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Abstract

A prominent family of methods for learning data distributions relies on density ratio
estimation (DRE), where a model is trained to classify between data samples and
samples from some reference distribution. DRE-based models can directly output
the likelihood for any given input, a highly desired property that is lacking in most
generative techniques. Nevertheless, to date, DRE methods have failed in accurately
capturing the distributions of complex high-dimensional data, like images, and
have thus been drawing reduced research attention in recent years. In this work we
present classification diffusion models (CDMs), a DRE-based generative method
that adopts the formalism of denoising diffusion models (DDMs) while making use
of a classifier that predicts the level of noise added to a clean signal. Our method is
based on an analytical connection that we derive between the MSE-optimal denoiser
for removing white Gaussian noise and the cross-entropy-optimal classifier for
predicting the noise level. Our method is the first DRE-based technique that can
successfully generate images beyond the MNIST dataset. Furthermore, it can
output the likelihood of any input in a single forward pass, achieving state-of-
the-art negative log likelihood (NLL) among methods with this property. Code is
available on the project’s webpage.

1 Introduction

A classical family of methods for learning data distributions relies on the concept of density-ratio
estimation (DRE) [46]. DRE techniques transform the unsupervised task of learning the distribution
of data into the supervised task of learning to classify between data samples and samples from some
reference distribution [15, 4, 35, 7]. These methods have attracted significant research efforts over
the years [27, 14, 35, 47], particularly for their inherent capability to directly output the likelihood
for any given input. However, to date, they have not succeeded in capturing the distribution of
complex high-dimensional data, like natural images. Instead, their generative performance was
demonstrated only on low-dimensional toy examples and on the simple MNIST handwritten digits
dataset [28, 35, 7]. As illustrated in Fig. 1, while the state-of-the-art DRE method, telescoping
density-ratio estimation (TRE) [35], succeeds in capturing the distribution of the MNIST dataset [28],
it fails on the slightly more complex CIFAR-10 dataset [26].

As opposed to DRE methods, denoising diffusion models (DDMs) [38, 19] have had unprecedented
success in generative modeling of complex high-dimensional data, including images [9, 36], audio
[25, 5], and video [12, 1]. This has made them perhaps the most prominent technique for learning
data distributions in recent years, with applications in solving inverse problems [21, 37], image
editing [33, 16, 3, 20] and medical data enhancement [44, 8], to name just a few. However, assessing
the likelihood of data samples is a challenging task with DDMs; it requires many neural function
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Figure 1: Samples from CDMs (left) trained on CelebA 64× 64 and on CIFAR-10, compared
to samples from TRE models [35] (right) trained on MNIST and CIFAR-10. To date, DRE
methods have failed to capture the distributions of complex, high-dimensional data, and have been
demonstrated only on toy examples or on the simple MNIST dataset. The right pane shows results
from TRE, the state-of-the-art DRE method, which fails to capture the distribution of CIFAR-10.
CDM is the first DRE-based method that can successfully learn the distribution of images.

evaluations (NFEs) to calculate the likelihood-ELBO [19], or to approximate the exact likelihood
using an ODE solver [43].

DDMs are based on minimum-MSE (MMSE) denoising, while DRE methods hinge on optimal
classification. In this work, we develop a connection between the optimal classifier for predicting
the level of white Gaussian noise added to a data sample, and the MMSE denoiser for cleaning such
noise. Specifically, we show that the latter can be obtained from the gradient of the former. Utilizing
this connection, we propose classification diffusion model (CDM), a generative method that combines
the formalism of DDMs, but instead of a denoiser, employs a noise-level classifier. CDM is the first
instance of a DRE-based method that can successfully generate images beyond MNIST (Fig. 1). In
addition, as a DRE method, CDM is inherently capable of outputting the exact log-likelihood in a
single NFE. In fact, it achieves state-of-the-art negative-log-likelihood (NLL) results among methods
that use a single NFE, and comparable results to computationally-expensive ODE-based methods.

Our experiments shed light on the reasons why DRE methods have failed on complex high-
dimensional data to date, and why CDM inherently avoids these challenges. Furthermore, we
show that CDM can serve as a more accurate denoiser, in terms of MSE, than a DDM with a similar
architecture. This typically translates into better FID scores. Representative generated samples are
shown in Fig. 1. We hope that our approach will spark new interest in DRE methods and ultimately
unlock their full potential.

2 Background

2.1 Density Ratio Estimation

Learning data distributions via DRE was first proposed by Gutmann and Hyvärinen [15]. Their noise
contrastive estimation (NCE) method uses the fact that the ratio between an unknown distribution
pd(x) and a known reference distribution pn(x) can be extracted from the optimal binary classifier for
discriminating samples from pd(x) and pn(x). Once this ratio is extracted from the classifier, it can
be multiplied by the known pn(x) to obtain pd(x). Specifically, let C denote the class of a sample x,
with C = 1, 0 corresponding to the event that x is a sample from pd(x), pn(x), respectively. The
optimal classifier for predicting C from x outputs both P(C = 1|x) and P(C = 0|x). Using Bayes’
rule, we can use these values to compute the density ratio

pd(x)

pn(x)
=

P(C = 1|x)
P(C = 0|x)

, (1)

where we assumed that the classes are balanced, so that P(C = 1) = P(C = 0) = 1
2 .
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Unfortunately, this method fails in practice when pd(x) and pn(x) differ significantly from one
another, as is the case when pd(x) is the distribution of images and pn(x) corresponds to white
Gaussian noise. This is because when training a classifier to discriminate between images and noise,
the classifier can achieve very high accuracy even without learning meaningful information about
images. When this point is reached, the weights of the classifier practically stop updating. Rhodes
et al. [35] referred to this issue as the density-chasm problem, and suggested to overcome it by making
the classification problem more difficult. To do so, their TRE method uses a sequence of distributions
px0

(x), px1
(x), . . . , pxm

(x), which are closer to one another, such that pxm
(x) is the reference

distribution and px0
(x) is the target distribution. The intermediate distributions {pxi

(x)}m−1
i=1 do

not have to be known; the only requirement is that it would be possible to sample from them. For
example, xi can be defined as xi =

√
ᾱix0 +

√
1− ᾱixm, where x0 ∼ px0

, xm ∼ pxm
, and ᾱi is a

sequence that decreases from 1 to 0. Then, using (1), each ratio pxi
(x)/pxi+1

(x) can be extracted by
training a binary classifier to distinguish between samples from pxi(x) and pxi+1(x), and the ratio
between the target and the reference distributions can be calculated as

px0(x)

pxm
(x)

=
px0(x)

px1
(x)
· px1(x)

px2
(x)

. . .
pxm−2

(x)

pxm−1
(x)
·
pxm−1

(x)

pxm
(x)

. (2)

While this method overcomes the density-chasm-problem for each pair of consecutive distributions, it
still fails in learning the distribution of datasets that are more complicated than MNIST, as illustrated
in Fig. 1. This is because each ratio pxi

(x)/pxi+1
(x) is extracted from a binary classifier trained

only on inputs x from the distributions pxi
and pxi+1

. For instance, the classifier producing the ratio
px0

(x)/px1
(x) is trained on inputs close to the real data, while the one producing pxm−1

(x)/pxm
(x)

is trained on inputs close to the reference distribution. This can lead to a mismatch between training
and test time, since at inference, all the ratios are evaluated at the same input x. Moreover, even if
each individual ratio is nearly accurate, the accumulation of small errors can result in a significant
overall error. Our method is also based on a classification objective, however it avoids these problems
by employing an additional loss, which is based on our main result (Theorem 3.1).

2.2 Denoising Diffusion Models

DDMs [38, 19], are a class of generative models that sample from a learned target distribution by
gradually denoising white Gaussian noise. More formally, DDMs generate samples by attempting
to reverse a forward diffusion process with T steps that starts from a data point x0 and evolves as
xt =

√
αtxt−1 +

√
1− αtε̃t, t = 1, . . . , T , where {ε̃t} are iid standard Gaussian vectors. Samples

along this forward diffusion process can be equivalently expressed as
xt =

√
ᾱtx0 +

√
1− ᾱtεt, εt ∼ N (0, I), (3)

where ᾱt =
∏t

s=1 αs. The coefficients {αt} are taken to be such that {ᾱt} is a monotonic sequence
with ᾱT ≈ 1. This enforces the density pxT

to be close to the normal distribution N (0, I).

The reverse diffusion process is learned by modeling the distributions of xt−1 given xt as a Gaussian
with mean

E[xt−1|xt] =
1
√
αt

(
xt −

1− αt√
1− ᾱt

εθ(xt, t)

)
(4)

and covariance σtI, where εθ(·, ·) is a neural network and {σt} are fixed hyperparameters. Training
is done by minimizing the ELBO loss, which reduces to a series of MSE terms,

L(θ) =
T∑

t=1

Ex0,εt

[
∥εθ(xt, t)− εt∥22

]
. (5)

At convergence to the optimal solution, the neural network approximates the timestep-dependent
posterior mean

εθ(xt, t) = E[εt|xt = xt]. (6)

To generate samples, DDMs sample xT ∼ N (0, I) and then iteratively follow the learned reverse
probabilities, terminating with a sample of x0. In more detail, at each timestep t, the model accepts
xt and outputs a prediction of the noise εt (equivalently, a prediction of the clean signal x0), from
which xt−1 is obtained by sampling from the reverse distribution. The process described above is
that underlying the DDPM method [19]. Here we also experiment with DDIM [39] and DPM-Solver
[32], which follow a similar structure.
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Figure 2: A diagram of CDM (right) compared with DDM (left). A DDM functions as an MMSE
denoiser conditioned on the noise level, whereas a CDM operates as a classifier. Given a noisy image,
a CDM outputs a probability vector predicting the noise level, such that the t-th element in this vector
is the probability that the noise level of the input image corresponds to timestep t in the diffusion
process. A CDM can be used to output the MMSE denoised image by computing the gradient of its
output probability vector w.r.t the input image, as we show in Theorem 3.1.

3 Method

We start by deriving a relation between classification and denoising, and then use it as the basis for
our CDM method. A summary of the notations we use can be found in App. A.

Let the random vector xt be defined as in (3) for timesteps t ∈ {1, . . . , T} and set two additional
timesteps, 0 and T +1, corresponding to clean images and pure Gaussian noise, respectively. Namely,
we define ᾱ0 = 1 and ᾱT+1 = 0. We denote the density of each xt by pxt

(x). Our approach is based
on training a classifier that takes as input a noisy sample xt and predicts its timestep t. Formally,
let t be a discrete random variable taking values in {0, 1, . . . , T + 1}, with probability mass function
pt(t) = P(t = t), and let the random vector x̃ be the diffusion signal at a random timestep t, namely1

x̃ = xt. Note that the density of each xt can be written as pxt
(x) = px̃|t(x|t) and by the law of total

probability, the density of x̃ is equal to

px̃(x) =

T+1∑
t=0

pxt(x) pt(t). (7)

We are interested in a classifier for predicting t from x̃. It is well known that given any sample x
drawn from (7), the optimal such classifier (in terms of the cross-entropy loss) outputs the probability
vector (pt|x̃(0|x), pt|x̃(1|x), . . . , pt|x̃(T + 1|x)), where pt|x̃(t|x) = P(t = t|x̃ = x). As we now
show, the denoiser in (6) corresponds to the gradient of this classifier.
Theorem 3.1. Let F (x, t) = log(pt|x̃(T + 1|x))− log(pt|x̃(t|x)) with t, x̃ and xt as defined above.
Then

E[εt|xt = xt] =
√
1− ᾱt(∇xt

F (xt, t) + xt) (8)

regardless of the choice of the probability mass function pt, provided that pt(t) > 0 for all t.

The proof, provided in App. B.1, consists of three key steps:

• Using Bayes rule, we write pxt
(x) as a function of pxT+1

(x) and the optimal classifier.

• Then, we take the derivative of the log of both sides and use the fact that ∇x log pxT+1
(x)

has a closed form solution.

• Finally, we use Tweedie’s formula [34, 45, 11] to connect between ∇x log pxt
(x) and

E[εt|xt = x].

Theorem 3.1 suggests that we may train a classifier and use its gradient as a denoiser according to
relation (8). This paradigm is illustrated in Fig. 2. Once we have constructed a denoiser, we can
apply any desired sampling method (e.g. DDPM, DDIM, etc.) to generate images from the learned
distribution. However, as we show in Sec. 4.1, naively training such a classifier with the standard

1Note the distinction between the notations xt and xt. The former has a random noise level t, while the latter
has a fixed noise level t.
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Algorithm 1 CDM Training

Require: Dataset of training samples D
1: repeat
2: x0∼D, t∼U{0, . . . , T+1}, ε∼N (0, I)
3: xt =

√
ᾱtx0 +

√
1− ᾱtε

4: Fθ(xt, t) = fθ(xt)[T + 1]− fθ(xt)[t]
5: εθ(xt, t) =

√
1− ᾱt (∇xt

Fθ(xt, t) + xt)
6: take gradient step on
7: wceLCE(t, fθ(xt)) + LMSE(ε, εθ(xt, t))
8: until converged

Algorithm 2 DDPM Sampling Using CDM

Require: Noise level classifier fθ(·)
1: sample xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: Fθ(xt, t) = fθ(xt)[T + 1]− fθ(xt)[t]
4: εθ(xt, t) =

√
1− ᾱt (∇xt

Fθ(xt, t) + xt)
5: if t > 1 then z ∼ N (0, I), else z = 0
6: xt−1=

1√
αt
(xt− 1−αt√

1−ᾱt
εθ(xt, t))+σtz

7: end for
8: return x0

cross-entropy (CE) loss leads to poor results. This is because a classifier may reach a low CE loss
even without learning the correct probability pt|x̃(t|x) for any t. This phenomenon can be observed
in Fig. 3, which illustrates the reason that existing DRE methods fail to capture the distribution of
high-dimensional complex data like images. We discuss this in more detail in Sec. 4.1.

To obtain the correct probability pt|x̃(t|x) for any t, we suggest training the classifier with a com-
bination of a CE loss on its outputs, and an MSE loss on its gradient, according to relation (8).
The network’s gradient can be efficiently computed using automatic-differentiation. Following Ho
et al. [19], we use the same weight for all timesteps in the MSE loss. Our full training scheme is
described in Algorithm 1. Here, fθ(x)[t] denotes the model’s t-th logit, which serves as an approxi-
mation for log pt|x̃(t|x) (up to an additive constant that cancels out in the SoftMax operation), and
Fθ(x, t) = fθ(x)[T + 1]− fθ(x)[t]. The added timesteps, corresponding to entries 0 and T + 1
of the classifier, are trained only using the CE loss. This is because the prediction of the noise is
trivial when t = T + 1 and meaningless when t = 0 (since there is no noise). Importantly, this
behavior is automatically achieved without any modification to the algorithm. Specifically, in line 4
of the algorithm, Fθ(xT+1, T + 1) = 0, and in line 5, εθ(x0, 0) = 0, preventing the MSE loss from
updating the weights for these timesteps.

Algorithm 2 shows how to generate samples with CDM using the DDPM sampler (a similar approach
can be used with other samplers). Note that each step t in DDPM sampling using CDM is given by

xt−1 =
√
αtxt −

1− αt√
αt
∇xt

Fθ(xt, t) + σtz, (9)

where z ∼ N (0, I). Therefore, each step steers the process in the direction that maximizes the
probability of noise level t, while minimizing the probability of noise level T +1. This can be thought
of as taking a gradient step with size (1 − αt)/

√
αt, followed by a step in a random exploration

direction with magnitude σt, similarly to Langevin dynamics.

3.1 Exact Likelihood Calculation in a Single Step

To compute the likelihood of a given sample, DDMs are required to perform many NFEs in order
to compute a lower bound on the log likelihood using the ELBO [19], or can approximate the exact
likelihood [43] using an ODE solver based on repeated evaluations of the network. In contrast, as a
DRE-based method, a CDM is able to calculate the exact likelihood in a single NFE. In fact, a CDM
can compute the likelihood w.r.t. the distribution pxt

of noisy images, for any desired timestep t.
Specifically, we have the following (see proof in App. B.3)
Theorem 3.2. For any t ∈ {0, 1, . . . , T + 1},

pxt(x) =
pt(T + 1)

pt(t)

pt|x̃(t|x)
pt|x̃(T + 1|x)

N (x; 0, I), (10)

where N (·; 0, I) is the probability density function of a standard multivariate Gaussian distribution.

Note that the first term in (10) only depends on the pre-selected probability mass function pt (which
we choose to be uniform in our experiments), and the second term can be obtained from the t-th and
(T + 1)-th entries of the vector at the output of the classifier (after applying SoftMax). This implies
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Figure 3: Comparison between the log probability of a noise-level classifier trained using the CE
loss alone and a model trained using CE and MSE. Since the SoftMax operator is invariant to an
additive factor, we subtract the maximal value from the vector (i.e., fθ(xt)← fθ(xt)−max(fθ(xt)))
for visualization. We utilize the connection we developed between the optimal classifier and the
MMSE denoiser to incorporate the MSE loss in DRE training, as depicted in Algorithm 1. As evident,
without considering MSE, the prediction accuracy of the classifier is limited to the vicinity of the
correct label, unlike the model trained using both CE and MSE, which yields accurate predictions
globally. The essence of an optimal classifier lies in its capability to predict the correct probability
vector for all entries, rather than solely for the correct label. As can be seen, this necessitates the
incorporation of the MSE loss.

that we can calculate the likelihood of any given image x w.r.t. to the density pxt
of noisy images for

any noise level t. In particular, px0
is the density of clean images. Thus, by choosing t = 0 we can

calculate the likelihood of clean images. In App. D we present a simple validation of our efficient
likelihood computation by applying it to toy examples with known densities, allowing us to compute
the analytical likelihood and verify that our computations align with theoretical expectations.

4 Experiments

We train several CDMs on two common datasets. For CIFAR-10 [26] we train both a class conditional
model and an unconditional model. We also train a similar model for CelebA [31], using face
images of size 64 × 64. In Sec. 4.1, we demonstrate why existing DRE methods fail on complex
high-dimensional data like images, and show how the incorporation of the MSE loss in our method,
according to Theorem 3.1, overcomes these challenges. In Sec. 4.2, we compare our method with
pre-trained DDMs with similar architectures, to disentangle the benefits of our method from other
variables. We evaluate the performance of CDM as a denoiser, assess its generation quality using
FID [17], and measure its likelihood modeling capabilities using NLL. Finally, in Sec. 4.3, we
demonstrate the use of different noise schedulers, one specifically tuned for likelihood estimation,
and one corresponding to the flow matching optimal-transport scheme [29, 30]. We show that
incorporating these schedulers into our method leads to state-of-the-art NLL results among methods
capable of outputting the likelihood in a single forward pass.

4.1 The Importance of Using Both Losses for Achieving an Optimal Classifier

In Theorem 3.1, we established that the MMSE denoiser corresponds to the gradient of the optimal
noise-level classifier. A natural question is whether we can train our model only with the MSE loss.
Unfortunately, the answer is negative. This is because the MSE achieved by the model does not
change if we add a function of t to its output, as such an additive term vanishes when taking the
gradient with respect to x. The CE loss is important for removing this degree of freedom. Namely,
without the CE loss, the model can function as a denoiser but is useless for the purpose of outputing
the likelihood in a single step.

Can we train the model only with the CE loss, then? In theory, training the model only with the CE
loss should be sufficient. However, as we will demonstrate next, incorporating MSE is crucial in
practice for achieving an optimal classifier.

Table 1 reports the MSE, CE and classification accuracy achieved by models trained with different
losses. We emphasize that the model trained using only MSE in this comparison, is a CDM model
trained using Algorithm 1, and is not equivalent to a DDM model trained using (5). As evident from
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Table 1: The importance of using both losses in CDM. We demonstrate the importance of using
both the CE and MSE losses at training. We report the results for CIFAR-10 test-set. FID is reported
on 50k samples which were generated using DDIM scheduler with 50 steps. As shown by Rhodes
et al. [35], to avoid the density-chasm problem, the classification problem should be sufficiently hard
to avoid trivial classifier solutions. This leads to low classification accuracy results.

TRAINING CLASSIFICATION ACC ↑ CE ↓ MSE ↓ FID ↓ NLL ↓
LOSS

CE 6.97% 4.49 0.225 329 8.27
MSE 0% 1659 0.028 7.65 9.32
BOTH 8.34% 4.37 0.028 7.56 3.38

the table, when using only the CE loss, the MSE is high, and when using only the MSE loss the CE
and classification accuracy are poor. An important point to notice is that even when training with the
CE loss, the classifier’s accuracy is rather low (though greater than the 0% achieved when training
only with the MSE loss). This is a key prerequisite for making DRE methods work. Specifically, as
shown in [35], the classification problem should be sufficiently hard in order to avoid the density-
chasm problem, otherwise the classifier can easily discriminate between the classes even without
having learned the correct density ratio. Yet, as we illustrate next, only making the classification
problem harder is still insufficient for learning the probability pt|x̃(t|x) with only the CE loss.

Figure 3 shows the logits fθ(xt) for noisy images with different noise levels, comparing a model
trained using CE to a model trained with both CE and MSE. As can be seen, in both scenarios the
prediction near the true label is the same, namely the CE works well in the vicinity of the correct
noise level. However, the model trained without the MSE loss exhibits significantly higher predicted
logits for more distant noise levels compared to the model trained using both CE and MSE. Moreover,
the logits of the model trained without MSE do not decrease monotonically as the distance from the
actual noise level increases, which is in contrast with the expected behavior. This demonstrates the
importance of the MSE loss for obtaining good prediction globally. As can be seen in Theorem 3.1,
the denoiser at timestep t depends on the predictions of the classifier in both the t-th and the (T+1)-th
entries. Therefore, the addition of the MSE loss enforces the classifier to achieve accurate predictions
in both entries, thereby ensuring accurate predictions globally.

4.2 Denoising Results, Image Quality and Negative Log Likelihood

We compare our method with pre-trained DDMs of similar architectures. Since CDM is a classifier
and DDM is a timestep-conditional denoiser, we take the architecture of our CDM to be identical
to the DDM, except for altering the last two layers to output a vector of logits, and removing all
timestep conditioning layers. These changes have a negligible effect on the number of parameters in
the model. For more details please refer to App. C.

As shown in Fig. 4, the denoising performance of our CDM surpasses that of pre-trained DDMs at
high noise levels, and is comparable to them at lower noise levels. These quantitative results are
corroborated by the qualitative examples in Fig. 5, which showcase image denoising results across
various noise levels.

The good denoising performance of CDM translates into high quality image generation. This is
illustrated qualitatively in Fig. 1, which shows samples from models trained on CelebA and on
CIFAR-10 (unconditional). To quantitatively compare the generation quality of CDM to that of
pre-trained DDMs, we use 50k FID [17] against the train-set. For both CDMs and DDMs, we compare
images sampled using the DDPM [19], DDIM [39], and DPM-Solver (DPMS) [32] samplers, using
1000, 50, and 25 timesteps, respectively. The results, shown in Table 2, demonstrate that CDM is at
least comparable to pre-trained DDMs in image quality, outperforming them in most cases.

Additionally, we evaluate CDM’s effectiveness in applying classifier-free guidance (CFG) [18]
for conditional sampling tasks. As expected, incorporating CFG improves image quality beyond
unconditional generation, as reflected in the conditional CIFAR-10 FID results of Table 2. More
details and qualitative results are provided in Appendix C.5. These results showcase the effectiveness
of CDM for image generation, showing it to be equal or better than a similar DDM.
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Finally, we calculate log-likelihoods and compare our NLL results to recent leading methods in
Table 3. CDM demonstrates comparable performance on NLL estimation for CIFAR-10 compared
to DDMs. Notably, CDM stands out as a more efficient method than existing ones, requiring only
a single forward pass for NLL computation. Table 3 also includes CDM(unif.), and CDM(OT) on
which we elaborate in Sec. 4.3 below. These variants of our model, improve the NLL predictions and
achieve state-of-the-art results among methods requiring a single step.

4.3 Different Noise Scheduling for Better Likelihood Estimation

To see the effect of using a timestep scheduler tuned for DRE tasks, we repeat the CIFAR-10
unconditional experiment, with a different noise scheduler. Following Rhodes et al. [35] we use the
scheduler defined as

√
1− ᾱt =

t
T+1 and choose T = 1000 similarly to our previous experiments.

Utilizing this scheduler, we achieve a better NLL of 2.98 at the expense of a higher FID of 10.28,
when using the DDIM sampler with 50 steps. This trade-off highlights that the scheduler optimal for
learning the data distribution may not be ideal for sampling.

To further explore the influence of the noise scheduler, we train and evaluate a CDM with the flow-
matching optimal-transport (OT) scheduler [29, 30] on unconditional CIFAR-10. In this scheduler,
xt =

T−t
T x0 +

t
T εt, where εt ∼ N (0, I) and t ∈ {0, . . . , T}. This scheduler leads to a state-of-the-

art single-step NLL of 2.89 and to an FID of 7.07 with 1000 sampling steps. Please see App. B.4 for
more details.

Future research could explore schedulers aimed at further enhancing the NLL. Further analysis of the
difference between the schedulers from a classification perspective can be found in App. E.2

5 Related Work

Using the concept of DRE for learning data distributions was initially studied by Gutmann and
Hyvärinen [15]. Their noise contrastive estimation (NCE) method approximates the ratio between
the density of the data distribution and that of white Gaussian noise. However, it struggles in practical
scenarios where the gap between these distributions is large, as is the case for natural images [35].
Conditional noise contrastive estimation (CNCE) [4] is a slightly improved version of NCE, in which
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Table 2: Image generation quality. We compare
the FID (lower is better) achieved by a DDM and
a CDM using three sampling schemes for CelebA
and CIFAR-10. For conditional CIFAR-10 we train
a DDM ourselves, as no model in the original im-
plementation [19] supports CFG.

SAMPLING METHOD MODEL

CELEBA 64× 64 DDM CDM

DDIM SAMPLER, 50 STEPS 8.47 4.78
DDPM SAMPLER, 1000 STEPS 4.13 2.51
2ND ORDER DPMS, 25 STEPS 6.16 4.45

UNCOND CIFAR-10 DDM CDM

DDIM SAMPLER, 50 STEPS 7.19 7.56
DDPM SAMPLER, 1000 STEPS 4.77 4.74
2ND ORDER DPMS, 25 STEPS 6.91 7.29

COND CIFAR-10 DDM CDM

DDIM SAMPLER, 50 STEPS 5.92 5.08
DDPM SAMPLER, 1000 STEPS 4.70 3.66
2ND ORDER DPMS, 25 STEPS 5.87 4.87

Table 3: NLL (bits/dim) calculated on the
CIFAR-10 test-set. For each model we specify
the number of NFEs required for calculating
the NLL. CDM achieves state-of-the-art NLL
among methods that use a single NFE.

MODEL NLL ↓ NFE

IRESNET [2] 3.45 100
FFJORD [13] 3.40 ∼3K
MINTNET [41] 3.32 120
FLOWMATCHING [29] 2.99 142
VDM [22] 2.65 10K
DDPM (L) [19] ≤3.70 1K
DDPM (Lsimple) [19] ≤3.75 1K
DDPM (SDE) [43] 3.28 ∼200
DDPM++ CONT. [43] 2.99 ∼200

REALNVP [10] 3.49 1
GLOW [24] 3.35 1
RESIDUAL FLOW [6] 3.28 1
CDM 3.38 1
CDM(UNIF.) 2.98 1
CDM(OT) 2.89 1

the classification problem is designed to be harder. Specifically, CNCE is based on training a classifier
to predict the order of a pair of samples with closer densities, e.g. achieved by pairing a data sample
with its noisy version.

Telescoping density-ratio estimation (TRE), proposed by Rhodes et al. [35], avoids direct classification
between data and noise. Instead, it uses a gradual transition between those two distributions, and
trains a classifier to distinguish between samples from every pair of adjacent densities. Such a
classifier learns the ratio between adjacent distributions, and the overall ratio between the data and
noise distributions is computed by multiplying all intermediate ratios.

Choi et al. [7] extended this idea from a finite set of intermediate densities to an infinite continuum.
This was accomplished by deriving a link between the density ratios for infinitesimally close distribu-
tions and the principles of score matching [23, 40, 42], motivating the training of a model to predict
the time score ∂

∂t log pxt
. In contrast, we draw a different connection which shows that an MMSE

denoiser can be obtained as the gradient of an optimal noise level classifier. Also, to obtain the log
ratio between the target and reference distributions, Choi et al. [7] need to solve an integral over the
time-score using an ODE solver, while in our method this ratio can be calculated in a single NFE.

Yair and Michaeli [47] extended the concept of TRE, proposing the training of a single noise level
classifier instead of training a binary classifier for each pair of neighboring densities. While this
method is conceptually similar to ours, our approach distinguishes itself by incorporating the MSE
loss as outlined in Theorem 3.1. As demonstrated in our experiments, this proves to be crucial for
achieving an optimal classifier and high-quality image generation.

6 Discussion and Conclusion

We developed an analytical connection between an MSE-optimal denoiser for removing white
Gaussian noise and a cross-entropy-optimal classifier for predicting the noise level. We used this
connection to propose CDM – a DRE based generative technique that is based on a noise-level
classifier. Importantly, our classifier is trained using both a classification loss (CE) and a regression
loss (MSE). We showed that this key component is what sets CDM apart from existing DRE based
methods, and makes it the first instance of a DRE-based technique that can successfully generate
images beyond MNIST.
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Our approach is not free of limitations. A key challenge is that CDMs can be more computationally
expensive than DDMs. Indeed, while DDMs require a single forward pass for each denoising step,
CDMs require both a forward pass and a backward pass. Nevertheless, the computational cost of
performing a forward and a backward pass through a network depends on its architecture. In this work,
we chose to use the same architecture as that used by DDPM [19], in order to isolate the impact of our
algorithmic approach from the choice of the model architecture when comparing to DDMs. However,
an important future direction would be to explore architectures that are particularly optimized for
CDMs and that alleviate the gap in computational complexity. Such architectures should have the
property that performing a forward pass and a backward pass through them is computationally similar
to performing only a forward pass in a regular DDM. This could potentially be achieved e.g., by
relying only on the encoder part of the U-Net. However, we leave this exploration for future work.

Broader Impact CDM is a generative model and thus may potentially suffer from the same
limitations as other generative techniques. These include biases in the generated images, as well as
malicious and offensive use, such as creating Deepfakes for disinformation. However, CDMs may
also impact domains that rely on generative models in a positive way. This is because, different from
most generative models, CDMs are able to compute the likelihood for any input in a single step. This
may be used e.g., for out-of-distribution detection or for ranking the likelihoods of different restored
images in image restoration tasks. Such capabilities may be crucial in fields like medical imaging.
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A Notation

Table 4: Notation
Notation Description Comments

t The random variable over t ∈ {0, 1, . . . , T + 1}
with distribution pt(t)

pt(t) The distribution of the random variable t P(t = t)

xt The diffusion signal at a specific timestep t = t

x̃,xt The diffusion signal at a random timestep t

pxt
(x) The distribution of noisy images with noise level

t = t
px̃|t(x|t)

px̃(x), pxt(x) The joint distribution of noisy images among all
the noise levels.

∑T+1
t=0 pxt

(x)pt(t)

F (x, t) log(pt|x̃(T + 1|x))− log(pt|x̃(t|x))
fθ(xt) Logits vector that is produced by our model fθ(xt)[t] ≈ log(pt|x̃(t|x))
Fθ(xt, t) Model approximation of F (x, t) fθ(xt)[T + 1]− fθ(xt)[t]

B Proofs

B.1 Theorem 3.1 Proof

Using Bayes rule,

pxt
(x) = px̃|t(x|t) =

pt|x̃(t|x)px̃(x)
pt(t)

. (11)

In particular, for t = T + 1, this relation reads

pxT+1
(x) =

pt|x̃(T + 1|x)px̃(x)
pt(T + 1)

. (12)

Combining (11) and (12) yields

pxt(x) =
pt(T + 1)

pt(t)

pt|x̃(t|x)
pt|x̃(T + 1|x)

pxT+1
(x). (13)

Taking the logarithm of both sides, we have

log(pxt
(x)) = log

(
pt(T + 1)

pt(t)

)
+ log

(
pt|x̃(t|x)

pt|x̃(T + 1|x)

)
+ log(pxT+1

(x)). (14)

Taking the gradient of both sides w.r.t x, and noting that the first term on the right hand side does not
depend on x, we get that

∇x log(pxt(x)) = ∇x log(pt|x̃(t|x))−∇x log(pt|x̃(T + 1|x)) +∇x log(pxT+1
(x)). (15)

Since pxT+1
(x) = N (x; 0, I), we have that∇x log(pxT+1

(x)) = −x. Therefore, overall we have

∇x log(pxt(x)) = ∇x log(pt|x̃(t|x))−∇x log(pt|x̃(T + 1|x))− x. (16)

As for the left hand side of (15), since xt =
√
ᾱtx0 +

√
1− ᾱtεt and εt ∼ N (0, I), using Tweedie’s

formula [34, 45, 11] it can be shown that

∇x log(pxt
(x)) = − 1√

1− ᾱt
E[εt|xt = x]. (17)

For completeness we provide the full proof for (17) in App. B.2. Substituting (16) into (17) and
multiplying both sides by

√
1− ᾱt gives

E[εt|xt = x] =
√
1− ᾱt

(
∇x log(pt|x̃(T + 1|x))−∇x log(pt|x̃(t|x)) + x

)
, (18)
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which completes the proof.

Note that the proof is correct for any choice of pt (provided that pt(t) > 0 for all t ∈ {1, .., T + 1}),
since the term that depends on pt does not depend on x and thus drops when taking the gradient. In
practice, as mentioned in the main text, we chose to use t ∼ U({0, 1, ..., T + 1}).

B.2 Proof of Tweedie’s Formula

Let us show that if y = µx + σz with z ∼ N (0, I) statistically independent of x, then
∇y log(py(y)) = − 1

σE[z|y = y].

From the law of total probability,

py(y) =

∫
py|x(y|x)px(x)dx

=

∫
1

(2π)d/2σd
exp

{
− 1

2σ2
∥y − µx∥2

}
px(x)dx. (19)

Taking the gradient w.r.t. y gives

∇ypy(y) =

∫
− 1

σ2
(y − µx)

1

(2π)d/2σd
exp

{
− 1

2σ2
∥y − µx∥2

}
px(x)dx

=

∫
− 1

σ2
(y − µx)py|x(y|x)px(x)dx

=

∫
− 1

σ2
(y − µx)px|y(x|y)py(y)dx. (20)

Dividing both sides by py(y), we get

∇y log py(y) =

∫
− 1

σ2
(y − µx) px|y(x|y)dx

= − 1

σ2
E[y − µx|y = y]

= − 1

σ
E[z|y = y]. (21)

Now, substituting µ =
√
ᾱt, σ =

√
1− ᾱt, y = xt, y = xt, and z = εt, leads to

∇xt log pxt(xt) = −
1√

1− ᾱt
E[εt|xt = xt], (22)

demonstrating (17).

B.3 Proof of Theorem 3.2

Substituting pxT+1
(x) = N (x; 0, I) into (13) leads to

pxt
(x) =

pt(T + 1)

pt(t)

pt|x̃(t|x)
pt|x̃(T + 1|x)

N (x; 0, I), (23)

which proves Theorem 3.2.

B.4 Proof of CDM for the Flow Matching Optimal Transport Scheduler

In the case of the flow matching optimal-transport scheduler [29, 30], xt is defined as

xt =
T − t

T
x0 +

t

T
εt, (24)

where εt ∼ N (0, I) and t ∈ {0, . . . , T}. In this case, the objective of conditional flow matching is
[29, 30]

L =

T∑
t=1

Ex0,εt

[
vt(x)−

1

T
(εt − x0)

]
(25)
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and the global minimum of this objective is achieved by

vt(x) =
1

T
· E[εt − x0|xt = x]. (26)

We will start by expressing this solution in terms of the optimal denoiser E[εt|xt]. Substituting (24)
into (26) and using the fact that E[xt|xt = x] = x gives

vt(x) =
1

T − t
· (E[εt|xt = x]− x). (27)

Next, following exactly the same logic as in App. B.1, we can write

E[εt|xt = x] =
t

T
·
(
∇x log(pt|x̃(T |x))−∇x log(pt|x̃(t|x)) + x

)
, (28)

Finally, by substituting (28) into (27) we get

vt(x) =
t/T

T (1− t/T )

(
∇x log(pt|x̃(T |x))−∇x log(pt|x̃(t|x))

)
− 1

T
· x. (29)

C Implementation details

C.1 Architectures

For a fair comparison, for each dataset we used the same architecture for our method and for DDMs.
As baslines we took the pre-trained model for CelebA 64× 64 from the DDIM Official Github [39]
and the EMA pre-trained model for CIFAR-10 from the pytorch diffusion repository, who converted
the pre-trained model from the Official DDPM implementation from tensorflow to pytorch.

For conditional CIFAR-10 we trained the DDM model by ourselves because there exist no pre-trained
models for CIFAR-10 capable of handling CFG. We used the same architecture from [19] for both
models and trained them for the same number of iterations (more details are in App. C.2.2). To
condition the model on class labels, we learned an embedding for each class using nn.Embedding and
injected it at all points where the time embedding was originally applied. In the case of DDM, we
added the class embedding to the time embedding, while for CDM, we replaced the time embedding
with the class embedding.

In contrast to DDM architectures, our model does not need the layers that process the timestep input
so we removed them. In addition, our model outputs a probability vector in contrast to DDMs which
output an image, therefore, we replaced the last convolution layer that reduces the number of channels
to 3 in the original architecture by a convolution layers outputs 1024 and 512 channels for CelebA
64 × 64 and CIFAR-10, respectively. Following this layer, we performed global average pooling
and added a linear layer with an output dimension of T + 2. The resulting change in the number of
parameters is negligible.

Inspired by Yair and Michaeli [47], we added a non-learned linear transformation at the output of the
network, which performs cumulative-summation (cumsum). This enforces (for the optimal classifier)
the t-th output of the model before this layer to be log rt(x) = log

pt|x̃(t|x)
pt|x̃(t−1|x) = log pt|x̃(t|x) −

log pt|x̃(t− 1|x) for t ̸= 0 and r0(x) = log pt|x̃(0|x), so that after the cumsum layer, the t-th output
is
∑t

i=0 log ri(x) = log pt|x̃(t|x).

C.2 Hyperparamters

C.2.1 CelebA 64× 64

We trained the model for 500k iterations with a learning rate of 1 · 10−4. We started with a linear
warmup of 5k iterations and reduced the learning rate by a factor of 10 after every 200k iterations.
The typical value of the CE loss after convergence was ∼ 3.8 while the MSE loss was ∼ 0.0134 so
we chose to give the CE loss a weight of 0.001 to ensure the values of both losses have the same
order of magnitude. In addition We used EMA with a factor of 0.9999, as done in the baseline model.
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Figure 6: Samples from the conditional CIFAR-10 model. The figure depicts samples generated
using CFG with a parameter of 0.5. Each row corresponds to a different class.

C.2.2 Unconditional and Conditional CIFAR-10

We trained the model for 500k iterations with a learning rate of 2 · 10−4. We started with a linear
warmup of 5k iterations and reduced the learning rate by a factor of 10 after every 200k iterations.
The typical value of the CE loss after convergence was ∼ 4.4 while the MSE loss was ∼ 0.03 so we
chose to give the CE loss a weight of 0.001 to maintain values at the same order of magnitude. In
addition, we used EMA with a factor of 0.9999, as done in the baseline model.

For the CDM(unif.) model we used the same hyperparametes except for learning rate, which we set
to 1 · 10−4.

The CDM(OT) model was trained with the same hyperparameters, except for the learning rate, which
was set to 1 · 10−4. Additionally, we trained the model without a learning rate schedule for 1M
iterations, as the NLL continued to decrease beyond 500k iterations.

C.3 Compute Resources

C.3.1 CelebA 64× 64

Training the model on CelebA 64× 64 takes 108 hours on a server of 4 NVIDIA RTX A6000 48GB
GPUs. Sampling 50k images for FID calculation takes 16 hours on the same hardware.

C.3.2 Unconditional and Conditional CIFAR-10

Training the model on CIFAR-10 takes 35 hours on a server of 4 NVIDIA RTX A6000 48GB GPUs.
Sampling 50k images for FID calculation takes 9 hours with classifier free guidance and 5 hours
without classifier free guidance on the same hardware.

C.4 Data Augmentation

Following the models to which we compared, for all the datasets we normalized the images to the
range [−1, 1] and applied random horizontal flip at training.

C.5 Classifier Free Guidance

We used CFG to sample conditioned examples in Sec. 4.2 following [18]. We trained our own
conditional models on the CIFAR-10 dataset, both for DDM and for CDM, and used label dropout of
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Figure 7: Log likelihood computation using CDM for toy problems possessing closed form
expressions. The left subplot corresponds to the densities from Sec. D.1, while the right subplot
corresponds to the densities from Sec. D.2. The red points on the graphs correspond to differnet γ
values. The alignment of these points along the diagonal provides evidence supporting our likelihood
estimation as stated in Theorem 3.2.

0.1. We selected the best parameter w for each method using a grid search over w = 0.25, 0.5, 0.75, 1.
In Fig. 6 we show samples from the conditional model. Each row corresponds to a different class.

C.6 The Addition of The Timesteps 0 and T + 1

As outlined in Sec. 3, we introduce additional timesteps, corresponding to x0, xT+1, which are
not present in DDMs. This inclusion is fundamental to our method formulation. Importantly, this
addition does not alter the number of sampling steps, as we continue initiating the reverse process
from t = T and finish it with the denoised result of t = 1, following the approach in DDM.

D Validating the Log Likelihood Computation on Toy Examples

We validate our efficient likelihood computation by applying it to toy examples with known densities,
allowing us to compute the analytical likelihood and verify that our computations align with theoretical
expectations.

D.1 Images With Independent Pixels

We start by experimenting with the uniform distributions pγ = U
[
−γ

2 ,
γ
2

]3×32×32
with γ ∈

{0.25, 0.5, 1, 2, 3}. We trained a CDM separately for each of these densities following the pro-
cedure outlined in Algorithm 1. These distributions correspond to 32×32 color images of iid uniform
noise. The probability density function (pdf) of the uniform distribution U

[
−γ

2 ,
γ
2

]
is given by

f(x; γ) =

{
1
γ if − γ

2 ≤ x ≤ γ
2 ,

0 otherwise.
(30)

The pdf pγ(x) in the d-dimensional space is the product of the individual pdfs for each dimension.
Since the dimensions are independent, the joint pdf is given by

pγ(x) =

d∏
i=1

f(xi; γ) =

(
1

γ

)d

. (31)

The logarithm of the pdf pγ(x) is given by −d ln(γ). The log-likelihood is the expectation of
ln pγ(x). Since ln pγ(x) is constant, its expectation is that constant. Therefore, the log-likelihood
normalized by d is − ln(γ). In the left subplot of Fig. 7 we compare the analytical log likelihood
computed using (32) with the estimated log likelihood by our model.
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Figure 8: Comparison of denoising between a model trained using only CE and one trained
using both CE and MSE. We note that the denoising results for the model trained using CE alone
are poor, but are better for high noise levels than for lower ones. This resonates with our conclusion
that models trained only with CE are only accurate near the real noise level: As denoising with CDM
relies on Theorem 3.1, we would expect deteriorating denoising quality the further the real noise
level is from T + 1, as fθ(x)[T + 1] is always used for denoising.

D.2 Images With Correlated Pixels

To further validate our likelihood calculation, we tested it on toy examples of images with correlated
pixels. Specifically, we used images of size 3 × 32 × 32 sampled from multivariate Gaussian
distributions with µ = 0 and Σ ̸= I . The normalized log likelihood per dimension for a multivariate
Gaussian is given by

−0.5 · (ln(2π) + 1)− ln(|Σ|)
2d

. (32)

We defined a sequence of distributions with Σ =
√
1− γ ΣCIFAR-10 +

√
γ I , where ΣCIFAR-10 is the

empirical covariance matrix of the CIFAR-10 dataset, and γ ∈ {0, 10−5, 10−3, 10−1}. In the right
subplot of Fig. 7, we compare the analytical log likelihood computed using (32) with the estimated
log likelihood by our model.

E More Experiments

E.1 Analysis of the Effect of Training with Different Losses

Figure 8 provides further qualitative analysis of the effect of training with different losses on the
quality of the model’s image denoising capabilities. The results illustrate that the model trained using
only CE loss achieves poor denoising quality compared to the CDM model trained with both CE and
MSE.

E.2 The Influence of Different Schedulers on the Classifier Performances

First, to assess the classifier’s performance, we present the confusion matrices of models trained
with and without MSE loss in Fig. 9a. Notably, at lower noise levels, the classifier exhibits high
confidence, while at higher noise levels, confidence diminishes. This finding corresponds to the
DDPM scheduler [19], which partitions the noise levels to be more concentrated for high timesteps
and less concentrated for low timesteps. The similarity between the confusion matrices underlines
that CE loss alone is adequate for accurate predictions around the real noise level. However, as
demonstrated in the main text, this does not imply that the classifier is optimal in terms of learning
the correct logits for any given t.
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(a) Confusion matrices evaluated for models
trained with both MSE and CE loss (top) and only
with CE loss (bottom). The colors indicate the proba-
bilities. The similarity between the confusion matrices
underlines that CE loss alone is adequate for accurate
predictions around the real noise level. This is also
shown in Fig. (3)

(b) Confusion matrix CDM(unif.) model evalu-
ated on unconditional CIFAR-10 32× 32 using
the scheduler from TRE. The colors indicate the
probabilities. In contrast to DDPM noise scheduler,
with TDR noise scheduler, the classification difficulty
is preserved across all timesteps.

In Fig. 9b, we illustrate that the uniform scheduler from [35] induces a uniform difficulty in classifi-
cation across various noise levels. This is in contrast to the DDM scheduler, depicted in Fig. 9a, in
which the classification difficulty increases with the noise level.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and the introduction state the claims made and the contribution.
All the claims made match the theoretical and experimental results which appear in Sec. 3
and Sec. 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Sec. 6 we discuss the limitation of our method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All the theorems and the full set of assumptions appear in Sec. 3. All the
assumptions are clearly stated and the full proofs appear in App. B.1 and App. B.3.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the experimental details appear in Sec. 4. The full training and sam-
pling algorithms appear in details in the main paper (Algorithm 1 and Algorithm 2). The
architecture, the hyper-parameters and the optimizer we used appear in App. C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Justification: Code is available on the project’s webpage.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Answer: [Yes]
Justification: The experimental settings are presented in Sec. 4, and all the training details
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• The experimental setting should be presented in the core of the paper to a level of detail
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Answer: [No]
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the amount of compute required for each of the experiments in
App. C.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Sec. 6 we discuss the broader impacts of our work.
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• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used academic resources for data and models and cited accordingly.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assests.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
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may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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