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Abstract: We present Neural Signal Operated Intelligent Robots (NOIR), a1

general-purpose, intelligent brain-robot interface system that enables humans to2

command robots to perform everyday activities through brain signals. Through3

this interface, humans communicate their intended objects of interest and actions4

to the robots using electroencephalography (EEG). Our novel system demon-5

strates success in an expansive array of 20 challenging, everyday household ac-6

tivities, including cooking, cleaning, personal care, and entertainment. The effec-7

tiveness of the system is improved by its synergistic integration of robot learning8

algorithms, allowing for NOIR to adapt to individual users and predict their inten-9

tions. Our work enhances the way humans interact with robots, replacing tradi-10

tional channels of interaction with direct, neural communication. Project website:11

https://sites.google.com/view/noir-corl202312

Keywords: Brain-Robot Interface; Human-Robot Interaction13

Figure 1: NOIR is a general-purpose brain-robot interface that allows humans to use their brain
signals (1) to control robots to perform daily activities, such as making Sukiyaki (2), ironing clothes
(7), playing Tic-Tac-Toe with friends (17), and petting a robot dog (21).

1 Introduction14

Brain-robot interfaces (BRIs) are a pinnacle achievement in the realm of art, science, and engi-15

neering. This aspiration, which features prominently in speculative fiction, innovative artwork, and16

groundbreaking scientific studies, entails creating robotic systems that operate in perfect synergy17
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with humans. A critical component of such systems is their ability to communicate with humans.18

In human-robot collaboration and robot learning, humans communicate their intents through ac-19

tions [1], button presses [2, 3], gaze [4–7], facial expression [8], language [9, 10], etc [11, 12].20

However, the prospect of direct communication through neural signals stands out to be the most21

thrilling but challenging medium.22

We present Neural Signal Operated Intelligent Robots (NOIR), a general-purpose, intelligent BRI23

system with non-invasive electroencephalography (EEG). The primary principle of this system is24

hierarchical shared autonomy, where humans define high-level goals while the robot actualizes the25

goals through the execution of low-level motor commands. Taking advantage of the progress in26

neuroscience, robotics, and machine learning, our system distinguishes itself by extending beyond27

previous attempts to make the following contributions.28

First, NOIR is general-purpose in its diversity of tasks and accessibility. We show that humans can29

accomplish an expansive array of 20 daily everyday activities, in contrast to existing BRI systems30

that are typically specialized at one or a few tasks or exist solely in simulation [13–22]. Additionally,31

the system can be used by the general population, with a minimum amount of training.32

Second, the “I” in NOIR means that our robots are intelligent and adaptive. The robots are equipped33

with a library of diverse skills, allowing them to perform low-level actions without dense human su-34

pervision. Human behavioral goals can naturally be communicated, interpreted, and executed by the35

robots with parameterized primitive skills, such as Pick(obj-A) or MoveTo(x,y). Additionally,36

our robots are capable of learning human intended goals during their collaboration. We show that37

by leveraging the recent progress in foundation models, we can make such a system more adaptive38

with limited data. We show that this can significantly increase the efficiency of the system.39

The key technical contributions of NOIR include a modular neural signal decoding pipeline for40

human intentions. Decoding human intended goals (e.g., “pick up the mug from the handle”) from41

neural signals is extremely challenging. We decompose human intention into three components:42

What object to manipulate, How to interact with the object, and Where to interact, and show that43

such signals can be decoded from different types of neural data. These decomposed signals naturally44

correspond to parameterized robot skills and can be communicated effectively to the robots.45

In 20 household activities involving tabletop or mobile manipulations, three human subjects suc-46

cessfully used our system to accomplish these tasks with their brain signals. We demonstrate that47

few-shot robot learning from humans can significantly improve the efficiency of our system. This48

approach to building intelligent robotic systems, which utilizes human brain signals for collabora-49

tion, holds immense potential for the development of critical assistive technologies for individuals50

with or without disabilities and to improve the quality of their life.51

2 Brain-Robot Interface (BRI): Background52

Since Hans Berger’s discovery of EEG in 1924, several types of devices have been developed to53

record human brain signals. We chose non-invasive, saline-based EEG due to its cost and acces-54

sibility to the general population, signal-to-noise ratio, temporal and spatial resolutions, and types55

of signals that can be decoded (see Appendix 2). EEG captures the spontaneous electrical activity56

of the brain using electrodes placed on the scalp. EEG-based BRI has been applied to prosthetics,57

wheelchairs, as well as navigation and manipulation robots. For comprehensive reviews, see [22–58

25]. We utilize two types of EEG signals that are frequently employed in BRI, namely, steady-state59

visually evoked potential (SSVEP) and motor imagery (MI).60

SSVEP is the brain’s exogenous response to periodic external visual stimulus [26], wherein the brain61

generates periodic electrical activity at the same frequency as flickering visual stimulus. The appli-62

cation of SSVEP in assistive robotics often involves the usage of flickering LED lights physically63

affixed to different objects [27, 28]. Attending to an object (and its attached LED light) will increase64

the EEG response at that stimulus frequency, allowing the object’s identity to be inferred. Inspired65

by prior work [15], our system utilizes computer vision techniques to detect and segment objects,66

attach virtual flickering masks to each object, and display them to the participants for selection.67

2



Figure 2: NOIR has two components, a modular pipeline for decoding goals from human brain
signals, and a robotic system with a library of primitive skills. The robots possess the ability to learn
to predict human intended goals hence reducing the human effort required for decoding.

Motor Imagery (MI) differs from SSVEP due to its endogenous nature, requiring individuals to68

mentally simulate specific actions, such as imagining oneself manipulating an object. The decoded69

signals can be used to indicate a human’s intended way of interacting with the object. This approach70

is widely used for rehabilitation, and for navigation tasks [29] in BRI systems. This approach often71

suffers from low decoding accuracy [22].72

Much existing BRI research focuses on the fundamental problem of brain signal decoding, while73

several existing studies focus on how to make robots more intelligent and adaptive [13–17, 30]. In-74

spired by this line of work, we leverage few-shot policy learning algorithms to enable robots to learn75

human preferences and goals. This minimizes the necessity for extensive brain signal decoding,76

thereby streamlining the interaction process and enhancing overall efficiency.77

Our study is grounded in substantial advancements in both the field of brain signal decoding and78

robot learning. Currently, many existing BRI systems target only one or a few specific tasks. To the79

best of our knowledge, no previous work has presented an intelligent, versatile system capable of80

successfully executing a wide range of complex tasks, as demonstrated in our study.81

3 The NOIR System82

The challenges we try to tackle are: 1) How do we build a general-purpose BRI system that works83

for a variety of tasks? 2) How do we decode relevant communication signals from human brains? 3)84

How do we make robots more intelligent and adaptive for more efficient collaboration? An overview85

of our system is shown in Fig. 2. Humans act as planning agents to perceive, plan, and communicate86

behavioral goals to the robot, while robots use pre-defined primitive skills to achieve these goals.87

The overarching goal of building a general-purpose BRI system is achieved by synergistically inte-88

grating two designs together. First, we propose a novel modular brain decoding pipeline for human89

intentions, in which the human intended goal is decomposed into three components: what, how, and90

where (Sec. 3.1). Second, we equip the robots with a library of parameterized primitive skills to91

accomplish human-specified goals (Sec. 3.2). This design enables humans and robots to collaborate92

to accomplish a variety of challenging, long-horizon everyday tasks. At last, we show a key feature93

of NOIR to allow robots to act more efficiently and to be capable of adapting to individual users, we94

adopt few-shot imitation learning from humans (Sec. 3.3).95

3.1 The brain: A modular decoding pipeline96

We hypothesize that the key to building a general-purpose EEG decoding system is modularization.97

Decoding complete behavioral goals (e.g., in the form of natural language) is only feasible with ex-98

pensive devices like fMRI, and with many hours of training data for each individual [31]. As shown99

in Fig. 3, we decompose human intention into three components: (a) What object to manipulate; (b)100

How to interact with the object; (c) Where to interact. The decoding of specific user intents from101

EEG signals is challenging but can be done with steady-state visually evoked potential and motor102

imagery, as introduced in Sec. 2. For brevity, details of decoding algorithms are in Appendix 6.103

Selecting objects with steady-state visually evoked potential (SSVEP). Upon showing the task104

set-up on a screen, we first infer the user’s intended object. We make objects on the screen flicker105

with different frequencies (Fig. 3a), which, when focused on by the user, evokes SSVEP [26]. By106

identifying which frequency is stronger in the EEG data, we may infer the frequency of the flick-107
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Figure 3: A modular pipeline for decoding human intended goals from EEG signals: (a) What object
to manipulate, decoded from SSVEP signals using CCA classifiers; (b) How to interact with the
object, decoded from MI signals using CSP+QDA algorithms; (c) Where to interact, decoded from
MI signals. A safety mechanism that captures muscle tension from jaw clench is used to confirm or
reject decoding results.

ering visual stimulus, and hence the object that the user focuses on. We apply modern computer108

vision techniques to circumvent the problem of having to physically attach LED lights [27, 28].109

Specifically, we use the foundation model OWL-ViT [32] to detect and track objects, which takes in110

an image and object descriptions and outputs object segmentation masks. By overlaying each mask111

of different flickering frequencies (6Hz, 7.5Hz, 8.57Hz, and 10Hz [33, 34]), and having the user112

focus on the desired object for 10 seconds, we are able to identify the attended object.113

We use only the signals from the visual cortex (Appendix 6) and preprocess the data with a notch114

filter. We then use Canonical Correlation Analysis (CCA) for classification [35]. We create a Canon-115

ical Reference Signal (CRS), which is a set of sin and cos waves, for each of our frequencies and116

their harmonics. We then use CCA to calculate the frequency whose CRS has the highest correlation117

with the EEG signal, and identify the object that was made to flicker at that frequency.118

Selecting skill and parameters with motor imagery (MI). The user then chooses a skill and its119

parameters. We frame this as a k-way (k ≤ 4) MI classification problem, where we aim to decode120

which of the k pre-decided actions the user was imagining. Unlike SSVEP, a small amount of121

calibration data (10-min) is required due to the distinct nature of each user’s MI signals. The four122

classes are: Left Hand, Right Hand, Legs, and Rest; the class names describe the body parts that123

users imagine using to execute some skills (e.g. pushing a pedal with feet). Upon being presented124

with the list of k skill options, we record a 5-second EEG signal, and use a classifier trained on the125

calibration data. The user then guides a cursor on the screen to the appropriate location for executing126

the skill. To move the cursor along the x axis, the user is prompted to imagine moving their Left127

hand for leftward cursor movement. We record another five seconds of data and utilize a 2-way128

classifier. This process is repeated for x, y, and z axes.129

For decoding, we use only EEG channels around the brain areas related to motor imagery (Appendix130

6). The data is band-pass-filtered between 8Hz and 30Hz to include µ-band and β-band frequency131

ranges correlated with MI activity [36]. The classification algorithm is based on the common spatial132

pattern (CSP) [37–40] algorithm and quadratic discriminant analysis (QDA). Due to its simplicity,133

CSP+QDA is explainable and amenable to small training datasets. Contour maps of electrode con-134

tributions to the top few CSP-space principal components are shown in the middle row of Fig. 3.135

There are distinct concentrations around the right and left motor areas, as well as the visual cortex136

(which correlates with the Rest class).137

4



Confirming or interrupting with muscle tension. Safety is critical in BRI due to noisy decoding.138

We follow a common practice and collect electrical signals generated from facial muscle tension139

(Electromyography, or EMG). This signal appears when users frown or clench their jaws, indicating140

a negative response. This signal is strong with near-perfect decoding accuracy, and thus we use it141

to confirm or reject object, skill, or parameter selections. With a pre-determined threshold value142

obtained through the calibration stage, we can reliably detect muscle tension from 500-ms windows.143

3.2 The robot: Parameterized primitive skills144

Our robots must be able to solve a diverse set of manipulation tasks under the guidance of humans,145

which can be achieved by equipping them with a set of parameterized primitive skills. The benefits146

of using these skills are that they can be combined and reused across tasks. Moreover, these skills147

are intuitive to humans. Since skill-augmented robots have shown promising results in solving long-148

horizon tasks, we follow recent works in robotics with parameterized skills [41–52], and augment149

the action space of our robots with a set of primitive skills and their parameters. Neither the human150

nor the agent requires knowledge of the underlying control mechanism for these skills, thus the skills151

can be implemented in any method as long as they are robust and adaptive to various tasks.152

We use two robots in our experiment: A Franka Emika Panda arm for tabletop manipulation tasks,153

and a PAL Tiago robot for mobile manipulation tasks (see Appendix for hardware details). Skills for154

the Franka robot use the operational space pose controller (OSC) [53] from the Deoxys API [54].155

For example, Reaching skill trajectories are generated by numerical 3D trajectory interpolation156

conditioned on the current robot end-effector 6D pose and target pose. Then OSC controls the157

robot to reach the waypoints along the trajectory orderly. The Tiago robot’s navigation skill is158

implemented using the ROS MoveBase package, while all other skills are implemented using MoveIt159

motion planning framework [55]. A complete list of skills for both robots is in Appendix 3. Later,160

we will show that humans and robots can work together using these skills to solve all the tasks.161

3.3 Leveraging robot learning for efficient BRI162

The modular decoding pipeline and the primitive skill library lay the foundation for NOIR. How-163

ever, the efficiency of such a system can be further improved. During the collaboration, the robots164

should learn the user’s object, skill, and parameter selection preferences, hence in future trials, the165

robot can predict users’ intended goals and be more autonomous, hence reducing the effort required166

for decoding. Learning and generalization are required since the location, pose, arrangement, and167

instance of the objects could differ from trial to trial. Meanwhile, the learning algorithms should be168

sample-efficient since human data is expensive to collect.169

Retrieval-based few-shot object and skill selection. In NOIR, human effort can be reduced if the170

robot intelligently learns to propose appropriate object-skill selections for a given state in the task.171

Inspired by retrieval-based imitation learning [56–58], our proposed method learns a latent state172

representation from observed states. Given a new state observation, it finds the most similar state in173

the latent space and the corresponding action. Our method is shown in Fig. 4. During task execu-174

tion, we record data points that consist of images and the object-skill pairs selected by the human.175

The images are first encoded by a pre-trained R3M model [59] to extract useful features for robot176

manipulation tasks, and are then passed through several trainable, fully-connected layers. These177

layers are trained using contrastive learning with a triplet loss[60] that encourages the images with178

the same object-skill label to be embedded closer in the latent space. The learned image embeddings179

and object-skill labels are stored in the memory. During test time, the model retrieves the nearest180

data point in the latent space and suggests the object-action pair associated with that data point to181

the human. Details of the algorithm can be found in Appendix 7.1.182

One-shot skill parameter learning. Parameter selection requires a lot of human effort as it needs183

precise cursor manipulation through MI. To reduce human effort, we propose a learning algorithm184

for predicting parameters given an object-skill pair as an initial point for cursor control. Assuming185

that the user has once successfully pinpointed the precise key point to pick a mug’s handle, does186

this parameter need to be specified again in the future? Recent advancement in foundation models187

such as DINOv2 [61] allows us to find corresponding semantic key points, eliminating the need188
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Figure 4: Left: Retrieval-based few-shot object and skill selection model. The model learns a latent
representation for observations. Given a new observation, it finds the most relevant experience in
the memory and selects the corresponding skill and object. Right: One-shot skill parameter learning
algorithm, which finds a semantically corresponding point in the test image given a reference point
in the training image. The feature visualization shows 3 of the 768 DINOv2 tokens used.

for parameter re-specification. Compared to previous works, our algorithm is one-shot [62–66] and189

predicts specific 2D points instead of semantic segments [67, 68]. As shown in Fig. 4, given a190

training image (360× 240) and parameter choice (x, y), we predict the semantically corresponding191

point in the test images, in which positions, orientations, instances of the target object, and contexts192

may vary. We utilize a pre-trained DINOv2 model to obtain semantic features [61]. We input both193

train and test images into the model and generate 768 patch tokens, each as a pixel-wise feature194

map of dimension 75 × 100. We then extract a 3 × 3 patch centered around the provided training195

parameter and search for a matching feature in the test image, using cosine similarity as the distance196

metric. Details of this algorithm can be found in Appendix 7.2.197

4 Experiments198

Tasks. NOIR can greatly benefit those who require assistance with everyday activities. We select199

tasks from the BEHAVIOR benchmark [69] and Activities of Daily Living [70] to capture actual200

human needs. The tasks are shown in Fig. 1, and consist of 16 tabletop tasks and four mobile201

manipulation tasks. The tasks encompass various categories, including eight meal preparation tasks,202

six cleaning tasks, three personal care tasks, and three entertainment tasks. For systematic evaluation203

of task success, we provide formal definitions of these activities in the BDDL language format [69,204

71], which specifies the initial and goal conditions of a task using first-order logic. Task definitions205

and figures can be found in Appendix 4.206

Procedure. The human study conducted has received approval from Institutional Review Board.207

Three healthy human participants (2 male, 1 female) performed all 15 Franka tasks. Sukiyaki, four208

Tiago tasks, and learning tasks are performed by one user. We use the EGI NetStation EEG system,209

which is completely non-invasive, making almost everyone an ideal subject. Before experiments,210

users are familiarized with task definitions and system interfaces. During the experiment, users stay211

in an isolated room, remain stationary, watch the robot on a screen, and solely rely on brain signals212

to communicate with the robots (more details about the procedure can be found in Appendix 5).213

5 Results214

We seek to provide answers to the following questions through extensive evaluation: 1) Is NOIR215

truly general-purpose, in that it allows all of our human subjects to accomplish the diverse set of216

everyday tasks we have proposed? 2) Does our decoding pipeline provide accurate decoding results?217

3) Does our proposed robot learning and intention prediction algorithm improve NOIR’s efficiency?218

System performance. Table 1 summarizes the performance based on two metrics: the number of219

attempts until success and the time to complete the task in successful trials. When the participant220

reached an unrecoverable state in task execution, we reset the environment and the participant re-221

attempted the task from the beginning. Task horizons (number of primitive skills executed) are222

included as a reference. Although these tasks are long-horizon and challenging, NOIR shows very223

encouraging results: on average, tasks can be completed with only 1.83 attempts. The reason for224

task failures is human errors in skill and parameter selection, i.e., the users pick the wrong skills or225

parameters, which leads to non-recoverable states and needs manual resets. Decoding errors or robot226
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Task WipeSpill CollectToy SweepTrash CleanBook IronCloth OpenBasket PourTea SetTable GrateCheese CutBanana

Task horizon 4.33 7.67 5.67 7.00 4.67 5.33 4.00 8.33 7.00 5.33
# Attempts 1.00 1.33 2.33 3.33 2.33 1.67 1.67 5.67 1.33 1.67
Time (min) 14.74 25.24 20.59 27.73 16.95 15.90 13.53 20.91 24.98 17.68

Human time (%) 79.02 83.97 82.34 80.00 79.56 82.03 83.15 81.15 81.79 81.21
Task CookPasta Sandwich Hockey OpenGift TicTacToe Sukiyaki TrashDisposal CovidCare WaterPlant PetDog

Task horizon 8.33 9.00 5.00 7.00 14.33 13.00 8.00 8.00 4.00 6.00
# Attempts 1.67 1.67 1.33 2.67 2.00 1.00 1.00 1.00 1.00 1.00
Time (min) 30.06 27.87 15.83 23.57 43.08 43.45 7.25 8.80 3.00 4.58

Human time (%) 83.26 82.71 82.00 79.90 80.54 84.85 55.32 62.29 87.41 87.53

Table 1: NOIR system performance. Task horizon is the average number of primitive skills executed.
# attempts indicate the average number of attempts until the first success (1 means success on the first
attempt). Time indicates the task completion time in successful trials. Human time is the percentage
of the total time spent by human users, this includes decision-making time and decoding time. With
only a few attempts, all users can accomplish these challenging tasks.

execution errors are avoided thanks to our safety mechanism with confirmation and interruption.227

Although our primitive skill library is limited, human users find novel usage of these skills to solve228

tasks creatively. Hence we observe emerging capabilities such as extrinsic dexterity. For example,229

in task CleanBook (Fig. 1.6), Franka’s Pick skill is not designed to grasp a book from the table, but230

users learn to push the book towards the edge of the table and grasp it from the side. In CutBanana231

(Fig. 1.12), users utilize Push skill to cut. The average task completion time is 20.29 minutes.232

Note that the time humans spent on decision-making and decoding is relatively long (80% of total233

time), partially due to the safety mechanism. Later, we will show that our proposed robot learning234

algorithms can address this issue effectively.235

Decoding accuracy. A key to our system’s success is the accuracy in decoding brain signals. Ta-236

ble 2 summarizes the decoding accuracy of different stages. We find that CCA on SSVEP produces a237

high accuracy of 81.2%, meaning that object selection is mostly accurate. As for CSP + QDA on MI238

for parameter selection, the 2-way classification model performs at 73.9% accuracy, which is con-239

sistent with current literature [36]. The 4-way skill-selection classification models perform at about240

42.2% accuracy. Though this may not seem high, it is competitive considering inconsistencies at-241

tributed to long task duration (hence the discrepancy between calibration and task-time accuracies).242

Our calibration time is only 10 minutes, which is significantly shorter compared to the duration of243

typical MI calibration and training sessions by several orders of magnitude [21]. More calibration244

provides more data for training more robust classifiers, and allows human users to practice more245

which typically yields stronger brain signals. Overall, the decoding accuracy is satisfactory, and246

with the safety mechanism, there has been no instance of task failure caused by incorrect decoding.247

Object and skill selection results. We then answer the third question: Does our proposed robot248

learning algorithm improve NOIR’s efficiency? First, we evaluate object and skill selection learn-249

ing. We collect a dataset offline with 15 training samples for each object-skill pair in MakePasta250

task. Given an image, a prediction is considered correct if both the object and the skill are pre-251

dicted correctly. Results are shown in Table 3. While a simple image classification model using252

ResNet [72] achieves an average accuracy of 0.31, our method with a pre-trained ResNet backbone253

achieves significantly higher accuracy at 0.73, highlighting the importance of contrastive learning254

and retrieval-based learning. Using R3M as the feature extractor further improves the performance255

to 0.94. The generalization ability of the algorithm is tested on the same MakePasta task. For256

instance-level generalization, 20 different types of pasta are used; for context generalization, we257

randomly select and place 20 task-irrelevant objects in the background. Results are shown in Table258

3. In all variations, our model achieves accuracy over 93%, meaning that the human can skip the259

skill and object selection 93% of the time, significantly reducing their time and effort. We further260

test our algorithm during actual task execution (Fig. 5). A human user completes the task with and261

without object-skill prediction two times each. With object and skill learning, the average time re-262

quired for each object-skill selection is reduced by 60% from 45.7 to 18.1 seconds. More details263

about the experiments and visualization of learned representation can be found in Appendix 7.1.264

One-shot parameter learning results. First, using our pre-collected dataset (see Appendix 7.2),265

we compare our algorithm against multiple baselines. The MSE values of the predictions are shown266

in Table 4. Random sample shows the average error when randomly predicting points in the 2D267

space. Sample on objects randomly predicts a point on objects and not on the background; the ob-268
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Decoding Stage Signal Technique Calibration Acc. Task-Time Acc.

Object selection (What?) SSVEP CCA (4-way) - 0.812
Skill selection (How?) MI CSP + QDA (4-way) 0.580 0.422

Parameter selection (Where?) MI CSP + QDA (2-way) 0.882 0.739
Confirmation / interruption EMG Thresholding (2-way) 1.0 1.0

Table 2: Decoding accuracy at different stages of the experiment.

ject masks here are detected with the Segment Anything Model (SAM) [73]. For Pixel similarity,269

we employ the cosine similarity and sliding window techniques used in our algorithm, but on raw270

images without using DINOv2 features. All of the baselines are drastically outperformed by our271

algorithm. Second, our one-shot learning method demonstrates robust generalization capability, as272

tested on the respective dataset; table 4 presents the results. The low prediction error means that273

users spend much less effort in controlling the cursor to move to the desired position. We fur-274

ther demonstrate the effectiveness of the parameter learning algorithm in actual task execution for275

SetTable, quantified in terms of saved human effort in controlling the cursor movement (Fig. 5).276

Without learning, the cursor starts at the chosen object or the center of the screen. The predicted277

result is used as the starting location for cursor control which led to a considerable decrease in cursor278

movement, with the mean distance reduced by 41%. These findings highlight the potential of pa-279

rameter learning in improving efficiency and reducing human effort. More results and visualizations280

can be found in Appendix 7.2.281

Method Acc.↑ Generalization Acc.↑
Random 0.12±0.02 Position 0.95±0.04

Classfication (ResNet) 0.31±0.11 Pose 0.94±0.04
Ours (ResNet) 0.73±0.09 Instance 0.93±0.02
Ours (R3M) 0.94±0.04 Context 0.98±0.02

Table 3: Object-skill learning results. Our method
is highly accurate and robust.

Method MSE↓ Generalization MSE↓
Random sample 175.8±29.7 Position 5.6±6.0

Sample on objects 137.2±55.7 Orientation 12.0±11.7
Pixel similarity 45.9±50.1 Instance 16.4±22.2

Ours 15.8±23.8 Context 26.8±62.5

Table 4: One-shot parameter learning results. Our
method is highly accurate and generalizes well.

Figure 5: Left: Object and skill selection learn-
ing reduces the decoding time by 60%. Right:
Parameter learning decreases cursor movement
distance by 41%.

282

283

6 Conclusion, Limitations, and Ethical Concerns284

In this work, we presented a general-purpose, intelligent BRI system that allows human users to285

control a robot to accomplish a diverse, challenging set of real-world activities using brain signals.286

NOIR enables human intention prediction through few-shot learning, thereby facilitating a more287

efficient collaborative interaction. NOIR holds a significant potential to augment human capabilities288

and enable critical assistive technology for individuals who require everyday support.289

NOIR represents a pioneering effort in the field, unveiling potential opportunities while simultane-290

ously raising questions about its limitations and potential ethical risks which we address in Appendix291

1. The decoding speed, as it currently stands, restricts tasks to those devoid of time-sensitive inter-292

actions. However, advancements in the field of neural signal decoding hold promise for alleviating293

this concern. Furthermore, the compilation of a comprehensive library of primitive skills presents a294

long-term challenge in robotics, necessitating additional exploration and development. Nonetheless,295

we maintain that once a robust set of skills is successfully established, human users will indeed be296

capable of applying these existing skills to complete new tasks.297
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