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Abstract

Citations are a key ingredient of scientific re-001
search to relate a paper to others published in002
the community. Recently, it has been noted003
that there is a citation age bias in the Natural004
Language Processing (NLP) community, one005
of the currently fastest growing AI subfields, in006
that the mean age of the bibliography of NLP007
papers has become ever younger in the last few008
years, leading to ‘citation amnesia’ in which009
older knowledge is increasingly forgotten. In010
this work, we put such claims into perspective011
by analyzing the bibliography of ∼300k papers012
across 15 different scientific fields submitted013
to the popular preprint server Arxiv in the time014
period from 2013 to 2022. We find that all AI015
subfields (in particular: cs.AI, cs.CL, cs.CV,016
cs.LG) have similar trends of citation amne-017
sia, in which the age of the bibliography has018
roughly halved in the last 10 years (from above019
12 in 2013 to below 7 in 2022), on average.020
Rather than diagnosing this as a citation age021
bias in the NLP community, we believe this022
pattern is an artefact of the dynamics of these023
research fields, in which new knowledge is pro-024
duced in ever shorter time intervals.025

1 Introduction026

Biases in citations of scientific papers are ubiqui-027

tous. For example, researchers may disproportion-028

ately cite (1) papers that support their own claims029

(Gøtzsche, 2022), (2) papers that have authors with030

the same gender (Lerman et al., 2022), (3) their031

own papers (Seeber et al., 2019), or (4) papers of032

close peers (Fister Jr et al., 2016). Recently, an-033

other citation bias has come under investigation,034

namely, ‘citation amnesia’, according to which au-035

thors tend to be biased in terms of newer paper,036

‘forgetting’ the older knowledge accumulated in a037

scientific field (Singh et al., 2023; Bollmann and038

Elliott, 2020). Citation amnesia has been discussed039

especially for the field of natural language process-040

ing (NLP), one of the currently most dynamics041

subfields of artificial intelligence (AI) (Eger et al., 042

2023; Zhang et al., 2023). For example, Singh et al. 043

(2023) find that more than 60% of all citations 044

in NLP papers are from the 5 years preceding a 045

publication and the trend has become considerably 046

worse since 2014; allegedly, current NLP papers 047

are at an “all-time low” of citation age diversity. 048

In this paper, we take a broader perspective, and 049

examine the age of citations, over time, across dif- 050

ferent (quantitative) scientific fields. In particu- 051

lar, we examine how the age of the bibliography 052

has developed in the last ten years (from 2013 to 053

2022) in the science subfields of computer science, 054

physics, mathematics, economics, electrical engi- 055

neering, quantitative finance, quantitative biology, 056

and statistics. To do so, we leverage arXiv, an ex- 057

tremely popular pre-print server for science, which 058

offers a comparative collection of volumes of pa- 059

pers. We aggregate our different subfields into three 060

classes: (i) AI related papers as a subset of com- 061

puter science (CS), (2) non-AI CS papers and (3) 062

non-CS papers. We find distinctive trends for the 063

three classes. Non-CS papers have an increasing 064

trend (on average) of citation age in their bibliog- 065

raphy: this is expected if we assume that papers 066

reference other papers to a large degree uniformly 067

across time (in which case the average age of cita- 068

tions will increase as science progresses, as there 069

are older papers to cite each year). CS non-AI 070

papers have a flat trend, i.e., the age of the bib- 071

liography has stayed constant across the 10 year 072

period. In contrast, CS AI papers have a strongly 073

decreasing trend, i.e., the age of citations drasti- 074

cally reduces over the ten year period and roughly 075

satisfies an exponential decay: e.g., the average 076

age of citations reduces from 12 years in 2013 to 077

below 7 in 2022. This holds true for all four AI sub- 078

fields we examine: NLP, Computer Vision (CV), 079

Machine Learning and AI proper. Our findings 080

question the previous assessment of ‘citation am- 081

nesia in NLP’: instead, it suggests that the (most) 082
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dynamic subfields of AI are particularly susceptible083

to citation age decay and this may especially be a084

function of the dynamicity of the field. This makes085

sense: if a field is very dynamic, new knowledge086

becomes available quickly, and past knowledge be-087

comes outdated quickly and cited less frequently.088

Thus, we believe that the citation amnesia property089

is a trait exhibited by all very dynamic scientific090

fields and the fact that citation age patterns have091

changed in NLP is a property of the changing state092

of the NLP community (Jurgens et al., 2018; Beese093

et al., 2023; Schopf et al., 2023).094

To our best knowledge, ours is the first paper095

to compare the age of citation distribution across096

diverse scientific fields (for the recent period since097

2013).098

2 Related work099

Scientometrics studies quantitative characteristics100

of science. Citations are one of its core concerns.101

For instance, Rungta et al. (2022) show that there102

is a lack of geographic diversity in NLP papers.103

Similarly, Zhang et al. (2023) find a dominance of104

US industry in most heavily cited AI arXiv papers105

and an underrepresentation of Europe. Wahle et al.106

(2023) show that NLP papers recently tend to dis-107

proportionately cite papers within the community108

itself109

Mohammad (2020) study gender gap in NLP110

research. Other popular aspects of citations investi-111

gated in previous work are citation polarity (e.g., is112

a paper positively or negatively cited) (Abu-Jbara113

et al., 2013; Catalini et al., 2015) and citation intent114

classification (Cohan et al., 2019). Besides clas-115

sification, generation for science has recently be-116

come popular, including review generation (Yuan117

et al., 2022), automatic title generation (Mishra118

et al., 2021; Chen and Eger, 2022) and generation119

of high-quality scientific vector graphics (Belouadi120

et al., 2023).121

The papers most closely related to ours are Boll-122

mann and Elliott (2020) and Singh et al. (2023).123

Bollmann and Elliott (2020) look at a 10 year pe-124

riod (2010-2019) and find that more recent papers,125

published between 2017 and 2019 have a younger126

bibliography, compared to papers published ear-127

lier in the decade. Singh et al. (2023) confirm this128

trend, looking at a larger time frame of publica-129

tions, encompassing 70k+ papers, showing that130

NLP papers had an increasingly aging bibliogra-131

phy in the period from 1990 to 2014, but the trend132

reversed then,1 and provide additional analyses. In 133

contrast, Verstak et al. (2014) show with the digi- 134

tal age, older papers also allow to be found more 135

easily, increasing the chance that they will be cited. 136

Parolo et al. (2015) point out that the impact of a 137

paper follows a pattern, which increases a year af- 138

ter it is published, reaches its peaks and decreases 139

exponentially. Mukherjee et al. (2017) study an 140

interesting relation of a paper’s bibliography to its 141

future success: apparently successful papers have 142

low mean but high variance in their bibliography’s 143

age distribution. 144

Our own work connects to the above named as 145

follows: our critical insight is that the age distri- 146

bution of a bibliography may depend on (1) time 147

and (2) the scientific field considered. Only by 148

setting NLP in relation to other fields can we ana- 149

lyze extents of biases in citation distributions. To 150

do so, we analyze the age distribution of ∼300k 151

papers submitted to Arxiv in the last 10 years (2013- 152

2022), spread out across 15 different scientific 153

fields. Looking at arxiv is justified because arxiv 154

has become an extremely popular preprint server 155

for science since its dawn in the early 1990s2 that 156

hosts several of the most influential science papers 157

(Eger et al., 2023; Zhang et al., 2023; Clement 158

et al., 2019; Eger et al., 2018) made available at 159

much faster turnaround times than in traditional 160

conferences or journals. 161

3 Dataset 162

We describe the source from which we extract our 163

dataset 3 and the steps we perform to construct our 164

dataset, which we make available in our code4. 165

Data Source We create our dataset leveraging 166

arXiv and Semantic Scholar. arXiv5 is an extremely 167

popular open access pre-print server focusing on 168

‘hard sciences’ like mathematics, physics and com- 169

puter science, along with other quantitative disci- 170

plines such as biology and economics. It currently 171

hosts more than two million articles in eight subject 172

areas. Semantic Scholar6 is a free and open access 173

database developed by the Allen Institute for Ar- 174

1Somewhat unsurprisingly, 2014 is intuitively the time
that the deep learning revolution has gained traction in NLP
following papers such as word2vec (Mikolov et al., 2013).

2See https://info.arxiv.org/help/stats/2021_
by_area/index.html.

3code and data will be available at paper acceptance
4code and data will be available at paper acceptance
5https://arXiv.org/
6https://www.semanticscholar.org/
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tificial Intelligence. It employs machine learning175

technology to index scientific literature, extract the176

metadata from the paper content, and perform fur-177

ther analysis on the metadata. As of January 2023,178

the number of records in Semantic Scholar is more179

than 200 million, which includes 40 million papers180

from computer science disciplines.181

Subcategory Selection For computational rea-182

sons, we do not focus on the whole of arXiv but183

only on manageable subsets. arXiv papers are184

sorted into eight main categories: computer science,185

economics, electrical engineering, math, physics,186

quantitative biology, quantitative finance and statis-187

tics.7 Each category is further divided into sub-188

categories, e.g., cs.CL stands for computation &189

language (NLP) within the computer science main190

category. For each of the main categories, we191

choose the subcategories containing the highest192

number of papers, see the appendix. An exception193

is the main category of computer science, which194

is our focus. In particular, along with cs.CL, we195

also choose seven other sub-categories from CS.196

We distinguish (1) CS non-ai from (2) CS AI pa-197

pers. The latter contain papers submitted to AI198

related fields (Computer Vision, AI, NLP, Machine199

Learning), the former contains papers submitted to200

non-AI related fields (such as data structures and201

algorithms).202

Data Collection We collect papers within the203

period of 10 years between January 2013 and De-204

cember 2022. Thereby, we make use of the arXiv205

dataset hosted by kaggle,8 which offers an easier206

way to access metadata of the actual corpus. The207

metadata consists of relevant attributes of a schol-208

arly paper such as title, authors, categories, abstract,209

and date of publication. However, the reference pa-210

pers from the bibliography are not listed in this211

metadata.212

Thus, we extract the list of references from Se-213

mantic Scholar. In particular, we use the arXiv ID214

to query the Semantic Scholar API,9 search for the215

paper and retrieve the list of reference papers in216

the bibliography. Importantly, each paper can be217

assigned to multiple categories, however, we only218

use the primary category to sort papers into our219

dataset.220

7See https://arXiv.org/category_taxonomy.
8https://www.kaggle.com/datasets/

Cornell-University/arXiv
9https://www.semanticscholar.org/product/api

Data statistics Our final dataset comprises 8 221

main categories with 15 sub-categories of scien- 222

tific papers along with their metadata and their cor- 223

responding list of references in the period from 224

January 2013 until December 2022. Our dataset 225

is summarized in Table 1. We notice that com- 226

puter science, mathematics, and physics attract the 227

largest number of paper submissions by far. Also, 228

the total number of CS AI submissions (139k) is 229

more than double the non-AI related CS submis- 230

sions (60k), as shown in Table 1. In 2022, the 231

number of CS AI papers (37,626) is considerably 232

more than the number of non-AI CS papers (6,752) 233

and non CS papers (19,297) combined, see Figure 234

1 and Tables 4 and 5. The same is not true for 235

earlier time periods, e.g., in 2013, there were only 236

≈ 3k CS AI submissions but ≈ 4k CS non-AI sub- 237

missions and ≈ 8k non-CS submissions. This indi- 238

cates that AI has been growing most strongly in our 239

data. Figure 2 demonstrates the difference in the 240

development of research output in our dataset by 241

plotting the numbers of papers submitted to arXiv 242

in 2013 and 2022. We observe that the most fast 243

growing fields are indeed computer science fields 244

with AI focus. Among the AI related field, cs.CL 245

(Computer Linguistics) has the highest growth rate 246

of almost ≈ 32-times (219 submissions in 2013 to 247

above 7k submissions in 2023), followed by cs.CV 248

(Computer Vision) at ≈ 22-times and cs.LG (Ma- 249

chine Learning) at ≈ 20-times, see Figure 2 and 250

Tables 4 and 5. We note that econ.GN and eess.SP 251

have very low support for the years 2013 to 2017, 252

making statistics on them more unreliable. 253

4 Analysis 254

In this section, we use the dataset constructed in 255

Section 3 to perform different temporal analyses 256

on the references of scientific papers. In particular, 257

we focus on investing how the gap between a cited 258

paper and the original papers has changed over a 259

decade from 2013 to 2022. 260

4.1 Metrics 261

To examine the change in the trends of referencing 262

of old papers, we use the metrics described below. 263

Our notation is inspired by Singh et al. (2023). 264

Age of Citation The age AoC of a citation yi in 265

a paper x can be defined as the difference between 266

the year of publication (YoP) of both: 267

AoC(x, yi) = YoP(x)− YoP(yi) 268
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Category Subcat. Description Full-name Number Total

CS non-AI

cs.CR Computer Science Cryptography and Security 14, 74114,531
60, 34659,822cs.IT Computer Science Information Theory 23, 96523,845

cs.NI Computer Science Networking and Internet Architect. 10, 88810,786
cs.DS Computer Science Data Structures and Algorithms 10, 75210,660

CS AI

cs.AI Computer Science Artificial Intelligence 13, 5298316

139, 769110,024
cs.CV Computer Science Computer Vision & Pattern Recogn. 65, 68548,391
cs.LG Computer Science Machine Learning 57, 93529,688
cs.CL Computer Science Computation and Language 30, 86723,629

non-CS

math.AP Mathematics Analysis of PDEs 32, 53032,229
econ.GN Economics General Economics Economics 2112885
eess.SP Electrical Engineering Signal Processing 12, 50512,435

108, 288102,532hep-ph Physics High Energy Physics - Phenomenol. 47, 36443,331
q-bio.PE Quantitative Biology Populations and Evolution 47974708
q-fin.ST Quantitative Finance Statistical Finance 12381231
stat.ME Statistics Methodology 13, 77513,667

Table 1: Dataset statistics of sub-categories in our dataset. The numbers in subscripts are the actual numbers of
publications in our dataset (timeouts in querying SemanticScholar may result in lower actual numbers).

year cs.CR cs.IT cs.NI cs.DS cs.AI cs.CL cs.CV cs.LG

2013 9.71 9.7 7.33 12.95 17.61 10.9 9.54 10.91
2014 9.37 9.83 7.27 13.15 12.21 9.94 9.09 9.95
2015 8.85 9.85 6.87 13.36 10.82 8.52 7.73 9.32
2016 9.11 9.81 7.14 13.25 9.91 7.68 8.67 8.76
2017 8.31 9.77 6.97 13.37 9.36 7.43 6.8 8.44
2018 7.88 9.18 6.74 13.52 8.72 6.78 6.1 7.96
2019 7.88 9.82 6.76 14.33 8.74 6.59 6.02 7.83
2020 7.39 9.5 6.85 14.37 8.31 6.3 5.94 7.68
2021 7.47 9.76 6.66 14.08 7.33 6.13 5.82 7.46
2022 7.59 10.01 6.77 14.23 7.24 6.15 5.93 7.61

Table 2: Left: Mean AoC CS non-AI categories. Right: CS AI categories.

Using this, we calculate the mean age of the M269

references of a paper x as:270

AoC(x) =
1

M

M∑
i=1

AoC(x, yi)271

Finally, when we have N papers xj published in a272

year t, we calculate the average over all N papers273

to obtain the mean citation age in year t:274

mAoC(t) =
1

N

N∑
j=1

AoC(xj)275

Percentage of old citations We calculate the per-276

centage of old citations as the percentage of the277

‘old’ (published at least k = 10 years before the278

citing paper) references in a paper:279

PoOC(x) =
|Ok(x)|

M
280

where Ok(x) = {y |AoC(x, y) ≥ k} is the set of 281

references whose publication age is k years older 282

than that of the citing paper x. From this formula, 283

we can again compute the mean percentage of old 284

papers over any given year t with N papers, as 285

follows: 286

mPoOC(t) =
1

N

N∑
x=1

PoOC(x) 287

4.2 Mean and median age of citations 288

To examine the change in the age of cited papers 289

over the different fields, we calculate the mean 290

age of the papers by year and plot this in Figure 3 291

and Tables 2 and 3. There is a large discrepancy 292

between the mean age of citations across different 293

categories. 294

For example, cs.CL (NLP) has decreased from 295

mAoC = 10.9 in 2013 to mAoC = 6.15 in 296

2022 — a decrease of 44%. The other AI related 297
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year q-bio.PE q-fin.ST stat.ME hep-ph math.AP econ.GN eess.SP

2013 13.98 13.29 13.26 10.34 14.93 0 9.03
2014 13.28 13.36 13.43 10.96 15.21 13.2 16.12
2015 14.6 13 13.64 11.19 15.09 14.47 5.53
2016 15.01 14.59 13.68 11.56 15.33 23.27 10.96
2017 14.62 15.41 14.09 12.25 15.74 10 9.59
2018 14.79 14.09 14.54 12.05 16.05 14.98 9.28
2019 15.17 14.26 14.73 12.41 16.29 13.43 8.45
2020 11.68 12.62 14.3 13.08 16.48 12.62 8.12
2021 12.81 12.59 14.4 13.14 16.5 12.59 8.33
2022 14.61 11.71 14.68 13.66 17.17 11.71 8.22

Table 3: Mean AoC of non-CS categories.
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Figure 1: Number of papers published from 2013 to
2022 by category. See Table 4 and Table 5 for the
detailed submission of each subcategory.

fields show similar decreases: cs.AI has decreased298

by 59% from mAoC(2013) = 17.61 in 2013 to299

mAoC(2022) = 7.24 in 2022, cs.CV by 38% from300

mAoC(2013) = 9.54 to mAoC(2022) = 5.93 and301

cs.LG by 30% from mAoC(2013) = 10.91 to302

mAoC(2022) = 7.61. The average decrease of303

mean age of citations for CS AI categories be-304

tween 2013 and 2022 is 43%. The average yearly305

rate of decrease in CS AI categories is 6%;10 in306

other words, the age of citations in a typical CS307

AI paper decreases by 6% on average from year308

to year, in the indicated time frame. In contrast,309

the four non-AI CS fields in our collection have a310

maximum decrease of 22% (cs.CR) and two out of311

10By this, we mean the average over the ratios yt
yt−1

− 1

where yt=mAoC(t), for t = 2014, . . . , 2022.
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Figure 2: Paper count by category in 2013 and 2022.
See Tables 4 and 5 for exact numbers.

four fields have even a small increase (cs.IT and 312

cs.NI) of up to 10%. The average decrease of 313

mean age of citations between 2013 and 2022 for 314

CS non-AI categories is 4%; the average yearly 315

rate of decrease is 0.5%. Concerning the non- 316

CS fields, 4 out of 7 show an increase in citation 317

age between 2013 and 2022 (q-bio.PE, stat.ME, 318

math.AP, hep-ph). The average decrease of mean 319

age of citations for non-CS categories between 320

2013 and 2022 is -4% (i.e., an increase of 4%) 321

and the average yearly rate of decrease is -3%. 322

Similarly, Figure 3 depicts the median age of ci- 323

tations — the median is less affected by outliers. 324

We observe the same pattern as for the mean, indi- 325

cating that outliers do not influence our results. In 326

fact, the Pearson correlation between CS categories 327
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Figure 3: Mean (left) and median (right) age of citation by categories. Tables 2, 3, 6 and 7 give exact numbers.
Corresponding figures with logarithmic scale are in the appendix.

is 93% (median vs. mean) and it is 88% for non328

CS categories. The decreases in CS AI categories329

are more extreme for the median: on average, the330

yearly rate of decrease in AoC is 8%, while it is 1%331

for CS non-AI categories. For non-CS categories,332

it is -4%.333

Figure 4 shows the bibliography age dynamics334

from 2013 to 2022 averaged over CS AI, CS non-335

AI and non-CS papers.336

Figure 4: Mean AoC of papers published from 2013 to
2022 grouped by general groups: CS AI, CS non-AI
and non-CS.

4.3 Percentage of old citations 337

Figure 5: Percentage of old paper by categories and year.
See Table 8 and Table 9 for details.

The percentage of old papers follows a similar 338

trend across our three high-level categories: CS AI 339

fields have decreased by 75% on average between 340

2013 and 2022 in terms of the proportion of old 341

citations; CS non-AI fields have decreased by 33% 342

and non-CS fields have decreased by -7%. The 343

Pearson correlation between CS categories is 88% 344

(mean AOC vs. PoOC) and that of non-CS cate- 345

gories is 72%. For example, cs.CL had 14% of all 346
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citations as old citations in 2013, but below 4% in347

2022. cs.AI is again the most extreme: it decreases348

from 30% in 2013 to below 5% in 2022. Details349

can be found in Tables 8 and 9.350

4.4 Mean citation age of influential papers351

Figure 6: Mean AoC of influential paper by categories
and year. See Table 10 and Table 11 for details.

In addition, we investigate how the age of the352

influential references cited in a paper has changed353

over our time period. A citation is considered354

“highly influential” if it has major impact on the355

citing paper. The identification of these “highly in-356

fluential” papers is done based on machine learning357

algorithms developed by Semantic Scholar, which358

uses multiple criteria for calculation. The major cri-359

terion is the number of times the citation occurs in360

the full text and the surrounding text around the ci-361

tation. Here, we calculate the mean of old citations362

within the “highly influential” citations. Figure 6363

plots the temporal change of the age difference be-364

tween the influential citations within a publication365

and the publication itself.366

Firstly, the mean AoC of influential citations367

is typically lower than the normal mean AoC in368

all fields and subcategories over the years. For369

example, cs.CV has mAoC(2013) = 9.54 and370

mAoC(2022) = 5.93, while its influential mean371

AoC are mAoC(2013) = 8.56 and mAoC(2022) =372

5.10, which are lower than the normal mean AoC of373

the same year. On average, the influential citations374

are 0.8 years younger than the average citations. 375

This makes intuitively sense: the references that 376

really influence a given paper are more recent. Sec- 377

ondly, the temporal changes of the mean AoC of 378

influential citations of all fields is similar to the 379

changes of mean AoC of all citations. For exam- 380

ple, the mean age of citations in CS AI categories 381

has decreased by 46% on average between 2013 382

and 2022 (it is worth pointing out that the decrease 383

has slowed down, however, in recent years), the 384

CS non-AI categories have largely remained un- 385

changed (decrease of 2%), and the non-CS cate- 386

gories have decreased by -6.5%. Details can be 387

found in Tables 10 and 11 in the appendix. 388

5 Discussion 389

Our results — regarding the mean and median age 390

of (influential) citations as well as the percentage 391

of old citations — in the previous section all point 392

in the same direction: the age of the bibligraphy in 393

the CS AI subfields we examined has considerably 394

decreased over the years we considered. In this 395

respect, the AI subfields behave very differently 396

from non-CS and non-AI fields. 397

We illustrate the differences between the fields 398

we consider in Figure 7. There, we plot the yearly 399

average citation increases (negative numbers de- 400

note decreases) vs. the median yearly submission 401

increases of each field; the latter is an indicator 402

of the dynamicity of the field. CS AI fields have 403

clearly distinct patterns: they have high decreases 404

in yearly average age of citations and high yearly 405

increases of submission numbers to arxiv. The 406

more established CS fields are less dynamic: their 407

submission numbers grow slowly over the decade 408

considered and, simultaneously, their bibliography 409

age is also relatively stable over the time period — 410

an exception is cs.CR (cryptography) which almost 411

behaves like the AI fields. Non-CS fields typi- 412

cally have positive yearly average age of citation 413

increases (all of them except for q-fin.ST, statistical 414

finance) and lowest increases in submission num- 415

bers (e.g., hep-ph has largely stagnated in the last 416

few years or slightly decreased); an exception is 417

econ.GN. We note, however, that (1) this subfield 418

has comparatively low numbers of submissions, 419

making statistics less reliable, and (2) it may not 420

have been common (e.g.) in economics to submit 421

papers to arxiv before 2018, so increases in submis- 422

sions may actually not reflect the dynamicity of the 423

field but behavioral changes in that community. 424
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Figure 7: Yearly average age of citation increase vs.
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increases over years). We color CS AI in orange, CS
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From this broader perspective, it is unclear425

whether there is a citation age bias (citation am-426

nesia) specifically in NLP. Our results indicate that427

NLP is simply another field like other AI fields428

which are all characterized by high dynamicity,429

i.e., many newly incoming researchers (and sub-430

missions) and quickly changing state-of-the-art so-431

lutions.11 In such an environment, the observed432

changes in the age of the bibliography may simply433

be a ‘natural’ response.434

6 Concluding remarks435

We examined the age of the bibliography across436

15 different scientific fields in a dataset of papers437

submitted to Arxiv in the time period from 2013 to438

2022. We found that the dynamic AI fields are all439

affected by a decreasing age of bibliography over440

the considered time period, while more established441

fields do not show the same trend. We believe that442

this trend is very natural: for example, according443

to https://aclweb.org/aclwiki/Conference_444

11A case in point is the area of evaluation metrics in NLP,
which has been dominated by models developed in the early
2000s (Papineni et al., 2002; Lin, 2004) for a long time, but has
then been quickly superseded by a much higher-quality class
of metrics since the late 2010s (Zhao et al., 2019; Zhang et al.,
2020; Rei et al., 2020; Sellam et al., 2020; Chen and Eger,
2023) whose high citation rates document the community’s
fast & wide-scale adoption in recent years.

acceptance_rates, the submission rates to the 445

main ACL conference(s) have increased five-fold 446

between 2013 and 2022, from 664 submitted pa- 447

pers to 3378 papers. Thus, from the viewpoint of 448

2013 the year 2022 can be perceived of encompass- 449

ing “5 years”. If we take this increase in submis- 450

sions and money invested into account,12 especially 451

from the big US AI companies (Zhang et al., 2023), 452

it is clear that the age of citations must become 453

younger. While we expect that 2023 has seen addi- 454

tional rejuventation of the bibliography, mainly due 455

to ChatGPT and the LLM revolution (Bubeck et al., 456

2023; Leiter et al., 2023), our numbers and graphs 457

appear to imply that this trend of decreasing age 458

of citations may soon reach a bottom: for example, 459

there is only a marginal difference in the mean age 460

of citations in the four AI fields we considered be- 461

tween 2020, 2021, and 2022 — such a pattern is 462

expected in exponential decays, in which the rate 463

of decrease is proportional to the current value. 464

We thus want to express a word of caution in 465

interpreting statistical trends as bias (that pertain 466

to particular communities), a tendency that may 467

be fueled by the NLP community’s increasing self- 468

absorbedness and in-group bias (Wahle et al., 2023). 469

With a hammer, everything may look like a nail. 470

One of NLP’s currently popular hammers are buz- 471

zwords like ‘bias’ and ‘diversity’. However, we 472

believe that works like Singh et al. (2023) have 473

overlooked one important confound variable when 474

stating their dramatic assessments of how citation 475

age diversity is now at an all time low, and “all 476

the gains [of 35 years] have been negated in the 7 477

years since 2014”: increase in publication volume. 478

From a statistical perspective, this likely explains 479

the citation amnesia observed in the data better than 480

postulating community specific biases. 481

Future work should look at the age of citations 482

in more scientific disciplines, published in vary- 483

ing outlets, and across larger time frames. Future 484

work should also develop statistical models of the 485

age of citations, in the true spirit of classical scien- 486

tometrics, in a paper’s bibliography to determine 487

statistical bias, defined as the deviation from the 488

expected value. 489

12See https://www.goldmansachs.com/intelligence/pages/ai-
investment-forecast-to-approach-200-billion-globally-by-
2025.html
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Limitations490

We (and others) obtain citation information from491

SemanticScholar, but we observe that this engine492

— like other engines — is error-prone. For a qual-493

ity check, we manually verify a random subset of494

our dataset and compare the reference list of data495

from SemanticScholar to the manually annotated496

references. We identify some of the common error497

made by SemanticScholar as follows. (a) Missing498

reference: the reference in the paper is missing499

from the list provided by SemanticScholar. (b)500

Wrongly assigned reference: The reference listed501

by SemanticScholar does not match with the ref-502

erence listed in the full-text. Moreover, we notice503

that the errors do not occur equally in all types of504

publications. For instance, publications from large505

international conferences and journals seemingly506

may not suffer as much. Additionally, older pub-507

lications also seem to suffer more heavily. This508

may be due to the SemanticScholar parsing algo-509

rithm, which may be trained on tuned on particular510

data. To investigate quantitatively, we extracted511

the bibliography also with ScienceParse from the512

original PDFs in selected cases, cf. Figure 10. We513

observe that the trends look very similar whether514

we use ScienceParse or SemanticScholar, but ab-515

solute numbers do differ. Overall, this is evidence516

that the trends reported in this paper are reliable.517

Other limitations relate to the Kaggle arxiv snap-518

shot which may not contain all arxiv papers.519
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102221, hep-th: 102314, hep-ph: 128484740

Economics econ.TH: 1377, econ.EM: 2112,741

econ.GN: 2638742

Quantitative Biology q-bio.SC: 651, q-bio.OT:743

777, q-bio.CB: 911, q-bio.TO: 1077, q-bio.GN:744

1667, q-bio.MN: 2128, q-bio.BM: 2629, q-bio.QM:745

4439, q-bio.NC: 5529, q-bio.PE: 6849746

Quantitative Finance q-fin.EC: 384, q-fin.TR:747

976, q-fin.PM: 1049, q-fin.CP: 1090, q-fin.RM:748

1150, q-fin.PR: 1169, q-fin.MF: 1390, q-fin.GN:749

1470, q-fin.ST: 1828750

Statistics stat.OT: 600, stat.CO: 3419, stat.AP:751

8462, stat.ML: 15435, stat.ME: 17378752

Computer Sciences cs.GL: 106, cs.OS: 442,753

cs.MS: 980, cs.PF: 1040, cs.NA: 1083, cs.SC:754

1170, cs.ET: 1857, cs.MM: 1939, cs.OH: 755

2002, cs.GR: 2179, cs.MA: 2280, cs.AR: 756

2531, cs.FL: 2693,cs.DL: 3165, cs.CE: 3271, 757

cs.CG: 3943,cs.DM: 4408, cs.PL: 4479, cs.CC: 758

4786, cs.SY: 5130, cs.SD: 5397, cs.DB: 5487, 759

cs.NE: 6011, cs.GT: 6678, cs.IR: 8590, cs.HC: 760

8696,cs.CY: 8947, cs.SI: 9236, cs.LO: 9690, cs.SE: 761

11333, cs.DC: 11981, cs.DS: 14338, cs.NI: 14662, 762

cs.AI: 18871, cs.CR: 19266, cs.RO: 19594,cs.IT: 763

33285, cs.CL: 40190, cs.LG: 72867, cs.CV: 81633 764

Electrical Engineering and Systems Science 765

eess.AS: 5250, eess.SY: 11174, eess.IV: 12161, 766

eess.SP: 13722 767

Figure 8: Mean AoC of papers published from 2013 to
2022 by category. Log scale of y-axis.
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year cs.CR cs.IT cs.NI cs.DS cs.AI cs.CL cs.CV cs.LG

2013 460452 19631950 778770 704694 1383932 219219 662511 696405
2014 540529 20132007 838830 784775 663487 396355 1096722 739418
2015 597529 24182414 766759 873867 587355 587474 18591166 1122537
2016 715704 25982589 994987 978975 875554 1306974 30841166 1523717
2017 10551051 27892589 1004997 10531050 1209717 19221425 49143012 23401122
2018 15301522 24072403 12451239 11871184 1442862 29742357 72614619 47362227
2019 19371910 22502246 12951289 13021296 1210721 41703198 84896324 88414280
2020 23932382 23552344 13371323 14411436 19161126 55824109 11, 0008546 11, 0975214
2021 26712646 26312604 13181295 11931167 21301273 65784876 12, 6959849 13, 0876819
2022 28432806 25412511 13131297 12371216 21141289 71335640 14, 62512476 13, 7547949

Table 4: Number of submissions in arXiv dataset on Kaggle. The numbers in subscripts are the actual numbers of
publications in our dataset. Left: cs-non-ai categories. Right: cs-ai categories.

year q-bio.PE q-fin.ST stat.ME hep-ph math.AP econ.GN eess.SP

2013 475471 9191 637629 46424193 22114193 00 22
2014 402399 9898 765759 46234259 24672467 21 11
2015 389388 9190 919916 49364569 28352827 22 11
2016 402373 9999 10651060 47514432 28202811 22 11
2017 386384 8585 13191314 45164287 32023194 44 331331
2018 386382 112112 13131306 45714447 34763461 118117 16621652
2019 390386 137137 13561351 45744445 36703667 241240 22422231
2020 999974 191190 19621955 45984454 40063990 450190 299642951
2021 542534 179176 21602134 49794724 38823798 692176 29642951
2022 426417 155153 22792243 51743506 39523815 601153 23392314

Table 5: Number of submissions in arXiv dataset on Kaggle. The numbers in subscripts are the actual numbers of
publications in our dataset. non-cs categories.

Figure 9: Median AoC of papers published from 2013
to 2022 by category. Log scale of y-axis.
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year cs.CR cs.IT cs.NI cs.DS cs.AI cs.CL cs.CV cs.LG

2013 6 5 5 9 18 7.5 7 7
2014 6 5.5 5 9 8.5 7 6 6.5
2015 6 6 4.5 9 7 5.5 5 6
2016 6 5 4.5 9 6 4 6 6
2017 5 5 4 9 6 4 3.5 5
2018 5 5 4 9 4.5 4 3 4.5
2019 5 5 4 9.5 4 3 3 4
2020 4 5 4 9.5 4 3 3.5 4
2021 4 5 4 9.5 4 3 4 4
2022 4.5 5 4 9.5 4 3 4 4

Table 6: Median AoC. Left: cs-non-ai categories. Right: cs-ai categories.

year q-bio.PE q-fin.ST stat.ME hep-ph math.AP econ.GN eess.SP

2013 8 9 8.5 5.5 10 0 5.25
2014 8 8.75 8 6 10 15 9
2015 9 8.25 9 6 10 6.5 4
2016 9 11 9 6 10.5 17.75 10
2017 9.5 10 9 7 11 9.5 5
2018 9.5 10 10 7 11 10 5.5
2019 10 10 10 7 11 9 5
2020 5 8 10 7.5 11.5 8 5
2021 8 7.75 10 8 11.5 7.75 4.5
2022 9.5 7 10 8 12 7 4.5

Table 7: Median AoC of non-cs categories.

year cs.CR cs.IT cs.NI cs.DS cs.AI cs.CL cs.CV cs.LG

2013 9.8% 8.09% 6.63% 14.59% 30.15% 14.04% 10.34% 13.36%
2014 9.97% 8.52% 6.59% 14.78% 17.07% 12.87% 9.81% 10.93%
2015 8.78% 8.5% 6.16% 14.56% 13.43% 9.48% 9.81% 9.72%
2016 9.67% 8.63% 6.61% 14.5% 11.2% 9.48% 8.46% 8.45%
2017 7.70% 8.28% 6.26% 14.87% 10.09% 8.03% 5.39% 6.77%
2018 7.05% 7.5% 5.59% 14.91% 8.57% 5.11% 4.07% 6.91%
2019 7.05% 8.71% 5.38% 15.52% 8.46% 4.78% 3.57% 6.45%
2020 6.33% 7.76% 5.36% 15.97% 7.23% 4.31% 3.22% 5.9%
2021 5.9% 8.26% 5.01% 16% 5.19% 3.67% 2.63% 5.12%
2022 5.83% 8.61% 5.01% 3.67% 4.59% 3.36% 2.48% 4.86%

Table 8: Percentage of old papers. Left: cs-non-ai categories. Right: cs-ai categories.
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year q-bio.PE q-fin.ST stat.ME hep-ph math.AP econ.GN eess.SP

2013 12.79% 15.32% 14.16% 9.18% 17.21% 0% 4.78%
2014 11.81% 15.64% 13.8% 9.6% 17.32% 40% 11.95%
2015 13.83% 14.32% 15.07% 9.55% 16.9% 16.74% 8%
2016 15.18% 18.64% 14.83% 9.64% 17.59% 27.57% 19.35%
2017 14.77% 15.35% 14.9% 9.95% 17.86% 12.05% 8.77%
2018 15.11% 16.88% 16.07% 10.64% 18.18% 17.37% 9.2%
2019 15.29% 17.62% 16.15% 11.07% 18.42% 15.21% 7.43%
2020 10.92% 14.45% 15.86% 11.3% 19.04% 14.45% 6.95%
2021 12.84% 13.72% 16.29% 11.23% 19.22% 13.72% 7.04%
2022 15.39% 13.37% 16.78% 11.27% 20.11% 13.37% 7.14%

Table 9: Percentage of old papers of non-cs categories.

year cs.CR cs.IT cs.NI cs.DS cs.AI cs.CL cs.CV cs.LG

2013 8.77 9.14 7.25 11.06 16.11 11.25 8.56 9.9
2014 8.41 9.14 6.77 11.13 11.67 9.12 7.87 8.9
2015 7.9 9.22 6.33 11.22 10.23 7.96 6.59 8.35
2016 8.26 9.4 7 11.75 8.77 6.7 7.55 7.39
2017 7.37 9.18 6.9 11.75 8.2 6.32 5.69 7.27
2018 7.07 8.42 6.29 12.04 7.49 5.9 5.01 6.97
2019 7.43 9.13 6.9 12.54 7.69 5.55 5.01 7.01
2020 6.9 9.13 6.85 12.99 7.29 5.27 5.05 6.86
2021 7 8.96 6.05 12.65 6.5 5.14 5.1 6.63
2022 6.9 9.36 6.67 13.3 6.4 5.29 5.1 6.89

Table 10: Mean AoC of influential citations. Left: cs-non-ai categories. Right: cs-ai categories.

year q-bio.PE q-fin.ST stat.ME hep-ph math.AP econ.GN eess.SP

2013 12.48 12.03 12.49 10.18 13.86 0 8.25
2014 11.52 11.65 12.35 9.71 14.56 0 17.33
2015 13.84 13.01 12.63 10.32 14.27 11.83 3.33
2016 14.5 14.84 13.01 10.32 15.09 22.29 12.9
2017 14.14 14.76 13.52 11.61 15.19 8 8.61
2018 13.95 15.49 13.52 11.12 15.77 14.88 8.48
2019 14.36 13.89 14.12 11.8 16.23 12.37 7.81
2020 10.69 12.68 13.76 12.17 16 12.68 7.61
2021 12.33 13.3 13.61 11.97 15.69 13.3 8.05
2022 13.37 11.67 13.95 11.73 16.8 11.67 7.78

Table 11: Mean AoC of influential citations of non-cs categories.
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Figure 10: Mean age of citations from all papers with citations provided by SemanticScholar against the citations
extracted from the PDF of papers extracted with ScienceParse. We randomly selected 500 papers out of the papers
in our dataset for each category.
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