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ABSTRACT

Reinforcement learning (RL) has emerged as a powerful paradigm for fine-tuning
Large Language Models (LLMs) for text generation. In particular, recent LLMs
such as ChatGPT and GPT-4 can engage in fluent conversations with users after
finetuning with RL. Inspired by learning-to-search algorithms and capitalizing on
key properties of text generation, we seek to investigate RL algorithms beyond
general purpose algorithms like Proximal Policy Optimization (PPO). In particular,
we extend RL algorithms to allow them to interact with a dynamic black-box guide
LLM and propose RL with guided feedback (RLGF), a suite of RL algorithms for
LLM fine-tuning. We experiment on the IMDB positive sentiment, CommonGen,
and TL;DR summarization tasks. We show that our RL algorithms achieve higher
performance than supervised learning (SL) and RL baselines, demonstrating the
benefit of interaction with the guide LLM. On both CommonGen and TL;DR, we
not only outperform our SL baselines but also improve upon PPO across a variety
of metrics beyond the one we optimized for.

1 INTRODUCTION

Large Language Models (LLMs) have become very capable in various real-world applications ranging
from being able to answer open-ended questions on numerous topics (Zhang et al., 2022), write
articles from short descriptions (Goyal et al., 2022), generate code (Github, 2023), follow robot
commands (Huang et al., 2022), solve puzzles (Bubeck et al., 2023), and even showcased as assistive
models for education (Khan Academy, 2023) and healthcare (Lee et al., 2023b).

However, using supervised learning (SL) to train LLMs presents a challenging metric mismatch
(Wiseman & Rush, 2016) between the training and testing regimes. The metric mismatch arises from
the training metric being the log-loss while the testing metrics are task-specific such as BLEU or user
satisfaction rating. This discrepancy is magnified when fine-tuning LLMs on downstream tasks where
the main goal is not just producing fluent text but also being proficient at solving the specific task.

Reinforcement Learning (RL) by definition address this metric mismatch by directly optimizing the
metrics through reward feedback. Recently, OpenAI fine-tuned LLMs with RL from human feedback
(RLHF) to better align LLMs to human intentions, leading to the great success of ChatGPT (OpenAI,
2023). Recently, GRUE benchmark (Ramamurthy et al., 2022) systematically studied RL versus SL
when finetuning LLMs on downstream tasks with predefined rewards. GRUE’s preliminary results
demonstrate the benefit of RL when fine-tuning LLMs, leading to the release of popular codebases
such as RL4LMs (Ramamurthy et al., 2022), TRLx (CarperAI, 2023) and AlpacaFarm (Dubois et al.,
2023), that enables RL for language models. However, ChatGPT, RL4LMs, TRLX, and AlpacaFarm
all use vanilla policy gradient methods known to be sample inefficient and sensitive to local minima
due to the combinatorially large search space of natural language generation (Ramamurthy et al.,
2022).

In this work, we focus on more efficient ways of fine-tuning LLMs on downstream tasks with
predefined rewards. Our approach is motivated by prior work on Imitation Learning (IL) for structured
prediction, which often leverages an existing guide policy (not necessarily an optimal policy) to
reduce the search space for more efficient and optimal learning. Our key observation is that since
modern LLMs exhibit impressive general language capabilities, they can serve as guide policies
to improve the RL procedure. Our framework, which we call, RL with guided feedback (RLGF),
integrates a guide policy into a policy gradient framework. The guide policy can provide reasonable
but sub-optimal predictions for downstream tasks, which our framework can then leverage to learn
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a near-optimal strategy. We introduce novel algorithms for fine-tuning LLMs using our RLGF
framework while capturing various existing IL for structured prediction and RL algorithms.

We evaluate on three tasks. The first is IMDB where the goal is to generate a positive and fluent
review given an initial context. The second is CommonGen where the goal is to write a fluent text that
uses a given set of words. Finally, we test on the TL;DR summarization task where the objective is to
learn to generate summaries using human preference data. For all tasks, we find evidence of metric
mismatch from SL-based fine-tuning approaches and show that RL-based methods which utilize
reward signals outperforms on the task metric. We then demonstrate RLGF outperforming PPO on
reward, fluency, as well as automated lexical metrics such as Rouge. Finally, we investigate how
various baselines and RLGF algorithms balance the inherent trade-off between reward optimization
and the KL constraint in the RLHF objective. We provide both theoretical justification and empirical
evidence to show the benefit of using feedback in RL for fine-tuning LLMs on downstream tasks.

2 RELATED WORK

Here we present the most relevant works at the intersection of IL, RL, and natural language generation.
Please see Appendix A for a more thorough treatment of the literature.

IL for Structured Prediction: Algorithms such as Schedule Sampling (SS) (Bengio et al., 2015),
methods using SS (Duckworth et al., 2019; Mihaylova & Martins, 2019; Goyal et al., 2017), SEARNN
(Leblond et al., 2017), Bridging the Gap (Zhang et al., 2019b), Mixer (Ranzato et al., 2015) been
inspired by IL for structured prediction algorithms DAGGER (Ross et al., 2011), DAD (Venkatraman
et al., 2015), and SEARN (Daumé et al., 2009). Our work is inspired by AggreVaTeD (Sun et al., 2017)
(Differentiable AggreVaTe Ross & Bagnell (2014)) where the algorithm makes use of differentiable
policies and multi-step feedback rather than immediate one-step predictions to imitate. Similarly, we
present a differentiable version of LOLS (Chang et al., 2015) as well as an improvement, D2LOLS.

LLM Fine-tuning from Human Preferences: Recent advancements in fine-tuning of Large
Language Models (LLMs) have shown incredible success in tasks through learning from human
preferences. Being simpler to accumulate human preferences, Reinforcement Learning from Human
Feedback (RLHF) (Stiennon et al., 2020) introduced a paradigm to utilize RL to improve downstream
performance on translation (Kreutzer et al., 2018b), summarization (Stiennon et al., 2020), storytelling
(Ziegler et al., 2019), and instruction following (OpenAI, 2023). Although effective, following works
have shown RLHF to be challenging due to reward hacking, difficulties in scaling, and training insta-
bility (Zhao et al., 2023; Rafailov et al., 2023; Liu et al., 2023). To circumvent these difficulties, recent
works have proposed methods to optimize for human preferences without RL (Zhao et al., 2023; Yuan
et al., 2023; Rafailov et al., 2023; Liu et al., 2023). DPO, SLiC, RRHF, and RSO are methods that opti-
mize for compatibility with a preference dataset under a preference reward model such as the Bradley
Terry model (Bradley & Terry, 1952). In contrast, our work takes a different approach to improving
RLHF by investigating improvements to PPO (Schulman et al., 2017), the base RL algorithm used.

LLM Distillation: With an ever growing arsenal of powerful, black-box LLMs, recent work has
aimed to distill specific capabilities into a smaller model. Knowledge distillation (Buciluǎ et al., 2006;
Hinton et al., 2015) in autoregressive models investigated matching sequence level log probabilities
(Kim & Rush, 2016), model hidden states (Jiao et al., 2019), or attention scores (Wang et al., 2020).
Recently, more sophisticated methods, inspired from the IL literature, are being proposed to better
imitate the expert LLM’s performance (Lin et al., 2020a; Agarwal et al., 2023; Mukherjee et al.,
2023), with ORCA (Mukherjee et al., 2023) reaching parity performance with ChatGPT (OpenAI,
2023) by distilling the reasoning traces from GPT4 (OpenAI, 2023). Distinct from this line of work,
RLGF does not aim to replicate the guidance policy. Rather, our objective is to leverage generation
traces derived from a guide policy to condense the search space for RL algorithms. More importantly,
our goal goes beyond imitation of the guidance policy and focuses on algorithms that better optimize
a reward with guidance policy feedback.

3 PRELIMINARIES

Text generation with LLMs can be viewed as a structured prediction problem, consisting of an input
space X , an output space Y and non-negative loss function ℓ(x, ŷ, y∗) 7→ R≥0 such that the loss
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function ℓ represents how close ŷ is to the ground truth y∗ given the input x. We are provided
with a training set of N labeled input-output pairs D = {(xi, yi)}Ni=1 drawn from some unknown
distribution over X × Y . The goal is to learn a mapping f : X 7→ Y that minimizes the loss function
ℓ with respect to D. We adopt the approach of solving the text generation structured prediction
problems using sequential decision-making as formalized in learning-to-search (L2S) (Daumé et al.,
2009; Collins & Roark, 2004; Ratnaparkhi, 1996).

We view our L2S problem as a token-level finite-horizon MDP ⟨S,A, P,R,H, µ⟩ using a finite
vocabulary V . We are given a labeled dataset D =

{
(xi, yi)

}N
i=1

of N samples, where xi is a prompt
text and yi is the target text generation. We define µ ∈ ∆(D) as the initial distribution over prompts
in the dataset, and the action space A as the set of tokens in our vocabulary V . The state space
S = ∪h=1,··· ,HVh is the set of all possible token sequences and a state sh ∈ S is the prompt x
and previously generated tokens (a0, a1, . . . , ah−1), i.e., sh = (x, a0, a1, . . . , ah−1). The transition
function P : S × A → ∆(S) is a deterministic known transition function that appends the next
action ah to the state sh+1 The time horizon H ∈ Z+ is the maximum generation length. Finally,
R : S → R is the reward function such as the task evaluation metric.

Let dπh represent the state distribution of visiting a state at time h. Let dπ = 1
H

∑H
h=0 d

π
h be

the average visitation if we follow π for H steps in a trajectory. With an LLM policy π, we
define the value function and Q-function as V π

h (s) = Eπ[
∑H

h′=h R(sh′)|sh = s] and Qπ
h(s, a) =

R(s) + Es′∼P (·|s,a)[V
π
h+1(s

′)] respectively. Finally, we define the advantage function for an LLM
policy π as Aπ(s, a) = Qπ(s, a)− V π(s).

Guide policy πg In our setting, we additionally assume access to an LLM guide policy πg that can
assist our policy π. The guide policy can be used to alter the initial state distribution µ and to compute
the advantage function Aπg

(s, a). In this work, πg is a supervised fine-tuned (SFT) model on the
downstream task and generate feedback from πg with a more effective decoding strategy like nucleus
sampling (Holtzman et al., 2019). Note, RLGF treats πg as a query-able, black-box model that we
cannot update. This allows for πg to be any black-box model such as GPT4 or a human-expert.

4 REINFORCEMENT LEARNING FROM GUIDED FEEDBACK

<Prompt> Two roads to separate pathsdiverged

from the street

in a wood

rollin rollout reward

1

2 3

Figure 1: RLGF’s main mechanism of incorporating guidance through interactions between two
LLMs: rollin and rollout policies. (1) the rollin policy generates a trajectory. (2) the rollout policy
restarts to a sampled point in the generation (i.e. s2) and completes the generation. (3) the rollout
policy receives a score (i.e. reward) for the generation.

Unlike other tasks studied in RL, structured prediction problems such as text generation, have two key
properties: a deterministic transition function and a policy’s ability to restart to any state. Because
our transition function is the set of previously generated tokens, we can easily alter the words in the
generation (add, remove or swap), and restart our policy πθ to any point of the generation.

Restarts allow us to execute rollin and rollout policies as seen in Figure 1. The rollin policy is used to
generate sequences that the rollout policy evaluates. Specifically, we sample a prompt x and target
sentence y from our initial distribution µ. We then generate an entire trajectory using our rollin
policy starting from the sampled prompt. We combine the state-action pairs from the collected rollin
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trajectory with the initial state distribution – creating a modified initial state for the rollout policy. The
rollout policy samples a state along the rollin generation, restarts to this state and performs a one-step
deviation action. The rollout policy then completes the generation and collects a reward. The rollin
and rollout policies can be our LLM policy πθ, guide policy πg or a mixture that interpolates between
the two. Depending on the choice of rollin and rollout policies, we invoke different algorithms.

PPO: Rollin πθ and Rollout πθ Under this schematic, notice how when both the rollin and rollout
policies are our current LLM policy πθ that is being fine-tuned, the resulting RL algorithm is PPO.
That is, we would be collecting generations from a single LLM. This configuration does not take
advantage of the ability to modify the initial state distribution nor the availability of a guide policy πg .

Algorithm 1 PPO++

1: Input: πθ, guide πg , iterations T , mixing parameter β ∈ [0, 1], dataset D =
{
(xi, yi)

}N
i=1

2: for t ∈ [T ] do
3: Rollin with (s, a) ∼ βdπ

g

+ (1− β)dπ
t
θ starting from x ∼ D

4: Rollout with πt
θ to collect trajectories

5: Update V
πt
θ

ϕ with trajectories and compute advantage estimates Aπt
θ

6: Update πθ using PPO loss with Aπt
θ

7: return πθ

PPO++: Rollin πg and Rollout πθ The second scheme we consider is rollin with our guide policy
πg and rollout with our LLM policy πθ. This strategy is motivated from a popular Approximate Policy
Iteration algorithm (Bertsekas, 2011): Conservative Policy Iteration (CPI) (Kakade & Langford,
2002). CPI proposes to use a diverse initial state distribution to address the exploration issue in PG
methods. Particularly, it proposes to use an initial state distribution that covers some high-quality
policy distribution. The first key idea of PPO++ is to take advantage of a guide policy πg to provide
an enlarged initial state distribution – so that the rollout policy, πθ, can visit diverse and relevant
states it would otherwise not visit. The second key idea of PPO++ is using a mixture policy with state
distribution βdπ

g

+(1−β)dπθ , for rollin (see Algorithm 1 Line 3). This ensures that with probability
(1− β), PPO++ is executing the default PPO update, making sure PPO++ never underperforms PPO.

Algorithm 2 AggreVaTeD

1: Input: πθ, guide πg , iterations T , mixing parameter β ∈ [0, 1], dataset D =
{
(xi, yi)

}N
i=1

2: for t ∈ [T ] do
3: Rollin with (s, a) ∼ (1− β)dπ

t
θ + βdπ

g

starting from x ∼ D
4: Rollout with πg to collect trajectories
5: Update V πg

ϕ with trajectories and compute advantage estimates Aπg

6: Update πθ using PPO loss with Aπg

7: return πθ

AggreVaTeD: Rollin πθ and Rollout πg The next scheme performs rollin with our LLM policy
πθ and rollout with our guide policy πg – the opposite of PPO++. This scheme is an interactive
imitation learning algorithm, AggreVaTeD (Sun et al., 2017), a differentiable policy gradient
version of AggreVaTe (Aggregate Values to Imitate (Ross & Bagnell, 2014)) as seen in Algorithm 2.
AggreVaTeD is an API algorithm similar to CPI and also uses a mixture policy with state
distribution βdπ

g

+ (1 − β)dπθ for rollin. This algorithm first generates rollins with the mixture
policy to collect sequences. Then AggreVaTeD generates rollouts with the guide policy and
evaluates the quality of the generated rollouts. It then uses the rollouts to train a value network V πg

ϕ

that measures the reward-to-go of πg, which in turn is used to construct the advantage of πg: Aπg

.
With this advantage Aπg

, AggreVaTeDupdates the policy like PPO. Intuitively, the algorithm aims
to learn the policy argmaxa A

πg

(s, a). Rolling out with πg ensures that the LLM policy πθ can
be at least as good as or better than the guide policy πg .
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Algorithm 3 D2LOLS

1: Input: πθ, guide πg , iterations T , dataset D =
{
(xi, yi)

}N
i=1

2: Run π1
θ = AggreVaTeD(πθ, π

g, αT, β1,D)
3: Run π2

θ = PPO++(π1
θ , π

g, (1− α)T, β2,D)
4: return π2

θ

D2LOLS: combines PPO++ and AggreVaTeD Given the previous approaches of interaction, we
can come up with multiple ways to combine PPO, PPO++, and AggreVaTeD. In Algorithm 3, we
present Direct and Differentiable Locally Optimal Learning to Search (D2LOLS), which is a simple
approach to combine the previous methods. D2LOLS is a differentiable policy gradient version of Lo-
cally Optimal Learning to Search (LOLS)(Chang et al., 2015) and addresses limitations of how LOLS
combines PPO, PPO++, and AggreVaTeD. The original formulation of LOLS requires computing
cost-sensitive classification similar to AggreVaTe; instead we take inspiration from AggreVaTeD’s
differentiable approach to develop a differentiable version of LOLS. Furthermore, LOLS (Algorithm 4)
has a mixing probability parameter α which directly merges the advantage function between PPO and
AggreVaTeD, leading to theoretical issues. D2LOLS removes this mixing probability and replaces
it with a mixing time variable α that decides how many iterations to perform AggreVaTeD before
switching to PPO++. This simple strategy fixes LOLS’s issue arising from interweaving guidance.

5 THEORETICAL JUSTIFICATION

In this section, we provide theoretical justification for various rollin and rollout schemes mentioned
in Section 4. Each algorithmic scheme takes advantage of a guide policy πg , the ability to restart the
policy to any state, and access to the reward signal. Our theoretical justification are derived from the
original algorithms that each method has built upon.

Interactive Imitation Learning: AggreVaTeD In our interactive IL setting, we assume access
to the ground truth reward and to a guide policy πg that may not necessarily be an expert policy π⋆

(i.e. optimal at the task). Our AggreVaTeD (Algorithm 2) implementation is a modification of
the original AggreVaTeD (Sun et al., 2017) to incorporate a PPO policy gradient loss. The overall
idea is to perform policy gradient updates on the loss function ℓt(π) := Es∼dπtEa∼π(·|s)[A

πg

(s, a)],
where πt is our latest learned policy. We can define the average-regret and best policy performance in
our policy class over T -iterations as:

ϵregret =
1

T

(
−

T∑

t=0

ℓt(π
t) + max

π∈Π

T∑

t=0

ℓt(π)

)
ϵclass = max

π∈Π

1

T

T∑

t=0

Es∼dπt

[
Aπg

(s, π(s))
]
.

If the gradient update procedure achieves no-regret, i.e., ϵregret → 0 as T → ∞, AggreVaTeD
achieves the following guarantee; there exists t ∈ [T ], such that:

V πt

≥ V πg

+Hϵclass.

When the guide policy is included in our policy class πg ∈ Π, e.g., when our policy πθ and our
guide πg have the same GPT2 model architecture, then our ϵclass term is guaranteed to be non-
negative. Furthermore, this term is positive when πg is not globally optimal with respect to its
advantage function (i.e., maxa A

πg

(s, a) can be positive). Thus when ϵregret → 0 (i.e., no-regret),
AggreVaTeD guarantees to learn a policy πt that outperforms the guide policy by a margin. This was
originally confirmed empirically in Sun et al. (2017) and is also confirmed in our experiments. With
our SFT model with nucleus sampling as πg , AggreVaTeD learns a policy πt outperforming πg .

Reinforcement Learning with better restart distribution: PPO++ Although AggreVaTeD is
capable of outperforming πg , it is an imitation learning algorithm, meaning by design, its performance
is limited by the performance of πg . In contrast, RL has the potential to learn the near optimal policy,
but popular RL approaches suffer from a lack of exploration. We propose to leverage rollin’s with
the guide policy to overcome RL’s exploration issues. PPO++ Algorithm 1 implements this idea
using a PPO loss. We can interpret the rollin policy distribution with the guide policy, as a restart
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distribution that alters the initial distribution of our policy, i.e., µmix := (1 − β)µ + βdπ
g

, where
recall µ ∈ ∆(D) is the original initial state distribution over our data.

Policy gradient theory (Kakade & Langford, 2002; Bagnell et al., 2003; Agarwal et al., 2019; 2021)
ensures that as long as a near optimal policy is covered by the restart distribution, we can learn to
perform as well as the near optimal policy. More formally, consider the special case where β = 1/2,
and π⋆ is the globally optimal policy; and assume that at some iteration t one-step local improvement
over πt is small, i.e., Es,a∼dπt

µmix

[
maxa A

πt

(s, a)
]
≤ ϵ, then with some small ϵ we have:

V πt

≥ V π⋆

−O

(
H2 max

s

(
dπ

⋆

(s)

dπg (s)

)
ϵ

)

We refer readers to the proof of theorem 6.2 in Kakade & Langford (2002). Note that compared to
the result from AggreVaTeD, we are able to compare against the globally optimal policy π⋆ under
the condition that πg’s state distribution covers π⋆’s state distribution (i.e., the guide policy has a
good sense of what states π⋆ will likely visit). In our experiments, we mainly use a SFT model with
nucleus sampling as our guide policy πg . While we do not expect the SFT policy πg is as good as the
optimal π⋆, it is reasonable to expect that dπ

g

provides coverage to dπ
⋆

. Our experiments verify that
restarting based on states from dπ

g

improves the performance of PPO.

Combine Reinforcement Learning and Imitation Learning: D2LOLS D2LOLS is the simplest
approach to combine AggreVaTeD and PPO++. This algorithm runs AggreVaTeD for a fixed
period of time and then PPO++ for the remaining time. If our policy gradient algorithm is Trust-
region policy optimization (TRPO) 1 (Schulman et al., 2015) or CPI (Kakade & Langford, 2002), then
our algorithm has a guaranteed monotonic policy improvement. This means that upon convergence,
we achieve two properties: (1) our learned policy is at least as good or better than the guide policy πg ,
(2) our policy is locally optimal, i.e., the local one-step improvement, Es,a∼dπ

µmix
[maxa A

π(s, a)],
has to be small (otherwise TRPO and CPI can keep improving).

There exist several algorithms in the literature that combine RL and IL (Cheng et al., 2018; Sun et al.,
2018; Chang et al., 2015; Rajeswaran et al., 2017; Nair et al., 2018). The key difference between
D2LOLS and LOLS is how PPO++ and AggreVaTeD is combined. LOLS uses a mixing probability
α to combine our πθ and the guide policy πg advantage function αAπt

θ + (1− α)Aπg

(s, a); whereas
D2LOLS uses a mixing time parameter α to decide when to switch from doing AggreVaTeD to
PPO++ for the remainder of training. LOLS can achieve the property of outperforming better than
πg and also being locally optimal, but only under the assumption that the following gap is small:

∀π :
∣∣∣Es∼dπ

[
max

a
Aπg

(s, a) + max
a

Aπ(s, a)
]
− Es∼dπ max

a

[
Aπg

(s, a) +Aπ(s, a)
] ∣∣∣ ≤ ε,

with some small ε. However, such a gap can exist in practice and does not vanish even with enough
training data. Intuitively this gap is non-trivial when the one-step improvement over π contradicts
with the one-step improvement over πg . The simplest approach D2LOLS works the best, and achieves
the guarantee that LOLS aimed for without the additional assumption of the above gap being small.

6 EXPERIMENTS

We perform all of our experiments using a modified PPO objective Jppo (Ouyang et al., 2022;
Wu et al., 2016). This objective combines the original PPO objective with a maximum-likelihood
estimation (MLE) objective of the ground-truth dataset’s D references:

Jppo(π) = E(s,a)∼πθ

[
R(s)− λKL(πθ(a|s)||π0(a|s))

]
+ ηE(s,a)∼D

[
log πθ(a|s)

]
,

where λ is the KL coefficient and η is the MLE coefficient. For all of our proposed RLGF algorithms
discussed in section 4 we consider setting πg to the supervised fine-tuned model (SFT) with nucleus

1in our experiments, instead of using TRPO, we use PPO – a scalable version of TRPO that is more suitable
for high-dimensional problems. However we emphasize the TRPO and PPO use the same principle for policy
optimization: make conservative policy update (Kakade & Langford, 2002) to ensure monotonic improvement.
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IMDB Sentiment CommonGen
Algorithms Semantic and Fluency Metrics Lexical and Semantic Metrics

Sentiment Score Perplexity Output-Perplexity Bleu-4 BERTScore CIDEr-D SPICE
(↑) (↓) (↓) (↑) (↑) (↑) (↑)

Zero-Shot 0.48 ± 0.00 32.55 ± 0.00 5.64 ± 0.00 0.16 0.93 1.10 0.26
SFT 0.55 ± 0.00 35.67 ± 0.00 6.19 ± 0.00 0.22 0.95 1.43 0.31

SFT+PPO 0.97 ± 0.01 44.92 ± 1.78 3.17 ± 0.62 0.26 0.95 1.65 0.32
SFT+PPO++ 0.97 ± 0.01 44.83 ± 2.10 3.34 ± 0.80 0.27 0.95 1.68 0.32
SFT+AggreVaTeD 0.95 ± 0.03 52.56 ± 5.38 5.04 ± 2.30 0.27 0.95 1.65 0.32
SFT+LOLS 0.93 ± 0.05 53.30 ± 16.70 3.44 ± 4.96 0.26 0.95 1.66 0.32
SFT+D2LOLS 0.97 ± 0.00 43.88 ± 2.37 2.92 ± 0.13 0.27 0.95 1.69 0.33

Table 1: IMDB and CommonGen Results: We compute the mean and standard deviation over 3
seeds for the IMDB task and compute 1 seed for the CommonGen task. For our reward function each
task we use the bold metric(s). The zero-shot model is the performance of the pretrained model used
for IMDB and CommonGen, GPT-2 and T5 respectively. SFT+Alg indicates running Alg after
supervised finetuning. SFT+nucleus is used as our guide policy πg for all experiments.

sampling for decoding (i.e., πg =SFT+nucleus). We treat SFT+nucleus as a black-box model
that we can only query for text generation and do not perform updates to it. By using SFT+nucleus
as our guide policy, we run all of our experiments under the exact same conditions as those of RLHF.
Note, RLHF already requires keeping SFT to compute the KL constraint, KL(πθ||π0), in Jppo.

Task Details In our experiments, perplexity measures how likely our learned model, πθ, is to
generate the references in the task dataset, whereas output perplexity computes how likely a general
LLM (e.g. GPTJ) is to generate the generations from our learned policy, πθ. Both perplexity metrics
have been reported as a measure of fluency (Fedus et al., 2018; Ramamurthy et al., 2022).

We perform experiments on three tasks. IMDB is the first task and the objective is to generate fluent
and positively sentiment-ed text continuations for IMDB (Maas et al., 2011) movie reviews prompts.
We use a sentiment classifier (Sanh et al., 2019) as our reward function that is trained on review texts
and sentiment labels from the dataset, which then provides sentiment scores indicating how positive a
given piece of text is. For training supervised SFT baselines, we consider only the examples with
positive labels. We chose GPT2 (Radford et al., 2019) as the base language model (LM) for this task.
We evaluate all algorithms on three metrics: sentiment reward score, perplexity, and output-perplexity.

Next, we consider CommonGen (Lin et al., 2020b), a challenging constrained, text generation task
that tests the ability of generative common sense reasoning. We optimize the SPIDER (Liu et al.,
2017) reward function, a weighted combination of the CIDEr-D and SPICE metric. We chose
T5-base (Raffel et al., 2020) as our base LLM and prefixed each concept set input with: "generate
a sentence with:". We evaluate on four metrics: BLEU (Papineni et al., 2002), CIDEr-D (Vedantam
et al., 2015), SPICE (Anderson et al., 2016), and BERTScore (Zhang et al., 2019a).

The final task we consider is Reddit TL;DR summarization dataset (Völske et al., 2017) where the
objective is to generated summaries. We use the filtered dataset with additional human preference
data used in Stiennon et al. (2020). The base LLM that we use for this task is GPT-J (Wang &
Komatsuzaki, 2021) and we train all models using LoRA adapters(Hu et al., 2021). We evaluate
all algorithms on 5 metrics: reward score, perplexity, output-perplexity, win rate and Rouge (Lin,
2004). For win rate, we use the open source Llama2-13B-chat (Touvron et al., 2023) model as our
evaluator model. We compare all algorithm generations to the preferred summary references. Refer
to Appendix C.2, for the exact Win Rate prompt, example evaluations and implementation details.

6.1 EXPERIMENTAL RESULTS

RLGF vs. RLHF Performance Table 1 and Table 2 compares all of the RLGF algorithms proposed
in Section 4 against standard RLHF algorithms and baselines. For all tasks, our πg is SFT which is
sub-optimal, performing worse than all RL based algorithms across most lexical and semantic metrics.
Utilizing this πg, for IMDB, SFT+D2LOLS and PPO++ outperform PPO, and for CommonGen,
D2LOLS outperforms PPO . Finally, for TL;DR summarization we see that PPO++ performs better
than PPO as well as a competitive baseline, Best-of-N (Dubois et al., 2023).
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TL;DR Summarization
Algorithms Semantic and Fluency Metrics

RM Score Perplexity Output-Perplexity Win Rate Rouge 1 Rouge 2 RougeL
(↑) (↓) (↓) (↑) (↑) (↑) (↑)

Zero-Shot 1.57 14.07 11.51 44.12% 0.27 0.07 0.18
SFT 5.68 14.09 12.81 44.29% 0.34 0.25 0.25
Best-of-N (N = 8) 5.98 14.09 12.86 47.60% 0.36 0.13 0.27

SFT+PPO 6.01 15.05 17.67 54.25% 0.35 0.13 0.27
SFT+PPO++ 6.11 14.53 16.15 55.01% 0.36 0.14 0.27
SFT+AggreVaTeD 5.93 14.69 16.41 48.98% 0.36 0.15 0.29

Table 2: TL;DR Summarization Results: We report the mean over 1 seed. Our RM Score is under
our trained preference reward model and the Win Rate is evaluated by Llama2-13B-Chat. We use
SFT+nucleus as πg .

Supporting our justification from Section 5, AggreVaTeD improves beyond our guide policy,
providing an alternative as a warm-starting methodology to warm-starting with SFT. As shown by
Table 7, we see that warm-starting with AggreVaTeD leads to higher performance on IMDB than
warm-starting with SFT, a popular learning strategy when performing RL for language (Stiennon
et al., 2020; Ouyang et al., 2022). PPO++, on the other hand, is better than or competitive to our
RL baseline demonstrating a simple, yet powerful alternative to PPO as the RL procedure. Even in
practice, we observe the benefit of restarting from an initial state distribution that better covers an
optimal policy’s state distribution. The combination of these two, D2LOLS, achieves the best of both
worlds and fully leverages the capabilities of utilizing a guide policy.

Reward Optimization Tradeoff In Figure 2 we evaluate how well RLGF algorithms trade-off
optimizing the reward while minimizing the perplexity and kl-constriant

√
KL. For both plots, the top

right corner indicates the policy has both high reward and low perplexity and low divergence from π0.
For each algorithm we plot 5 checkpoints ranging from 20 to 100 iterations.PPO++ mostly matches
or has higher reward than PPO while maintaining a lower perplexity. Separately, AggreVaTeD
trade-offs reward for perplexity, and has comparable reward scores as PPO while drastically reducing
its perplexity. For the kl-constraints plot on the left of Figure 2 we see that although PPO has a set
of points with high reward, most of these points also have high KL divergences. Whereas, a subset
of PPO++ matches or has higher reward than PPO while having a lower kl-constraint.
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Figure 2: We investigate the reward optimization, kl-constriant, and fluency trade-off in our TL;DR
summarization task. The dashed line represents our SFT policy’s performance across each metric.
Both PPO++ and AggreVaTeD learn a policy that has a better trade-off than PPO.

RLGF Performance on Difficult Prompts Our evaluation was carried out on the CommonGen
task where we categorized the prompts based on their difficulty level. For CommonGen, we classify
the prompts into easy and hard based on the number of unseen concepts in the prompt. Specifically,
we categorized prompts with 3 concepts as easy and more than 3 concepts as hard. Figure 3 presents
a comparison of scores for different algorithms grouped by prompt difficulty. The results reveal
a notable performance gap between easy and hard prompts for algorithms such as SFT and PPO,
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Figure 3: Comparison of CIDer-D scores grouped by prompt difficulty on CommonGen. The
performance gap between easy and hard prompts is evident for SFT, and PPO++, while our proposed
algorithms AggreVaTeD, LOLS and D2LOLS exhibit a significantly smaller gap, showcasing their
effectiveness on challenging prompts.

whereas our proposed algorithms PPO++, AggreVaTeD, LOLS and D2LOLS exhibit a significantly
smaller gap, with D2LOLS having the least gap. In other words, even on challenging prompts, our
interactive algorithms produce better text continuations. See Appendix E for example generations.

MLE and KL coefficient Sensitivity We test the sensitivity of PPO and RLGF algorithms to two
regularization hyperparameters in the Jppo objective, namely the KL coefficient, λ, and the MLE
coefficient, η. The left 2 plots in Figure 4 show the reward and perplexity when we keep η fixed and
vary λ while the right 2 show the performance when we keep λ fixed and vary η. All RL algorithms
are robust to varying KL coefficients. We observe much more instability when relaxing our MLE
regularization with PPO and RLGF algorithm’s perplexities blowing up.
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Figure 4: Jppo KL coefficient (λ) and MLE coefficient (η) ablation. We show the sensitivity of PPO
and RLGF algorithms to each regularization term in the objective. Note that all RL algorithms are
robust to changes in KL coefficient with relatively minor changes in the Perplexity while being more
sensitive to changes in MLE objective (Right) with blowups in the perplexity.

7 CONCLUSION AND FUTURE WORK

We presented a unifying framework of incorporating a guide policy to enhance reinforcement
learning for natural language generation. Through theoretical justification and experimental
validation, we demonstrate that our RLGF framework can outperform PPO for fine-tuning LLMs.
Our proposed algorithms PPO++ and D2LOLS only require black-box access to the guide policy
and are conceptually simple and easy to implement based on PPO. While in our experiment, we
demonstrate that supervised fine-tuned models with standard decoding strategies is a good candidate
of the guide policy, our framework is general enough to leverage any large LLMs as the guide
policy, including those that are not open-sourced. Finally, RLGF’s contributions to the broader large
language model literature is complementary to model enhancements, dataset improvements, and
prompting discoveries such as in-context prompting. We leave it to exciting future work to test the
full capabilities of bootstrapping the state-of-the-art advancements in each research direction with
RLGF to improve reinforcement learning for natural language generation.
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