

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GRAIP: A BENCHMARKING FRAMEWORK FOR NEURAL GRAPH INVERSE PROBLEMS

Anonymous authors

Paper under double-blind review

ABSTRACT

A wide range of graph learning tasks—such as structure discovery, temporal graph analysis, and combinatorial optimization—focus on inferring graph structures from data, rather than making predictions on given graphs. However, the respective methods to solve such problems are often developed in an isolated, task-specific manner and thus lack a unifying theoretical foundation. Here, we provide a stepping stone towards the formation of such a foundation and further development by introducing the *Neural Graph Inverse Problem* (GraIP) conceptual framework, which formalizes and reframes a broad class of graph learning tasks as inverse problems. Unlike discriminative approaches that directly predict target variables from given graph inputs, the GraIP paradigm addresses inverse problems, i.e., it relies on observational data and aims to recover the underlying graph structure by reversing the forward process—such as message passing or network dynamics—that produced the observed outputs. We demonstrate the versatility of GraIP across various graph learning tasks, including rewiring, causal discovery, and neural relational inference. We also propose benchmark datasets and metrics for each GraIP domain considered, and characterize and empirically evaluate existing baseline methods used to solve them. Overall, our unifying perspective bridges seemingly disparate applications and provides a principled approach to structural learning in constrained and combinatorial settings while encouraging cross-pollination of existing methods across graph inverse problems.

1 INTRODUCTION

In graph machine learning, numerous challenges—including structural optimization, causal discovery, and gene regulatory network reconstruction—focus on estimating underlying graph structures from observations, rather than performing inference on relational data. While recent graph-learning methods, e.g., *message-passing graph neural networks* (Gilmer et al., 2017; Scarselli et al., 2009) (MPNNs) have achieved impressive results on such individual graph problems, e.g., (heuristically) solving graph-based combinatorial optimization problems (Karalias & Loukas, 2020; Wenkel et al., 2024) or network inference tasks (Bhaskar et al., 2024), these approaches are often developed in isolation, tailored to specific tasks, and lack a unifying formalism. As a notable example, existing work on graph rewiring (Qian et al., 2023; 2024; Qiu et al., 2022) and graph structure learning (Fatemi et al., 2023) reveals that these domains, although typically pursued in isolation, are fundamentally concerned with the same problem, namely modifying or inferring graph structure from data. Both settings face nearly identical methodological challenges as well. That is, their separation largely reflects the absence of a unifying framework, rather than any principled distinction beyond their respective downstream objectives.

On the other hand, *inverse problems* arise as a common formulation spanning many domains in applied mathematics and engineering, where the goal is to infer the underlying causal factors that give rise to indirect and typically noisy observational data (Daras et al., 2024; Kirsch et al., 2011). Inverse problems have a rich history across fields such as signal processing, system identification, computer vision, and astronomy, where data-driven, machine learning-based methods now form a major class of approaches for tackling them (Daras et al., 2024; Kamyab et al., 2022; Zheng et al., 2025), in contrast to the earlier dominance of physics-driven analytical methods (Kirsch et al., 2011).

While it may initially appear that an extension to relational data domains, such as graph learning, is only natural, inverse problems on graphs seem to be largely overlooked in the relevant literature. We therefore

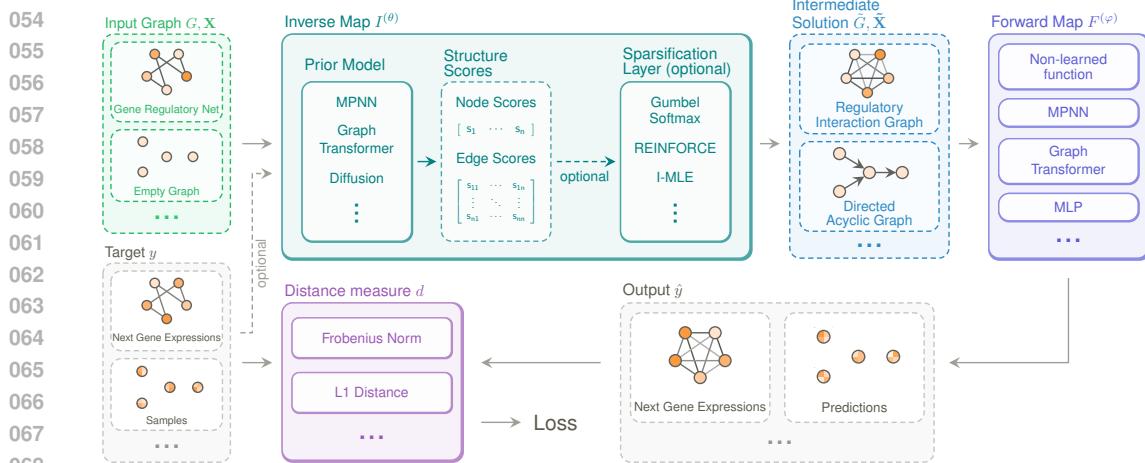


Figure 1: **Overview of the GraIP framework.** The input graph G with optional node features \mathbf{X} and target y is fed into the inverse map $I^{(\theta)}$. This produces an intermediate solution graph \tilde{G} with optional node features $\tilde{\mathbf{X}}$. The forward map $F^{(\varphi)}$ uses the intermediate solution to produce output \hat{y} , which is compared with y using distance measure d to compute the loss. The specific instantiation of each component depends on the domain. We show examples based on gene regulatory network inference and causal discovery.

draw inspiration from the above characterization of inverse problems and demonstrate that they naturally extend to a varied subset of graph learning problems.

We thus introduce the *Neural Graph Inverse Problem* (GraIP) benchmarking framework. This comprehensive formulation unifies a wide range of graph learning problems under a single umbrella by framing them as *inverse problems*. In the GraIP framework, we consider how a given forward process—representing, for example, the propagation of signals over a network (Graber & Schwing, 2020) or the dynamics of biological interactions (Bhaskar et al., 2024)—can be inverted to recover the underlying graph structures. This perspective bridges diverse applications, including causal inference, combinatorial optimization, and regulatory network reconstruction, by exposing their shared intrinsic components. In doing so, we provide a principled foundation for developing algorithms that are both comparable across domains and capable of addressing common challenges such as constraint satisfaction, non-identifiability, and differentiation through discrete combinatorial choices. We further provide baseline empirical results, establishing a basis for the systematic evaluation of methods within the GraIP framework. We present an overview of our framework in Figure 1.

Present work To the best of our knowledge, the inverse problem perspective has not yet been systematically applied to graph-structured data. In this work, we take a first step in this direction with the GraIP framework and provide a unified lens on solving diverse graph learning tasks as inverse problems. We envision GraIP as a stepping stone for future developments that can leverage novel ideas from the field of inverse problems to advance graph learning. Our key contributions are as follows.

1. We derive the GraIP framework, unifying a wide range of graph learning tasks, including causal discovery, structure learning, and dynamic graph inference, under the lens of inverse problems.
2. We instantiate our framework on diverse inverse graph problems and demonstrate how baseline methods that incorporate established graph learning tools, including MPNNs, graph transformers, and differentiable sampling, fit into GraIP.
3. We provide practical insights from our implementation of various GraIPs, demonstrate how these problems can be addressed within a unified pipeline, and discuss the current challenges in creating synergy across different domains.

By framing many diverse graph learning problems as inverse tasks, our work provides a principled and versatile framework for tackling various challenges in graph-based machine learning.

108
109

2 BACKGROUND

110
111
112
Here, we review related work and overview graph learning tasks relevant to our framework. Additional
background and notation are provided in Appendix A.113
114

2.1 INVERSE PROBLEMS

115
116
117
118
119
120
121
Inverse problems are a fundamental challenge across many domains in the natural sciences and engineering,
and they concern inferring unknown causes or system parameters from noisy observational data. Prevalent
examples include imaging problems like denoising and hyperspectral unmixing (Ongie et al., 2020),
parameter estimation problems (Aster et al., 2012), compressed sensing for MRI (Lustig et al., 2008), and
black hole imaging with radio telescope arrays (Zheng et al., 2025). Inverse problems are also relevant to
systems governed by partial differential equations, like fluid dynamics, where the inversion process aims to
recover the initial conditions based on observed flow measurements (Zhang et al., 2020).122
123
In inverse problems, we have observations \mathbf{y} derived from some latent source \mathbf{z} via a *forward map* F . The
inverse problem is to find an *inverse map* I to infer the latent source \mathbf{z} from observed \mathbf{y} , i.e.,

124
$$\mathbf{z} \leftarrow I(\mathbf{y}) \quad \text{such that } F(\mathbf{z}, \xi) = \mathbf{y},$$

125
126
127
128
129
where ξ denotes a noise component. Inverse problems come in many forms and are typically broadly
categorized depending on the relationship between \mathbf{z} and \mathbf{y} . For example, in *denoising problems* \mathbf{z}
represents a “clean” version of the observed and noise-corrupted signal \mathbf{y} . In contrast, the family of
problems where \mathbf{z} represents the parameters of a system that outputs data \mathbf{y} is typically termed *parameter
estimation*.130
131
132
From a statistical learning perspective, given data $D := \{\mathbf{y}_i\}_{i=1}^S$ and data reconstruction loss d , inverse
problems take the following form, consisting of a reconstruction term and an optional regularization
term (Adler & Öktem, 2017; Bai et al., 2020; Kamyab et al., 2022),

133
134
135
$$I^* := \arg \min_I \sum_{\mathbf{y} \in D} d(F(\mathbf{z}, \xi), \mathbf{y}) + \mathcal{R}(\mathbf{z}) \quad \text{where } \mathbf{z} \leftarrow I(\mathbf{y}). \quad (1)$$

136
137
138
139
140
141
142
143
144
145
While many inverse problem formulations assume the forward map F is known, in other cases F may have
to be estimated alongside I (and the $\arg \min$ objective optimizes both I and F); such formulations are
termed *blind* inverse problems. We additionally note that a subset of inverse problems assume F to be not
only known but also invertible (e.g. an invertible linear transformation) such that it renders the true latents
 \mathbf{z} available in training, making learning I by directly regressing on \mathbf{z} possible. We however proceed
with the standard *implicit* inverse problem learning, where the true latents \mathbf{z} are not available, and I is
optimized by ensuring that the forward evaluation $F(I(\mathbf{y}))$ matches the observed data. Finally, inverse
problems are often ill-posed, meaning that a solution may be non-existent, non-unique, or highly sensitive
to the data (Adler & Öktem, 2017; Zheng et al., 2025). The regularization term \mathcal{R} both incorporates any
relevant priors over the latents $\mathbf{z} = I(\mathbf{y})$, and helps with ill-posedness by restricting the hypothesis space.146
147

2.2 RELATED WORK

148
149
Here, we overview related work. Further related work on tasks under the GraIP framework are provided in
Appendix A.1.150
151
152
153
154
155
156
157
158
159
160
161
162
Deep learning for inverse problems Classical approaches to inverse problems require combining
analytical methods with domain-specific knowledge and priors for each problem (Kamyab et al., 2022).
Deep learning methods have emerged as a powerful tool for solving nonlinear inverse problems in recent
years, thanks to their high representational capacity and adaptability to a wide variety of tasks. Such
neural solvers also tend to operate under fewer assumptions on the problem setting than analytical
methods, and are more adept at learning from noisy observations (Lucas et al., 2018). As a result, many
neural frameworks, ranging from CNNs to diffusion models, have seen widespread use in solving inverse
problems in recent years. For a comprehensive survey on neural solvers for inverse problems, we refer the
reader to Bai et al. (2020); Lucas et al. (2018); Ongie et al. (2020). Finally, a recent work by Eliasof et al.
(2025) focuses on adapting classical regularization techniques from inverse problems to graph settings,
making it a valuable complementary contribution to ours.163
164
MPNNs and GTs MPNNs have emerged as a flexible framework for machine learning on graphs
and relational data, utilizing a local message-passing mechanism to learn vector representations of

graph-structured data. Notable instances of this architecture include, e.g., Gilmer et al. (2017); Hamilton et al. (2017); Velickovic et al. (2018), and the spectral approaches proposed in, e.g., Bruna et al. (2014); Defferrard et al. (2016); Kipf & Welling (2017)—all of which descend from early work in (Kireev, 1995; Scarselli et al., 2009). Besides, transformer-based models (GTs) have also attained great success on graphs, thanks to their flexibility and global information aggregation capabilities (Müller et al., 2023).

Network inference A complementary line of work studies network inference (also called network reconstruction), where the objective is to recover latent edge structure from indirect observations such as node signals, dynamics, or sampled interactions. Graph signal processing provides principled formulations for identifying topology from observations, accompanied by guarantees and algorithms for sparse, smooth, or diffusion-generated signals (Mateos et al., 2019). From a statistical modeling perspective, minimum description length approaches pose reconstruction as selecting the network that best compresses the data given a generative model (Peixoto, 2025b). More broadly, recent work bridges data and theory via likelihood-based inference on generative network models such as stochastic block models and variants, providing a unifying statistical framework for reconstructing networks (Peel et al., 2022). While GraIP shares with these methods the high-level goal of inferring structure from indirect data, its formulation differs in two crucial aspects. First, the inverse map in GraIP is parameterized by neural networks rather than fixed statistical estimators. Secondly, the forward map in GraIP is designed to be learnable and differentiable in most cases, which makes end-to-end gradient-based optimization feasible. Many existing formulations in network inference instead rely on discrete search or combinatorial optimization.

3 THE NEURAL GRAPH INVERSE PROBLEM (GRAIP) FRAMEWORK

Let us begin by considering conventional supervised graph learning tasks. We assume a (finite) set of *data* $D := \{(G_i, \mathbf{X}_i, y_i)\}_{i=1}^S \subseteq \mathcal{G} \times \mathbb{R}^{n \times d} \times \mathcal{Y}$, where each data point consists of a graph G , associated d -dimensional, real-valued vertex features \mathbf{X} , and target y . In supervised graph learning, we aim to learn some function $F: \mathcal{G} \times \mathbb{R}^{n \times d} \rightarrow \mathcal{Y}$ in order to estimate the target y . We term F the *forward map*; F is typically expected to be permutation-equivariant or -invariant (for vertex and graph-level tasks, respectively), and thus can be modeled by an MPNN or graph transformer (GT) parametrized by φ . The objective of supervised graph learning can then be written as

$$\varphi^* := \arg \min_{\varphi \in \Phi} 1/|D| \sum_{(G, \mathbf{X}, y) \in D} d(F^{(\varphi)}(G, \mathbf{X}), y),$$

Here, $d: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^+$ is a distance measure, formally a (pseudo-)metric between elements in \mathcal{Y} , e.g., the 2-norm of the difference of elements in \mathbb{R}^e , assuming $\mathcal{Y} = \mathbb{R}^e$ for $e \in \mathbb{N}$. This setup serves as an overall blueprint of supervised graph learning, and many extensions of the proposed setup that consider edge features, edge-level tasks, and self-supervision (e.g., in the absence of labels y) exist.

The defining characteristic of *graph inverse problem learning* is the existence of a learnable *inverse map* $I^{(\theta)}: \mathcal{G} \times \mathbb{R}^{n \times d} \times \mathcal{Y} \rightarrow \mathcal{G}$ in addition to the forward map. In doing so, we follow the original inverse problem formulation in Equation 1, with the additional constraint that the latent z is a graph. Recall that the forward map F takes in a (attributed) graph and predicts target “observations” y . The inverse map operates in the opposite direction to solve the *inverse problem*. That is, given target observations y , features \mathbf{X} , and an optional graph prior G , $I^{(\theta)}$ learns to “reverse-engineer” the optimal latent graph structure \tilde{G} that produces this target y when passed through F . The inverse map $I^{(\theta)}$ is typically under the same permutation-equivariance or -invariance constraints as F , and thus is commonly modeled using MPNNs or GTs. The formulation for GraIP then amounts to finding parameters $\theta^* \in \Theta$ such that

$$\theta^* := \arg \min_{\theta \in \Theta} 1/|D| \sum_{(G, \mathbf{X}, y) \in D} d(F(I^{(\theta)}(G, \mathbf{X}, y)), y) + \mathcal{R}(I^{(\theta)}(G, \mathbf{X}, y)).$$

Note that the case presented where $I^{(\theta)}$ takes all three variables G , X , and y as inputs should be understood as the most general setting; in most instances of GraIP, only a subset of these inputs is used. Finally, the GraIP framing above assumes a non-blind problem with access to the forward map F . This is viable in specific problems such as vertex-subset problems in combinatorial optimization, where forward maps involve counting the cardinalities of sets. For blind GraIPs such as graph rewiring (see subsection 4.3), the inverse and forward maps are optimized jointly, i.e.,

$$\theta^*, \varphi^* := \arg \min_{\varphi \in \Phi, \theta \in \Theta} 1/|D| \sum_{(G, \mathbf{X}, y) \in D} d(F^{(\varphi)}(I^{(\theta)}(G, \mathbf{X}, y)), y) + \mathcal{R}(I^{(\theta)}(G, \mathbf{X}, y)). \quad (2)$$

216 The GraIP framework is flexible enough to encompass a wide range of methods. At a high level, the
 217 requirements are minimal, (1) the inverse map $I^{(\theta)}$ must produce a graph (either by proposing one directly
 218 or by modifying an existing graph), (2) the forward map F must use this graph to make predictions as
 219 in conventional (self-)supervised graph learning, and (3) the overall system must remain end-to-end
 220 differentiable for training. In what follows, we outline concrete strategies for instantiating the inverse and
 221 forward maps within the GraIP framework.

223 3.1 INVERSE MAP IN DETAIL

225 We outline the key aspects that guide the design of inverse maps in graph inverse problems, providing a
 226 broad characterization of the models used in our studies. The inverse map $I^{(\theta)}$ takes as input a triple
 227 (G, \mathbf{X}, y) and outputs a graph \tilde{G} as an (approximate) solution to the inverse problem. In principle, $I^{(\theta)}$
 228 may be instantiated with any differentiable method capable of generating graph structures.

229 **Prior-generating models** A core component of every GraIP inverse map is a learnable, parameterized
 230 function that outputs a prior θ . This prior assigns weights to nodes or edges, where larger weights indicate
 231 a higher likelihood of inclusion in the output graph. These weighted scores are then used to construct the
 232 proposal graph \tilde{G} for the forward map. More generally, the prior need not be restricted to simple edge and
 233 node scoring functions but can also serve as a parameterization of a discrete probability distribution over
 234 graphs, capturing higher-order structural dependencies beyond independent node or edge scores. To ensure
 235 permutation equivariance, the structural prior can be modeled with standard MPNNs or graph transformers,
 236 or with task-specific architectures designed to encode problem-specific inductive biases.

237 **Discretization and gradient-estimation strategies** In many cases, the goal is to recover a sparse graph
 238 rather than a fully connected weighted one, and some forward operators explicitly require discrete inputs.
 239 Discretization functions map the learned continuous priors to a discrete graph, typically via thresholding,
 240 non-parametric decoders, or more principled approaches that sample from a discrete exponential-family
 241 distribution parameterized by the priors and constrained by structural requirements (e.g., exactly k edges
 242 or DAG constraints). These strategies, however, typically render the inverse map $I^{(\theta)}$ non-differentiable or
 243 result in zero gradients almost everywhere with respect to θ . To address this, gradient estimators such as
 244 the score-function estimator (Williams, 1992), the straight-through estimator (STE) (Bengio et al., 2013),
 245 Gumbel-softmax (Jang et al., 2016; Maddison et al., 2017), or I-MLE (Niepert et al., 2021) are commonly
 246 used, enabling differentiation through the discretization step.

247 Nevertheless, combining discretization with approximate gradient estimation can destabilize training and
 248 degrade outputs of inverse maps. It is therefore sometimes preferable to relax the requirement to produce a
 249 discrete graph during training. An important insight from our framework is that discretization can be
 250 harmful, by impairing stability and convergence, but also beneficial, by enforcing useful structural priors
 251 early in learning. This highlights the need for further methodological advances to better understand and
 252 control the impact of discretization in inverse graph-learning pipelines.

253 3.2 FORWARD MAP IN DETAIL

255 The forward map F takes the graph returned by the inverse map $I^{(\theta)}$ as input to predict the target y .
 256 Depending on the problem, one may have access to the true F or an approximation: for example, in
 257 system dynamics simulation, one may have access to a simulator which forgoes the need to learn F . Many
 258 applications, however, require learning $F^{(\varphi)}$: e.g. in data-driven rewiring, the forward map is typically
 259 implemented as an MPNN predicting the downstream task on the graph rewired by the inverse map. In
 260 general, MPNNs are thus suitable forward maps for graph-based dynamics in the absence of a simulator,
 261 as message-passing over the learned interaction graph mimics the generative process.

262 4 INSTANTIATIONS OF THE GRAIP FRAMEWORK

265 We next present instantiations of the GraIP framework to illustrate its generality and applicability
 266 across diverse tasks; we cover two additional tasks, namely combinatorial optimization (CO) and gene
 267 regulatory network (GRN) inference, in Appendix B. For each task, we first state the problem formulation,
 268 then describe how GraIP is instantiated by specifying the role of the inverse map $I^{(\theta)}$ —its inputs and
 269 intermediate outputs—the forward map F , and the distance measure d . We also denote any regularization
 where applicable.

Finally, for each domain, we define a baseline method based on prior work that integrates both an inverse and a forward map, as described in Section 3, and explain how we implement them. When applicable, we include a discretization strategy within the inverse map. To highlight the transferability of our framework across domains, and when applicable, we use I-MLE (Niepert et al., 2021) as the underlying discretization method in combination with an appropriate algorithm. The forward map remains domain-specific. Importantly, our goal is not to introduce new methods, but to demonstrate either *how* existing graph learning techniques can be integrated into the GraIP framework, or *how* simple baselines can be instantiated within it. Summary tables for all problems and methods considered are provided in Appendix E.

4.1 CAUSAL DISCOVERY (CD)

We consider the task of Bayesian network structure learning. We are given a matrix of samples $\mathbf{X} \in \mathbb{R}^{s \times n}$, and we assume that each of the s samples is the realization of a random vector $(\mathbf{X}_1, \dots, \mathbf{X}_n)$. Each \mathbf{X}_i corresponds to a node in a directed acyclic graph (DAG) $G = (V, E)$, $|V| = n$, in which edges encode dependencies. We denote X_i^k the realization of \mathbf{X}_i in the k -th sample. The goal is to infer the underlying DAG G , which is not observed during training, so we frame this task in the unsupervised setting.

GraIP instantiation Causal discovery (CD) naturally fits into the GraIP framework as follows: the **inverse map** $I^{(\theta)} : \mathbb{N} \rightarrow \{0,1\}^{n \times n}$ takes a **vertex set** V with no edges, and outputs a **discretized DAG** \tilde{G} . In this setup, we assume that, for each child node i , X_i^k has been generated by aggregating the features of the parents of i . We therefore assume the following **parametrized forward map** $F^{(\varphi)}$, for each $k \in [s]$, where φ denotes a set of edge weights, and $F^{(\varphi)}$ aggregates the parent's node features according to G and φ ,

$$\mathbf{X}^k = F^{(\varphi)}(\tilde{G}, \emptyset), \quad X_i^k = \sum_{j \in \text{parents}(i)} \varphi_j X_j^k, \quad (3)$$

where $\text{parents}(i)$ are the nodes of G with an outgoing edge to i . Finally, we define the **distance** d as the **Frobenius norm** between $F^{(\varphi)}$'s output and the ground-truth node features \mathbf{X} ,

$$\boldsymbol{\theta}^* := \arg \min_{\boldsymbol{\theta} \in \Theta} \frac{1}{sn} \sum_{k \in [s]} \sum_{i \in [n]} d(F_t(I^{(\theta)}(\emptyset))_i, X_i^k) = \arg \min_{\boldsymbol{\theta} \in \Theta} \frac{1}{sn} \sum_{k \in [s]} \sum_{i \in [n]} \|\hat{X}_i^k - X_i^k\|_2$$

where \hat{X}_i^k is the prediction of $F^{(\varphi)}$ for X_i^k .

BENCHMARK AND EMPIRICAL INSIGHTS

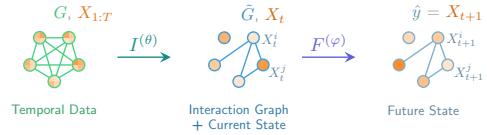
Data We evaluate our baseline in the setting proposed by Wren et al. (2022), generating Erdős–Rényi (ER) (Erdős & Rényi, 1960) and Barabási–Albert (BA) (Albert & Barabási, 2002) graphs and then turning them into DAGs. We generate 24 graphs for both graph types, then create node features using a Gaussian equal-variance linear additive noise model. We consider eight graph dataset configurations based on graph type $\in \{\text{BA, ER}\}$, graph size $\in \{30, 100\}$, and degree parameter $\in \{2, 4\}$. For instance, ER2–30 denotes an ER graph with 30 nodes and an expected degree of 2, used as the ground-truth DAG. More information regarding data generation is available in Appendix C.1.

Methods and empirical insights We implement our main GraIP baseline, **Max-DAG I-MLE**, using a **discretizing strategy**, and compare it with methods based on continuous relaxations. The **inverse map** $I^{(\theta)}$ is a learnable prior $\theta \in \mathbb{R}^{n \times n}$ with I-MLE as the discretization algorithm. We use a maximum DAG solver within I-MLE, namely the Greedy Feedback Arc Set (Eades et al., 1993), to ensure that the proposal graph is a DAG. The **forward map** is defined as a 1-layer GNN that learns a matrix of edge weights $\varphi \in \mathbb{R}^{n \times n}$. It produces node-level predictions X_i^k according to Equation 3, using the edge weights consistently with the graph produced by $I^{(\theta)}$. We evaluate this discretizing baseline against two popular, *non-discretizing* methods for DAG structure learning, NoTears (Zheng et al., 2018) and GOLEM (Ng et al., 2020), which both formulate structure learning through continuous relaxation. Since the task is to infer the ground truth DAG, we frame this as a binary classification task on the adjacency matrix. We consider several metrics, namely the F1-score, the Structural Hamming Distance (SHD), Area Under the Receiver Operating Characteristic Curve (ROC-AUC).

The results are reported in Table 1. NoTears consistently outperforms both GOLEM and the I-MLE-based method (Max-DAG I-MLE), which utilizes discretization during training. Notably, Max-DAG I-MLE performs significantly worse than these continuous approaches in most settings, underscoring the challenges of learning DAGs without constant relaxations.

324
 325 Table 1: Performance comparison of NoTears, Golem, and **Max-DAG I-MLE** across different graph generation
 326 **algorithms and densities**. We report the mean over 24 ground truth graphs, as well 95% confidence intervals.
 327

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377			326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377		
		F1 ↑	SHD ↓	ROC-AUC ↑	F1 ↑	SHD ↓	ROC-AUC ↑
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	98.5 ± 1.8	0.8 ± 0.5	99.0 ± 0.6	93.0 ± 4.5	0 ± 0	100.0 ± 0.0
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	81.8 ± 8.1	12.5 ± 2.8	95.9 ± 1.0	91.2 ± 4.2	12.6 ± 3.4	97.8 ± 0.9
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	94.2 ± 1.8	2.4 ± 0.3	97.1 ± 0.4	53.7 ± 10.8	22.7 ± 2.2	71.4 ± 2.4
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	100.0 ± 0.0	7.9 ± 3.0	93.4 ± 2.2	96.6 ± 2.8	3.0 ± 1.8	98.4 ± 0.8
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	82.6 ± 10.1	10.3 ± 2.8	97.0 ± 0.8	90.8 ± 5.9	11.7 ± 3.0	98.7 ± 0.5
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	51.9 ± 9.8	62.2 ± 18.4	73.9 ± 2.7	38.6 ± 7.2	56.7 ± 4.2	64.8 ± 1.4



NRI aims to infer explicit interaction structures from observations of a dynamical system, while simultaneously learning the temporal dynamics conditioned on the inferred interaction structure. For a system of N objects with d features over t time steps $\mathbf{X} = (\mathbf{x}^1, \dots, \mathbf{x}^T) \in \mathbb{R}^{N \times d \times T}$, the goal is to find the binary or categorical relationships within the dynamical system, taking the form of an edge prediction (or classification in the categorical case) task over a graph G which is optimized such that the inferred structure best explains and drives the observed system dynamics.

GraIP instantiation The general NRI model proposed by Kipf et al. (2018) is formulated as a variational autoencoder (VAE) that fits the GraIP framework perfectly: given **temporal features \mathbf{X}** and a **complete graph G** , the **inverse map $I^{(\theta)}$** consists of (1) the VAE encoder q_θ which learns a probability distribution over the edges, and (2) the sampler that obtains an **interaction graph \tilde{G}** from the learned distribution. The **forward map $F^{(\varphi)}$** implements the decoder p_φ , which uses \tilde{G} to simulate the system dynamics for the next time step as a node regression task. To avoid divergence over long-horizon predictions, the forward map makes multiple forward passes to predict M time steps into the future. It accumulates the errors before each gradient-based optimization step.

The **pseudo-metric d** is primarily defined by a **reconstruction error term**, and a KL term for a uniform prior (following the ELBO-maximizing VAE formulation), defined as the sum of entropies, can be added as a **regularizer \mathcal{R}** on the edge probabilities, e.g., to enforce sparsity,

$$\sum_j \sum_{t=2}^T \frac{\|\mathbf{x}_j^t - \hat{\mathbf{x}}_j^t\|^2}{2\sigma^2} - \left(- \sum_{i \neq j} H(q_\theta(\mathbf{z}_{ij} | \mathbf{X})) \right)$$

NRI problems come in many forms, all of which fit the GraIP framework. Kipf et al. (2018) consider both using an explicit integrator as the forward map F and learning a parametrized GNN-based simulator $F^{(\varphi)}$ jointly with the inverse map. Bhaskar et al. (2024) relax the binary edge assumption to learn continuous weights over a complete graph, while Gruber & Schwing (2020) relax the assumption that the interaction graph is constant across time steps to propose *dynamic NRI* to model a broader array of inverse problems. One practical extension of dNRI is gene regulatory network (GRN) inference, which we explore as a GraIP in Appendix B.2, where we aim to learn complex dynamic relationships between transcription factors, DNA, RNA, and proteins in the form of a regulatory graph.

BENCHMARK AND EMPIRICAL INSIGHTS

Data We focus on the **Springs** and **Charged benchmarks** (Kipf et al., 2018). In **Springs**, each data point is a 50-step simulation of $N \in \{5, 10\}$ objects moving in a box with random initial positions and velocities, and every pair of objects having 0.5 probability of being connected with a spring and interacting based on Hooke’s law. In **Charged**, each object now carries a positive or negative charge, and the goal is to predict whether each node pair attracts or repels. This represents a harder task with more inherent noise. We assume a static binary interaction graph for both cases; the binary nature of the problem thus does not admit non-discretized methods. The inverse map learns the true interaction graph, while the forward map aims to accurately simulate the dynamics by message-passing over the learned graph.

378 **Methods and empirical insights** We use the NRI-GNN model for both the VAE encoder and decoder,
 379 which attains excellent performance on Springs, and is also highly competent on Charged. This model
 380 employs node-to-edge ($v \rightarrow e$) and edge-to-node ($e \rightarrow v$) message passing to learn both node- and
 381 edge-level representations effectively, and is more performant than conventional MPNN architectures
 382 for NRI tasks. We, however, note that any GNN-based model that conforms to the VAE formulation
 383 is inherently a GraIP model. The inverse map consists of the NRI encoder and the sampler. We
 384 benchmark two inverse maps: Both use the same NRI encoder and discretize via thresholding, but one
 385 uses straight-through Gumbel softmax (Jang et al., 2016; Maddison et al., 2017) (STE) for gradient
 386 estimation in the discretization step, while the other uses I-MLE. The forward map is implemented by the
 387 NRI-GNN-based decoder for the blind settings, and by the differentiable simulators provided by Kipf et al.
 388 (2018) for the non-blind ones. We report accuracy, F1-score, and ROC-AUC to evaluate the recovered
 389 graphs \tilde{G} . We see that on Springs both blind methods solve the task almost perfectly for $N = 5$, and are
 390 highly competent for $N = 10$. STE proves more robust for $N = 10$, though both gradient estimation
 391 methods exhibit sensitivity to thresholds as indicated by lower ROC-AUC scores.
 392

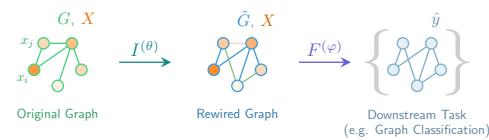
393 When comparing blind and non-blind settings for the NRI + STE model, we see that the non-blind setting
 394 also solves Springs perfectly, and is particularly robust to the set threshold level for $N = 10$ (99.6%
 395 ROC-AUC) where the some sensitivity is evident in the blind case (74.9% AUC despite 98+% accuracy &
 396 F1 for a 0.5 threshold). However, on Charged, the non-blind model struggles severely with slightly above
 397 random graph metrics, whereas the the blind case is still successful (AUC: $\sim 91\%$ for $N = 5$, $\sim 80\%$ for
 398 $N = 10$). We note that the non-blind results fail here due to the vanishing gradients caused by instabilities
 399 in the simulation decoder (as per Kipf et al. (2018)), which prevents the inverse map from converging to
 400 the correct graph. This setting then showcases an “edge case” where learning in the blind setting proves
 401 more reliable than using a known forward map in the non-blind setting.
 402

403 Table 2: Neural relational inference results for the **Springs** and **Charged** benchmarks, evaluating different
 404 discretization strategies on the NRI-GNN model (Kipf et al., 2018). The non-blind case refers to learning only the
 405 inverse map, while using a differentiable simulator for the forward map. We report the mean \pm standard deviation
 406 reported over five seeds.

407 408 409 410 411 412 413 414 415 416 417	408 409 410 411 412 413 414 415 416 417	408 409 410 411 412 413 414 415 416 417	408 409 410 411 412 413 414 415 416 417		408 409 410 411 412 413 414 415 416 417		
			408 409 410 411 412 413 414 415 416 417	408 409 410 411 412 413 414 415 416 417	408 409 410 411 412 413 414 415 416 417	408 409 410 411 412 413 414 415 416 417	408 409 410 411 412 413 414 415 416 417
Springs	5	NRI + STE	1.9e-4 \pm 0.0	99.4 \pm 0.3	99.3 \pm 0.3	99.9 \pm 0.0	
		NRI + I-MLE	3.2e-4 \pm 0.0	99.5 \pm 0.0	99.4 \pm 0.1	100. \pm 0.0	
		NRI + STE (non-blind)	1.7e-7 \pm 0.0	99.8 \pm 0.0	99.8 \pm 0.0	100. \pm 0.0	
Charged	10	NRI + STE	3.3e-5 \pm 0.0	98.4 \pm 0.0	98.2 \pm 0.0	74.9 \pm 0.3	
		NRI + I-MLE	1.2e-4 \pm 0.0	91.6 \pm 0.2	91.1 \pm 0.2	73.4 \pm 0.1	
		NRI + STE (non-blind)	1.2e-6 \pm 0.0	98.2 \pm 0.1	98.2 \pm 0.1	99.6 \pm 0.0	
Springs	5	NRI + STE	1.2e-3 \pm 0.0	82.8 \pm 0.1	82.5 \pm 0.1	91.0 \pm 0.8	
		NRI + STE (non-blind)	1.8e-4 \pm 0.0	52.6 \pm 2.4	42.3 \pm 7.0	57.6 \pm 3.6	
Charged	10	NRI + STE	1.6e-3 \pm 0.0	70.8 \pm 0.7	70.2 \pm 0.8	80.4 \pm 1.0	
		NRI + STE (non-blind)	7.5e-4 \pm 0.0	53.4 \pm 2.1	49.3 \pm 7.3	56.5 \pm 2.7	

4.3 DATA-DRIVEN REWIRING

420 *Graph rewiring* refines a given graph G , which may
 421 contain noise, missing or spurious edges, or structural
 422 inefficiencies. It leverages supervised learning signals
 423 as a proxy to guide the modification of G , producing
 424 a refined graph \tilde{G} that better supports information
 425 propagation and feature aggregation. This improves downstream tasks such as classification or regression,
 426 while addressing issues like over-smoothing and over-squashing through selective edge editing and
 427 optimized message passing in MPNNs. Viewed this way, graph rewiring naturally aligns with the
 428 perspective of inverse problems while bridging the gap between GraIPs and graph structure learning.
 429



430 **GraIP instantiation** We build on recent approaches (Qian et al., 2023; 2024) to align graph rewiring
 431 closely with our framework: The original, noisy graph G , as well as the associated node features \mathbf{X} ,
 432 are fed to the inverse map $I^{(\theta)}: \mathcal{G} \times \mathbb{R}^{n \times d} \rightarrow \mathcal{G} \times \mathbb{R}^{n \times d}$, which outputs an improved graph \tilde{G} , while
 433 retaining the original node features \mathbf{X} . The parametrized forward map $F^{(\varphi)}$ performs a downstream task,

such as graph regression or link prediction. Intuitively, instead of solely optimizing $F^{(\varphi)}$ to perform those tasks, we rewire the graph so that $F^{(\varphi)}$ can better minimize the empirical risk associated with the downstream task. In this GraIP instance, this empirical risk serves as our distance d . Formally, we aim to solve the following optimization problem in Equation (2). Data-driven rewiring instances typically impose a stronger structural prior on \tilde{G} ; instead of an empty, complete or partial graph, $I^{(\theta)}$ starts with the true, known graph, and modifies it to help $F^{(\varphi)}$ learn the downstream objective better. Additionally, given the absence of a “ground truth graph” and the downstream objective being a graph learning task in itself, data-driven rewiring tasks almost always constitute blind GraIPs.

BENCHMARK AND EMPIRICAL INSIGHTS

Table 3: Comparisons between PR-MPNN with different discretization strategies. “Baseline” refers to the original GINE performance with no rewiring, whereas “Random rewire” refers to rewiring a random subset of edges within the same rewiring budget as PR-MPNN. For the WebKB datasets (Cornell/Texas/Wisconsin), mean accuracy is reported.

Method	ZINC (MAE ↓)	Cornell ↑	Texas ↑	Wisconsin ↑	Peptides-func (AP ↑)	Peptides-struct (MAE ↓)
Baseline (GINE)	0.209 ± 0.005	0.574 ± 0.006	0.674 ± 0.010	0.697 ± 0.013	0.550 ± 0.008	0.355 ± 0.005
Random rewire	0.190 ± 0.007	0.510 ± 0.057	0.738 ± 0.012	0.731 ± 0.005	0.651 ± 0.003	0.251 ± 0.001
Gumbel	0.160 ± 0.006					
I-MLE	0.148 ± 0.008					
SIMPLE	0.151 ± 0.001	0.659 ± 0.040	0.827 ± 0.032	0.750 ± 0.015	0.683 ± 0.009	0.248 ± 0.001

Because rewiring is tuned end-to-end by the task loss, the same procedure adapts automatically to arbitrary graph types and prediction objectives, ranging from molecular property prediction to social network analysis. In this study, we demonstrate its effectiveness on molecular property prediction tasks using the ZINC dataset (Irwin & Shoichet, 2005) (the commonly used subset containing 12 000 molecules with their constrained solubility regression targets), as well as the long-range graph benchmarks Peptides-func and Peptides-struct (Dwivedi et al., 2022). We additionally evaluate our methods on the WebKB datasets Cornell, Texas and Wisconsin, which represent semi-supervised node classification tasks on heterophilic graphs (Pei et al., 2020). As there are no “ground truth graphs”, we do not report any graph metrics and instead use downstream performance as a proxy.

Methods and empirical insights We implement graph rewiring within the GraIP framework using the PR-MPNN data-driven rewiring method (Qian et al., 2023). The **inverse map** is a GINE backbone (Hu et al., 2019; Xu et al., 2019) that scores candidate edges, from which a differentiable k -subset sampler selects a subset to add to the graph. The resulting adjacency matrix is thus better aligned with the downstream task, and the sampler serves as our *discretization strategy*.

Alongside I-MLE, we evaluate two gradient estimators for sampling, the Gumbel SoftSub-ST estimator (Jang et al., 2016; Maddison et al., 2017; Xie & Ermon, 2019) and SIMPLE (Ahmed et al., 2023). The **forward map** is also instantiated as a GINE backbone, which operates on the modified graph to produce task predictions. Since the sampler is differentiable, gradients flow seamlessly from the loss through the forward map into the inverse map, allowing for end-to-end optimization. This setup enables the model to leverage both the data structure and task-specific signals when learning to rewire. We compare learnable rewiring against a standard GINE baseline and random rewiring. As shown in Table 3, learnable variants outperform baselines across all tasks, with I-MLE and SIMPLE achieving the most significant gains.

4.4 DISCUSSION AND LESSONS LEARNED

A single universal recipe is unlikely—but MPNN+I-MLE is a strong starting point In a unified benchmarking framework, it is natural to seek a single, consistent inverse map. In practice, however, flexibility is essential. Some problems lack meaningful continuous relaxations (e.g., NRI, rewiring), and when they exist, they are often expensive since they induce fully connected graphs. In other settings, task-specific discretization schemes are more effective, such as gradient estimators tailored to exactly- k sampling. While all GraIPs admit permutation-equivariant models, architectures, and hyperparameters typically require task-specific tuning. A pragmatic takeaway is that GraIP supports diverse design choices, with MPNN+I-MLE providing a competitive and consistent baseline. Our strategy is to adopt strong architectures from the literature (e.g., NRI-GNN for NRI, PR-MPNN for rewiring) and apply I-MLE as the discretizer. This yields a principled starting point, enabling fair comparisons between discretization strategies and continuous relaxations. Preliminary results also suggest that advanced gradient estimators are particularly beneficial for problems with complex constraints, such as CD.

486 **Ill-posedness becomes severe for large GraIPs** CD and GRN inference highlight cases where learnable
 487 priors and I-MLE are insufficient. Interestingly, GRN and NRI share similar formulations; yet, NRI
 488 baselines nearly recover the ground-truth graphs. A key difference is scale: GRN graphs are roughly 20
 489 times larger but come with 150 times fewer training examples. As graph size grows, the number of pathway
 490 combinations yielding the same observation y increases combinatorially, amplifying non-identifiability
 491 and demanding more data or stronger regularization. The CD benchmark exhibits a similar pattern: as
 492 graph size (from 30 to 100 nodes) and density (expected degree from 2 to 4) increases, I-MLE performance
 493 drops sharply, reinforcing the role of scale in ill-posedness.

494 Our preliminary observations suggest that the observed drop follows a “phase transition”—edge recovery
 495 is viable up to a certain noise threshold, where recoverability almost completely collapses to approximately
 496 random performance. Additionally, discretization over graph priors in GraIPs likely exacerbates these
 497 recoverability issues due to a fundamental bias-variance trade-off in gradient estimation: unbiased
 498 estimators (e.g., the score-function estimator) tend to have high variance, whereas attempts to lower this
 499 variance (e.g., by Gumbel-softmax or I-MLE) induces a bias (Minervini et al., 2023; Titsias & Shi,
 500 2022). For I-MLE in particular, Minervini et al. (2023) show that the finite-difference step size λ directly
 501 trades off gradient sparsity vs. bias: as $\lambda \rightarrow 0$, the estimated gradients become zero almost everywhere
 502 (completely uninformative), whereas a larger λ yields denser but increasingly biased gradients. In GraIP
 503 instantiations, this may interact with highly non-convex discrete objectives, and thus discretized training is
 504 prone to getting trapped in poor local optima unless the estimator is very carefully tuned. Meanwhile,
 505 continuous relaxations, e.g. NoTears and GOLEM on CD circumvent these optimization problems by
 506 forgoing discretization altogether, accounting for their superior performance particularly on larger graphs.

507 These observations also allow us to draw parallels between prior work on graphical model structure
 508 learning, such as the transition in recoverability with sample size observed by Lee & Hastie (2015) and the
 509 non-identifiability phenomena reported by Bento & Montanari (2009) for Ising models. Our GraIP
 510 framework thus serves both as a tool to expose common limitations of gradient estimation across GraIPs,
 511 and also as an ideal testbed for future developments in gradient estimation for discrete learning.

512 **Opportunities for generative modeling and alternative approaches** Most current baselines follow the
 513 MPNN+discretizer recipe, leaving substantial room for innovation. Could autoregressive or diffusion-
 514 based graph generative models, such as DiGress (Vignac et al., 2023), serve as inverse maps? Could
 515 MPNN+reinforcement learning—as used in CO—be generalized into effective sampling strategies for
 516 other GraIPs? We argue that the solution space for GraIPs remains underexplored, and our unified
 517 framework is only a first step toward systematically addressing it. Employing graph generative models as
 518 inverse maps, however, is a non-trivial task. Unlike in imaging, where diffusion models can leverage
 519 pre-trained backbones, graph diffusion models typically must be trained from scratch for each dataset.
 520 Furthermore, guidance must handle non-differentiable rewards that arise from discretizing proposal graphs
 521 before passing them through the forward map.

522 5 CONCLUSION AND THE ROAD AHEAD FOR GRAIP

524 To our knowledge, this work is the first to connect inverse problems—long studied in other domains—with
 525 the emerging challenges of graph machine learning. Our key contribution is a unified framework that
 526 recasts diverse tasks as *graph inverse problems* (GraIPs)—offering a shared language, exposing links
 527 between seemingly disparate methods, and enabling transfer of ideas across subfields. To spur adoption,
 528 we release a benchmark suite spanning multiple tasks, designed as a reference point and catalyst for
 529 progress.

530 *Significant challenges remain.* Chief among them is the discretization bottleneck—current gradient
 531 estimators (e.g., Gumbel-Softmax, I-MLE) are often biased or unstable. Hybrid methods, reinforcement
 532 learning, and probabilistic inference could make training more robust. Stronger forward models, e.g., via
 533 graph transformers or neural-symbolic hybrids, may capture global dependencies and enforce domain
 534 constraints more effectively. *Other future work may explore the generalizability of GraIP solvers, such as*
 535 *hybrid models that are stably pre-trained in a continuous manner and then adapted to (or fine-tuned on)*
 536 *discrete tasks for downstream usage, or even extensions to general-purpose, foundational inverse solvers*
 537 *that can be adapted to task-specific graph constraints.* Ultimately, GraIP points toward general-purpose
 538 graph inverse solvers—foundation models for graph-structured data—capable of transferring across
 539 domains from combinatorial optimization to causal discovery and generative modeling. We see this as a
 call to action to push beyond current limitations and build the next generation of graph learning systems.

540 REFERENCES
541

542 Jonas Adler and Ozan Öktem. Solving ill-posed inverse problems using iterative deep neural networks.
543 *Inverse Problems*, 2017.

544 Kareem Ahmed, Zhe Zeng, Mathias Niepert, and Guy Van den Broeck. Simple: A gradient estimator for
545 k -subset sampling. In *International Conference on Learning Representations*, 2023.

546 Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks. *Reviews of modern*
547 *physics*, 2002.

548 Richard C Aster, Brian Borchers, and Clifford H Thurber. *Parameter Estimation and Inverse Problems*.
549 Academic Press, San Diego, CA, 2 edition, January 2012.

550 Richard C. Aster, Brian Borchers, and Clifford H. Thurber. Parameter estimation and inverse problems
551 (third edition). pp. i–iii. Elsevier, third edition edition, 2019. ISBN 978-0-12-804651-7. doi:
552 <https://doi.org/10.1016/B978-0-12-804651-7.00002-X>. URL <https://www.sciencedirect.com/science/article/pii/B978012804651700002X>.

553 Yanna Bai, Wei Chen, Jie Chen, and Weisi Guo. Deep learning methods for solving linear inverse
554 problems: Research directions and paradigms. *Signal Processing*, 177:107729, 2020.

555 Federico Barbero, Ameya Velingker, Amin Saberi, Michael Bronstein, and Francesco Di Giovanni.
556 Locality-aware graph-rewiring in gnns. In *International Conference on Learning Representations*, 2024.

557 Joshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
558 stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.

559 Martin Benning and Martin Burger. Modern regularization methods for inverse problems. *Acta Numerica*,
560 27:1–111, 2018. doi: 10.1017/S0962492918000016.

561 Dhananjay Bhaskar, Daniel Sumner Magruder, Matheo Morales, Edward De Brouwer, Aarthi Venkat,
562 Frederik Wenkel, James Noonan, Guy Wolf, Natalia Ivanova, and Smita Krishnaswamy. Inferring
563 dynamic regulatory interaction graphs from time series data with perturbations. In *Learning on Graphs*
564 Conference. PMLR, 2024.

565 J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and deep locally connected networks
566 on graphs. In *International Conference on Learning Representation*, 2014.

567 Quentin Cappart, Didier Chételat, Elias B. Khalil, Andrea Lodi, Christopher Morris, and Petar Velickovic.
568 Combinatorial optimization and reasoning with graph neural networks. In *Joint Conference on Artificial*
569 *Intelligence*, 2021.

570 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
571 equations. *Advances in Neural Information Processing Systems*, 2018.

572 Giannis Daras, Hyungjin Chung, Chieh-Hsin Lai, Yuki Mitsufuji, Jong Chul Ye, Peyman Milanfar,
573 Alexandros G Dimakis, and Mauricio Delbracio. A survey on diffusion models for inverse problems.
574 *arXiv preprint arXiv:2410.00083*, 2024.

575 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
576 with fast localized spectral filtering. *Advances in Neural Information Processing Systems*, 2016.

577 Payam Dibaeinia and Saurabh Sinha. Sergio: a single-cell expression simulator guided by gene regulatory
578 networks. *Cell systems*, 2020.

579 Vijay Prakash Dwivedi, Ladislav Rampášek, Michael Galkin, Ali Parviz, Guy Wolf, Anh Tuan Luu, and
580 Dominique Beaini. Long range graph benchmark. *Advances in Neural Information Processing Systems*,
581 35, 2022.

582 Peter Eades, Xuemin Lin, and William F Smyth. A fast and effective heuristic for the feedback arc set
583 problem. *Information processing letters*, 1993.

594 Moshe Eliasof, Md Shahriar Rahim Siddiqui, Carola-Bibiane Schönlieb, and Eldad Haber. Learning
 595 regularization for graph inverse problems. *Proceedings of the AAAI Conference on Artificial*
 596 *Intelligence*, 39(16):16471–16479, Apr. 2025. doi: 10.1609/aaai.v39i16.33809. URL <https://ojs.aaai.org/index.php/AAAI/article/view/33809>.

597

598 Paul Erdős and Alfréd Rényi. On the evolution of random graphs. *Publ. Math. Inst. Hungar. Acad. Sci.*,
 599 1960.

600

601 Bahare Fatemi, Sami Abu-El-Haija, Anton Tsitsulin, Mehran Kazemi, Dustin Zelle, Neslihan Bulut,
 602 Jonathan Halcrow, and Bryan Perozzi. Ugsł: A unified framework for benchmarking graph structure
 603 learning. *arXiv preprint arXiv:2308.10737*, 2023.

604

605 Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
 606 message passing for quantum chemistry. In *International Conference on Machine Learning*, 2017.

607

608 Colin Gruber and Alexander G. Schwing. Dynamic neural relational inference. In *Proceedings of the*
 609 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2020.

610

611 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
 612 *Advances in Neural Information Processing Systems*, 2017.

613

614 Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
 615 Strategies for pre-training graph neural networks. *arXiv preprint arXiv:1905.12265*, 2019.

616

617 Guillaume Huguet, Daniel Sumner Magruder, Alexander Tong, Oluwadamilola Fasina, Manik Kuchroo,
 618 Guy Wolf, and Smita Krishnaswamy. Manifold interpolating optimal-transport flows for trajectory
 619 inference. *Advances in Neural Information Processing Systems*, 2022.

620

621 John J Irwin and Brian K Shoichet. Zinc- a free database of commercially available compounds for virtual
 622 screening. *Journal of Chemical Information and Modeling*, 2005.

623

624 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv*
 625 *preprint arXiv:1611.01144*, 2016.

626

627 Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
 628 technique for the travelling salesman problem. *arXiv preprint arXiv:1906.01227*, 2019.

629

630 S. I. Kabanikhin. Definitions and examples of inverse and ill-posed problems. *Journal of Inverse*
 631 *and Ill-posed Problems*, 16(4):317–357, 2008. doi: doi:10.1515/JIIP.2008.019. URL <https://doi.org/10.1515/JIIP.2008.019>.

632

633 Shima Kamyab, Zohreh Azimifar, Rasool Sabzi, and Paul Fieguth. Deep learning methods for inverse
 634 problems. *PeerJ Computer Science*, 2022.

635

636 Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
 637 combinatorial optimization on graphs. *Advances in Neural Information Processing Systems*, 2020.

638

639 Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. FoSR: First-order spectral rewiring for
 640 addressing oversquashing in gnns. *arXiv preprint arXiv:2210.11790*, 2022.

641

642 Nan Rosemary Ke, Olexa Bilaniuk, Anirudh Goyal, Stefan Bauer, Hugo Larochelle, Bernhard Schölkopf,
 643 Michael Curtis Mozer, Christopher Pal, and Yoshua Bengio. Neural causal structure discovery from
 644 interventions. *Transactions on Machine Learning Research*, 2023.

645

646 Elias B. Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
 647 optimization algorithms over graphs. *Advances in Neural Information Processing Systems*, 2017.

648

649 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International*
 650 *Conference on Learning Representations*, 2015.

651

652 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
 653 *International Conference on Learning Representations*, 2017.

654

655 Thomas N. Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard S. Zemel. Neural relational
 656 inference for interacting systems. In *International Conference on Machine Learning*, 2018.

648 D. B. Kireev. Chemnet: A novel neural network based method for graph/property mapping. *Journal of*
 649 *Chemical Information and Computer Sciences*, 1995.
 650

651 Andreas Kirsch et al. *An introduction to the mathematical theory of inverse problems*. Springer, 2011.
 652

653 Chen Ling, Tanmoy Chowdhury, Jie Ji, Sirui Li, Andreas Züfle, and Liang Zhao. Source localization
 654 for cross network information diffusion. In *Proceedings of the 30th ACM SIGKDD Conference on*
655 Knowledge Discovery and Data Mining, KDD '24, pp. 5419–5429, New York, NY, USA, 2024.
 656 Association for Computing Machinery. ISBN 9798400704901. doi: 10.1145/3637528.3671624. URL
<https://doi.org/10.1145/3637528.3671624>.
 657

658 Phillip Lippe, Taco Cohen, and Efstratios Gavves. Efficient neural causal discovery without acyclicity
 659 constraints. In *International Conference on Learning Representations*, 2022.
 660

661 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
[arXiv:1711.05101](https://arxiv.org/abs/1711.05101), 2017.
 662

663 Alice Lucas, Michael Iliadis, Rafael Molina, and Aggelos K. Katsaggelos. Using deep neural networks for
 664 inverse problems in imaging: Beyond analytical methods. *IEEE Signal Processing Magazine*, 35(1):
 665 20–36, 2018. doi: 10.1109/MSP.2017.2760358.
 666

667 Michael Lustig, David L Donoho, Juan M Santos, and John M Pauly. Compressed sensing mri. *IEEE*
668 signal processing magazine, 2008.
 669

670 Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation
 671 of discrete random variables. In *International Conference on Learning Representations*, 2017.
 672

673 Gonzalo Mateos, Santiago Segarra, Antonio G. Marques, and Alejandro Ribeiro. Connecting the dots:
 674 Identifying network structure via graph signal processing. *IEEE Signal Processing Magazine*, 36(3):
 675 16–43, May 2019. doi: 10.1109/MSP.2018.2890143.
 676

677 Yimeng Min, Frederik Wenkel, Michael Perlmutter, and Guy Wolf. Can hybrid geometric scattering
 678 networks help solve the maximum clique problem? *Advances in Neural Information Processing*
 679 *Systems*, 2022.
 680

681 Pasquale Minervini, Luca Franceschi, and Mathias Niepert. Adaptive perturbation-based gradient
 682 estimation for discrete latent variable models. In *Proceedings of the Thirty-Seventh AAAI Conference*
683 on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial
684 Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, AAAI'23/IAAI'23/EAAI'23. AAAI Press, 2023. ISBN 978-1-57735-880-0. doi:
[10.1609/aaai.v37i8.26103](https://doi.org/10.1609/aaai.v37i8.26103). URL <https://doi.org/10.1609/aaai.v37i8.26103>.
 685

686 Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to graph transformers.
 687 *arXiv preprint arXiv:2302.04181*, 2023.
 688

689 Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the Role of Sparsity and DAG Constraints for
 690 Learning Linear DAGs. In *Advances in Neural Information Processing Systems*, 2020.
 691

692 Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: backpropagating through
 693 discrete exponential family distributions. *Advances in Neural Information Processing Systems*, 2021.
 694

695 Gregory Ongie, Ajil Jalal, Christopher A. Metzler, Richard G. Baraniuk, Alexandros G. Dimakis, and
 696 Rebecca Willett. Deep learning techniques for inverse problems in imaging. *IEEE Journal on Selected*
697 Areas in Information Theory, 1(1):39–56, 2020. doi: 10.1109/JSAIT.2020.2991563.
 698

699 Leto Peel, Tiago P. Peixoto, and Manlio De Domenico. Statistical inference links data and theory in
 700 network science. *Nature Communications*, 13(1):6794, 2022. doi: 10.1038/s41467-022-34588-y.
 701

702 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 703 graph convolutional networks. In *International Conference on Learning Representations*, 2020. URL
<https://openreview.net/forum?id=S1e2agrFvS>.
 704

705 Tiago P Peixoto. Uncertainty quantification and posterior sampling for network reconstruction. *arXiv*
706 preprint arXiv:2503.07736, 2025a.
 707

702 Tiago P. Peixoto. Network reconstruction via the minimum description length principle. *Physical Review*
 703 X, 15(1):011065, 2025b. doi: 10.1103/PhysRevX.15.011065.
 704

705 Jonas Peters, Dominik Janzing, and Bernhard Schlkopf. *Elements of Causal Inference: Foundations and*
 706 *Learning Algorithms*. The MIT Press, 2017.

707 Chendi Qian, Andrei Manolache, Kareem Ahmed, Zhe Zeng, Guy Van den Broeck, Mathias Niepert, and
 708 Christopher Morris. Probabilistically rewired message-passing neural networks. *arXiv preprint*
 709 *arXiv:2310.02156*, 2023.
 710

711 Chendi Qian, Andrei Manolache, Christopher Morris, and Mathias Niepert. Probabilistic graph rewiring
 712 via virtual nodes. *arXiv preprint arXiv:2405.17311*, 2024.

713 Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combinatorial
 714 optimization problems. *Advances in Neural Information Processing Systems*, 2022.
 715

716 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
 717 Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances in Neural Information*
 718 *Processing Systems*, 2022.

719 Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework for
 720 unsupervised neural combinatorial optimization. In *Proceedings of the 41st International Conference*
 721 *on Machine Learning*, ICML'24. JMLR.org, 2024.

722 F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model.
 723 *IEEE Transactions on Neural Networks*, 2009.

724 Peter Spirtes, Clark Glymour, and Richard Scheines. *Causation, Prediction, and Search*. MIT Press, 2000.

725 Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimization.
 726 *Advances in Neural Information Processing Systems*, 2023.
 727

728 Michalis Titsias and Jiaxin Shi. Double control variates for gradient estimation in discrete latent variable
 729 models. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), *Proceedings of The 25th*
 730 *International Conference on Artificial Intelligence and Statistics*, volume 151 of *Proceedings of Machine*
 731 *Learning Research*, pp. 6134–6151. PMLR, 28–30 Mar 2022. URL <https://proceedings.mlr.press/v151/titsias22a.html>.
 732

733 Jan Toenshoff, Martin Ritzert, Hinrikus Wolf, and Martin Grohe. Graph neural networks for maximum
 734 constraint satisfaction. *Frontiers in Artificial Intelligence*, 2021.

735 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M
 736 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In *International*
 737 *Conference on Learning Representations*, 2022.

738 Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
 739 Graph attention networks. In *International Conference on Learning Representations*, 2018.

740 Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
 741 Digress: Discrete denoising diffusion for graph generation. In *International Conference on Learning*
 742 *Representations*, 2023.

743 Frederik Wenkel, Semih Cantürk, Stefan Horoi, Michael Perlmutter, and Guy Wolf. Towards a general
 744 recipe for combinatorial optimization with multi-filter GNNs. In *Learning on Graphs Conference*, 2024.

745 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 746 learning. *Machine learning*, 1992.

747 Andrew J Wren, Pasquale Minervini, Luca Franceschi, and Valentina Zantedeschi. Learning discrete
 748 directed acyclic graphs via backpropagation. *arXiv preprint arXiv:2210.15353*, 2022.
 749

750 Sang Michael Xie and Stefano Ermon. Reparameterizable subset sampling via continuous relaxations.
 751 *International Joint Conference on Artificial Intelligence*, 2019.

756 Ke Xu, Frédéric Boussemart, Fred Hemery, and Christophe Lecoutre. Random constraint satisfaction:
757 Easy generation of hard (satisfiable) instances. *Artificial intelligence*, 2007.
758

759 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
760 In *International Conference on Learning Representations*, 2019.

761 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-Yan
762 Liu. Do transformers really perform badly for graph representation? *Advances in neural information*
763 *processing systems*, 2021.

764 Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan. Let the
765 flows tell: Solving graph combinatorial problems with gflownets. *Advances in Neural Information*
766 *Processing Systems*, 2023.

767 Xin-Lei Zhang, Carlos Michelén-Ströfer, and Heng Xiao. Regularized ensemble kalman methods
768 for inverse problems. *Journal of Computational Physics*, 416:109517, 2020. ISSN 0021-9991.
769 doi: <https://doi.org/10.1016/j.jcp.2020.109517>. URL <https://www.sciencedirect.com/science/article/pii/S0021999120302916>.

770 Hongkai Zheng, Wenda Chu, Bingliang Zhang, Zihui Wu, Austin Wang, Berthy Feng, Caifeng Zou, Yu Sun,
771 Nikola Borislavov Kovachki, Zachary E Ross, Katherine Bouman, and Yisong Yue. Inversebench:
772 Benchmarking plug-and-play diffusion priors for inverse problems in physical sciences. In *International*
773 *Conference on Learning Representations*, 2025.

774 Xun Zheng, Bryon Aragam, Pradeep K Ravikumar, and Eric P Xing. Dags with no tears: Continuous
775 optimization for structure learning. *Advances in Neural Information Processing Systems*, 2018.

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A ADDITIONAL BACKGROUND
811812 A.1 NOTATION
813

814 Let $\mathbb{N} := \{1, 2, \dots\}$. The set \mathbb{R}^+ denotes the set of non-negative real numbers. For $n \in \mathbb{N}$, let
815 $[n] := \{1, \dots, n\} \subset \mathbb{N}$. We use $\{\!\!\{ \dots \}\!\!\}$ to denote multisets, i.e., the generalization of sets allowing for
816 multiple, finitely many instances for each of its elements. An (*undirected*) graph G is a pair $(V(G), E(G))$
817 with *finite* sets of *vertices* $V(G)$ and *edges* $E(G) \subseteq \{\{u, v\} \subseteq V(G) \mid u \neq v\}$. For ease of notation,
818 we denote an edge $\{u, v\}$ in $E(G)$ by (u, v) or (v, u) . The *order* of a graph G is its number $|V(G)|$ of
819 vertices. We use standard notation throughout, e.g., we denote the *neighborhood* of a node v by $N(v)$,
820 and so on. Finally, denote \mathcal{G} the set of all graphs with at most n vertices.

821
822
823 **MPNNs** Intuitively, MPNNs learn node features, i.e., a d -dimensional real-valued vector, representing
824 each node in a graph by aggregating information from its neighboring nodes. Let $\mathbf{G} = (G, \mathbf{X})$ be an
825 n -order attributed graph, where $\mathbf{L} \in \mathbb{R}^{n \times d}$, $d > 0$, following Gilmer et al. (2017) and Scarselli et al.
826 (2009), in each layer, $t > 0$, we update node attributes or features,

$$827 \mathbf{h}_v^{(t)} := \text{UPD}^{(t)}\left(\mathbf{h}_v^{(t-1)}, \text{MSG}^{(t)}\left(\{\!\!\{ \mathbf{h}_u^{(t-1)} \mid u \in N(v) \}\!\!\}\right)\right),$$

828 and $\mathbf{h}_v^{(0)} := \mathbf{X}_v$, where we assume $V(G) = [n]$. Here, the *message function* $\text{MSG}^{(t)}$ is a parameterized
829 function, e.g., a neural network, mapping the multiset of neighboring node features to a single vectorial
830 representation. We can easily adapt a message function to incorporate edge weights or multi-dimensional
831 features. Similarly, the *update function* $\text{UPD}^{(t)}$ is a parameterized function mapping the previous node
832 features, and the output of $\text{MSG}^{(t)}$ to a single vectorial representation. To adapt the parameters of the
833 above functions, they are optimized end-to-end, typically through a variant of stochastic gradient descent,
834 e.g., Kingma & Ba (2015), along with the parameters of a neural network used for classification or
835 regression.

836
837
838 **GTs** To alleviate the bottleneck of MPNNs, such as their limited receptive field, Graph Transformers
839 (GTs) have been widely adopted. A GT stacks multiple attention layers interleaved with feed-forward
840 layers. Formally, given a graph G with node attributes $\mathbf{X} \in \mathbb{R}^{n \times d}$, we initialize the node features as
841 $\mathbf{H}^{(0)} := \mathbf{X}$. For each attention head at layer $t > 0$, the node representations are updated as

$$842 \mathbf{H}^{(t)} := \text{softmax}\left(\frac{\mathbf{Q}^{(t)} \mathbf{K}^{(t)}^T}{\sqrt{d_k}}\right) \mathbf{V}^{(t)}$$

843 where d_k denotes the feature dimension, $\mathbf{Q}^{(t)} := \mathbf{H}^{(t-1)} \mathbf{W}_Q^{(t)}$, $\mathbf{K}^{(t)} := \mathbf{H}^{(t-1)} \mathbf{W}_K^{(t)}$ and $\mathbf{V}^{(t)} :=$
844 $\mathbf{H}^{(t-1)} \mathbf{W}_V^{(t)}$ are learned linear projections of $\mathbf{H}^{(t-1)}$. Each attention layer typically employs multiple
845 heads, whose outputs are concatenated as $\text{MultiAttn}(\mathbf{H}^{(t-1)})$. This is followed by a feed-forward layer
846 with residual connection:

$$847 \mathbf{H}^{(t)} := \text{FF}^{(t)}\left(\text{MultiAttn}\left(\mathbf{H}^{(t-1)}\right) + \mathbf{H}^{(t-1)}\right).$$

848 To better exploit the graph structure, structural information can be incorporated either as an attention
849 bias (Ying et al., 2021) or through structural and positional encodings (Müller et al., 2023; Rampášek
850 et al., 2022), which are added to the node features.

851
852
853
854
855 **Combinatorial optimization** Early work on combinatorial optimization on graphs (Joshi et al., 2019;
856 Karalias & Loukas, 2020) introduced MPNN-based methods for NP-hard problems such as the traveling
857 salesperson problem, maximum clique, and minimum vertex cover. Diffusion models (Sanokowski et al.,
858 2024; Sun & Yang, 2023) and reinforcement learning (Khalil et al., 2017; Toenshoff et al., 2021) methods
859 have also been proposed for solving combinatorial graph problems. We refer to Cappart et al. (2021) for a
860 thorough survey.

864 **Graph rewiring and structure learning** Graph rewiring methods (Karhadkar et al., 2022; Topping
 865 et al., 2022) address limitations such as over-smoothing and over-squashing in deep MPNNs by modifying
 866 graph connectivity to enhance information propagation. Heuristic-based approaches (Barbero et al., 2024)
 867 use curvature and spectral properties to refine edges. In contrast, data-driven techniques (Qian et al., 2023;
 868 2024) employ probabilistic models to adjust graph structure dynamically, leveraging recent advances in
 869 differentiable sampling (Ahmed et al., 2023; Niepert et al., 2021; Qiu et al., 2022). *Graph structure*
 870 *learning* (GSL) (Fatemi et al., 2023) shares the goal of enhancing graph structure but differs in approach.
 871 Rewiring adjusts a given graph locally, preserving its overall structure, while GSL learns an optimized
 872 graph from raw or noisy inputs. GSL is suited to scenarios lacking reliable graphs, aiming to infer
 873 meaningful relationships. Both enhance downstream performance, but rewiring focuses on efficiency over
 874 a fixed graph, whereas GSL emphasizes structural discovery.

875
 876 **Temporal and dynamic graph inference** Graph-based learning has seen significant interest in modeling
 877 temporal and dynamic interactions, particularly in biological and social networks. Neural Relational
 878 Inference (NRI, Kipf et al. (2018)) has proven successful in learning interaction graphs for physical
 879 systems using a variational graph autoencoder. Temporal GNNs (Graber & Schwing, 2020) extend standard
 880 MPNNs by incorporating recurrent structures and attention to capture time-dependent relationships.

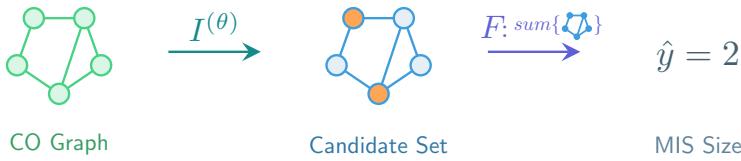
881
 882 **Data-driven causal discovery and structure learning for graphical models** Causal discovery
 883 aims to recover *directed acyclic graphs* (DAGs) representing underlying causal relationships in data.
 884 Traditional methods (Peters et al., 2017; Spirtes et al., 2000) rely on statistical tests and constraint-based
 885 approaches, while gradient-based techniques (Wren et al., 2022; Zheng et al., 2018) allow differentiable
 886 optimization over DAGs. Addressing this problem solely with observational data is challenging, as
 887 under the faithfulness assumption, the true DAG is identifiable only up to a Markov equivalence class.
 888 Nevertheless, identifiability can be improved through interventional data (Ke et al., 2023; Lippe et al.,
 889 2022). A related problem is network reconstruction, which infers unseen interactions between system
 890 elements based only on their behavior or dynamics (Peixoto, 2025a).

892 B EXAMPLE INSTANTIATIONS OF THE GRAIP FRAMEWORK

893 Here, we provide two additional example instantiations of the GraIP framework: Combinatorial
 894 optimization (B.1) and gene regulatory network (GRN) inference (B.2).

895 B.1 COMBINATORIAL OPTIMIZATION

896 Many combinatorial optimization (CO) problems, particularly *vertex-subset problems*, align naturally with
 897 the GraIP framework. Each instance is a pair (G, \mathbf{X}, S) , where $G \in \mathcal{G}$, $\mathbf{X} \in \mathbb{R}^{n \times d}$, and $S \subseteq 2^{V(G)}$
 898 denotes feasible solutions. The goal is to maximize an objective function $c_{G, \mathbf{X}} : 2^{V(G)} \rightarrow \mathbb{R}^+$ over S ,
 899 i.e., find $U_G^* \in S$ such that $c_{G, \mathbf{X}}(U_G^*)$ is maximal. We adopt an unsupervised setting, assuming U_G^* is
 900 unknown during training, to avoid the expense of label generation.



913 **GraIP instantiation** We instantiate vertex-subset problems as GraIPs as follows: The *original graph* G ,
 914 as well as random walk positional encoding as its *node features* \mathbf{X} , are given as inputs to the *inverse map*
 915 $I^{(\theta)} : \mathcal{G} \times \mathbb{R}^{n \times d} \rightarrow \mathcal{G} \times \mathbb{R}^{1 \times d}$. The *inverse map* provides as intermediate solution the *original graph*
 916 *structure* $\tilde{G} = G$, along with soft *node scores* $\tilde{\mathbf{X}}$, which indicate membership in the solution subset. We
 917 will omit the trivial output \tilde{G} for simplicity and write $\tilde{\mathbf{X}} = I^{(\theta)}(G, \mathbf{X})$.

918
 919 Table 4: CO results for the maximum independent set (MIS) and maximum clique problems. Mean \pm
 920 standard deviation reported for 5 seeds.

Method	Non-discretized				Discretized (I-MLE)				
	RB-small	RB-large	RB-small	RB-large	RB-small	RB-large	RB-small	RB-large	
GIN	17.65 \pm 0.0	16.24 \pm 0.0	14.24 \pm 0.0	26.88 \pm 0.0	GIN	17.40 \pm 0.6	16.23 \pm 0.0	14.20 \pm 0.0	26.88 \pm 0.0
GCN	17.63 \pm 0.0	19.26 \pm 0.5	13.82 \pm 0.4	26.39 \pm 0.2	GCN	17.67 \pm 0.1	19.46 \pm 0.6	14.01 \pm 0.1	26.42 \pm 0.3
GAT	17.46 \pm 0.2	16.90 \pm 0.3	13.28 \pm 0.3	22.75 \pm 0.3	GAT	17.43 \pm 0.1	16.44 \pm 0.8	12.76 \pm 0.3	22.48 \pm 0.4
GCON	16.86 \pm 0.7	18.28 \pm 0.2	15.48 \pm 0.1	27.97 \pm 0.4	GCON	17.48 \pm 0.0	19.31 \pm 1.3	13.79 \pm 0.2	25.71 \pm 0.9

921
 922
 923
 924
 925
 926
 927
 928 Ideally, we would set the [forward map](#) to $F = c_{G, \mathbf{X}}$, but since $c_{G, \mathbf{X}}$ applies only to valid subsets S , and
 929 $I^{(\theta)}$ outputs soft node scores, we use a surrogate objective $\tilde{c}_{G, \mathbf{X}}: \mathbb{R}^{1 \times d} \rightarrow \mathbb{R}^+$, and set $F = \tilde{c}_{G, \mathbf{X}}$; a
 930 common strategy in MPNN approaches to CO problems, e.g., Karalias & Loukas (2020); Min et al. (2022);
 931 Wenkel et al. (2024). At test time, a non-learnable decoder $h: \mathcal{G} \times \mathbb{R}^{1 \times d} \rightarrow S$ maps node features to a
 932 valid subset S .

933
 934 Lastly, we set d to be the [Frobenius norm](#) between $\tilde{c}_{G, \mathbf{X}}(\tilde{\mathbf{X}})$ and the quality of the optimal solution w.r.t.
 935 $\tilde{c}_{G, \mathbf{X}}$. In the case where we want to maximize $\tilde{c}_{G, \mathbf{X}}$, $d(F(\tilde{\mathbf{X}}), y) = \|y - \tilde{c}_{G, \mathbf{X}}(\tilde{\mathbf{X}})\|_2$ has the same
 936 minimum as the objective function $-\tilde{c}_{G, \mathbf{X}}(I^{(\theta)}(G, \mathbf{X}))$ since the output of $I^{(\theta)}$ is upper bounded by
 937 the quality of the optimal solution y , $y \geq \tilde{c}_{G, \mathbf{X}}(I^{(\theta)}(G, \mathbf{X}))$. The GraIP formulation is then stated as

$$938 \arg \min_{\theta \in \Theta} \frac{1}{|D|} \sum_{(G, \mathbf{X}, y) \in D} d(F(I^{(\theta)}(G, \mathbf{X})), y) = \arg \min_{\theta \in \Theta} \frac{1}{|D|} \sum_{(G, \mathbf{X}, y) \in D} -\tilde{c}_{G, \mathbf{X}}(I^{(\theta)}(G, \mathbf{X})).$$

939
 940
 941 For minimization problems, minimizing d and $\tilde{c}_{G, \mathbf{X}}$ are equivalent. We discuss the surrogate-based
 942 approach in more detail, and provide two concrete example instantiations of it as GraIPs further down in
 943 Appendix B.1.

944 BENCHMARK AND EMPIRICAL INSIGHTS

945
 946
 947 **Data** We focus on two CO problems in maximum independent set (MIS) and maximum clique, using
 948 synthetic RB graphs (Xu et al., 2007) derived from constraint satisfaction problem instances. We generate
 949 the graphs using the same parameters as Sanokowski et al. (2024); Wenkel et al. (2024); Zhang et al.
 950 (2023) for the datasets RB-small (200 to 300 nodes) and RB-large (800 to 1 200 nodes). For more details,
 951 please refer to Appendix C.4.

952
 953
 954 **Methods and empirical insights** In each setting, we distinguish between *discretizing* and *non-*
 955 *discretizing* approaches. For non-discretizing approaches, we focus on a large family of unsupervised
 956 graph learning methods for CO, spearheaded mainly by Karalias & Loukas (2020). These unsupervised
 957 methods utilize an MPNN as an upstream model, which outputs a probability distribution over the nodes.
 958 During training, no discretization is used, meaning that the [inverse map](#) $I^{(\theta)}$ only consists of the prior
 959 model. The unsupervised surrogate objective functions that constitute the [forward map](#) F are defined per
 960 CO problem and are drawn from existing literature. We refer to Appendix B.1 (further down in this
 961 section) for details on the surrogate objectives, and (Karalias & Loukas, 2020; Wenkel et al., 2024) for the
 962 test-time decoder definitions for each problem. For discretizing approaches, we round the MPNN’s output
 963 to discrete assignments of membership to the solution set, and use I-MLE to differentiate through this
 964 operation.

965
 966 Table 4 compares different GNN models in both setups. On MIS, discretized and non-discretized methods
 967 show similar performance, with GCN and GCON (Wenkel et al., 2024) performing best on RB-large. On
 968 the max-clique problem, GCON without discretization outperforms other methods on both graph sizes.

969 DETAILS AND CONCRETE INSTANTIATIONS

970
 971 **Overview: Surrogate objective approach** In MPNN-based approaches to CO problems, the *true*
 972 cost function typically applies only to valid subsets S . Additionally, most MPNN-based methods for
 973 vertex-subset problems (Karalias & Loukas, 2020; Min et al., 2022; Wenkel et al., 2024) operate on a

continuous relaxation of the problem for training stability, such that $I^{(\theta)}$ outputs soft node scores or *probabilities* of nodes being in the target set, rather than binary outputs.

Such formulations use a surrogate objective $\tilde{c}_{G,\mathbf{X}}: \mathbb{R}^{1 \times d} \rightarrow \mathbb{R}^+$, and set $F = \tilde{c}_{G,\mathbf{X}}$, e.g.,

$$\tilde{c}_{G,\mathbf{X}}(\tilde{\mathbf{X}}) := b_{G,\mathbf{X}}(\tilde{\mathbf{X}}) + \alpha q_{G,\mathbf{X}}(\tilde{\mathbf{X}}),$$

where α is a hyperparameter, $b_{G,\mathbf{X}}$ indicates the scores' fitness w.r.t. the objective function $c_{G,\mathbf{X}}$, and $q_{G,\mathbf{X}}$ softly enforces constraints, e.g., using a standard log-barrier approach. While $q_{G,\mathbf{X}}$ guides $I^{(\theta)}$ toward feasible solutions, it does not guarantee constraint satisfaction.

At test time, a non-learnable decoder $h: \mathcal{G} \times \mathbb{R}^{1 \times d} \rightarrow S$ maps node features to a valid subset S . We now introduce the seminal work by (Karalias & Loukas, 2020) to better understand the problem framing, and discuss two surrogate objectives for the maximum independent set (MIS) and maximum clique problems.

Erdős goes neural The method proposed by Karalias & Loukas (2020) is a special case of our framework. The scores attached to each node in M are interpreted as individual probabilities $p_M(v)$ that node v is in the subset. This can then be used to define a probability distribution over subsets U of nodes by assuming that each node's membership is drawn independently. We denote this probability distribution with $p_M(U)$. We then set

- $I^{(\theta)}$ to be an MPNN that outputs the probability for each node,
- $b_G(M) = \mathbb{E}_{U \sim p_M(U)}[c_G(U)]$, $q_G(M) = p_M(U \notin S)$, and¹
- h to be a sequential decoder as follows. First, order the nodes of M in decreasing order of probability, v_1, \dots, v_n . Then, let $U_s = \emptyset$ be the set of nodes that have been accepted into the solution, and let $U_r = \emptyset$ be the nodes that have been rejected. During each iteration i , node v_i is included in U_s if

$$\mathbb{E}_{U \sim p_M(U)} \left[c_G(U) + \alpha \mathbb{1}(U \notin S) \mid U_s \subset U, U \cap U_r = \emptyset, v_i \in U \right] \\ > \mathbb{E}_{U \sim p_M(U)} \left[c_G(U) + \alpha \mathbb{1}(U \notin S) \mid U_s \subset U, U \cap U_r = \emptyset, v_i \notin U \right],$$

and included in U_r otherwise.²

In practice, surrogate objective functions specific to a particular CO problem are often easier to compute than the general choice for b_G and q_G described above. We will now describe such surrogate objectives for the maximum independent set problem (MIS) and the maximum clique problem.

Surrogate objective for the maximum independent set problem Given an undirected graph G with nodes $V(G)$ and edges $E(G)$, an independent set is defined as a subset of nodes $U \subseteq V(G)$, such that no edge connects each pair of nodes in U . The MIS asks for the largest independent set in a given graph. Mathematically, we aim to optimize

$$\max_{U \subseteq V(G)} |U| \quad \text{s.t. } \forall u, v \in U : (u, v) \notin E(G).$$

Following Toenshoff et al. (2021), we can choose $q_G(M)$ based on the probability that for a given edge, at most one of the two nodes is in U . Here, $q_G(M)$ maximizes the combined log-likelihood over all edges,

$$q_G(M) := \frac{1}{|E(G)|} \sum_{(u,v) \in E(G)} \log \left(1 - p_{U \sim p_M(U)}[u \in U, v \in U] \right).$$

$b_G(M)$ is simply defined as

$$b_G(M) := \frac{1}{n} \sum_{v \in V(G)} p_M(v)$$

to maximize the number of nodes in the set. The maximization objective used for training is then

$$\tilde{c}_G(M) = \frac{1}{n} \sum_{v \in V(G)} p_M(v) + \alpha \frac{1}{|E(G)|} \sum_{(u,v) \in E(G)} \log \left(1 - p_{U \sim p(M)}[u \in U, v \in U] \right).$$

¹The expectation can be replaced with a suitable upper bound if it cannot be computed in closed form.

²We assume here without loss of generality that the objective is a maximization objective. For minimization objectives, invert the inequality.

1026 **Surrogate objective for the maximum clique problem** Given an undirected graph G with nodes $V(G)$
 1027 and edges $E(G)$, a clique is a subset of nodes $U \subseteq V(G)$, such that each pair of distinct nodes in U
 1028 is connected by an edge. The maximum clique problem asks for the largest clique in a given graph.
 1029 Mathematically, this means optimizing

$$1030 \max_{U \subseteq V(G)} |U| \quad \text{s.t. } \forall u, v \in U, u \neq v : (u, v) \in E(G).$$

1032 Min et al. (2022) note that finding the maximum clique is equivalent to finding the the clique with the most
 1033 edges, and use this to derive the following surrogate loss for the maximum clique problem. For ease of
 1034 notation, we assume $V(G) = [n]$ and write the probabilities of p_M as a vector \mathbf{p} such that $p_v = p_M(v)$.
 1035 For a given subset of nodes $U \subseteq V(G)$, the number of edges between nodes in U is $\sum_{u, v \in U} \mathbf{A}(G)_{uv}$,
 1036 where $\mathbf{A}(G)$ is the adjacency matrix of G . This can be used to define
 1037

$$1038 b_G(M) := \mathbb{E}_{U \sim p_M(U)} \left[\sum_{u, v \in U} \mathbf{A}(G)_{uv} \right] = \sum_{(u, v) \in E(G)} \mathbf{p}_u \mathbf{p}_v = \mathbf{p}^T \mathbf{A}(G) \mathbf{p}.$$

1041 To softly enforce the constraints, Min et al. use

$$1042 q_G(M) := \mathbf{p}^T \overline{\mathbf{A}}(G) \mathbf{p},$$

1044 where $\overline{\mathbf{A}}(G) = \mathbf{1}_{n \times n} - (\mathbf{I} + \mathbf{A}(G))$ is the adjacency matrix of the complement graph. Combining these
 1045 two, the surrogate maximization objective becomes

$$1046 \tilde{c}_G(M) = \mathbf{p}^T \mathbf{A}(G) \mathbf{p} - \alpha \mathbf{p}^T \overline{\mathbf{A}}(G) \mathbf{p}.$$

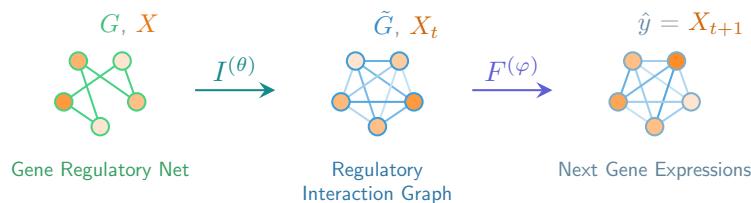
1048 B.2 GENE REGULATORY NETWORK INFERENCE

1050 In this section, we describe an additional instantiation of the GraIP framework, the inference of Gene
 1051 Regulatory Networks (GRN). GRNs involve complex interactions among transcription factors, DNA,
 1052 RNA, and proteins, which dynamically regulate each other through feedback loops, forming a dynamical
 1053 system. This system is best represented by a *regulatory interaction graph*, making its inference inherently
 1054 a temporal problem closely related to dynamic NRI.

1055 Hence, we define our interaction graph as a (directed) time-varying graph $G_t \in \mathcal{G}_1$ on a fixed set of
 1056 vertices V with features \mathbf{X}_{t+1} . Unlike NRI, in GRN inference, we do not assume binary or categorical
 1057 edges; instead, we model \tilde{G} as complete with continuous edge weights. We assume that the gene
 1058 expressions \mathbf{X}_{t+1} are a function of previous expressions \mathbf{X}_t and the weighted adjacency matrix \mathbf{W}_t over
 1059 the complete graph at time t , where F_t is the forward map at time t , $F_t: \mathcal{G}_1 \times \mathbb{R}^n \rightarrow \mathbb{R}^n$:

$$1061 \mathbf{X}_{t+1} = F_t(\tilde{G}_t, \mathbf{X}_t) = F_t(\mathbf{W}_t, \mathbf{X}_t),$$

1063 GRN inference aims to reconstruct the regulatory interaction graph as a weighted adjacency matrix \mathbf{W}_t
 1064 given the node features \mathbf{X}_{t+1} at each time step, and learn the gene expression dynamics for the given
 1065 GRN over time. The temporal graph is then used by either a heuristic or a learned, e.g., message-passing
 1066 based, simulator to run the dynamical system accurately.



1076 **GraIP instantiation** The inverse map $I^{(\theta)}$ learns to reconstruct the adjacency matrix \mathbf{W}_t given the node
 1077 features \mathbf{X}_{t+1} at time $t = 1$, and an optional prior graph G_p typically derived from domain knowledge
 1078 about the GRN in question. The prior graph helps with identifiability for large GRNs; in cases where a
 1079 prior is absent, we set $G_p = (V, \emptyset)$.

1080 $I^{(\theta)}$ outputs a graph with edge weights \hat{W}_t and $(\hat{W}_t, \mathbf{X}_t) = I^{(\theta)}(G_p, \mathbf{X}_{t+1})$, which is passed further
 1081 through the forward map such that $F_t(\hat{W}_t, \mathbf{X}_t) \approx \mathbf{X}_{t+1}$. The forward map then predicts the gene
 1082 expression levels for the next time step as an NRI-like node regression task.
 1083

1084 We can define our **distance d as the Frobenius norm** between $\hat{\mathbf{X}}_t$ and \mathbf{X}_t . The model predicts the GRN
 1085 dynamics one time-step at a time through the following formulation, where for a time window \mathcal{T} we have,
 1086

$$\begin{aligned} \theta^* &= \arg \min_{\theta \in \Theta} \frac{1}{|D|} \sum_{t \in \mathcal{T}} \sum_{(\mathbf{X}_t, \mathbf{X}_{t+1}) \in D} d(F_t(I^{(\theta)}(G_p, \mathbf{X}_{t+1}), \mathbf{X}_t), \mathbf{X}_{t+1}) \\ &= \arg \min_{\theta \in \Theta} \frac{1}{|D|} \sum_{t \in \mathcal{T}} \sum_{(\mathbf{X}_t, \mathbf{X}_{t+1}) \in D} d(\hat{\mathbf{X}}_{t+1}, \mathbf{X}_{t+1}). \end{aligned}$$

1089 Similar to NRI, the model predicts M time steps into the future and accumulates the errors before each
 1090 gradient-based optimization step to avoid divergence over long-horizon predictions.
 1091

BENCHMARK AND EMPIRICAL INSIGHTS

1092 **Data** We pose the GRN inference problem as a node regression task. That is, we consider a complete
 1093 graph with n nodes, where each node represents a gene, and a single node feature represents the expression
 1094 level of that gene. We follow RiTINI (Bhaskar et al., 2024) in using the SERGIO simulator (Dibaeinia &
 1095 Sinha, 2020) to generate temporal gene expression data derived from a GRN based on 100 genes and 300
 1096 single-cell samples. We then fit a MIOFlow model (Huguet et al., 2022) over the samples to obtain
 1097 continuous trajectories. We finally select and sample from five trajectories to construct our training data. We
 1098 provide more details on the data generation process in Appendix C.5.
 1099

1100 We propose two related node-regression tasks for our GraIP models for GRN inference. In the former, we
 1101 train our models with the Markov assumption (to circumvent framing it as a temporal problem) such that
 1102 given a data point with expression levels for 100 genes, the model aims to predict the expression levels for
 1103 the next time step. The latter is a more difficult temporal learning task, where the model seeks to predict
 1104 expression levels for the next five time steps. Bhaskar et al. (2024) demonstrate that utilizing a neural
 1105 ODE (Chen et al., 2018) significantly improves performance for these tasks; therefore, we employ a neural
 1106 ODE framework with our GraIP models in this context.
 1107

1111 **Methods and empirical insights** We again draw our primary method from RiTINI Bhaskar et al. (2024),
 1112 which leverages an attention mechanism for GRN inference. RiTINI utilizes a single GAT layer over a
 1113 graph prior in the form of a subsampled version of the ground-truth graph, aiming to recover the full graph,
 1114 which makes for a more tractable problem. We slightly alter this setup and forgo the assumption of a graph
 1115 prior, instead starting from a complete graph and attempting to directly infer structure from attention
 1116 scores using a GAT or GT.
 1117

1118 The use of a single attention-based layer directly fits the GraIP framework. **The attention computation**
 1119 **associated with a GAT or graph transformer layer implements the inverse map**, as the attention coefficients
 1120 effectively induce a prior over the complete graph. **The forward map is then implemented by the “message**
 1121 **propagation” step** within the layer that follows the attention computation. This forward map uses the
 1122 **attention coefficients** from the inverse map to perform weighted message passing effectively.
 1123

1124 GAT consistently attains lower MSE and variance than GT, meaning it can predict the gene expression
 1125 levels in further time steps more accurately (and better recover the ground truth graph), justifying its use in
 1126 RiTINI. We note that the relatively small dataset with only several hundred single-cell data points likely
 1127 favors GAT; we aim to provide more benchmarking studies on larger GRN datasets better to understand
 1128 model (and attention prior) behavior.
 1129

1130 **Discussion** The framework presented here involves some simplifications over the one presented in
 1131 RiTINI (Bhaskar et al., 2024) to emphasize components most pertinent to the inverse problem; these
 1132 simplifications can be rectified later.
 1133

- The most fundamental difference is that we assume regularly spaced, discrete time steps $t = [0, T]$. In contrast, RiTINI is designed to handle irregular time steps, which is more suited for the continuous domain. We also note that other works, such as Dynamic Neural Relational

1134
 1135 Table 5: GRN results for batch trajectory experiments ($k = 5$). All results are $\times 10^{-5}$. Mean \pm std
 1136 reported for three seeds.

Method	Time window (2 steps)	Time window (5 steps)	MSE \downarrow
	MSE \downarrow	Method	
GAT	75.12 \pm 4.9	Neural ODE (GAT)	87.08 \pm 27
GT	80.69 \pm 5.3	Neural ODE (GT)	143.60 \pm 45

1142
 1143 Inference (dNRI) (Graber & Schwing, 2020), tackle similar problems in the discrete domain. We
 1144 primarily deal with irregularly sampled data points because experimental data, such as single-cell
 1145 data, often exhibit these irregularities, where different nodes are sampled at varying time points.
 1146 RiTINI thus updates node features using the parents' node features from a recent $[t, t - \tau]$
 1147 window to handle this.

- 1148 • Another consequence of this irregular sampling is that it makes modeling the features for the
 1149 next time-step directly difficult during training, as the time difference to model forward may vary
 1150 significantly. Bhaskar et al. (2024) thus uses a Neural ODE (Chen et al., 2018) with an ODE
 1151 solver to extrapolate to arbitrary time instead of modeling the future state directly. Our previous
 1152 assumption of uniform, discrete steps thus makes the use of a Neural ODE redundant. However,
 1153 viewing the Neural ODE framework as a variant of the GralP problem is also a viable option.
- 1154 • We also assume a Markovian process, i.e., the next state \mathbf{X}_{t+1} depends only on the current state
 1155 \mathbf{X}_t . However, GRNs typically exhibit various hysteresis or lag effects that may persist across
 1156 multiple time steps, meaning we may depend on some arbitrary length $\delta \in [t, t - \tau]$ into the
 1157 past.
- 1158 • Finally, we assume no (time-independent) graph prior for simplicity. It is, however, straightforward
 1159 to incorporate a graph prior \mathcal{P} as an auxiliary variable, and adding a regularization term
 1160 $\mathcal{R} := \|\hat{\mathbf{W}}_t - \mathbf{W}_{\mathcal{P}}\|_F$ to our pseudo-metric d that punishes deviations from the prior,
 1161

$$F_{n,t}(\mathbf{X}_t, \mathbf{W}_t) = \mathbf{X}_{t+1}$$

$$F_{n,t}^{-1}(\mathbf{X}_{t+1}, \mathbf{X}_t, \mathcal{P}) = \mathbf{W}_t$$

$$d(\hat{\mathbf{X}}_t, \hat{\mathbf{W}}_t, \mathbf{X}_t, \mathbf{W}_{\mathcal{P}}) = \|\hat{\mathbf{X}}_t - \mathbf{X}_t\|_F + \alpha \|\hat{\mathbf{W}}_t - \mathbf{W}_{\mathcal{P}}\|_F.$$

C DATA & HYPERPARAMETERS FOR BASELINES

C.1 CAUSAL DISCOVERY

1171 We evaluate our baseline in the setting proposed by Wren et al. (2022). It consists of generating
 1172 Erdős–Rényi (ER) and Barabási–Albert (BA) graphs and then turning them into DAGs. We generate 24
 1173 graphs for both graph types, then create node features using a Gaussian equal-variance linear additive
 1174 noise model. For each random graph, we sample 1400 data points and use an 80/10/20 split.

1175 We consider eight configurations for generating the ground-truth graph:

- 1176 • Graph distribution: Erdős–Rényi (ER) or Barabási–Albert (BA);
- 1177 • Graph size: 30 or 100 nodes;
- 1178 • Degree parameter: 2 or 4. For ER graphs, this corresponds to the expected degree of each node;
 1179 for BA graphs, it specifies the number of edges attached to each newly added node.

1180 These three parameters identify each configuration. For instance, ER2–30 denotes an ER graph with 30
 1181 nodes and an expected degree of 2, used as the ground-truth DAG.

C.2 NEURAL RELATIONAL INFERENCE

1184 We use the Springs dataset from Kipf et al. (2018) as our benchmark: $N \in \{5, 10\}$ particles are simulated
 1185 in a 2D box according to Newton's laws of motion, where a given pair of particles is connected with a

1188 spring with probability 0.5. The connected pairs exert forces on each other based on Hooke’s law, such
 1189 that the force applied to v_j by v_i is calculated as $F_{ij} = -k(r_i - r_j)$ based on particle locations r_i, r_j
 1190 and a given spring constant k . Initial location and velocities are sampled randomly. For training data,
 1191 PDE-based numerical integration is applied to solve the equations of motion over 5 000 time-steps, and
 1192 every 100th step is subsampled to generate training samples of 50 steps each. The inverse map attempts to
 1193 learn the interacting pairs, while the forward map learns to predict location and velocity information over
 1194 50 time steps, thereby simulating Newtonian dynamics accurately. We note that while we benchmark in
 1195 the *blind* inverse problem setting, it is viable to use this numerical integrator as a ground truth simulator F
 1196 to benchmark in the non-blind setting.

1197 Our baseline model for both the inverse map prior and forward map is the NRI-GNN from Kipf et al.
 1198 (2018). NRI-GNN is an MPNN architecture that uses both node-to-edge ($v \rightarrow e$) and edge-to-node
 1199 ($e \rightarrow v$) message-passing with MLP components to learn both node and edge-level representations. It is
 1200 particularly useful for NRI tasks compared to conventional MPNNs, since the edge-level representations
 1201 are required for edge scoring in the inverse map, while the node-level representations are required for the
 1202 downstream dynamics prediction. This allows us to use similar architectures for both maps: In our
 1203 benchmarks, both the inverse map encoder and the forward map decoder consist of two message-passing
 1204 steps where the edge or node representations from the last message-passing step are passed through an
 1205 MLP to make the respective predictions. We fix the hidden dimension and batch size to 256, and use an
 1206 AdamW optimizer (Loshchilov & Hutter, 2017) with learning rate 0.0001 for 250 epochs. We use a
 1207 learning rate scheduler with 0.5 factor and 100 patience. Keeping all else the same, we benchmark two
 1208 gradient estimators in STE and I-MLE.

1209 C.3 DATA-DRIVEN REWIRING

1210 Our approach utilizes a two-stage architecture with an upstream and a downstream component. For the
 1211 upstream model, we identify 200 potential edge candidates to be added, from which 10 are sampled. It is
 1212 implemented as a GIN model with four layers and a hidden dimension of 128, outputting scores for the
 1213 edge candidates. The scores are inputs to the discretizers (I-MLE, SIMPLE, or Gumbel softmax). The
 1214 downstream model processes the rewired graph using a separate GIN model, also with four layers but a
 1215 larger hidden dimension of 256.

1216 We train the model to minimize the Mean Absolute Error (MAE) loss and report the final MAE on the test
 1217 set. We use the Adam optimizer Kingma & Ba (2015) with a learning rate of 0.001 and no weight decay.
 1218 The model is trained for a maximum of 1000 epochs. We employ early stopping with a patience of 200
 1219 epochs and use a learning rate scheduler that reduces the learning rate on a plateau with a patience of 100
 1220 epochs.

1221 C.4 COMBINATORIAL OPTIMIZATION

1222 We evaluate our approach on Combinatorial Optimization (CO) problems using two datasets, small
 1223 and large, each containing 40 000 RB graphs (Xu et al., 2007) generated following the procedure in
 1224 Sanokowski et al. (2024); Wenkel et al. (2024); Zhang et al. (2023).

- 1225 • Small graphs: Generated with a clique count in the range [20,25] and a clique size in the range
 1226 [5,12].
- 1227 • Large graphs: Generated with a clique count in the range [40,55] and a clique size in the range
 1228 [20,25].

1229 For both datasets, the tightness parameter is sampled from [0.3,1]. After generation, we filter the datasets
 1230 to include only graphs with a specific node count: [200,300] for the small dataset and [800,1200] for the
 1231 large dataset.

1232 We evaluate four GNN architectures: GIN, GCN, GAT, and GCON. All models share a common structure
 1233 of 20 GNN layers with a hidden dimension of 32. Node input features are 20-dimensional random walk
 1234 positional encodings.

1235 Models are trained using a surrogate loss as defined in Wenkel et al. (2024). We use the AdamW optimizer
 1236 Loshchilov & Hutter (2017) with a learning rate of 0.001 and weight decay of 0.02. Training runs for a
 1237 maximum of 100 epochs, with early stopping triggered after 20 epochs of no improvement (patience 20).
 1238 We also employ a learning rate scheduler, reducing the learning rate on a plateau with a patience of 10

1242 epochs. During inference, we decode solutions by greedily sorting the model’s output scores to form either
 1243 a maximal independent set or a maximum clique.
 1244

1245 **C.5 GENE REGULATORY NETWORK INFERENCE**
 1246

1247 We follow the RiTINI (Bhaskar et al., 2024) paper in using SERGIO (Dibaeinia & Sinha, 2020) to
 1248 simulate a GRN using identical parameters; the resulting dynamic GRN data represent expression levels
 1249 for $n = 100$ genes across 300 single-cell samples, simulated based on a differentiation system with two
 1250 branches. We then fit a MIOFlow model (Huguet et al., 2022) over these single-cell samples to obtain
 1251 continuous, (pseudo)-temporal gene trajectories we can sample from. Finally, we uniformly discretize the
 1252 time dimension into 38 bins to simplify the sampling process. In GRN data, branching of the samples is a
 1253 common phenomenon (e.g., as cells differentiate into distinct groups over time). In the results presented,
 1254 we focus on only MIOFlow-derived trajectories belonging to a single branch, as different branches induce
 1255 different underlying gene interaction graphs. Five trajectories are selected and sampled to constitute the
 1256 node features at each time step.
 1257

1258 **D REGULARIZATION FOR (GRAPH) INVERSE PROBLEMS**
 1259

1260 Avoiding degenerate solutions is one of the key considerations in solving GraIPs, and inverse problems in
 1261 general. Here, we discuss this problem in the context of ill-posedness and regularization. Ill-posedness
 1262 is a more general term that encompasses inverse problems with no solution or multiple solutions;
 1263 degenerate solutions arise in this context as a trivial solution among multiple ones. An extensive survey on
 1264 ill-posedness in inverse problems is provided by Kabanikhin (2008).
 1265

1266 Avoiding degeneracy and ill-posedness in inverse problems is typically achieved via applying a form of
 1267 regularization over the solution space. This makes regularization a key component of handling inverse
 1268 problems in general, and a potential avenue for future work on GraIPs through the development of novel
 1269 and/or task-specific graph regularizers. We thus aim to provide here a very brief overview of regularization
 1270 techniques for classical inverse problems, their extensions to graphs in related work, and how these differ
 1271 from graph regularization techniques employed in GraIPs.
 1272

1273 In general inverse problems, there is a vast established literature on regularization, such as Tikhonov
 1274 regularization (somewhat analogous to weight decay strategies in deep learning), smoothness-based
 1275 regularizers, and iterative methods. We refer to Benning & Burger (2018) and Aster et al. (2019) for a
 1276 comprehensive overview. Such inverse problem regularization techniques, however, are distinct from those
 1277 for GraIPs, as the solutions to general inverse problems are not structured and can simply be represented in
 1278 vector or matrix form.
 1279

1280 There also exist some, albeit limited, prior works that consider regularization for inverse problems over
 1281 graphs. Ling et al. (2024) uses graph diffusion priors to solve source estimation problems; Eliasof et al.
 1282 (2025) then focus on a more general extension of learnable regularizers for inverse problems on graph data.
 1283 In the latter work, extensions of classical regularizers to the graph domain are also discussed. To enforce
 1284 smoothness over node features of the graph, for example, the graph Laplacian can be used:
 1285

$$1286 \mathbf{R}(\mathbf{x}) = \frac{1}{2} \mathbf{x}^\top \mathbf{L} \mathbf{x}$$

1287 If \mathbf{L} is replaced by the identity \mathbf{I} , this becomes equivalent to Tikhonov regularization, where we simply
 1288 aim to reduce the norm of the features. Note that the kind of inverse problems that Ling et al. (2024) and
 1289 Eliasof et al. (2025) tackle is fundamentally different from GraIPs, despite also being defined over
 1290 graphs. In their setting, one is interested in predicting node/edge features or properties from known graph
 1291 structures (source estimation, graph transport, etc.). In that sense, solutions to both their forward and
 1292 inverse problems are defined over node or edge features rather than graph structures. To follow up on the
 1293 source estimation example, the forward map in this case is a k -step diffusion process defined by the
 1294 transition matrix \mathbf{P}^k , and the goal is to identify the source node from the final node features after diffusion.
 1295 The inverted process *relies* on the known graph structure, but *does not learn or optimize* it, indicating an
 1296 inverse problem paradigm more akin to general IPs than the one we are interested in.
 1297

1298 The regularization strategies we may consider in GraIPs are, on the other hand, inherently structural, and
 1299 thus involve regularizing the graph itself by choosing an appropriate (e.g., sparse) prior distribution for the
 1300

1296 graph, or introducing a loss term that penalizes the number of edges in the adjacency matrix, for example.
1297 In one can also leverage domain-specific information: In RiTINI (Bhaskar et al., 2024), for example, the
1298 authors enforce meaningful graphs for gene regulatory network (GRN) inference by using a partial graph
1299 derived from domain knowledge of the GRN in question, the task of the inverse problem then becomes
1300 “completing” this partial graph rather than proposing one from scratch, alleviating the graph identifiability
1301 problem significantly.

1302 E SUMMARY TABLES FOR PROBLEMS AND BASELINE METHODS

1303 Table 6 summarizes the problems covered by the example instantiations of GraIP that we present in this
1304 work. Table 7 lists the baselines that we evaluate on these problems.

1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

Table 6: Summary of the problems for which we instantiate GralP in this work.

Problem	Discrete?	Inputs	Intermediate Solution	Inputs to F	Outputs \hat{y}	Distance measure $d(y, \hat{y})$
CD	Yes	$G = (V, \emptyset), \mathbf{X} = \emptyset$	\tilde{G} : DAG	\tilde{G} , parent node features y	All node features	Frobenius norm
NRI	Yes*	$G = (V, E_{\text{comp}}), \mathbf{X}_{1:T}$	\tilde{G} : Sparsified	\tilde{G} , time step(s) \mathbf{X}_t	Next time step(s) \mathbf{X}_{t+1}	Reconstruction error (+ KL regularization)
Rewiring	Yes	$G = (V, E), \mathbf{X}$	\tilde{G} : Rewired	\tilde{G}, \mathbf{X} , (opt.) G	Downstream target	Downstream empirical risk function
CO (vertex)	Yes*	$G = (V, E), \mathbf{X} = \emptyset$	G , prior $\tilde{\mathbf{X}}$	$G, \tilde{\mathbf{X}}$	Surrogate objective value	Frobenius norm (implicit)
GRN	No	$G = (V, E_{\text{comp}})$ (opt.) prior $E, \mathbf{X}_{1:T}$	\tilde{G} : Reweighted	\tilde{G} , time step(s) \mathbf{X}_t	Next time step(s) \mathbf{X}_{t+1}	Frobenius norm (+ graph prior regularization)

* with continuous relaxations possible

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

Table 7: Summary our baseline methods.

Problem	Method Name	Discrete?	Prior model	Inverse map		Forward map	
				Sampling	Discretizer	Sampling	Gradient estimation
CD	NoTears	No		N/A		N/A	1-layer GIN
CD	Golem	No		N/A		N/A	1-layer GIN
CD	Max-DAG-I-MLE	Yes	Learnable prior	Max-DAG		I-MLE	1-layer GIN
NRI	NRI + STE	Yes	NRI-GNN encoder	Thresholding		STE	NRI-GNN decoder
NRI	NRI + STE (non-blind)	Yes	NRI-GNN encoder	Thresholding		STE	Differentiable simulator
NRI	NRI + I-MLE	Yes	NRI-GNN encoder	Thresholding		I-MLE	NRI-GNN decoder
Rewiring	Base	Yes	GINE	k -subset sampler		N/A	GINE
Rewiring	Rand Rewire	Yes	GINE	k -subset sampler		N/A	GINE
Rewiring	Gumbel	Yes	GINE	k -subset sampler		Gumbel	GINE
Rewiring	I-MLE	Yes	GINE	k -subset sampler		I-MLE	GINE
Rewiring	SIMPLE	Yes	GINE	k -subset sampler		SIMPLE	GINE
CO	GIN (Non-disc.)	No	GIN			N/A	Surrogate CO objective
CO	GCN (Non-disc.)	No	GCN			N/A	Surrogate CO objective
CO	GAT (Non-disc.)	No	GAT			N/A	Surrogate CO objective
CO	GCON (Non-disc.)	No	GCON			N/A	Surrogate CO objective
CO	GIN (Disc.)	Yes	GIN			N/A	Surrogate CO objective
CO	GCN (Disc.)	Yes	GCN			N/A	Surrogate CO objective
CO	GAT (Disc.)	Yes	GAT			N/A	Surrogate CO objective
CO	GCON (Disc.)	Yes	GCON			N/A	Surrogate CO objective
GRN	GAT	No	1-layer GAT			N/A	1-layer GAT
GRN	GT	No	1-layer GT			N/A	1-layer GT
GRN	Neural ODE (GAT)	No	1-layer GAT + Neural ODE			N/A	1-layer GAT + Neural ODE
GRN	Neural ODE (GT)	No	1-layer GT + Neural ODE			N/A	1-layer GT + Neural ODE