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Abstract

Biological tissues reliably grow into functional structures from simple starting1

states during development. Throughout this process, the energy of a tissue changes2

depending on its natural resistance to deformations such as stretching, bending,3

shearing, and torsion. In this paper, we represent tissue structures as shapes and4

develop a mathematical framework to discover paths on the tissue shape manifold5

to minimize the total energy during development. We find that paths discovered by6

gradient descent and the geodesic algorithm outperform naive shape interpolation7

in energetic terms and resemble strategies observed in development. Broadly, these8

tools can be used to understand and compare shape transformations in biology and9

propose optimal strategies for synthetic tissue engineering.10

1 Introduction11

In biological tissues, shape and function are inextricably linked. For instance, the intricate architecture12

of the heart allows it to efficiently deliver oxygenated blood to the body. During cardiac development13

(cardiogenesis), a single population of early precursors fuses into the primitive heart tube and must14

undergo a series of precise loopings, rotations, and partitions, while simultaneously functioning as a15

pump [1]. As a result, congenital heart malformations [2, 3] are the most common fatal birth defects16

in infants, for whom birth defects are the number one cause of death. Of the many possible paths from17

an initial form to a final form, why do biological tissues transform in the manner as observed? From18

the perspective of physics, as a tissue changes shape, it traverses an energy landscape determined by19

its natural resistance to deformations from a resting state.20

To better understand this problem, we design a mathematical approach inspired by AI to discover21

minimum-energy strategies for growing a folded rigid tubular structure from an initially round tissue.22

We generate candidate paths for this simple morphological operation using naive interpolation, an23

algorithm for geodesic (locally low-energy) paths, and gradient descent. We find that geodesic and24

gradient descent paths open up the tissue at the opposite end from the site of folding, thus bypassing25

closed intermediates with high tensile energy. Broadly, our work supplies tools for understanding26

biological development and discovering novel strategies for synthetic tissue engineering.27

2 Mathematical framework28

2.1 Preliminaries29

In our mathematical framework adapted from [4, 5], we represent an organic structure as a 2-30

dimensional shape, wherein the sampled coordinates of the shape are vertices of the shape manifold31

(S) = Rmx2, where m is the number of vertices and ‘2’ refers to the 2 axes x and y. In addition, we32

define an energy function (E(s) = Rn), that maps an organic structure s to the energy space (E).33

The energy space is a vector in Rn, where the n elements correspond to n separable energies, whose34

relative contributions can be balanced based on the properties of the tissue being examined. In this35
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work, we approximate a rigid tissue as a covalent solid, or a network of stretchable bonds connected36

by bendable joints. Thus, a shape’s energy is the sum of the stretching and bending energies of its37

constituent bonds and joints (Fig. 1A).38

E(s, t) =

[
Estretch

Ebend

]
=


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Here, B and K are the stretching and bending moduli (analogous to a material’s bulk modulus and39

bending rigidity). The stretching energy is the spring potential for a spring described by the vector40

rj = sj+1− sj with resting length `(0)j (t), and the bending energy is the harmonic angle potential for41

the signed bending angle between rj and rj+1 with resting angle θ(0)j (t). Spring lengths and bending42

angles were calculated as43

`j = ‖rj‖2 , θj = Sgn(rj × rj+1) arccos

(
rj · rj+1

‖rj‖2 ‖rj+1‖2

)
, (2)

where Sgn is the signum operator.44

Figure 1: (A) Energy of a structure is evaluated by modeling the bonds as a flexible network of
nodes with pre-defined resting lengths and angles. (B) Geometric framework for growing biological
structures. Three biological structures (N1,N2,N3) in shape space S and their relative distance in the
Energy space. Growth of biological structures is analyzed by asking how movement in shape space
changes the energy through introduction of a pullback metric g

Objective: Our goal is to find a path (γ(t)) between two organic structures (s1, sf ∈ S) while45

optimizing relevant energy terms, based on the developmental process being modeled.46

2.2 Metric Tensor construction47

To formalize the notion of energy change as the structure (2D shape) changes, we evaluate how48

infinitesimal perturbation in the shape manifold (S) impacts movement in the energy space (E) by49

constructing a metric tensor (Fig 2B). To construct the metric, we ask how the energy changes (E) as50

the 2D shape is infinitesimally changed from s1 ∈ S by ds.51

E(s1 + ds) ≈ E(s1) + Js1 du, (3)

where Js1 is the Jacobian of E(s1) and Ji,j = ∂Ei

∂sj , evaluated at s1.52

In this work, we evaluate the change in energy (dE(ds,gs1)) by calculating the Euclidean distance53

between the energy vectors corresponding to shapes s1 and s1 + ds. (Please note that general54

(non-Euclidean) distance measures can be constructed on the output space, but we focus on the55

Euclidean case for clarity).56

dE(ds,gs1) =
√
|E(s1 + ds)− E(s1)|2 =

√
dsT (Js1

T Js1) ds =

√
dsT gs1 ds (4)

dE(ds,gw) =

√
dsTgsds (5)

where gs1 = Js1
T Js1 is the metric tensor evaluated at the point s1 ∈ S and dE(ds,gs) is the57

distance moved in output space when the weights are perturbed by ds at s ∈ S.58
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2.3 Constructing minimal energy paths in the shape manifold59

Our objective is to find a path in the shape manifold (S) between two 2D shapes (s1 and s2),60

representing biological tissue structures at separated time-intervals during the developmental process61

(as shown in Fig. 2A), such that the total energy consumed during the transformation is minimized.62

Mathematically, we want to find a curve C ∈ S , with start and end points s1 and s2 respectively, such63

that the integrated energy of the transformation is minimized.64

L(C) =

∫
C
dE(ds, 〈gw(x)〉) (6)

=

∫
C

√
dsT〈gs〉ds (7)

On parameterizing the curve traversed (C ∈ S) by γ : [0, 1] → S ∈ W , wherein γ(0) = s1,
γ(1) = s2, the differential element along the path (ds) can be rewritten as:

ds =
dγ

dt
dt, s = γ(t)

The total length of the path parameterized by γ(t) is:65

L(γ) =

∫ 1

0

√
(
dγ

dt
(dt))T 〈gγ(t)(x)〉(dγ

dt
(dt)) (8)

L(γ) =

∫ 1

0

√
dγ(t)

dt

T

〈gγ(t)〉
dγ(t)

dt
dt, (9)

Let Ω be the set of all piecewise differentiable curves from s1 to s2 in the shape manifold (S), we66

want to find γ∗ such that:67

L(γ∗) = minγL(γ) ∀γ ∈ Ω (10)

Therefore, minimizing L(γ) enables the discovery of low-energy paths in the shapes manifold between68

two shapes, corresponding to biological structures at different stages of development. We find the69

geodesic path from the source to the target shape by applying the path-straightening approach [6, 7].70

The algorithm is seeded with the linear path as the starting path, and the shapes along the linear path71

are adjusted in order to minimize the total energy of the path.72

3 Results73

We seek to study how cells and tissues traverse the energy landscape between disparate "source"74

and "target" structures. During development, the same tissue structure is often generated in different75

ways depending on the developmental context, suggesting the existence of multiple paths in the76

energy landscape with different energetic trade-offs. For instance, a tube is a fundamental unit of77

many tissues and organs, and yet tubes form in a variety of ways, including wrapping, budding,78

and hollowing/cavitation [8]. Let us consider growing a tube from a rigid aggregate of uniform,79

adhesive cells. Initially, the tissue would adopt a spherical configuration due to surface tension. Two80

mechanisms for tube-formation, wrapping and budding, involve creating high positive and negative81

curvature on opposing ends of a folding structure, resulting in a wrinkle or dimple. To represent82

this process in 2D, we start from a circular source shape and specify a folded target shape (a hollow83

annulus prior to fusion of the tube), assuming the tissue is rigid throughout.84

We assume that this transformation is thermodynamically favorable such that limt→∞ `
(0)
j (t) =85

`j, s2 , limt→∞ θ
(0)
j (t) = θj, s2 ∀j. As in development, the tissue will eventually relax to its target86

shape in the absence of external forces. We begin with the simple case where resting lengths and87

angles are constant (`(0)j = `j, s2 and θ(0)j = θj, s2 ).88

We first generate a naive path by linearly interpolating Cartesian coordinates for each point in the89

shape (Fig 2A, top). In this naive path, the source shape gradual involutes on the bottom side and90

stretches on the top in order to fold into the target shape, remaining closed throughout. We then apply91
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Figure 2: (A) Source and Target shape as we move in the shape manifold. Path Straightening
algorithm finds the local Geodesic beginning from the linear path in the shape space. (B) Geodesic
path minimizes the energy of the path between source and target structures. (C) Gradient descent
minimization of the energy of the source shape, discovers a string of open-networks before converging
at the target shape. (D) The energy along the path that traverses the gradient of the energy function is
demonstrated here.

a path straightening algorithm to the linear path. The resulting local geodesic path involves a sudden92

opening of the structure (Fig. 2A, bottom). Plotting the energy along both paths (Fig. 2B) reveals93

that the unfolding intermediate corresponds to the highest-energy shape in the linear path, suggesting94

that the geodesic is bypassing an energy barrier during involution. We further find that a gradient95

descent algorithm applied to the source shape generates a path that similarly opens up the structure,96

allowing the right and left arms to move independently as it converges to the target (Fig. 2CD).97

We hypothesize that as involution occurs at one end of the tissue, the other end must transiently98

stretch in order to preserve a closed configuration. The geodesic and gradient descent paths avoid this99

high-energy intermediate by transiently opening the structure topology. This result highlights the100

potential for mechanical forces to exert long-range effects in development, whereby morphological101

events seemingly isolated to one region of an embryo can in fact be enabled by changes occurring in102

distant regions [9].103

4 Discussion104

Our preliminary experiments suggest that we can use structural modeling and a mathematical105

framework to find energy-efficient paths between biological structures that avoid energy barriers106

encountered by naive shape interpolation. Because each path provides a program for each element of107

the biological tissue to follow, they can be seen as a set of cell-level instructions for transforming a108

biomaterial as a whole. Such instruction sets could be useful for the engineering of a next generation109

of synthetic lab-grown tissues with defined morphology.110

This approach also could be extended in order to reverse-engineer the material properties (energy111

function parameters) of a developing/deforming tissue by minimizing the distance between experi-112

mental and model-predicted shape trajectories. This method would enable measurement of a tissue’s113

material properties in a much less invasive fashion than current methods and with greater spatial and114

temporal resolution.115
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