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ABSTRACT

A wide range of graph learning tasks—such as structure discovery, temporal graph
analysis, and combinatorial optimization—focus on inferring graph structures from
data, rather than making predictions on given graphs. However, the respective methods
to solve such problems are often developed in an isolated, task-specific manner
and thus lack a unifying theoretical foundation. Here, we provide a stepping stone
towards the formation of such a foundation and further development by introducing the
Neural Graph Inverse Problem (GraIP) conceptual framework, which formalizes
and reframes a broad class of graph learning tasks as inverse problems. Unlike
discriminative approaches that directly predict target variables from given graph
inputs, the GraIP paradigm addresses inverse problems, i.e., it relies on observational
data and aims to recover the underlying graph structure by reversing the forward
process—such as message passing or network dynamics—that produced the observed
outputs. We demonstrate the versatility of GraIP across various graph learning tasks,
including rewiring, causal discovery, and neural relational inference. We also propose
benchmark datasets and metrics for each GraIP domain considered, and characterize
and empirically evaluate existing baseline methods used to solve them. Overall,
our unifying perspective bridges seemingly disparate applications and provides a
principled approach to structural learning in constrained and combinatorial settings
while encouraging cross-pollination of existing methods across graph inverse problems.

1 INTRODUCTION

In graph machine learning, numerous challenges—including structural optimization, causal discovery,
and gene regulatory network reconstruction—focus on estimating underlying graph structures from
observations, rather than performing inference on relational data. While recent graph-learning methods,
e.g., message-passing graph neural networks (Gilmer et al., 2017; Scarselli et al., 2009) (MPNNs) have
achieved impressive results on such individual graph problems, e.g., (heuristically) solving graph-based
combinatorial optimization problems (Karalias & Loukas, 2020; Wenkel et al., 2024) or network inference
tasks (Bhaskar et al., 2024), these approaches are often developed in isolation, tailored to specific tasks,
and lack a unifying formalism. As a notable example, existing work on graph rewiring (Qian et al., 2023;
2024; Qiu et al., 2022) and graph structure learning (Fatemi et al., 2023) reveals that these domains,
although typically pursued in isolation, are fundamentally concerned with the same problem, namely
modifying or inferring graph structure from data. Both settings face nearly identical methodological
challenges as well. That is, their separation largely reflects the absence of a unifying framework, rather
than any principled distinction beyond their respective downstream objectives.

On the other hand, inverse problems arise as a common formulation spanning many domains in applied
mathematics and engineering, where the goal is to infer the underlying causal factors that give rise to
indirect and typically noisy observational data (Daras et al., 2024; Kirsch et al., 2011). Inverse problems
have a rich history across fields such as signal processing, system identification, computer vision, and
astronomy, where data-driven, machine learning-based methods now form a major class of approaches for
tackling them (Daras et al., 2024; Kamyab et al., 2022; Zheng et al., 2025), in contrast to the earlier
dominance of physics-driven analytical methods (Kirsch et al., 2011).

While it may initially appear that an extension to relational data domains, such as graph learning, is only
natural, inverse problems on graphs seem to be largely overlooked in the relevant literature. We therefore
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Figure 1: Overview of the GraIP framework. The input graph G with optional node features X and
target y is fed into the inverse map I(θ). This produces an intermediate solution graph G̃ with optional
node features X̃ . The forward map F (φ) uses the intermediate solution to produce output ŷ, which
is compared with y using distance measure d to compute the loss. The specific instantiation of each
component depends on the domain. We show examples based on gene regulatory network inference and
causal discovery.

draw inspiration from the above characterization of inverse problems and demonstrate that they naturally
extend to a varied subset of graph learning problems.

We thus introduce the Neural Graph Inverse Problem (GraIP) benchmarking framework. This comprehen-
sive formulation unifies a wide range of graph learning problems under a single umbrella by framing them
as inverse problems. In the GraIP framework, we consider how a given forward process–—representing,
for example, the propagation of signals over a network (Graber & Schwing, 2020) or the dynamics of
biological interactions (Bhaskar et al., 2024)—can be inverted to recover the underlying graph structures.
This perspective bridges diverse applications, including causal inference, combinatorial optimization, and
regulatory network reconstruction, by exposing their shared intrinsic components. In doing so, we provide
a principled foundation for developing algorithms that are both comparable across domains and capable of
addressing common challenges such as constraint satisfaction, non-identifiability, and differentiation
through discrete combinatorial choices. We further provide baseline empirical results, establishing a basis
for the systematic evaluation of methods within the GraIP framework. We present an overview of our
framework in Figure 1.

Present work To the best of our knowledge, the inverse problem perspective has not yet been systematically
applied to graph-structured data. In this work, we take a first step in this direction with the GraIP
framework and provide a unified lens on solving diverse graph learning tasks as inverse problems. We
envision GraIP as a stepping stone for future developments that can leverage novel ideas from the field of
inverse problems to advance graph learning. Our key contributions are as follows.

1. We derive the GraIP framework, unifying a wide range of graph learning tasks, including causal
discovery, structure learning, and dynamic graph inference, under the lens of inverse problems.

2. We instantiate our framework on diverse inverse graph problems and demonstrate how baseline
methods that incorporate established graph learning tools, including MPNNs, graph transformers,
and differentiable sampling, fit into GraIP.

3. We provide practical insights from our implementation of various GraIPs, demonstrate how these
problems can be addressed within a unified pipeline, and discuss the current challenges in creating
synergy across different domains.

By framing many diverse graph learning problems as inverse tasks, our work provides a principled and
versatile framework for tackling various challenges in graph-based machine learning.
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2 BACKGROUND

Here, we review related work and overview graph learning tasks relevant to our framework. Additional
background and notation are provided in Appendix A.

2.1 INVERSE PROBLEMS

Inverse problems are a fundamental challenge across many domains in the natural sciences and engineering,
and they concern inferring unknown causes or system parameters from noisy observational data. Prevalent
examples include imaging problems like denoising and hyperspectral unmixing (Ongie et al., 2020),
parameter estimation problems (Aster et al., 2012), compressed sensing for MRI (Lustig et al., 2008), and
black hole imaging with radio telescope arrays (Zheng et al., 2025). Inverse problems are also relevant to
systems governed by partial differential equations, like fluid dynamics, where the inversion process aims to
recover the initial conditions based on observed flow measurements (Zhang et al., 2020).

In inverse problems, we have observations y derived from some latent source z via a forward map F . The
inverse problem is to find an inverse map I to infer the latent source z from observed y, i.e.,

z ← [ I(y) such that F (z, ξ) = y,

where ξ denotes a noise component. Inverse problems come in many forms and are typically broadly
categorized depending on the relationship between z and y. For example, in denoising problems z
represents a “clean” version of the observed and noise-corrupted signal y. In contrast, the family of
problems where z represents the parameters of a system that outputs data y is typically termed parameter
estimation.

From a statistical learning perspective, given data D := {yi}Si=1 and data reconstruction loss d, inverse
problems take the following form, consisting of a reconstruction term and an optional regularization
term (Adler & Öktem, 2017; Bai et al., 2020; Kamyab et al., 2022),

I∗ := argmin
I

∑
y∈D

d(F (z, ξ),y) +R(z) where z ←[ I(y). (1)

While many inverse problem formulations assume the forward map F is known, in other cases F may have
to be estimated alongside I (and the argmin objective optimizes both I and F ); such formulations are
termed blind inverse problems. We additionally note that a subset of inverse problems assume F to be not
only known but also invertible (e.g. an invertible linear transformation) such that it renders the true latents
z available in training, making learning I by directly regressing on z possible. We however proceed
with the standard implicit inverse problem learning, where the true latents z are not available, and I is
optimized by ensuring that the forward evaluation F (I(y)) matches the observed data. Finally, inverse
problems are often ill-posed, meaning that a solution may be non-existent, non-unique, or highly sensitive
to the data (Adler & Öktem, 2017; Zheng et al., 2025). The regularization termR both incorporates any
relevant priors over the latents z = I(y) , and helps with ill-posedness by restricting the hypothesis space.

2.2 RELATED WORK

Here, we overview related work. Further related work on tasks under the GraIP framework are provided in
Appendix A.1.

Deep learning for inverse problems Classical approaches to inverse problems require combining
analytical methods with domain-specific knowledge and priors for each problem (Kamyab et al., 2022).
Deep learning methods have emerged as a powerful tool for solving nonlinear inverse problems in recent
years, thanks to their high representational capacity and adaptability to a wide variety of tasks. Such
neural solvers also tend to operate under fewer assumptions on the problem setting than analytical
methods, and are more adept at learning from noisy observations (Lucas et al., 2018). As a result, many
neural frameworks, ranging from CNNs to diffusion models, have seen widespread use in solving inverse
problems in recent years. For a comprehensive survey on neural solvers for inverse problems, we refer the
reader to Bai et al. (2020); Lucas et al. (2018); Ongie et al. (2020). Finally, a recent work by Eliasof et al.
(2025) focuses on adapting classical regularization techniques from inverse problems to graph settings,
making it a valuable complementary contribution to ours.

MPNNs and GTs MPNNs have emerged as a flexible framework for machine learning on graphs
and relational data, utilizing a local message-passing mechanism to learn vector representations of
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graph-structured data. Notable instances of this architecture include, e.g., Gilmer et al. (2017); Hamilton
et al. (2017); Velickovic et al. (2018), and the spectral approaches proposed in, e.g., Bruna et al. (2014);
Defferrard et al. (2016); Kipf & Welling (2017)—all of which descend from early work in (Kireev, 1995;
Scarselli et al., 2009). Besides, transformer-based models (GTs) have also attained great success on
graphs, thanks to their flexibility and global information aggregation capabilities (Müller et al., 2023).

Network inference A complementary line of work studies network inference (also called network
reconstruction), where the objective is to recover latent edge structure from indirect observations such as
node signals, dynamics, or sampled interactions. Graph signal processing provides principled formulations
for identifying topology from observations, accompanied by guarantees and algorithms for sparse, smooth,
or diffusion-generated signals (Mateos et al., 2019). From a statistical modeling perspective, minimum
description length approaches pose reconstruction as selecting the network that best compresses the data
given a generative model (Peixoto, 2025b). More broadly, recent work bridges data and theory via
likelihood-based inference on generative network models such as stochastic block models and variants,
providing a unifying statistical framework for reconstructing networks (Peel et al., 2022). While GraIP
shares with these methods the high-level goal of inferring structure from indirect data, its formulation
differs in two crucial aspects. First, the inverse map in GraIP is parameterized by neural networks rather
than fixed statistical estimators. Secondly, the forward map in GraIP is designed to be learnable and
differentiable in most cases, which makes end-to-end gradient-based optimization feasible. Many existing
formulations in network inference instead rely on discrete search or combinatorial optimization.

3 THE NEURAL GRAPH INVERSE PROBLEM (GRAIP) FRAMEWORK

Let us begin by considering conventional supervised graph learning tasks. We assume a (finite) set of data
D := {(Gi,Xi, yi)}Si=1 ⊆ G × Rn×d × Y , where each data point consists of a graph G, associated
d-dimensional, real-valued vertex features X , and target y. In supervised graph learning, we aim to
learn some function F : G × Rn×d → Y in order to estimate the target y. We term F the forward map;
F is typically expected to be permutation-equivariant or -invariant (for vertex and graph-level tasks,
respectively), and thus can be modeled by an MPNN or graph transformer (GT) parametrized by φ. The
objective of supervised graph learning can then be written as

φ∗ := argmin
φ∈Φ

1/|D|
∑

(G,X,y)∈D

d
(
F (φ)(G,X), y

)
,

Here, d : Y × Y → R+ is a distance measure, formally a (pseudo-)metric between elements in Y , e.g.,
the 2-norm of the difference of elements in Re, assuming Y = Re for e ∈ N. This setup serves as an
overall blueprint of supervised graph learning, and many extensions of the proposed setup that consider
edge features, edge-level tasks, and self-supervision (e.g., in the absence of labels y) exist.

The defining characteristic of graph inverse problem learning is the existence of a learnable inverse map
I(θ) : G × Rn×d × Y → G in addition to the forward map. In doing so, we follow the original inverse
problem formulation in Equation 1, with the additional constraint that the latent z is a graph. Recall that
the forward map F takes in a (attributed) graph and predicts target “observations” y. The inverse map
operates in the opposite direction to solve the inverse problem. That is, given target observations y,
features X , and an optional graph prior G, I(θ) learns to “reverse-engineer” the optimal latent graph
structure G̃ that produces this target y when passed through F . The inverse map I(θ) is typically under
the same permutation-equivariance or -invariance constraints as F , and thus is commonly modeled using
MPNNs or GTs. The formulation for GraIP then amounts to finding parameters θ∗ ∈ Θ such that

θ∗ := argmin
θ∈Θ

1/|D|
∑

(G,X,y)∈D

d
(
F
(
I(θ)(G,X, y)

)
, y
)
+R

(
I(θ)(G,X, y)

)
.

Note that the case presented where I(θ) takes all three variables G, X , and y as inputs should be
understood as the most general setting; in most instances of GraIP, only a subset of these inputs is
used. Finally, the GraIP framing above assumes a non-blind problem with access to the forward map
F . This is viable in specific problems such as vertex-subset problems in combinatorial optimization,
where forward maps involve counting the cardinalities of sets. For blind GraIPs such as graph rewiring
(see subsection 4.3), the inverse and forward maps are optimized jointly, i.e.,

θ∗,φ∗ := argmin
φ∈Φ,θ∈Θ

1/|D|
∑

(G,X,y)∈D

d
(
F (φ)

(
I(θ)(G,X, y)

)
, y
)
+R

(
I(θ)(G,X, y)

)
. (2)
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The GraIP framework is flexible enough to encompass a wide range of methods. At a high level, the
requirements are minimal, (1) the inverse map I(θ) must produce a graph (either by proposing one directly
or by modifying an existing graph), (2) the forward map F must use this graph to make predictions as
in conventional (self-)supervised graph learning, and (3) the overall system must remain end-to-end
differentiable for training. In what follows, we outline concrete strategies for instantiating the inverse and
forward maps within the GraIP framework.

3.1 INVERSE MAP IN DETAIL

We outline the key aspects that guide the design of inverse maps in graph inverse problems, providing a
broad characterization of the models used in our studies. The inverse map I(θ) takes as input a triple
(G,X, y) and outputs a graph G̃ as an (approximate) solution to the inverse problem. In principle, I(θ)
may be instantiated with any differentiable method capable of generating graph structures.

Prior-generating models A core component of every GraIP inverse map is a learnable, parameterized
function that outputs a prior θ. This prior assigns weights to nodes or edges, where larger weights indicate
a higher likelihood of inclusion in the output graph. These weighted scores are then used to construct the
proposal graph G̃ for the forward map. More generally, the prior need not be restricted to simple edge and
node scoring functions but can also serve as a parameterization of a discrete probability distribution over
graphs, capturing higher-order structural dependencies beyond independent node or edge scores. To ensure
permutation equivariance, the structural prior can be modeled with standard MPNNs or graph transformers,
or with task-specific architectures designed to encode problem-specific inductive biases.

Discretization and gradient-estimation strategies In many cases, the goal is to recover a sparse graph
rather than a fully connected weighted one, and some forward operators explicitly require discrete inputs.
Discretization functions map the learned continuous priors to a discrete graph, typically via thresholding,
non-parametric decoders, or more principled approaches that sample from a discrete exponential-family
distribution parameterized by the priors and constrained by structural requirements (e.g., exactly k edges
or DAG constraints). These strategies, however, typically render the inverse map I(θ) non-differentiable or
result in zero gradients almost everywhere with respect to θ. To address this, gradient estimators such as
the score-function estimator (Williams, 1992), the straight-through estimator (STE) (Bengio et al., 2013),
Gumbel-softmax (Jang et al., 2016; Maddison et al., 2017), or I-MLE (Niepert et al., 2021) are commonly
used, enabling differentiation through the discretization step.

Nevertheless, combining discretization with approximate gradient estimation can destabilize training and
degrade outputs of inverse maps. It is therefore sometimes preferable to relax the requirement to produce a
discrete graph during training. An important insight from our framework is that discretization can be
harmful, by impairing stability and convergence, but also beneficial, by enforcing useful structural priors
early in learning. This highlights the need for further methodological advances to better understand and
control the impact of discretization in inverse graph-learning pipelines.

3.2 FORWARD MAP IN DETAIL

The forward map F takes the graph returned by the inverse map I(θ) as input to predict the target y.
Depending on the problem, one may have access to the true F or an approximation: for example, in
system dynamics simulation, one may have access to a simulator which forgoes the need to learn F . Many
applications, however, require learning F (φ): e.g. in data-driven rewiring, the forward map is typically
implemented as an MPNN predicting the downstream task on the graph rewired by the inverse map. In
general, MPNNs are thus suitable forward maps for graph-based dynamics in the absence of a simulator,
as message-passing over the learned interaction graph mimics the generative process.

4 INSTANTIATIONS OF THE GRAIP FRAMEWORK

We next present instantiations of the GraIP framework to illustrate its generality and applicability
across diverse tasks; we cover two additional tasks, namely combinatorial optimization (CO) and gene
regulatory network (GRN) inference, in Appendix B. For each task, we first state the problem formulation,
then describe how GraIP is instantiated by specifying the role of the inverse map I(θ)—its inputs and
intermediate outputs —the forward map F , and the distance measure d. We also denote any regularization
where applicable.
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Finally, for each domain, we define a baseline method based on prior work that integrates both an
inverse and a forward map, as described in Section 3, and explain how we implement them. When
applicable, we include a discretization strategy within the inverse map. To highlight the transferability
of our framework across domains, and when applicable, we use I-MLE (Niepert et al., 2021) as the
underlying discretization method in combination with an appropriate algorithm. The forward map remains
domain-specific. Importantly, our goal is not to introduce new methods, but to demonstrate either how
existing graph learning techniques can be integrated into the GraIP framework, or how simple baselines
can be instantiated within it. Summary tables for all problems and methods considered are provided in
Appendix E.

4.1 CAUSAL DISCOVERY (CD)

We consider the task of Bayesian network structure learning. We are given a matrix of samples X ∈ Rs×n,
and we assume that each of the s samples is the realization of a random vector (X1, . . . ,Xn). Each Xi

corresponds to a node in a directed acyclic graph (DAG) G = (V,E), |V | = n, in which edges encode
dependencies. We denote Xk

i the realization of Xi in the k-th sample. The goal is to infer the underlying
DAG G, which is not observed during training, so we frame this task in the unsupervised setting.

GraIP instantiation Causal discovery (CD) naturally fits into the GraIP framework as follows: the inverse
map I(θ) : N→ {0,1}n×n takes a vertex set V with no edges, and outputs a discretized DAG G̃. In this
setup, we assume that, for each child node i, Xk

i has been generated by aggregating the features of the
parents of i. We therefore assume the following parametrized forward map F (φ), for each k ∈ [s], where
φ denotes a set of edge weights, and F (φ) aggregates the parent’s node features according to G and φ,

Xk = F (φ)(G̃,∅), Xk
i =

∑
j∈ parents(i)

φjX
k
j , (3)

where parents(i) are the nodes of G with an outgoing edge to i. Finally, we define the distance d as the
Frobenius norm between F (φ)’s output and the ground-truth node features X ,

θ∗ := argmin
θ∈Θ

1

sn

∑
k∈[s]

∑
i∈[n]

d(Ft(I
(θ)(∅))i, X

k
i ) = argmin

θ∈Θ

1

sn

∑
k∈[s]

∑
i∈[n]

∥X̂k
i −Xk

i ∥2

where X̂k
i is the prediction of F (φ) for Xk

i .

BENCHMARK AND EMPIRICAL INSIGHTS

Data We evaluate our baseline in the setting proposed by Wren et al. (2022), generating Erdős–Rényi
(ER) (Erdős & Rényi, 1960) and Barabási–Albert (BA) (Albert & Barabási, 2002) graphs and then
turning them into DAGs. We generate 24 graphs for both graph types, then create node features using a
Gaussian equal-variance linear additive noise model. We consider eight graph dataset configurations
based on graph type ∈ {BA, ER}, graph size ∈ {30, 100}, and degree parameter ∈ {2, 4}. For instance,
ER2-30 denotes an ER graph with 30 nodes and an expected degree of 2, used as the ground-truth DAG.
More information regarding data generation is available in Appendix C.1.

Methods and empirical insights We implement our main GraIP baseline, Max-DAG I-MLE, using a
discretizing strategy, and compare it with methods based on continuous relaxations. The inverse map I(θ)

is a learnable prior θ ∈ Rn×n with I-MLE as the discretization algorithm. We use a maximum DAG
solver within I-MLE, namely the Greedy Feedback Arc Set (Eades et al., 1993), to ensure that the proposal
graph is a DAG. The forward map is defined as a 1-layer GNN that learns a matrix of edge weights
φ ∈ Rn×n. It produces node-level predictions Xk

i according to Equation 3, using the edge weights
consistently with the graph produced by I(θ). We evaluate this discretizing baseline against two popular,
non-discretizing methods for DAG structure learning, NoTears (Zheng et al., 2018) and GOLEM (Ng et al.,
2020), which both formulate structure learning through continuous relaxation. Since the task is to infer the
ground truth DAG, we frame this as a binary classification task on the adjacency matrix. We consider
several metrics, namely the F1-score, the Structural Hamming Distance (SHD), Area Under the Receiver
Operating Characteristic Curve (ROC-AUC).

The results are reported in Table 1. NoTears consistently outperforms both GOLEM and the I-MLE-based
method (Max-DAG I-MLE), which utilizes discretization during training. Notably, Max-DAG I-MLE
performs significantly worse than these continuous approaches in most settings, underscoring the
challenges of learning DAGs without constant relaxations.
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Table 1: Performance comparison of NoTears, Golem, and Max-DAG I-MLE across different graph generation
algorithms and densities. We report the mean over 24 ground truth graphs, as well 95% confidence intervals.

ER2-30 (top) & ER4-30 (bottom) SF2-30 (top) & SF4-30 (bottom)
Approach Method F1 � SHD � ROC-AUC � F1 � SHD � ROC-AUC �

Non-discretized NoTears 98.5 ± 1.8 0.8 ± 0.5 99.0 ± 0.6 93.0 ± 4.5 0 ± 0 100.0 ± 0.0
Golem 81.8 ± 8.1 12.5 ± 2.8 95.9 ± 1.0 91.2 ± 4.2 12.6 ± 3.4 97.8 ± 0.9

Discretized Max-DAG I-MLE 94.2 ± 1.8 2.4 ± 0.3 97.1 ± 0.4 53.7 ± 10.8 22.7 ± 2.2 71.4 ± 2.4

Non-discretized NoTears 100.0 ± 0.0 7.9 ± 3.0 93.4 ± 2.2 96.6 ± 2.8 3.0 ± 1.8 98.4 ± 0.8
Golem 82.6 ± 10.1 10.3 ± 2.8 97.0 ± 0.8 90.8 ± 5.9 11.7 ± 3.0 98.7 ± 0.5

Discretized Max-DAG I-MLE 51.9 ± 9.8 62.2 ± 18.4 73.9 ± 2.7 38.6 ± 7.2 56.7 ± 4.2 64.8 ± 1.4

4.2 NEURAL RELATIONAL INFERENCE (NRI)

G, X1:T

Temporal Data

I(θ)

Interaction Graph
+ Current State

G̃, Xt

Xi
t

Xj
t

F (φ) Xi
t+1

Xj
t+1

Future State

ŷ = Xt+1NRI aims to infer explicit interaction structures from
observations of a dynamical system, while simul-
taneously learning the temporal dynamics condi-
tioned on the inferred interaction structure. For a
system of N objects with d features over t time steps
X = (x1, . . . ,xT ) ∈ RN×d×T , the goal is to find the binary or categorical relationships within the
dynamical system, taking the form of an edge prediction (or classification in the categorical case) task over
a graph G which is optimized such that the inferred structure best explains and drives the observed system
dynamics.

GraIP instantiation The general NRI model proposed by Kipf et al. (2018) is formulated as a variational
autoencoder (VAE) that fits the GraIP framework perfectly: given temporal features X and a complete
graph G, the inverse map I(θ) consists of (1) the VAE encoder qθ which learns a probability distribution
over the edges, and (2) the sampler that obtains an interaction graph G̃ from the learned distribution. The
forward map F (φ) implements the decoder pφ, which uses G̃ to simulate the system dynamics for the
next time step as a node regression task. To avoid divergence over long-horizon predictions, the forward
map makes multiple forward passes to predict M time steps into the future. It accumulates the errors
before each gradient-based optimization step.

The pseudo-metric d is primarily defined by a reconstruction error term, and a KL term for a uniform prior
(following the ELBO-maximizing VAE formulation), defined as the sum of entropies, can be added as a
regularizerR on the edge probabilities, e.g., to enforce sparsity,

∑
j

T∑
t=2

∥xt
j − x̂t

j∥2
2σ2

−∑
i ̸=j

H(qθ(zij |X))


NRI problems come in many forms, all of which fit the GraIP framework. Kipf et al. (2018) consider both
using an explicit integrator as the forward map F and learning a parametrized GNN-based simulator F (φ)

jointly with the inverse map. Bhaskar et al. (2024) relax the binary edge assumption to learn continuous
weights over a complete graph, while Graber & Schwing (2020) relax the assumption that the interaction
graph is constant across time steps to propose dynamic NRI to model a broader array of inverse problems.
One practical extension of dNRI is gene regulatory network (GRN) inference, which we explore as a
GraIP in Appendix B.2, where we aim to learn complex dynamic relationships between transcription
factors, DNA, RNA, and proteins in the form of a regulatory graph.

BENCHMARK AND EMPIRICAL INSIGHTS

Data We focus on the Springs and Charged benchmarks (Kipf et al., 2018). In Springs, each data point is a
50-step simulation of N ∈ {5, 10} objects moving in a box with random initial positions and velocities,
and every pair of objects having 0.5 probability of being connected with a spring and interacting based on
Hooke’s law. In Charged, each object now carries a positive or negative charge, and the goal is to predict
whether each node pair attracts or repels. This represents a harder task with more inherent noise. We
assume a static binary interaction graph for both cases; the binary nature of the problem thus does not
admit non-discretized methods. The inverse map learns the true interaction graph, while the forward map
aims to accurately simulate the dynamics by message-passing over the learned graph.
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Methods and empirical insights We use the NRI-GNN model for both the VAE encoder and decoder,
which attains excellent performance on Springs, and is also highly competent on Charged. This model
employs node-to-edge (v → e) and edge-to-node (e→ v) message passing to learn both node- and
edge-level representations effectively, and is more performant than conventional MPNN architectures
for NRI tasks. We, however, note that any GNN-based model that conforms to the VAE formulation
is inherently a GraIP model. The inverse map consists of the NRI encoder and the sampler. We
benchmark two inverse maps: Both use the same NRI encoder and discretize via thresholding, but one
uses straight-through Gumbel softmax (Jang et al., 2016; Maddison et al., 2017) (STE) for gradient
estimation in the discretization step, while the other uses I-MLE. The forward map is implemented by the
NRI-GNN-based decoder for the blind settings, and by the differentiable simulators provided by Kipf et al.
(2018) for the non-blind ones. We report accuracy, F1-score, and ROC-AUC to evaluate the recovered
graphs G̃. We see that on Springs both blind methods solve the task almost perfectly for N = 5, and are
highly competent for N = 10. STE proves more robust for N = 10, though both gradient estimation
methods exhibit sensitivity to thresholds as indicated by lower ROC-AUC scores.

When comparing blind and non-blind settings for the NRI + STE model, we see that the non-blind setting
also solves Springs perfectly, and is particularly robust to the set threshold level for N = 10 (99.6%
ROC-AUC) where the some sensitivity is evident in the blind case (74.9% AUC despite 98+% accuracy &
F1 for a 0.5 threshold). However, on Charged, the non-blind model struggles severely with slightly above
random graph metrics, whereas the the blind case is still successful (AUC: ∼91% for N = 5, ∼80% for
N = 10). We note that the non-blind results fail here due to the vanishing gradients caused by instabilities
in the simulation decoder (as per Kipf et al. (2018)), which prevents the inverse map from converging to
the correct graph. This setting then showcases an “edge case” where learning in the blind setting proves
more reliable than using a known forward map in the non-blind setting.

Table 2: Neural relational inference results for the Springs and Charged benchmarks, evaluating different
discretization strategies on the NRI-GNN model (Kipf et al., 2018). The non-blind case refers to learning only the
inverse map, while using a differentiable simulator for the forward map. We report the mean ± standard deviation
reported over five seeds.

N Method Downstream Metric Graph Metrics (%)
MSE � Accuracy � F1-score � ROC-AUC �

Sp
ri

ng
s 5

NRI + STE 1.9e-4 ± 0.0 99.4 ± 0.3 99.3 ± 0.3 99.9 ± 0.0
NRI + I-MLE 3.2e-4 ± 0.0 99.5 ± 0.0 99.4 ± 0.1 100. ± 0.0
NRI + STE (non-blind) 1.7e-7 ± 0.0 99.8 ± 0.0 99.8 ± 0.0 100. ± 0.0

10
NRI + STE 3.3e-5 ± 0.0 98.4 ± 0.0 98.2 ± 0.0 74.9 ± 0.3
NRI + I-MLE 1.2e-4 ± 0.0 91.6 ± 0.2 91.1 ± 0.2 73.4 ± 0.1
NRI + STE (non-blind) 1.2e-6 ± 0.0 98.2 ± 0.1 98.2 ± 0.1 99.6 ± 0.0

C
ha

rg
ed 5 NRI + STE 1.2e-3 ± 0.0 82.8 ± 0.1 82.5 ± 0.1 91.0 ± 0.8

NRI + STE (non-blind) 1.8e-4 ± 0.0 52.6 ± 2.4 42.3 ± 7.0 57.6 ± 3.6

10 NRI + STE 1.6e-3 ± 0.0 70.8 ± 0.7 70.2 ± 0.8 80.4 ± 1.0
NRI + STE (non-blind) 7.5e-4 ± 0.0 53.4 ± 2.1 49.3 ± 7.3 56.5 ± 2.7

4.3 DATA-DRIVEN REWIRING

xj

xi

Original Graph

G, X

I(θ)

Rewired Graph

G̃, X

F (φ)

Downstream Task
(e.g. Graph Classification)

ŷ

{ }
Graph rewiring refines a given graph G, which may
contain noise, missing or spurious edges, or structural
inefficiencies. It leverages supervised learning signals
as a proxy to guide the modification of G, producing
a refined graph G̃ that better supports information
propagation and feature aggregation. This improves downstream tasks such as classification or regression,
while addressing issues like over-smoothing and over-squashing through selective edge editing and
optimized message passing in MPNNs. Viewed this way, graph rewiring naturally aligns with the
perspective of inverse problems while bridging the gap between GraIPs and graph structure learning.

GraIP instantiation We build on recent approaches (Qian et al., 2023; 2024) to align graph rewiring
closely with our framework: The original, noisy graph G, as well as the associated node features X ,
are fed to the inverse map I(θ) : G × Rn×d → G × Rn×d, which outputs an improved graph G̃, while
retaining the original node features X . The parametrized forward map F (φ) performs a downstream task,
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such as graph regression or link prediction. Intuitively, instead of solely optimizing F (φ) to perform
those tasks, we rewire the graph so that F (φ) can better minimize the empirical risk associated with the
downstream task. In this GraIP instance, this empirical risk serves as our distance d. Formally, we aim to
solve the following optimization problem in Equation (2). Data-driven rewiring instances typically impose
a stronger structural prior on G̃; instead of an empty, complete or partial graph, I(θ) starts with the true,
known graph, and modifies it to help F (φ) learn the downstream objective better. Additionally, given the
absence of a “ground truth graph” and the downstream objective being a graph learning task in itself,
data-driven rewiring tasks almost always constitute blind GraIPs.

BENCHMARK AND EMPIRICAL INSIGHTS

Table 3: Comparisons between PR-MPNN with different discretization strategies. “Baseline” refers to the original
GINE performance with no rewiring, whereas “Random rewire” refers to rewiring a random subset of edges within the
same rewiring budget as PR-MPNN. For the WebKB datasets (Cornell/Texas/Wisconsin), mean accuracy is reported.

Method ZINC (MAE �) Cornell � Texas � Wisconsin � Peptides-func (AP �) Peptides-struct (MAE �)

Baseline (GINE) 0.209 ± 0.005 0.574 ± 0.006 0.674 ± 0.010 0.697 ± 0.013 0.550 ± 0.008 0.355 ± 0.005
Random rewire 0.190 ± 0.007 0.510 ± 0.057 0.738 ± 0.012 0.731 ± 0.005 0.651 ± 0.003 0.251 ± 0.001

Gumbel 0.160 ± 0.006
I-MLE 0.148 ± 0.008
SIMPLE 0.151 ± 0.001 0.659 ± 0.040 0.827 ± 0.032 0.750 ± 0.015 0.683 ± 0.009 0.248 ± 0.001

Data Because rewiring is tuned end-to-end by the task loss, the same procedure adapts automatically to
arbitrary graph types and prediction objectives, ranging from molecular property prediction to social
network analysis. In this study, we demonstrate its effectiveness on molecular property prediction
tasks using the ZINC dataset (Irwin & Shoichet, 2005) (the commonly used subset containing 12 000
molecules with their constrained solubility regression targets), as well as the long-range graph benchmarks
Peptides-func and Peptides-struct (Dwivedi et al., 2022). We additionally evaluate our methods on the
WebKB datasets Cornell, Texas and Wisconsin, which represent semi-supervised node classification tasks
on heterophilic graphs (Pei et al., 2020). As there are no “ground truth graphs”, we do not report any graph
metrics and instead use downstream performance as a proxy.

Methods and empirical insights We implement graph rewiring within the GraIP framework using the
PR-MPNN data-driven rewiring method (Qian et al., 2023). The inverse map is a GINE backbone (Hu
et al., 2019; Xu et al., 2019) that scores candidate edges, from which a differentiable k-subset sampler
selects a subset to add to the graph. The resulting adjacency matrix is thus better aligned with the
downstream task, and the sampler serves as our discretization strategy.

Alongside I-MLE, we evaluate two gradient estimators for sampling, the Gumbel SoftSub-ST estima-
tor (Jang et al., 2016; Maddison et al., 2017; Xie & Ermon, 2019) and SIMPLE (Ahmed et al., 2023). The
forward map is also instantiated as a GINE backbone, which operates on the modified graph to produce
task predictions. Since the sampler is differentiable, gradients flow seamlessly from the loss through the
forward map into the inverse map, allowing for end-to-end optimization. This setup enables the model to
leverage both the data structure and task-specific signals when learning to rewire. We compare learnable
rewiring against a standard GINE baseline and random rewiring. As shown in Table 3, learnable variants
outperform baselines across all tasks, with I-MLE and SIMPLE achieving the most significant gains.

4.4 DISCUSSION AND LESSONS LEARNED

A single universal recipe is unlikely—but MPNN+I-MLE is a strong starting point In a unified
benchmarking framework, it is natural to seek a single, consistent inverse map. In practice, however,
flexibility is essential. Some problems lack meaningful continuous relaxations (e.g., NRI, rewiring), and
when they exist, they are often expensive since they induce fully connected graphs. In other settings,
task-specific discretization schemes are more effective, such as gradient estimators tailored to exactly-k
sampling. While all GraIPs admit permutation-equivariant models, architectures, and hyperparameters
typically require task-specific tuning. A pragmatic takeaway is that GraIP supports diverse design choices,
with MPNN+I-MLE providing a competitive and consistent baseline. Our strategy is to adopt strong
architectures from the literature (e.g., NRI-GNN for NRI, PR-MPNN for rewiring) and apply I-MLE as the
discretizer. This yields a principled starting point, enabling fair comparisons between discretization
strategies and continuous relaxations. Preliminary results also suggest that advanced gradient estimators
are particularly beneficial for problems with complex constraints, such as CD.
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Ill-posedness becomes severe for large GraIPs CD and GRN inference highlight cases where learnable
priors and I-MLE are insufficient. Interestingly, GRN and NRI share similar formulations; yet, NRI
baselines nearly recover the ground-truth graphs. A key difference is scale: GRN graphs are roughly 20
times larger but come with 150 times fewer training examples. As graph size grows, the number of pathway
combinations yielding the same observation y increases combinatorially, amplifying non-identifiability
and demanding more data or stronger regularization. The CD benchmark exhibits a similar pattern: as
graph size (from 30 to 100 nodes) and density (expected degree from 2 to 4) increases, I-MLE performance
drops sharply, reinforcing the role of scale in ill-posedness.

Our preliminary observations suggest that the observed drop follows a “phase transition”—edge recovery
is viable up to a certain noise threshold, where recoverability almost completely collapses to approximately
random performance. Additionally, discretization over graph priors in GraIPs likely exacerbates these
recoverability issues due to a fundamental bias-variance trade-off in gradient estimation: unbiased
estimators (e.g., the score-function estimator) tend to have high variance, whereas attempts to lower this
variance (e.g., by Gumbel-softmax or I-MLE) induces a bias (Minervini et al., 2023; Titsias & Shi,
2022). For I-MLE in particular, Minervini et al. (2023) show that the finite-difference step size λ directly
trades off gradient sparsity vs. bias: as λ→ 0, the estimated gradients become zero almost everywhere
(completely uninformative), whereas a larger λ yields denser but increasingly biased gradients. In GraIP
instantiations, this may interact with highly non-convex discrete objectives, and thus discretized training is
prone to getting trapped in poor local optima unless the estimator is very carefully tuned. Meanwhile,
continuous relaxations, e.g. NoTears and GOLEM on CD circumvent these optimization problems by
forgoing discretization altogether, accounting for their superior performance particularly on larger graphs.

These observations also allow us to draw parallels between prior work on graphical model structure
learning, such as the transition in recoverability with sample size observed by Lee & Hastie (2015) and the
non-identifiability phenomena reported by Bento & Montanari (2009) for Ising models. Our GraIP
framework thus serves both as a tool to expose common limitations of gradient estimation across GraIPs,
and also as an ideal testbed for future developments in gradient estimation for discrete learning.

Opportunities for generative modeling and alternative approaches Most current baselines follow the
MPNN+discretizer recipe, leaving substantial room for innovation. Could autoregressive or diffusion-
based graph generative models, such as DiGress (Vignac et al., 2023), serve as inverse maps? Could
MPNN+reinforcement learning—as used in CO—be generalized into effective sampling strategies for
other GraIPs? We argue that the solution space for GraIPs remains underexplored, and our unified
framework is only a first step toward systematically addressing it. Employing graph generative models as
inverse maps, however, is a non-trivial task. Unlike in imaging, where diffusion models can leverage
pre-trained backbones, graph diffusion models typically must be trained from scratch for each dataset.
Furthermore, guidance must handle non-differentiable rewards that arise from discretizing proposal graphs
before passing them through the forward map.

5 CONCLUSION AND THE ROAD AHEAD FOR GRAIP

To our knowledge, this work is the first to connect inverse problems—long studied in other domains—with
the emerging challenges of graph machine learning. Our key contribution is a unified framework that
recasts diverse tasks as graph inverse problems (GraIPs)—offering a shared language, exposing links
between seemingly disparate methods, and enabling transfer of ideas across subfields. To spur adoption,
we release a benchmark suite spanning multiple tasks, designed as a reference point and catalyst for
progress.

Significant challenges remain. Chief among them is the discretization bottleneck—current gradient
estimators (e.g., Gumbel-Softmax, I-MLE) are often biased or unstable. Hybrid methods, reinforcement
learning, and probabilistic inference could make training more robust. Stronger forward models, e.g., via
graph transformers or neural–symbolic hybrids, may capture global dependencies and enforce domain
constraints more effectively. Other future work may explore the generalizability of GraIP solvers, such as
hybrid models that are stably pre-trained in a continuous manner and then adapted to (or fine-tuned on)
discrete tasks for downstream usage, or even extensions to general-purpose, foundational inverse solvers
that can be adapted to task-specific graph constraints. Ultimately, GraIP points toward general-purpose
graph inverse solvers—foundation models for graph-structured data—capable of transferring across
domains from combinatorial optimization to causal discovery and generative modeling. We see this as a
call to action to push beyond current limitations and build the next generation of graph learning systems.
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A ADDITIONAL BACKGROUND

A.1 NOTATION

Let N := {1,2, . . . }. The set R+ denotes the set of non-negative real numbers. For n ∈ N, let
[n] := {1, . . . , n} ⊂ N. We use {{. . .}} to denote multisets, i.e., the generalization of sets allowing for
multiple, finitely many instances for each of its elements. An (undirected) graph G is a pair (V (G), E(G))
with finite sets of vertices V (G) and edges E(G) ⊆ {{u, v} ⊆ V (G) | u ̸= v}. For ease of notation,
we denote an edge {u, v} in E(G) by (u, v) or (v, u). The order of a graph G is its number |V (G)| of
vertices. We use standard notation throughout, e.g., we denote the neighborhood of a node v by N(v),
and so on. Finally, denote G the set of all graphs with at most n vertices.

MPNNs Intuitively, MPNNs learn node features, i.e., a d-dimensional real-valued vector, representing
each node in a graph by aggregating information from its neighboring nodes. Let G = (G,X) be an
n-order attributed graph, where L ∈ Rn×d, d > 0, following Gilmer et al. (2017) and Scarselli et al.
(2009), in each layer, t > 0, we update node attributes or features,

h(t)
v := UPD(t)

(
h(t−1)
v ,MSG(t)

(
{{h(t−1)

u | u ∈ N(v)}}
))

,

and h
(0)
v := Xv , where we assume V (G) = [n]. Here, the message function MSG(t) is a parameterized

function, e.g., a neural network, mapping the multiset of neighboring node features to a single vectorial
representation. We can easily adapt a message function to incorporate edge weights or multi-dimensional
features. Similarly, the update function UPD(t) is a parameterized function mapping the previous node
features, and the output of MSG(t) to a single vectorial representation. To adapt the parameters of the
above functions, they are optimized end-to-end, typically through a variant of stochastic gradient descent,
e.g., Kingma & Ba (2015), along with the parameters of a neural network used for classification or
regression.

GTs To alleviate the bottleneck of MPNNs, such as their limited receptive field, Graph Transformers
(GTs) have been widely adopted. A GT stacks multiple attention layers interleaved with feed-forward
layers. Formally, given a graph G with node attributes X ∈ Rn×d, we initialize the node features as
H(0) := X . For each attention head at layer t > 0, the node representations are updated as

H(t) := softmax

(
Q(t)K(t)T

√
dk

)
V (t)

where dk denotes the feature dimension, Q(t) := H(t−1)W
(t)
Q , K(t) := H(t−1)W

(t)
K and V (t) :=

H(t−1)W
(t)
V are learned linear projections of H(t−1). Each attention layer typically employs multiple

heads, whose outputs are concatenated as MultiAttn
(
H(t−1)

)
. This is followed by a feed-forward layer

with residual connection:

H(t) := FF(t)
(
MultiAttn

(
H(t−1)

)
+H(t−1)

)
.

To better exploit the graph structure, structural information can be incorporated either as an attention
bias (Ying et al., 2021) or through structural and positional encodings (Müller et al., 2023; Rampášek
et al., 2022), which are added to the node features.

Combinatorial optimization Early work on combinatorial optimization on graphs (Joshi et al., 2019;
Karalias & Loukas, 2020) introduced MPNN-based methods for NP-hard problems such as the traveling
salesperson problem, maximum clique, and minimum vertex cover. Diffusion models (Sanokowski et al.,
2024; Sun & Yang, 2023) and reinforcement learning (Khalil et al., 2017; Toenshoff et al., 2021) methods
have also been proposed for solving combinatorial graph problems. We refer to Cappart et al. (2021) for a
thorough survey.
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Graph rewiring and structure learning Graph rewiring methods (Karhadkar et al., 2022; Topping
et al., 2022) address limitations such as over-smoothing and over-squashing in deep MPNNs by modifying
graph connectivity to enhance information propagation. Heuristic-based approaches (Barbero et al., 2024)
use curvature and spectral properties to refine edges. In contrast, data-driven techniques (Qian et al., 2023;
2024) employ probabilistic models to adjust graph structure dynamically, leveraging recent advances in
differentiable sampling (Ahmed et al., 2023; Niepert et al., 2021; Qiu et al., 2022). Graph structure
learning (GSL) (Fatemi et al., 2023) shares the goal of enhancing graph structure but differs in approach.
Rewiring adjusts a given graph locally, preserving its overall structure, while GSL learns an optimized
graph from raw or noisy inputs. GSL is suited to scenarios lacking reliable graphs, aiming to infer
meaningful relationships. Both enhance downstream performance, but rewiring focuses on efficiency over
a fixed graph, whereas GSL emphasizes structural discovery.

Temporal and dynamic graph inference Graph-based learning has seen significant interest in modeling
temporal and dynamic interactions, particularly in biological and social networks. Neural Relational
Inference (NRI, Kipf et al. (2018)) has proven successful in learning interaction graphs for physical
systems using a variational graph autoencoder. Temporal GNNs (Graber & Schwing, 2020) extend standard
MPNNs by incorporating recurrent structures and attention to capture time-dependent relationships.

Data-driven causal discovery and structure learning for graphical models Causal discovery
aims to recover directed acyclic graphs (DAGs) representing underlying causal relationships in data.
Traditional methods (Peters et al., 2017; Spirtes et al., 2000) rely on statistical tests and constraint-based
approaches, while gradient-based techniques (Wren et al., 2022; Zheng et al., 2018) allow differentiable
optimization over DAGs. Addressing this problem solely with observational data is challenging, as
under the faithfulness assumption, the true DAG is identifiable only up to a Markov equivalence class.
Nevertheless, identifiability can be improved through interventional data (Ke et al., 2023; Lippe et al.,
2022). A related problem is network reconstruction, which infers unseen interactions between system
elements based only on their behavior or dynamics (Peixoto, 2025a).

B EXAMPLE INSTANTIATIONS OF THE GRAIP FRAMEWORK

Here, we provide two additional example instantiations of the GraIP framework: Combinatorial
optimization (B.1) and gene regulatory network (GRN) inference (B.2).

B.1 COMBINATORIAL OPTIMIZATION

Many combinatorial optimization (CO) problems, particularly vertex-subset problems, align naturally with
the GraIP framework. Each instance is a pair (G,X, S), where G ∈ G, X ∈ Rn×d, and S ⊆ 2V (G)

denotes feasible solutions. The goal is to maximize an objective function cG,X : 2V (G) → R+ over S,
i.e., find U∗

G ∈ S such that cG,X(U∗
G) is maximal. We adopt an unsupervised setting, assuming U∗

G is
unknown during training, to avoid the expense of label generation.

CO Graph

I(θ)

Candidate Set

F: sum{ }
ŷ = 2

MIS Size

GraIP instantiation We instantiate vertex-subset problems as GraIPs as follows: The original graph G,
as well as random walk positional encoding as its node features X , are given as inputs to the inverse map
I(θ) : G × Rn×d → G × R1×d. The inverse map provides as intermediate solution the original graph
structure G̃ = G, along with soft node scores X̃ , which indicate membership in the solution subset. We
will omit the trivial output G̃ for simplicity and write X̃ = I(θ)(G,X).
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Table 4: CO results for the maximum independent set (MIS) and maximum clique problems. Mean ±
standard deviation reported for 5 seeds.

Non-discretized Discretized (I-MLE)

Method MIS Size � Max Clique Size � Method MIS Size � Max Clique Size �
RB-small RB-large RB-small RB-large RB-small RB-large RB-small RB-large

GIN 17.65 ± 0.0 16.24 ± 0.0 14.24 ± 0.0 26.88 ± 0.0 GIN 17.40 ± 0.6 16.23 ± 0.0 14.20 ± 0.0 26.88 ± 0.0
GCN 17.63 ± 0.0 19.26 ± 0.5 13.82 ± 0.4 26.39 ± 0.2 GCN 17.67 ± 0.1 19.46 ± 0.6 14.01 ± 0.1 26.42 ± 0.3
GAT 17.46 ± 0.2 16.90 ± 0.3 13.28 ± 0.3 22.75 ± 0.3 GAT 17.43 ± 0.1 16.44 ± 0.8 12.76 ± 0.3 22.48 ± 0.4
GCON 16.86 ± 0.7 18.28 ± 0.2 15.48 ± 0.1 27.97 ± 0.4 GCON 17.48 ± 0.0 19.31 ± 1.3 13.79 ± 0.2 25.71 ± 0.9

Ideally, we would set the forward map to F = cG,X , but since cG,X applies only to valid subsets S, and
I(θ) outputs soft node scores, we use a surrogate objective c̃G,X : R1×d → R+, and set F = c̃G,X ; a
common strategy in MPNN approaches to CO problems, e.g., Karalias & Loukas (2020); Min et al. (2022);
Wenkel et al. (2024). At test time, a non-learnable decoder h : G × R1×d → S maps node features to a
valid subset S.

Lastly, we set d to be the Frobenius norm between c̃G,X(X̃) and the quality of the optimal solution w.r.t.
c̃G,X . In the case where we want to maximize c̃G,X , d

(
F
(
X̃
)
, y
)
=
∥∥y − c̃G,X

(
X̃
)∥∥

2
has the same

minimum as the objective function −c̃G,X

(
I(θ)(G,X)

)
since the output of I(θ) is upper bounded by

the quality of the optimal solution y, y ≥ c̃G,X

(
I(θ)(G,X)

)
. The GraIP formulation is then stated as

argmin
θ∈Θ

1/|D|
∑

(G,X,y)∈D

d
(
F
(
I(θ)(G,X)

)
, y
)
= argmin

θ∈Θ

1/|D|
∑

(G,X,y)∈D

−c̃G,X

(
I(θ)(G,X)

)
.

For minimization problems, minimizing d and c̃G,X are equivalent. We discuss the surrogate-based
approach in more detail, and provide two concrete example instantiations of it as GraIPs further down in
Appendix B.1.

BENCHMARK AND EMPIRICAL INSIGHTS

Data We focus on two CO problems in maximum independent set (MIS) and maximum clique, using
synthetic RB graphs (Xu et al., 2007) derived from constraint satisfaction problem instances. We generate
the graphs using the same parameters as Sanokowski et al. (2024); Wenkel et al. (2024); Zhang et al.
(2023) for the datasets RB-small (200 to 300 nodes) and RB-large (800 to 1 200 nodes). For more details,
please refer to Appendix C.4.

Methods and empirical insights In each setting, we distinguish between discretizing and non-
discretizing approaches. For non-discretizing approaches, we focus on a large family of unsupervised
graph learning methods for CO, spearheaded mainly by Karalias & Loukas (2020). These unsupervised
methods utilize an MPNN as an upstream model, which outputs a probability distribution over the nodes.
During training, no discretization is used, meaning that the inverse map I(θ) only consists of the prior
model. The unsupervised surrogate objective functions that constitute the forward map F are defined per
CO problem and are drawn from existing literature. We refer to Appendix B.1 (further down in this
section) for details on the surrogate objectives, and (Karalias & Loukas, 2020; Wenkel et al., 2024) for the
test-time decoder definitions for each problem. For discretizing approaches, we round the MPNN’s output
to discrete assignments of membership to the solution set, and use I-MLE to differentiate through this
operation.

Table 4 compares different GNN models in both setups. On MIS, discretized and non-discretized methods
show similar performance, with GCN and GCON (Wenkel et al., 2024) performing best on RB-large. On
the max-clique problem, GCON without discretization outperforms other methods on both graph sizes.

DETAILS AND CONCRETE INSTANTIATIONS

Overview: Surrogate objective approach In MPNN-based approaches to CO problems, the true
cost function typically applies only to valid subsets S. Additionally, most MPNN-based methods for
vertex-subset problems (Karalias & Loukas, 2020; Min et al., 2022; Wenkel et al., 2024) operate on a
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continuous relaxation of the problem for training stability, such that I(θ) outputs soft node scores or
probabilities of nodes being in the target set, rather than binary outputs.

Such formulations use a surrogate objective c̃G,X : R1×d → R+, and set F = c̃G,X , e.g.,

c̃G,X(X̃) := bG,X(X̃) + α qG,X(X̃),

where α is a hyperparameter, bG,X indicates the scores’ fitness w.r.t. the objective function cG,X , and
qG,X softly enforces constraints, e.g., using a standard log-barrier approach. While qG,X guides I(θ)
toward feasible solutions, it does not guarantee constraint satisfaction.

At test time, a non-learnable decoder h : G × R1×d → S maps node features to a valid subset S. We now
introduce the seminal work by (Karalias & Loukas, 2020) to better understand the problem framing, and
discuss two surrogate objectives for the maximum independent set (MIS) and maximum clique problems.

Erdős goes neural The method proposed by Karalias & Loukas (2020) is a special case of our
framework. The scores attached to each node in M are interpreted as individual probabilities pM (v) that
node v is in the subset. This can then be used to define a probability distribution over subsets U of nodes
by assuming that each node’s membership is drawn independently. We denote this probability distribution
with pM (U). We then set

• I(θ) to be an MPNN that outputs the probability for each node,
• bG(M) = EU∼pM (U)

[
cG(U)

]
, qG(M) = pM (U /∈ S), and1

• h to be a sequential decoder as follows. First, order the nodes of M in decreasing order of
probability, v1, . . . , vn. Then, let Us = ∅ be the set of nodes that have been accepted into the
solution, and let Ur = ∅ be the nodes that have been rejected. During each iteration i, node vi is
included in Us if

EU∼pM (U)

[
cG(U) + α1(U /∈ S)

∣∣∣ Us ⊂ U, U ∩ Ur = ∅, vi ∈ U
]

> EU∼pM (U)

[
cG(U) + α1(U /∈ S)

∣∣∣ Us ⊂ U, U ∩ Ur = ∅, vi /∈ U
]
,

and included in Ur otherwise.2

In practice, surrogate objective functions specific to a particular CO problem are often easier to compute
than the general choice for bG and qG described above. We will now describe such surrogate objectives
for the maximum independent set problem (MIS) and the maximum clique problem.

Surrogate objective for the maximum independent set problem Given an undirected graph G with
nodes V (G) and edges E(G), an independent set is defined as a subset of nodes U ⊆ V (G), such that
no edge connects each pair of nodes in U . The MIS asks for the largest independent set in a given graph.
Mathematically, we aim to optimize

max
U⊆V (G)

|U | s.t. ∀u, v ∈ U : (u, v) /∈ E(G).

Following Toenshoff et al. (2021), we can choose qG(M) based on the probability that for a given edge, at
most one of the two nodes is in U . Here, qG(M) maximizes the combined log-likelihood over all edges,

qG(M) :=
1

|E(G)|
∑

(u,v)∈E(G)

log
(
1− pU∼pM (U)

[
u ∈ U, v ∈ U

])
.

bG(M) is simply defined as

bG(M) :=
1

n

∑
v∈V (G)

pM (v)

to maximize the number of nodes in the set. The maximization objective used for training is then

c̃G(M) =
1

n

∑
v∈V (G)

pM (v) + α
1

|E(G)|
∑

(u,v)∈E(G)

log
(
1− pU∼p

M

(U)

[
u ∈ U, v ∈ U

])
.

1The expectation can be replaced with a suitable upper bound if it cannot be computed in closed form.
2We assume here without loss of generality that the objective is a maximization objective. For minimization

objectives, invert the inequality.
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Surrogate objective for the maximum clique problem Given an undirected graph G with nodes V (G)
and edges E(G), a clique is a subset of nodes U ⊆ V (G), such that each pair of distinct nodes in U
is connected by an edge. The maximum clique problem asks for the largest clique in a given graph.
Mathematically, this means optimizing

max
U⊆V (G)

|U | s.t. ∀u, v ∈ U, u ̸= v : (u, v) ∈ E(G).

Min et al. (2022) note that finding the maximum clique is equivalent to finding the the clique with the most
edges, and use this to derive the following surrogate loss for the maximum clique problem. For ease of
notation, we assume V (G) = [n] and write the probabilities of pM as a vector p such that pv = pM (v).
For a given subset of nodes U ⊆ V (G), the number of edges between nodes in U is

∑
u,v∈U A(G)uv ,

where A(G) is the adjacency matrix of G. This can be used to define

bG(M) := EU∼pM (U)

[ ∑
u,v∈U

A(G)uv

]
=

∑
(u,v)∈E(G)

pupv = pTA(G)p.

To softly enforce the constraints, Min et al. use

qG(M) := pTA(G)p,

where A(G) = 1n×n − (I +A(G)) is the adjacency matrix of the complement graph. Combining these
two, the surrogate maximization objective becomes

c̃G(M) = pTA(G)p− αpTA(G)p.

B.2 GENE REGULATORY NETWORK INFERENCE

In this section, we describe an additional instantiation of the GraIP framework, the inference of Gene
Regulatory Networks (GRN). GRNs involve complex interactions among transcription factors, DNA,
RNA, and proteins, which dynamically regulate each other through feedback loops, forming a dynamical
system. This system is best represented by a regulatory interaction graph, making its inference inherently
a temporal problem closely related to dynamic NRI.

Hence, we define our interaction graph as a (directed) time-varying graph Gt ∈ G1 on a fixed set of
vertices V with features Xt. Unlike NRI, in GRN inference, we do not assume binary or categorical
edges; instead, we model G̃ as complete with continuous edge weights. We assume that the gene
expressions Xt+1 are a function of previous expressions Xt and the weighted adjacency matrix Wt over
the complete graph at time t, where Ft is the forward map at time t, Ft : G1 × Rn → Rn:

Xt+1 = Ft(G̃t,Xt) = Ft(Wt,Xt),

GRN inference aims to reconstruct the regulatory interaction graph as a weighted adjacency matrix Wt

given the node features Xt+1 at each time step, and learn the gene expression dynamics for the given
GRN over time. The temporal graph is then used by either a heuristic or a learned, e.g., message-passing
based, simulator to run the dynamical system accurately.

Gene Regulatory Net

G, X

I(θ)

Regulatory
Interaction Graph

G̃, Xt

F (φ)

Next Gene Expressions

ŷ = Xt+1

GraIP instantiation The inverse map I(θ) learns to reconstruct the adjacency matrix Wt given the node
features Xt+1 at time t = 1, and an optional prior graph Gp typically derived from domain knowledge
about the GRN in question. The prior graph helps with identifiability for large GRNs; in cases where a
prior is absent, we set Gp = (V,∅).
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I(θ) outputs a graph with edge weights Ŵt and (Ŵt,Xt) = I(θ)(Gp,Xt+1), which is passed further
through the forward map such that Ft(Ŵt,Xt) ≈ Xt+1. The forward map then predicts the gene
expression levels for the next time step as an NRI-like node regression task.

We can define our distance d as the Frobenius norm between X̂t and Xt. The model predicts the GRN
dynamics one time-step at a time through the following formulation, where for a time window T we have,

θ∗ = argmin
θ∈Θ

1/|D|
∑
t∈T

∑
(Xt,Xt+1)∈D

d(Ft(I
(θ)(Gp,Xt+1),Xt),Xt+1)

= argmin
θ∈Θ

1/|D|
∑
t∈T

∑
(Xt,Xt+1)∈D

d(X̂t+1,Xt+1).

Similar to NRI, the model predicts M time steps into the future and accumulates the errors before each
gradient-based optimization step to avoid divergence over long-horizon predictions.

BENCHMARK AND EMPIRICAL INSIGHTS

Data We pose the GRN inference problem as a node regression task. That is, we consider a complete
graph with n nodes, where each node represents a gene, and a single node feature represents the expression
level of that gene. We follow RiTINI (Bhaskar et al., 2024) in using the SERGIO simulator (Dibaeinia &
Sinha, 2020) to generate temporal gene expression data derived from a GRN based on 100 genes and 300
single-cell samples. We then fit a MIOFlow model (Huguet et al., 2022) over the samples to obtain
continous trajecories. We finally select and sample from five frajectories to construct our training data. We
provide more details on the data generation process in Appendix C.5.

We propose two related node-regression tasks for our GraIP models for GRN inference. In the former, we
train our models with the Markov assumption (to circumvent framing it as a temporal problem) such that
given a data point with expression levels for 100 genes, the model aims to predict the expression levels for
the next time step. The latter is a more difficult temporal learning task, where the model seeks to predict
expression levels for the next five time steps. Bhaskar et al. (2024) demonstrate that utilizing a neural
ODE (Chen et al., 2018) significantly improves performance for these tasks; therefore, we employ a neural
ODE framework with our GraIP models in this context.

Methods and empirical insights We again draw our primary method from RiTINI Bhaskar et al. (2024),
which leverages an attention mechanism for GRN inference. RiTINI utilizes a single GAT layer over a
graph prior in the form of a subsampled version of the ground-truth graph, aiming to recover the full graph,
which makes for a more tractable problem. We slightly alter this setup and forgo the assumption of a graph
prior, instead starting from a complete graph and attempting to directly infer structure from attention
scores using a GAT or GT.

The use of a single attention-based layer directly fits the GraIP framework. The attention computation
associated with a GAT or graph transformer layer implements the inverse map, as the attention coefficients
effectively induce a prior over the complete graph. The forward map is then implemented by the “message
propagation” step within the layer that follows the attention computation. This forward map uses the
attention coefficients from the inverse map to perform weighted message passing effectively.

GAT consistently attains lower MSE and variance than GT, meaning it can predict the gene expression
levels in further time steps more accurately (and better recover the ground truth graph), justifying its use in
RiTINI. We note that the relatively small dataset with only several hundred single-cell data points likely
favors GAT; we aim to provide more benchmarking studies on larger GRN datasets better to understand
model (and attention prior) behavior.

Discussion The framework presented here involves some simplifications over the one presented in
RiTINI (Bhaskar et al., 2024) to emphasize components most pertinent to the inverse problem; these
simplifications can be rectified later.

• The most fundamental difference is that we assume regularly spaced, discrete time steps
t = [0, T ]. In contrast, RiTINI is designed to handle irregular time steps, which is more suited
for the continuous domain. We also note that other works, such as Dynamic Neural Relational
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Table 5: GRN results for batch trajectory experiments (k = 5). All results are ×10−5. Mean ± std
reported for three seeds.

Time window (2 steps) Time window (5 steps)
Method MSE ↓ Method MSE ↓
GAT 75.12 ± 4.9 Neural ODE (GAT) 87.08 ± 27
GT 80.69 ± 5.3 Neural ODE (GT) 143.60 ± 45

Inference (dNRI) (Graber & Schwing, 2020), tackle similar problems in the discrete domain. We
primarily deal with irregularly sampled data points because experimental data, such as single-cell
data, often exhibit these irregularities, where different nodes are sampled at varying time points.
RiTINI thus updates node features using the parents’ node features from a recent [t, t− τ ]
window to handle this.

• Another consequence of this irregular sampling is that it makes modeling the features for the
next time-step directly difficult during training, as the time difference to model forward may vary
significantly. Bhaskar et al. (2024) thus uses a Neural ODE (Chen et al., 2018) with an ODE
solver to extrapolate to arbitrary time instead of modeling the future state directly. Our previous
assumption of uniform, discrete steps thus makes the use of a Neural ODE redundant. However,
viewing the Neural ODE framework as a variant of the GraIP problem is also a viable option.

• We also assume a Markovian process, i.e., the next state Xt+1 depends only on the current state
Xt. However, GRNs typically exhibit various hysteresis or lag effects that may persist across
multiple time steps, meaning we may depend on some arbitrary length δ ∈ [t, t− τ ] into the
past.

• Finally, we assume no (time-independent) graph prior for simplicity. It is, however, straightfor-
ward to incorporate a graph prior P as an auxiliary variable, and adding a regularization term
R :=

∥∥∥Ŵt −WP

∥∥∥
F

to our pseudo-metric d that punishes deviations from the prior,

Fn,t(Xt,Wt) = Xt+1

F−1
n,t (Xt+1,Xt,P) = Wt

d(X̂t, Ŵt,Xt,WP) =
∥∥∥X̂t −Xt

∥∥∥
F
+ α

∥∥∥Ŵt −WP

∥∥∥
F
.

C DATA & HYPERPARAMETERS FOR BASELINES

C.1 CAUSAL DISCOVERY

We evaluate our baseline in the setting proposed by Wren et al. (2022). It consists of generating
Erdős–Rényi (ER) and Barabási–Albert (BA) graphs and then turning them into DAGs. We generate 24
graphs for both graph types, then create node features using a Gaussian equal-variance linear additive
noise model. For each random graph, we sample 1400 data points and use an 80/10/20 split.

We consider eight configurations for generating the ground-truth graph:

• Graph distribution: Erdős–Rényi (ER) or Barabási–Albert (BA);
• Graph size: 30 or 100 nodes;
• Degree parameter: 2 or 4. For ER graphs, this corresponds to the expected degree of each node;

for BA graphs, it specifies the number of edges attached to each newly added node.

These three parameters identify each configuration. For instance, ER2-30 denotes an ER graph with 30
nodes and an expected degree of 2, used as the ground-truth DAG.

C.2 NEURAL RELATIONAL INFERENCE

We use the Springs dataset from Kipf et al. (2018) as our benchmark: N ∈ {5, 10} particles are simulated
in a 2D box according to Newton’s laws of motion, where a given pair of particles is connected with a
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spring with probability 0.5. The connected pairs exert forces on each other based on Hooke’s law, such
that the force applied to vj by vi is calculated as Fij = −k(ri − rj) based on particle locations ri, rj
and a given spring constant k. Initial location and velocities are sampled randomly. For training data,
PDE-based numerical integration is applied to solve the equations of motion over 5 000 time-steps, and
every 100th step is subsampled to generate training samples of 50 steps each. The inverse map attempts to
learn the interacting pairs, while the forward map learns to predict location and velocity information over
50 time steps, thereby simulating Newtonian dynamics accurately. We note that while we benchmark in
the blind inverse problem setting, it is viable to use this numerical integrator as a ground truth simulator F
to benchmark in the non-blind setting.

Our baseline model for both the inverse map prior and forward map is the NRI-GNN from Kipf et al.
(2018). NRI-GNN is an MPNN architecture that uses both node-to-edge (v → e) and edge-to-node
(e→ v) message-passing with MLP components to learn both node and edge-level representations. It is
particularly useful for NRI tasks compared to conventional MPNNs, since the edge-level representations
are required for edge scoring in the inverse map, while the node-level representations are required for the
downstream dynamics prediction. This allows us to use similar architectures for both maps: In our
benchmarks, both the inverse map encoder and the forward map decoder consist of two message-passing
steps where the edge or node representations from the last message-passing step are passed through an
MLP to make the respective predictions. We fix the hidden dimension and batch size to 256, and use an
AdamW optimizer (Loshchilov & Hutter, 2017) with learning rate 0.0001 for 250 epochs. We use a
learning rate scheduler with 0.5 factor and 100 patience. Keeping all else the same, we benchmark two
gradient estimators in STE and I-MLE.

C.3 DATA-DRIVEN REWIRING

Our approach utilizes a two-stage architecture with an upstream and a downstream component. For the
upstream model, we identify 200 potential edge candidates to be added, from which 10 are sampled. It is
implemented as a GIN model with four layers and a hidden dimension of 128, outputting scores for the
edge candidates. The scores are inputs to the discretizers (I-MLE, SIMPLE, or Gumbel softmax). The
downstream model processes the rewired graph using a separate GIN model, also with four layers but a
larger hidden dimension of 256.

We train the model to minimize the Mean Absolute Error (MAE) loss and report the final MAE on the test
set. We use the Adam optimizer Kingma & Ba (2015) with a learning rate of 0.001 and no weight decay.
The model is trained for a maximum of 1000 epochs. We employ early stopping with a patience of 200
epochs and use a learning rate scheduler that reduces the learning rate on a plateau with a patience of 100
epochs.

C.4 COMBINATORIAL OPTIMIZATION

We evaluate our approach on Combinatorial Optimization (CO) problems using two datasets, small
and large, each containing 40 000 RB graphs (Xu et al., 2007) generated following the procedure in
Sanokowski et al. (2024); Wenkel et al. (2024); Zhang et al. (2023).

• Small graphs: Generated with a clique count in the range [20,25] and a clique size in the range
[5,12].

• Large graphs: Generated with a clique count in the range [40,55] and a clique size in the range
[20,25].

For both datasets, the tightness parameter is sampled from [0 3,1]. After generation, we filter the datasets
to include only graphs with a specific node count: [200,300] for the small dataset and [800,1200] for the
large dataset.

We evaluate four GNN architectures: GIN, GCN, GAT, and GCON. All models share a common structure
of 20 GNN layers with a hidden dimension of 32. Node input features are 20-dimensional random walk
positional encodings.

Models are trained using a surrogate loss as defined in Wenkel et al. (2024). We use the AdamW optimizer
Loshchilov & Hutter (2017) with a learning rate of 0.001 and weight decay of 0.02. Training runs for a
maximum of 100 epochs, with early stopping triggered after 20 epochs of no improvement (patience 20).
We also employ a learning rate scheduler, reducing the learning rate on a plateau with a patience of 10
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epochs. During inference, we decode solutions by greedily sorting the model’s output scores to form either
a maximal independent set or a maximum clique.

C.5 GENE REGULATORY NETWORK INFERENCE

We follow the RiTINI (Bhaskar et al., 2024) paper in using SERGIO (Dibaeinia & Sinha, 2020) to
simulate a GRN using identical parameters; the resulting dynamic GRN data represent expression levels
for n =100 genes across 300 single-cell samples, simulated based on a differentiation system with two
branches. We then fit a MIOFlow model (Huguet et al., 2022) over these single-cell samples to obtain
continuous, (pseudo)-temporal gene trajectories we can sample from. Finally, we uniformly discretize the
time dimension into 38 bins to simplify the sampling process. In GRN data, branching of the samples is a
common phenomenon (e.g., as cells differentiate into distinct groups over time). In the results presented,
we focus on only MIOFlow-derived trajectories belonging to a single branch, as different branches induce
different underlying gene interaction graphs. Five trajectories are selected and sampled to constitute the
node features at each time step.

D REGULARIZATION FOR (GRAPH) INVERSE PROBLEMS

Avoiding degenerate solutions is one of the key considerations in solving GraIPs, and inverse problems in
general. Here, we discuss this problem in the context of ill-posedness and regularization. Ill-posedness
is a more general term that encompasses inverse problems with no solution or multiple solutions;
degenerate solutions arise in this context as a trivial solution among multiple ones. An extensive survey on
ill-posedness in inverse problems is provided by Kabanikhin (2008).

Avoiding degeneracy and ill-posedness in inverse problems is typically achieved via applying a form of
regularization over the solution space. This makes regularization a key component of handling inverse
problems in general, and a potential avenue for future work on GraIPs through the development of novel
and/or task-specific graph regularizers. We thus aim to provide here a very brief overview of regularization
techniques for classical inverse problems, their extensions to graphs in related work, and how these differ
from graph regularization techniques employed in GraIPs.

In general inverse problems, there is a vast established literature on regularization, such as Tikhonov
regularization (somewhat analogous to weight decay strategies in deep learning), smoothness-based
regularizers, and iterative methods. We refer to Benning & Burger (2018) and Aster et al. (2019) for a
comprehensive overview. Such inverse problem regularization techniques, however, are distinct from those
for GraIPs, as the solutions to general inverse problems are not structured and can simply be represented in
vector or matrix form.

There also exist some, albeit limited, prior works that consider regularization for inverse problems over
graphs. Ling et al. (2024) uses graph diffusion priors to solve source estimation problems; Eliasof et al.
(2025) then focus on a more general extension of learnable regularizers for inverse problems on graph data.
In the latter work, extensions of classical regularizers to the graph domain are also discussed. To enforce
smoothness over node features of the graph, for example, the graph Laplacian can be used:

R(x) =
1

2
x⊤Lx

If L is replaced by the identity I, this becomes equivalent to Tikhonov regularization, where we simply
aim to reduce the norm of the features. Note that the kind of inverse problems that Ling et al. (2024) and
Eliasof et al. (2025) tackle is fundamentally different from GraIPs, despite also being defined over
graphs. In their setting, one is interested in predicting node/edge features or properties from known graph
structures (source estimation, graph transport, etc.). In that sense, solutions to both their forward and
inverse problems are defined over node or edge features rather than graph structures. To follow up on the
source estimation example, the forward map in this case is a k-step diffusion process defined by the
transition matrix Pk, and the goal is to identify the source node from the final node features after diffusion.
The inverted process relies on the known graph structure, but does not learn or optimize it, indicating an
inverse problem paradigm more akin to general IPs than the one we are interested in.

The regularization strategies we may consider in GraIPs are, on the other hand, inherently structural, and
thus involve regularizing the graph itself by choosing an appropriate (e.g., sparse) prior distribution for the
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graph, or introducing a loss term that penalizes the number of edges in the adjacency matrix, for example.
In one can also leverage domain-specific information: In RiTINI (Bhaskar et al., 2024), for example, the
authors enforce meaningful graphs for gene regulatory network (GRN) inference by using a partial graph
derived from domain knowledge of the GRN in question, the task of the inverse problem then becomes
“completing” this partial graph rather than proposing one from scratch, alleviating the graph identifiability
problem significantly.

E SUMMARY TABLES FOR PROBLEMS AND BASELINE METHODS

Table 6 summarizes the problems covered by the example instantiations of GraIP that we present in this
work. Table 7 lists the baselines that we evaluate on these problems.
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ŷ

D
is

ta
nc

e
m

ea
su

re
d
(y
,ŷ
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