG SAG w/ AT

PointNet++ 0.3902 0.1315 0.6500 0.6429 0.5248 0.7657
SqueezeSeg 0.4672 0.0974 0.7180 0.7378 0.6496 0.8239
PolarSeg 0.8840 0.0106 0.9112 0.9073 0.8511 0.8923

Cylinder3D 0.8779 0.0806 0.9032 0.9004 0.8618 0.9120

performance since it operates in very high dimensions. In contrast, Pose Attack and Scene Attack efficiently
reduce the IoU value. Although Pose Attack achieves comparable results to our method, scenes generated
by it (shown in Figure 6) are unrealistic due to the overlaps between vehicles; therefore, the ratio of rules
violation is high. In contrast, scenes generated by our method only modify the vehicles within the traffic
constraints. More generated scenes can be found in Appendix A.5.

Transferability Analysis. In Table 2, we show the transferability of Point Attack and Scene Attack.
Transferability means using generated samples from the Source model to attack other Target models, which
is crucial for evaluating adversarial attack algorithms. Although Point Attack dramatically reduce the
performance of all four victims, the generated scenes have weak transferability since it cannot attack other
victim models. However, scenes generated by Scene Attack successfully attack all models, even those that are
not used during the training, showing strong adversarial transferability.

Adversarial Training. In Table 3, we further explore the performance of adversarial training using scenes
generated from different methods. We find that training algorithms with scenes from Pose and Pose-C even
reduces the performance. This is because generated scenes are not in the same distribution as the original
training data since they do not satisfy physical laws and traffic rules. In contrast, training algorithms with
scenes from our SAG improves the robustness of all algorithms against adversarial attacks, which shows one
promising usage of our scene generation method.

5 Conclusion

In this paper, we explore semantically adversarial generation tasks with explicit knowledge integration.
Inspired by the categorization of knowledge for the driving scene description, we design a tree-structured
generative model to represent structured data. We show that the two types of knowledge can be explicitly
injected into the tree structure to guide and restrict the generation process efficiently and effectively. After
considering explicit semantic knowledge, we verify that the generated data contain dramatically fewer semantic
constraint violations. Meanwhile, the generated data still maintain the diversity property and follow the
original data distribution. Although we focus on the scene generation application, the SAG framework can be
extended to other structured data generation tasks, such as chemical molecules and programming languages,
showing the hierarchical properties. One limitation of this work is that we assume the knowledge is helpful
or at least harmless as they are summarized and provided by domain experts. However, the correctness of
knowledge needs careful examination in the future.
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A Appendix

The appendices are organized as follows:

• In Appendix A.1, we provide the details of our LiDAR model implementation used in the traffic scene
generation experiment.

• In Appendix A.2, we provide the details of the structure of our proposed T-VAE model, including the
definitions of all encoder-decoder pairs and a generation example.

• In Appendix A.3, we show the details of the definition of knowledge in both experiments.

• In Appendix A.4, we describe the three baselines used in the Synthetic Scene Reconstruction experiment.

• In Appendix A.5, we provide more experiment results.

• In Appendix A.6, we describe four point cloud segmentation victim models used in the LiDAR Scene
Generation experiment.

A.1 LiDAR Model Implementation

The LiDAR model is implemented by Moller-Trumbore algorithm Möller & Trumbore (1997) with the PyTorch
Paszke et al. (2019) package for high-efficiency computation. We assume there is a plane △V0V1V2 in the
3D space constructed by points V0, V1, V2. A ray R(t) with origin O and normalized direction D (we make
∥D∥2 = 1 for simplification) is represented as R(t) = O + tD, where t is the distance between O and the
endpoint D of the ray. If D is the intersection between the ray and the plane △V0V1V2, we can represent the
ray with barycentric coordinate:

T (u, v) = (1− u− v)V0 + uV1 + vV2 = O + tD = R(t) (14)

where u and v are weights. To simplify the equations, we define three new notations:
E1 =V1 − V0

E2 =V2 − V0

T =O − V0

(15)

Then, we can solve the distance t in (14) by: t
u
v

 = 1
| −D, E1, E2|

 | − T, E1, E2|
| −D, T, E2|
| −D, E1, T |

 = 1
(D × E2) · E1

 (T × E1) · E2
(D × E2) · T
(T × E1) ·D

 (16)

Since we know the ray direction D, we can get the 3D coordinate of the intersection with this distance t.
During the implementation, we reuse D × E2 and T × E1 to speed up the computation. To make sure the
intersecting point T (u, v) is inside the triangle △V0V1V2, we need to have:

u, v, (1− u− v) ∈ [0, 1] (17)

If these three conditions are not fulfilled, the intersection point will be removed.

To calculate the point cloud generated by a LiDAR, we first convert vehicle mesh models to triangles F with
Delaunay triangulation Lee & Schachter (1980). Then, we create the array of LiDAR rays with width W and
height H for 360◦ view. Finally, we use (16) to calculate the intersection point between all triangles F and
LiDAR rays Ri,j(t) in parallel to get the final range map F H×W . The background point cloud will also be
converted to range map BH×W by: 

θ = arctan z√
x2 + y2

ϕ = arctan x

y

t =
√

x2 + y2 + z2

(18)
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Figure 8: The pipeline of LiDAR scene generation with our developed model.

where (x, y, z) is the coordinate of one point in point cloud, θ is used to calculate the index of the row, and ϕ
is used to calculate the index of the column. Then we mix F H×W and BH×W by taking the minimal value
for each element:

Mi,j = min{Fi,j , Bi,j}, ∀i ∈W, j ∈ H (19)
where Mi,j represent the (i, j)-entry of the mixed range map scene M . Then, we convert the range map to
the final output point cloud scene S with: 

z = t× sin θ

x = t× cos θ cos ϕ

y = t× cos θ sin ϕ

(20)

The entire pipeline of the above process is summarized in Figure 8. The parameters we used for LiDAR
follow the configuration of the Semantic Kitti dataset, where the channel H = 64, the horizontal resolution
W = 2048, the upper angle is 2◦, and the lower angle is −25◦. The gap between reality and simulation can
be reduced by realistic simulation and sensor models Manivasagam et al. (2020), but this will not be explored
in this paper.

A.2 Detailed T-VAE Model Structure

Our T-VAE model consists of several encoders and decoders that are related to the definition of the scene.
In this paper, we explored two experiments with two scenes: a synthetic box placement image scene and
a traffic point cloud scene. In Figure 9, we show the details of the modules for two scenes. The encoding
process converts the tree into a stack and then encodes the information using the node type defined in the
tree. The decoding process expands the tree with the predicted node type from the Classifier.

For the synthetic box placement image scene, there are 5 Encoder-Decoder pairs, a Sampler, and a Classifier.
W node determines the global information such as the location and orientation of the entire scene. P node
spawns a plate object in the scene with positions and colors determined by the property vector. Both Q and
B nodes spawn a box object in the scene with positions and colors determined by the property vector. E
node serves as a stop signal to end the expansion of a branch, therefore, will not spawn anything in the scene
and does not have model parameters.
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Figure 9: The definition of each module in our proposed T-VAE. A: There are 5 kinds of nodes in Synthetic
Scene Reconstruction experiment. Therefore, we have 5 encoders and 5 decoders in total, plus a Classifier
and a Sampler. B: There are 5 kinds of nodes in the LiDAR scene experiment. Therefore, we have 5 encoders
and 5 decoders in total, plus a Classifier and a Sampler.
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Table 4: Hyper-parameters of the Synthetic Scene Reconstruction Experiment
Parameters Value Description

lr 0.001 Learning rate of T-VAE training
E 1000 Maximum training epoch
B 128 Batch size during training
η 0.1 Learning rate in stage 2.
T 100 Maximum searching iteration
dz 64 Dimension of latent code z
df 128 Dimension of feature vector f
dg 6 Dimension of property vector g
γ 2 The threshold used in knowledge ③
Nl 10 Normalization factor of location

Table 5: Hyper-parameters of the LiDAR Scene Generation Experiment
Parameters Value Description

lr 0.001 Learning rate of T-VAE training
ϵ 0.01 Max value for point-wise disturbance
E 1000 Maximum training epoch
B 128 Batch size during training
T 100 Maximum searching iteration
dz 32 dimension of latent code z
df 64 dimension of feature vector f
dg 3 dimension of property vector g
Nl 40 Normalization factor of location

(w, h) (1.5, 3) The thresholds used in knowledge ③

The traffic point cloud scene has similar definitions. R node contains the information about the road and
only has two children. L node determines the lane information such as the width and direction. Both Q and
V nodes spawn a vehicle in the scene with positions and orientations determined by the property vector.

A.3 Knowledge Definition

For each experiment in this paper, we design three knowledge rules. We explain the details of the implemen-
tation of these rules.

In the Synthetic Scene Reconstruction Experiment, we calculate LY (x, Yt(x)) with the following implementa-
tions:

① The scene has at most two plates, which can be implemented by W node has at most two P children
nodes. We traverse the entire generated tree x to find W node, then we collect the children nodes of W
and count the number of P nodes. If the number is larger than 2, we calculate the cross-entropy loss
between the node type and E node label.

② The colors of the boxes that belong to the same plate should be the same, which can be implemented by
The color of P node’s children nodes should be the same. We traverse the entire generated tree x to find
all P nodes, then we collect the colors of the children of P . The average color c̄ is calculated for each P
node and c̄ is used as a label to calculate the MSE for all children nodes of the corresponding P node.

③ The distance between the boxes that belong to the same plate should be smaller than a threshold γ which
can be implemented by The distance between P node’s children nodes should be smaller than a threshold
γ. We traverse the entire generated tree x to find P node, then we collect the absolute position of all its
children nodes and calculate the MSE between this position and the position of P .
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In the LiDAR Scene Generation Experiment, we calculate LY (x, Yt(x)) with the following implementations:

① Roads follow a given layout (location, width, and length), which can be implemented by R node follows
a given layout (location, width, and length). We traverse the entire generated tree x to find R node, then
calculate the MSE between the property vector of R and the given layout.

② Vehicles on the lane follow the direction of the lane, which can be implemented by L node follows
pre-defined directions. We traverse the entire generated tree x to find L node, then calculate the MSE
between the property vector of R and the given layout.

③ Vehicles should gather together but keep a certain distance, which can implemented by Q node has at
least two Q nodes as its children until the absolute width and height of the current block is smaller than
thresholds w and h. We traverse the entire generated tree x to find Q node, then collect the type of its
children nodes. When the collected Q node type is less than 2, we calculate the cross-entropy loss between
two collected node types and Q node label. When the width and the height of current block are smaller
than w and h, we stop applying this rule.

After calculating all errors in LY (x, Yt(x)), we can directly use back-prorogation to calculate the gradient of
latent code z and update it with the gradient descent method.

A.4 Baselines in Synthetic Scene Reconstruction

A.4.1 Direct Search

The dimension of the physical space is 6× (2 + 8) = 60, where 6 is the property dimension including position,
orientation, and colors, 2 is the number of plates, and 8 is the number of boxes. We use gradient descent
with the learning rate η to directly search in the physical space. Since there is no constraint to avoid overlaps
between boxes, the generated scenes could be unrealistic.

A.4.2 Variational Auto-encoder (VAE)

The input dimension of the encoder is the same as the searching space of Direct Search. The VAE model
has an encoder and a decoder, both of which have a fixed number of model parameters. There are 4 hidden
layers in the encoder and each layer has 128 neurons. The decoder also has 4 hidden layers with 128 neurons.
For the output of color, we add a Sigmoid(·) function to normalize it to the range [0, 1]. The location is
normalized by Nl before it is taken into the encoder.

A.4.3 Grammar VAE (GVAE)

GVAE Kusner et al. (2017) requires the input data to be described with a set of pre-defined grammars.
According to the task of synthetic scene reconstruction experiment, we design 9 rules,

W → P, W → B, P → P |E, P → P |B, P → B,

P → E, B → B, B → E, E → E
(21)

and they are represented in a one-hot vector in the dataset. The original GVAE is designed only for
rule-based discrete data generation (e.g. molecules), thus we modify the structure to add continuous attribute
representation. The encoder consists of 3 1-dimensional Convolution layers with kernel size 3 × 3. The
numbers of channels for the Convolution layers are [32, 64, 128]. The decoder is an LSTM model with 128
neurons, therefore, the decoding process is sequential. During the training stage, the maximal length of rules
is fixed to 20 with E → E as padding, and the decoder will output 20 rules. The cross-entropy loss is used
between the input rules and decoded rules. During the generation stage, the rules generated from the decoder
will be firstly stored in a stack and converted to the tree with the first-in-last-out (FILO) principle.
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Figure 10: We randomly generate 10 samples by sampling in the latent space of VAE, GVAE, and T-VAE.

A.5 Additional Qualitative Results

In Figure 10, we show samples randomly generated from VAE, GVAE, and T-VAE. The results show that all
three models are able to generate diverse samples. Specifically, samples generated by VAE always have 2
plates and 8 boxes due to the fixed input data dimension. In contrast, samples from GVAE and T-VAE have
variable numbers of plates and boxes.

In Figure 11, we show 4 more generated scenarios from the Point Attack methods with prediction results
from 4 segmentation models. For better visualization, we also show three detailed figures. In Figure 12 and
Figure 13, we show more results from Pose Attack and Scene Attack methods. Scenes generated by Scene
Attack follow basic traffic rules.

A.6 Segmentation Models in LiDAR Scene Generation

PointNet++ This model Qi et al. (2017) directly uses point-wise features in the 3D space as the backbone
to deal with the segmentation problem. Although this model does not have impressive results on the Semantic
KITTI dataset, we select it because it influences a lot of existing point cloud processing models. We use the
code from this repository and train the model on Semantic KITTI dataset by ourselves following the original
training and testing split setting.

PolarSeg This model Zhang et al. (2020) converts the data representation from the 3D Cartesian coordinate
to the Polar coordinate and extracts features with 2D convolution layers. We use the code from this repository
and use the pre-trained model provided by the authors. Since we only consider the vehicle class, we change
all other labels to non-vehicle class.

SqueezeSegV3 This model Xu et al. (2020) projects 3D point clouds to 2D range maps and extracts features
with 2D convolutions from the range maps. We use the code from this repository and use the pre-trained
model provided by the authors. Since we only consider the vehicle class, we change all other labels to
non-vehicle class.

Cylinder3D This model Zhou et al. (2020) converts the data representation from the 3D Cartesian coordinate
to the Polar coordinate and divides the space into blocks with a cylinder representation. We use the code
from this repository and use the pre-trained model provided by the authors. Since we only consider the
vehicle class, we change all other labels to non-vehicle class.
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Figure 11: More results for Point Attack method with the Intersection background.
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Figure 12: More results for Pose Attack method with the Intersection background.
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Figure 13: More results for Scene Attack method with the Intersection background.
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