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ABSTRACT

Many of the most popular graph neural networks fall into the category of message-
passing neural networks (MPNNs). Famously, MPNNs’ ability to distinguish be-
tween graphs is limited to graphs separable by the Weisfeiler-Lemann (WL) graph
isomorphism test, and the strongest MPNNs, in terms of separation power, are
WL-equivalent.
Recently, it was shown that the quality of separation provided by standard WL-
equivalent MPNN can be very low, resulting in WL-separable graphs being
mapped to very similar, hardly distinguishable features. This paper addresses this
issue by seeking bi-Lipschitz continuity guarantees for MPNNs. We demonstrate
that, in contrast with standard summation-based MPNNs, which lack bi-Lipschitz
properties, our proposed model provides a bi-Lipschitz graph embedding with re-
spect to two standard graph metrics. Empirically, we show that our MPNN is
competitive with standard MPNNs for several graph learning tasks and is far more
accurate in over-squashing long-range tasks.

1 INTRODUCTION

Graph neural networks are a central research topic in contemporary machine learning research.
Many of the most popular models, such as GIN (Xu et al., 2019), GraphSage (Hamilton et al., 2017),
GAT (Velickovic et al., 2018), and GCN (Kipf & Welling, 2017), can be seen as an instantiation of
Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017).

A well-known limitation of MPNNs is that they cannot differentiate between all distinct pairs of
graphs. In fact, a pair of distinct graphs that cannot be separated by the Weisfeiler-Lehman (WL)
graph isomorphism test will not be separated by any MPNN (Xu et al., 2019). Accordingly, the
most expressive MPNNs are those that are WL-equivalent, which means they can separate all pairs
of graphs that are separable by WL. WL-equivalent MPNNs were proposed in the seminal works of
Xu et al. (2019); Morris et al. (2019), and the complexity of these constructions was later improved
in (Aamand et al., 2022; Amir et al., 2023).

While separation should theoretically be achieved for WL-equivalent MPNNs, in some cases, their
separation is so weak that it cannot be observed with 32-bit floating-point computer numbers (see
Bravo et al. (2024b)). This observation motivates the development of quantitative estimates of
MPNN separation by means of bi-Lipschitz stability guarantees. These guarantees would ensure
that Euclidean distances in the MPNN feature space are neither much larger nor much smaller than
distances in the original graph space, which are defined by a suitable graph metric (defined up to
WL equivalence).

Some first steps towards addressing these challenges have already been made by Davidson & Dym
(2024). Their work analyzes a weaker notion of Lipschitz and Holder guarantees in expectation, and
shows that essentially all popular MPNN models are not lower-Lipschitz, but they are lower-Holder
in expectation, with an exponent that grows worse as the MPNN depth increases. In contrast, they
propose SortMPNN, a novel MPNN which is bi-Lipschitz (in expectation).

However, SortMPNN has several limitations. First, it is only bi-Lipschitz in expectation–a relaxed
notion of Lipschitzness that guarantees smoothness only in expectation over the model parameters
and for fixed pairs of graphs rather than uniformly on all input graphs. Additionally, their method
addresses neighborhoods of different sizes by augmenting them to a predetermined maximum size.
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This approach has significant limitations: it is both computationally expensive, as the model cannot
exploit graph sparsity, and it necessitates prior knowledge of the maximal graph size for the learning
task at hand.

In this paper we introduce a novel MPNN called FSW-GNN (Fourier Sliced-Wasserstein GNN),
which overcomes the limitations of SortMPNN. We show that this model is Bi-Lipschitz in the
standard sense rather than in expectation, with respect to both the DS metric of Grohe (2020) and
the Tree Mover’s Distance (TMD) metric of Chuang & Jegelka (2022). Furthermore, this model can
handle sparsity well and thus is much more efficient than SortMPNN for sparse graphs.

Empirically, we show that FSW-GNN has comparable or better performance than MPNN on ‘stan-
dard’ graph learning tasks, but achieves superior performance when considering long-range tasks,
which require a large number of message-passing iterations. We hypothesize this is because the
Holder exponent of standard MPNNs deteriorates with depth, whereas our FSW-GNN is bi-Lipschitz
for any finite number of iterations. This hypothesis provides an alternative, and perhaps comple-
mentary, explanation to the difficulty of training deep standard MPNNs, commonly attributed to
over smoothing and over squashing .

1.1 RELATED WORKS

MPNNs with advanced pooling mechanisms In addition to the SortMPNN model discussed ear-
lier, our approach is conceptually related to other MPNNs that replace basic max-, mean-, or sum-
pooling with more advanced pooling methods, such as sorting (Balan et al., 2022; Zhang et al.,
2018), standard deviation (Corso et al., 2020), or Wasserstein embeddings via reference distribu-
tions (Kolouri et al.). However, these methods lack the bi-Lipschitzness guarantees that our model
provides.

Bi-Lipschitzness Bi-Lipschitzness guarantees arise naturally in many domains, including frames
(Balan, 1997), phase retrieval (Bandeira et al., 2014; Cheng et al., 2021), group invariant learning
(Cahill et al., 2020; 2024b) and multisets (Amir et al., 2023; Amir & Dym, 2024). In the context of
MPNNs, a recent survey by Morris et al. (2024) identifies bi-Lipschitzness guarantees as a significant
future challenge for theoretical GNN research. While most MPNNs are upper Lipschitz, as discussed
in (Chuang & Jegelka, 2022; Levie, 2023; Davidson & Dym, 2024), achieving bi-Lipschitzness
remains an open problem.

WL-equivalent metrics Metrics with the separation power of WL include the DS metric (Grohe,
2020) (also called the tree metric), the TMD metric (Chuang & Jegelka, 2022), and the WL metric
(Chen et al., 2022). In this paper, we prove that the graph embeddings computed by our FSW-GNN
model are bi-Lipschitz with respect to the DS and TMD metrics. This analysis is for graphs with
bounded cardinality and continuous, bounded features. Weaker notions of equivalence between
these metrics, in the setting of graphs with unbounded cardinality and without node features, are
discussed in (Böker et al., 2024; Böker, 2021).

2 PROBLEM SETTING

In this section, we outline the problem setting, first providing the theoretical background of the
problem and then stating our objectives.

Vertex-featured graphs Our main objects of study are graphs with vertex features, represented
as triplets G = (V,E,X), where V = {vi}ni=1 is the set of vertices, E ⊆ {{vi, vj} | i, j ∈ [n]}
is the set of undirected edges in G, and X = [x1, . . . ,xn] is a matrix containing the vertex feature
vectors xi ∈ Ω, where the feature domain Ω is a subset of Rd. We denote by G≤N (Ω) the set of
all vertex-featured graphs with at most N vertices and corresponding features in Ω. Throughout the
paper, we use {} to denote multisets.

Weisfeiler-Lemann Graph Isomorphism test Two graphs are isomorphic if they are identical up
to relabeling of their nodes. Perhaps surprisingly, the problem of determining whether two given
graphs are isomorphic is rather challenging. To date, no known algorithm can solve it in polynomial
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time (Babai, 2016). However, there exist various heuristics that provide an incomplete but often
adequate method to test whether a given pair of graphs is isomorphic. The most notable example is
the Weisfeiler-Leman (WL) graph isomorphism test.

The WL test can be described as assigning to each graph G = (V,E,X) a feature vector cTG accord-
ing to the following recursive formula.

c0v := Xv, v ∈ V,

ctv := Combine
(
ct−1
v ,Aggregate

({
ct−1
u

∣∣ u ∈ Nv

}))
, 1 ≤ t ≤ T,

cTG := Readout
({

cTv1 , . . . , c
T
vn

})
,

(1)

where Aggregate and Readout are functions that injectively map multisets of vectors in Euclidean
space into another Euclidean space, Combine is an injective function from one Euclidean space to
another, and Nv denotes the neighborhood of the vertex v in G.

Definition (WL graph equivalence). Two vertex-featured graphs G and G̃ are said to be WL-
equivalent, denoted by G

WL∼ G̃, if cTG = cT
G̃

for all T ≥ 0. Otherwise, they are said to be WL-
separable or WL-distinguishable.

It is a known fact (Grohe, 2021; Morris et al., 2023) that for G, G̃ ∈ G≤N

(
Rd

)
, if the equality

cTG = cT
G̃

is satisfied for T = N , then it is satisfied for all T ≥ 0, and thus GWL∼ G̃.

While the WL test can distinguish most pairs of non-isomorphic graphs, there exist examples of
non-isomorphic graph pairs that WL cannot separate; see (Zopf, 2022). Note that there exist higher-
order versions of this test called k-WL, k ≥ 2, but in this paper, we consider only the 1-WL test,
denoted by WL for brevity.

Message passing neural networks Message Passing Neural Networks (MPNNs) are the most
common neural architectures designed to compute graph functions. They operate on a similar princi-
ple to the WL test, but with the purpose of performing predictions on graphs rather than determining
if they are isomorphic. Their core mechanism is the message-passing procedure, which maintains
a hidden feature for each vertex and iteratively updates it as a function of the neighbors’ features.
This process is outlined as follows:

1. Initialization: The hidden feature h0
v of each node is initialized by its input feature xv .

2. Message aggregation: Each node v ∈ V aggregates messages from its neighbors by

m(t)
v := Aggregate

({
h(t−1)
u

∣∣∣ u ∈ Nv

})
(2)

Where Aggregate is a multiset-to-vector function.
3. Update step: Each node updates its own hidden feature according to its aggregated mes-

sages and its previous hidden feature, using a vector-to-vector update function:

h(t)
v := Update

(
m(t)

v ,h(t−1)
v

)
, (3)

4. Readout: After T iterations of steps 2-3, a global graph-level feature hG is computed from
the multiset of hidden features

{
h
(T )
v

∣∣∣ v ∈ V
}

by a readout function:

hG := Readout
({

h(T )
v

∣∣∣ v ∈ V
})

.

Numerous MPNNs were proposed in recent years, including GIN (Xu et al., 2019), GraphSage
(Hamilton et al., 2017), GAT (Velickovic et al., 2018), and GCN (Kipf & Welling, 2017), the main
differences between them being the specific choices of the aggregation, update, and readout func-
tions. An MPNN computes an embedding F (G) = hG, which maps the graphs in G≤N (Ω) to
vectors in Rm. The obtained embedding is often further processed by standard machine-learning
tools for vectors, such as multi-layer perceptrons (MLPs), to obtain a final graph prediction. The
ability of such a model to approximate functions on graphs is closely related to the separation prop-
erties of F . If F can differentiate between any pair of non-isomorphic graphs, then a model of the
form MLP ◦ F would be able to approximate any functions on graphs Chen et al. (2019).
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Unfortunately, MPNN cannot separate any pair of WL-equivalent graphs, even if they are not truly
isomorphic Xu et al. (2019); Morris et al. (2019). Accordingly, the best we can hope for from
an MPNN, in terms of separation, is WL equivalence: for every pair of graphs G,G′ ∈ G≤N (Ω),
F (G) = F (G′) if and only if G

WL∼G′. While MPNNs based on max- or mean-pooling cannot be
WL-equivalent Xu et al. (2019), it is possible to construct WL-equivalent MPNNs based on sum-
pooling, as discussed in Xu et al. (2019); Morris et al. (2019); Aamand et al. (2022); Amir et al.
(2023); Bravo et al. (2024a). Theoretically, a properly tuned graph model based on a WL-equivalent
MPNN should be capable of perfectly solving any binary classification task, provided that no two
WL-equivalent graphs have different ground-truth labels. However, this separation does not always
manifest in practice. One reason is that WL-equivalent functions may map two input graphs far apart
in the input space to outputs that are numerically indistinguishable in the output Euclidean space.
In fact, Davidson & Dym (2024) provides an example of graph pairs that are not WL-equivalent yet
are mapped to near-identical outputs by standard sum-based MPNNs. Consequently, these MPNNs
fail on binary classification tasks for such graphs.

This paper aims to address this limitation by devising an MPNN whose embeddings preserve dis-
tances in the original graph space in the bi-Lipschitz sense. To state our goal formally, we need to
define appropriate notions of WL metrics on the input space and bi-Lipschitz graph embeddings.

WL-metric for graphs WL-metrics quantify the extent to which two graphs are not WL-
equivalent:
Definition (WL-metric). A WL-metric on G≤N (Ω) is a function ρ : G≤N (Ω) × G≤N (Ω) → R≥0

that satisfies the following conditions for all G1, G2, G3 ∈ G≤N (Ω):

ρ(G1, G2) = ρ(G2, G1) Symmetry (4a)

ρ(G1, G3) ≤ ρ(G1, G2) + ρ(G2, G3) Triangle inequality (4b)

ρ(G1, G2) = 0 ⇐⇒ G1
WL∼G2. WL equivalence (4c)

Note that strictly speaking, such ρ is a pseudo-metric on G≤N

(
Rd

)
rather than a metric, as it allows

distinct graphs to have a distance of zero if they are WL-equivalent. However, we will use the term
metric to denote a pseu-dometric for convenience.

In this paper, we consider two WL metrics: The first is the DS metric, proposed in (Grohe, 2021).
Originally, this metric was defined only for featureless graphs of the same cardinality. In the next
section, we will discuss extending it to the more general case of G≤N

(
Rd

)
. The second WL metric

we consider is the Tree Mover’s distance (TMD). This metric was proposed and shown to be a
WL-metric by Chuang & Jegelka (2022).

Bi-Lipschitzness Once a WL-metric is defined to measure distances between graphs, one can
bound the distortion incurred by a graph embedding with respect to that metric, using the notion of
bi-Lipschitzness:
Definition (Bi-Lipschitz embedding). Let ρ be a WL-metric on G≤N (Ω). An embedding E :
G≤N (Ω) → Rm is said to be bi-Lipschitz with respect to ρ on G≤N (Ω) if there exist constants
0 < c ≤ C < ∞ such that

c · ρ(G1, G2) ≤ ∥E(G1)− E(G2)∥2 ≤ C · ρ(G1, G2), ∀G1, G2 ∈ G≤N (Ω). (5)

If E satisfies just the left- or right-hand side of (5), it is said to be lower-Lipschitz or upper-Lipschitz,
respectively.

Bi-Lipschitzness ensures that the embedding maps the original space G≤N (Ω) into the output Eu-
clidean space with bounded distortion, with the ratio C

c acting as an upper bound on the distortion,
akin to the condition number of a matrix. This enables the application of metric-based learning
methods, such as clustering and nearest-neighbor search, to non-Euclidean input data. This is dis-
cussed, for example, in (Cahill et al., 2024a).

Lipschitzness, Holder, and depth In the context of graph neural networks, we conjecture that
the advantage of bi-Lipschitz MPNNs over standard sum-based MPNN will be more apparent for
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‘deep’ MPNNs, where the number T of message-passing iterations is large. Our reasoning for this
conjecture can be explained via the related notion of lower-Holder MPNN.

Definition. A graph embedding is lower-Holder with constants c > 0, α ≥ 1, if

c · ρ(G1, G2)
α ≤ ∥E(G1)− E(G2)∥2 ∀G1, G2 ∈ G≤N (Ω). (6)

In general, the larger α is, the worse the distortion. The best case of α = 1 coincides with lower-
Lipschitzness. Davidson & Dym (2024) showed that standard sum-based MPNNs are lower-Holder
(in expectation), with an exponent α the becomes worse as the number T of message-passing itera-
tions increases. This means that the worst-case distance between sum-based graph embeddings can
go to zero super-exponentially with T . In contrast, our bi-Lipschitz MPNN will remain bi-Lipschitz
for any finite T (although the distortion C/c may depend on T ), and hence will be more robust to
increasing the number of message-passing iterations.

The challenge of training deep MPNNs is one of the core problems in graph neural networks (Morris
et al., 2024). The difficulty in doing so is often attributed to oversmoothing (Rusch et al., 2023) or
oversquashing (Alon & Yahav, 2020). Based on our results, we conjecture that distortion of the
graph metric may be the root of this problem, and that, as a result, bi-Lipschitz MPNNs are a
promising solution. We provide empirical evidence for this conjecture in Section 4, where we show
that our bi-Lipschitz MPNN is far superior to standard MPNNs on long range tasks which require
training a deep MPNN.

3 MAIN CONTRIBUTIONS

In this section, we discuss our main contributions. We begin by defining our generalized DS metric.
We will then discuss our MPNN and FSW-GNN and show that it is bi-Lipschitz with respect to both
DS and TMD.

The DS metric The roots of the DS metric come from a relaxation of the graph isomorphism
problem. Two graphs G and G̃, each with n vertices, and corresponding adjacency matrices A Ã are
isomorphic if and only if there exists a permutation matrix P such that AP = PÃ. Since checking
whether graphs are isomorphic is intractable, an approximate solution can be sought by considering
the equation AS = SÃ, where S is a matrix in the convex hull of the permutation matrices: the set
of doubly stochastic matrices, denoted by Dn. These are n × n matrices with non-negative entries
whose rows and columns all sum to one. Remarkably, this equation admits a doubly stochastic
solution if and only if the graphs are WL-equivalent (Scheinerman & Ullman, 2013). Accordingly,
a WL-metric can be defined by the minimization problem.

ρDS

(
G, G̃

)
= min

S∈Dn

∥∥∥AS − SÃ
∥∥∥
2
, (7)

where ∥ · ∥2 denoted the entry-wise ℓ2 norm for matrices. The optimization problem in (7) can be
solved by off-the-shelf convex optimization solvers and was considered as a method for finding the
correspondence between two graphs in many papers, including Aflalo et al. (2015); Lyzinski et al.
(2016); Dym (2018); Dym et al. (2017); Bernard et al. (2018).

The idea of using the DS metric for MPNN stability analysis was introduced in (Grohe, 2020) and
further discussed by Böker (2021). To apply this idea to our setting, we need to adapt this metric to
vertex-featured graphs with varying numbers of vertices. We do this by augmenting it as follows:

ρDS

(
G, G̃

)
= |n− ñ|+ min

S∈Π(n,ñ)

∥∥∥AS − SÃ
∥∥∥
2
+

∑
i∈[n],j∈[ñ]

Sij∥xi − x̃j∥2, (8)

where n and ñ denote the number of vertices in G and G̃, xi and x̃j denote the vertex features
of G and G̃, and Π(n, ñ) is the set of n × ñ matrices S with non-negative entries, that satisfy∑ñ

j=1 Sij =
1
n ,

∑n
i=1 Sij =

1
ñ

Theorem 3.1. [Proof in Appendix C.1] Let ρDS : G≤N

(
Rd

)
×G≤N

(
Rd

)
→ R≥0 be as in (8). Then

ρDS is a WL-equivalent metric on G≤N

(
Rd

)
.
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Bi-Lipschitz MPNN We now present our main contribution: a novel MPNN that is not only WL-
equivalent but also bi-Lipschitz, both with respect to the metric ρDS and TMD.

The core innovation in our MPNN lies in its message aggregation method. To aggregate messages,
we use the Fourier Sliced-Wasserstein (FSW) embedding-a method for embedding multisets into
Euclidean space, proposed by Amir & Dym (2024), where it was shown to be bi-Lipschitz. Conse-
quently, it seems plausible a priori that an MPNN based on FSW aggregations will be bi-Lipschitz
for graphs. In the following, we prove that this is indeed the case. We begin by describing the FSW
embedding and then introduce our FSW-GNN architecture.

The FSW embedding maps input multisets {x1, . . . ,xn}, with x1, . . . ,xn ∈ Rd, to output vectors
z = (z1, . . . , zm) ∈ Rm. In addition to the input, it depends on parameters vi ∈ Sd−1 and ξi ∈ R,
representing projection vectors and frequencies; see (Amir & Dym, 2024) for details. It is denoted
by

EFSW({x1, . . . ,xn}; (vi, ξi)
m
i=1) = z.

The i-th coordinate of the output z is a scalar zi, defined by the formula

yi = sort (vi · x1, . . . ,vi · xn) (9)

Qyi
(t) =

n∑
j=1

yi,jχ[ j−1
n , j

n )(t) (10)

zi = 2(1 + ξ)

∫ 1

0

Qyi(t) cos(2πξt)dt (11)

where in this formula x · y denotes the standard inner product of x and y, the function χ[a,b) is the
indicator function of the interval [a, b), and yi,j is the j-th entry of the vector yi.

The FSW embedding is essentially computed in three steps: first, a direction vector vi is used to
project each d dimensional vector to a scalar. We thus obtain a multiset of scalars which can then be
sorted. This first step is the sort-type embedding used in SortMPNN, and it can be shown to be bi-
Lipschitz on multisets of fixed cardinality Balan et al. (2022). However, the disadvantage of taking
yi as the embedding is that it has the same cardinality as the multiset, and so this embedding is not
readily applicable to multisets of different cardinalities. The next two steps of the FSW embedding
can be seen as an attempt to fix this disadvantage.

In the second step, the vector yi is identified with a step function Qyi
(the quantile function, see

interpretation in (Amir & Dym, 2024)). Then, in the third step, the cosine transform, a variant
of the Fourier transform, is applied to Qyi

, at the given frequency ξi, to obtain the final value zi.
Note that the integral in equation 11 has a closed form solution, and the whole procedure can be
computed with complexity linear in n, d. Moreover, the dimension of the parameters and output of
the embedding does not depend on n, and thus this embedding is suitable for multisets of varying
sizes.

FSW-GNN The FSW-GNN model processes input graphs G = (V,E,X) by T message-passing
iterations according to the following recursive formula:

h(0)
v := xv,

q(t)
v := E

(t)
FSW

({
h(t−1)
u

∣∣∣ u ∈ Nv

})
, 1 ≤ t ≤ T

h(t)
v := Φ(t)

([
h(t−1)
v ; q(t)

v

])
,

(12)

where the functions E
(t)
FSW are all instances of the FSW embedding, Φ(t) are MLPs, and [x;y] de-

notes column-wise concatenation of column vectors x and y. Finally, a graph-level output is com-
puted by:

hG := Ψ ◦ EGlob
FSW

({
h(T )
v

∣∣∣ v ∈ V
})

, (13)

where, again, EGlob
FSW is an FSW embedding, and Ψ is an MLP.

The following theorem shows that with the appropriate choice of MLP sizes and number of iterations
T , our proposed architecture is WL equivalent:
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Theorem 3.2 (Informal). [Proof in Appendix C.2] Consider the FSW-GNN architecture for input
graphs in G≤N

(
Rd

)
, with T = N iterations, where Φ(t),Ψ are just linear funtions, and all features

(except for input features) are of dimension m ≥ 2Nd+ 2. Then for Lebesgue almost every choice
of model parameters, the graph embedding defined by the architecture is WL equivalent.

The proof of Theorem 3.2 is based on the study of σ-subanalytic functions and the Finite Witness
Theorem, introduced in (Amir et al., 2023).

It is worth noting that the output dimension m required in practice is typically considerably lower
than the one required in Theorem 3.2. This can be explained by the following fact: If all input
graphs come from a (σ sub-analytic) subset of G≤N

(
Rd

)
with intrinsic dimension D significantly

lower than the ambient dimension n · d, then it can be shown that m = 2D + 2 suffices for WL-
equivalence.

From separation to bi-Lipschitzness In general, WL-equivalence does not imply bi-
Lipschitzness. As mentioned above, sum-based MPNN can be injective but are never bi-Lipschitz.
In contrast, we will prove that for FSW-GNN, WL-equivalence does imply bi-Lipschitz-ness, under
the additional assumption that the feature domain Ω is compact:
Theorem 3.3. [Proof in Appendix C.3] Let Ω ⊂ Rd be compact. Under the assumptions of The-
orem 3.2, the FSW-GNN is bi-Lipschitz with respect to ρDS on G≤N (Ω). If, additionally, Ω is a
compact polygon that does not contain 0, then the FSW-GNN is bi-Lipschitz with respect to TMD
onG≤N (Ω).

We now give a high-level explanation of the proof idea. The full proof is in the appendix. To
prove Theorem 3.3, we rely on the following facts: (1) the output of FSW-GNN for an input graph
G = (V,E,X) is piecewise-linear with respect to the vertex-feature matrix X . This follows from
properties of the FSW embedding functions used in (12) and (13). (2) both metrics ρDS and TMD
can be transformed, with bounded distortion, into piecewise-linear metrics by choosing all the vector
norms they employ to be the ℓ1 norm. The claim them follows from these observations and the
following lemma:
Lemma 3.4. [Proof in Appendix C.3] Let f, g : M → R≥0 be nonnegative piecewise-linear func-
tions defined on a compact polygon M ⊂ Rd. Suppose that for all x ∈ M , f(x) = 0 if and only if
g(x) = 0. Then there exist real constants c, C > 0 such that

c · g(x) ≤ f(x) ≤ C · g(x), ∀x ∈ M. (14)

4 NUMERICAL EXPERIMENTS

We compare the performance of FSW-GNN with standard MPNNs and Sort-MPNN on both real-
world benchmarks and synthetic long-range tasks. In addition, we evaluate the the bi-Lipschitz
distortion incurred by each method. While our main baseline is MPNN models, we add for each
task the state-of-the-art result to the best of our knowledge, typically achieved by more complex
GNNs with higher expressive power and computational complexity.

Empirical distortion evaluation First, to assess the distortion induced by each method, we con-
ducted the following experiment, where we compared the distances induced by each embedding vs.
the TMD and DS metric on a particularly challenging set of graph pairs; see Appendix D for details.
Empirical estimates Ĉ, ĉ of the constants C,c of (5) were computed, and the distortion estimate was
taken as the ratio Ĉ/ĉ. The results appear in Figure 1. As seen in the figure, our method yields
considerably lower distortion than all competitors, which aligns with our theoretical guarantees.

Trunsductive Learning Next, we compare FSW-GNN with GCN, GAT and Sort-MPNN for nine
transductive learning tasks taken from Pei et al. (2020). As shown in Table 1, FSW-GNN outper-
forms the competition in six our of nine tasks. SortMPNN is a clear winner in two of the other
graphs, which both have relatively large average degree (see Table 4). In addition, we include the
state-of-the-art results known to us for each dataset. These results are typically achieved by strictly
more powerful and computationally expensive models than any MPNN. On Cora we add Izadi et al.
(2020b), for Cite Izadi et al. (2020a), for Pubm Izadi et al. (2020c), for Cham Rossi et al. (2024),
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DS metric TMD

Figure 1: Empirical distortion evaluation with respect to the Doubly-Stochastic (DS) Metric and
Tree Mover’s Distance (TMD)

for Squi Koke & Cremers (2023), for Actor Huang et al. (2024a), for Corn Eliasof et al. (2024), for
Texas Luan et al. (2022), for Wisc Huang et al. (2024b) all as best known models.1

Model Cora Cite. Pubm. Cham. Squi. Actor Corn. Texa. Wisc.

GCN 85.77 73.68 88.13 28.18 23.96 26.86 52.70 52.16 45.88
GAT 86.37 74.32 87.62 42.93 30.03 28.45 54.32 58.38 49.41
FSW-GNN 86.35 75.35 88.17 51.14 36.34 34.30 72.16 75.13 80.98
Sort-MPNN 83.46 72.69 85.15 78.11 74.69 31.32 67.03 70.54 73.92
SOTA 90.16 82.07 91.31 79.71 76.71 51.81 92.72 88.38 94.99

Table 1: Performance comparison across different datasets and models.

Graph classification and regression Here we include results on the peptides-func and peptides-
struct datasets of the LRGB benchmark Dwivedi et al. (2022), which consist of graph classification
and regression respectively. The results appear in Table 3. In addition, we include results on the
MUTAG Debnath et al. (1991) dataset ( Table 2), where we marginally surpass other models.

Model MUTAG
GIN (Xu et al., 2019) 89.4± 5.6
GCN (Kipf & Welling, 2017) 85.6± 5.8
GraphSage (Hamilton et al., 2017) 85.1± 7.6
SortMPNN 90.99± 6.2
FSW-GNN 91.11± 7.11

Table 2: Performance of different models on the MUTAG dataset.

Long range tasks Next, we consider several synthetic long-range tasks suggested in the over-
squashing literature Alon & Yahav (2020); Di Giovanni et al. (2023), which by design can only be
solved by deep MPNN.

We first consider the NeighborsMatch problem from Alon & Yahav (2020). This node prediction
problem can be solved by MPNN with r iterations but not with fewer iterations. Here, r is a param-
eter of the problem called the problem radius. The problem becomes harder as r is increased. In
Figure 2, we compare the performance of FSW-GNN with standard MPNN on the NeigborsMatch
problem with r varying from 2 to 8. Our FSW-GNN achieves perfect accuracy for all values of
r, while Sort-MPNN fails at r = 8 and the other competing methods falter for r ≥ 6. Next, we

1Our code will be made available to the public upon paper acceptance.
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Dataset peptides-func (AP↑) peptides-struct (MAE↓)
GINE Hu* et al. (2020) 0.6621±0.0067 0.2473±0.0017
GCN Kipf & Welling (2017) 0.6860±0.0050 0.2460±0.0007
GatedGCN Bresson & Laurent (2018) 0.6765±0.0047 0.2477±0.0009
SortMPNN Davidson & Dym (2024) 0.6914±0.0056 0.2494±0.0021
FSW-GNN 0.6864±0.0048 0.2489±0.00155
Best model 0.73 0.242

Table 3: LRGB results. Best in bold. Second best in underline.

Figure 2: Trees models comparison.

consider the ‘graph transfer’ tasks from Di Giovanni et al. (2023). In this problem, a feature from
a ‘source’ node is propagated to a ‘target’ node, which is r message passing steps away from the
source node. All other nodes have ‘blank’ node features. We consider this problem for the three
different graph topologies suggested by Di Giovanni et al. (2023): clique, ring, and crossring, and
with a problem radius r varying from 2 to 15.

As shown in Figure 3, FSW-GNN is the only method attaining 100% accuracy across all three graphs
and radii. Other models start failing at much smaller r, where the value of this r depends on the
graph topology. We do find that our model performance does deteriorate when r > 20.

Finally, we evaluate the possible relationship of our empirical results with oversmoothing. Over-
smoothing is a phenomenon that often occurs with deep MPNNs, where all node features become
nearly identical as depth increases, thus leading to degraded performance. Oversmoothing is often
measured using the Dirichlet energy or Mean Average Distance (MAD) (see Rusch et al. (2023) for
the formulas), which becomes closer to zero when the feature vectors are closer to each other. In
Figure 4 we measure the MAD metric of all methods on the Ring experiment. The figure shows
that all methods except for FSW-GNN exhibit over-smoothing starting from some r (that is, have a
near 0 MAD energy), and this correlates pretty well with the performance of the methods in terms
of accuracy, shown in Figure 3 (middle).

We note that long-range issues can be alleviated using graph rewiring methods which reduce the
radius of the problem Gutteridge et al. (2023), or add global information using spectral filters Geisler
et al. (2024) or graph transformers. What is special about FSW-GNN is that it performs well with the
given graph topology. Thus, this work gives us a direction to address the core problem of relaying
long-range messages efficiently rather than using methods to circumvent the problem.
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(a) CliquePath (b) Ring (c) CrossRing

Figure 3: Performance comparison of MPNN models across the CliquePath, Ring, and CrossRing graph
transfer tasks as presented in Di Giovanni et al. (2023).
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Figure 4: Dirichlet Energy vs. Number of MPNN layers for various models on the Ring long-range
task

5 CONCLUSION

In this paper, we introduced FSW-GNN, the first bi-Lipschitz MPNN. Empirically, we have found
that FSW-GNN is very effective for long range learning problems. Our current explanation for why
this should be the case is discussed at the end of Section 2. Our main goal for future work is to
strengthen and formalize this explanation. In particular, currently we have no control on the bi-
Lipschitz distortion of FSW-GNN, and its dependence on depth. Informally, we would expect that
if each FSW embedding has distortion of C/c, then the total FSW-GNN will be (C/c)T , growing
exponentially with the depth T . However, the stability of FSW-GNN for problems of rather large
radius indicate that the rate of distortion growth is much smaller. A possible explanation for this is
that, at the limit where the width goes to infinity, FSW embeddings have a optimal distortion of 1
with respect to the sliced Wasserstein distance. Accordingly, in future work we will aim to under-
stand how to control the distortion of FSW-GNN, and formally prove the low distortion FSW-GNN,
with respect to an appropriate node-WL-metric, avoids both oversmoothing and oversquashing.

A limitaton of FSW-GNN is that, due to its more complex aggregation, its runtime is higher than
standard MPNN: for the LRGB struct the average time per epoch of FSW-GNN is four times slower
than GIN and GCN, as shown in Appendix Table 6.
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A STATISTICS ON OUR BENCHMARKS

In the first table, we present each transductive dataset and its statistics for the MUTAG dataset,
including the number of nodes, edges, features, classes, average degree, and density, measuring the
number of edges divided by the number of maximal edges. As we can see in 4, those datasets are
very sparse.

Next, we add the same table for the LRGB tasks.

Dataset Cora Cite. Pubm. Cham. Squi. Actor Corn. Texa. Wisc. MUTAG
# Nodes 2708 3327 19717 2277 5201 7600 183 183 251 188
# Edges 5429 4732 44338 36101 217073 33544 295 309 499 744
# Features 1433 3703 500 2325 2089 931 1703 1703 1703 7
# Classes 7 6 3 5 5 5 5 5 5 2
Avg. Degree 4 2 4 31 83 8 3 3 4 8
Density 0.0007 0.0009 0.0001 0.0159 0.0161 0.0012 0.0177 0.0184 0.0041 0.0422

Table 4: Graph statistics for common datasets.

Dataset Peptides-Func Peptides-Struct
# Graphs 15,535 15,535
# Nodes (Avg.) 150.94 150.94
# Edges (Avg.) 2.04 2.04
Avg. Degree 2.04 2.04
Density 1.74× 10−6 1.74× 10−6

# Classes - 10

Table 5: Graph statistics for Peptides datasets.

B RELATION TO TREE MOVER’S DISTANCE

The Tree Mover’s Distance comes from Chuang & Jegelka (2022), who showed that it is equivalent
to WL. This metric is based on a tree distance between computation trees that simulate the WL test.
It is defined recursively, roughly as the sum of the distance between tree roots r and a Wasserstein
distance between the sub-trees rooted at r’s children. For WL equivalence, this metric assumes the
feature domain Ω does not contain the zero vector.

We first review Wasserstein distances. Recall that if (X, d) is a metric space, Ω ⊆ X is a subset,
then the Wasserstein distance can be defined on the space of multisets consisting of n elements in Ω
via

W1(x1, . . . , xn, y1, . . . , yn) = min
τ∈Sn

n∑
j=1

d(xj , yτ(j))

For multisets of different size, the authors of (Chuang & Jegelka, 2022) used an augmentation map,
which, for a fixed parameter n, augments multisets of size r ≤ n by padding with n − r instances
of the zero vector:

Γ (x1, . . . , xr) = (x1, . . . , xr, xr+1 = 0, . . . .xn = 0)

and the augmented distance on multi-sets of size up to n is defined by

Wd(X, X̂) = W1

(
Γ(X),Γ

(
X̂
))

.

We now return to define the TMD. We consider the space of graphs G≤N (Ω), consisting of graphs
with ≤ N nodes, with node features coming from a compact domain Ω ⊆ Rd such that 0 /∈ Ω. The
TMD is defined using the notion of computation trees:
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Definition B.1. (Computation Trees). Given a graph G = (V,E,X) with node features {xv}v∈V ,
let T 1

v be the rooted tree with a single node v, which is also the root of the tree, and node features
xv . For K ∈ N let TK

v be the depth-K computation tree of node v constructed by connecting the
neighbors of the leaf nodes of TK−1

v to the tree. Each node is assigned the same node feature it
had in the original graph G. The multiset of depth-K computation trees defined by G is denoted by
T K
G :=

{
TK
v

}
v∈V

. Additionally, for a tree T with root r, we denote by Tr the multiset of subtrees
that root at the descendants of r.

Definition B.2. (Blank Tree). A blank tree T̄0 is a tree (graph) that contains a single node and no
edge, where the node feature is the zero vector 0.

Recall that by assumption, all node features will come from the compact set Ω, and 0 ̸∈ Ω.

We can now define the tree distance:

Definition B.3. (Tree Distance).2 The distance between two trees Ta, Tb with features from Ω and
0 ̸∈ Ω, is defined recursively as

TD(Ta, Tb) :=

{
∥xra − xrb∥1 +W T̄0

TD(Tra , Trb) if K > 1

∥xra − xrb∥1 otherwise

where K denotes the maximal depth of the trees Ta and Tb.

Definition B.4. (Tree Mover’s Distance). Given two graphs, Ga, Gb and w,K ≥ 0, the tree mover’s
distance is defined by

TMDK(Ga, Gb) = W T̄0

TD(T K
Ga

, T K
Gb

),

where T K
Ga

and T K
Gb

denote the multiset of all depth K computational trees arising from the graphs
Ga and Gb, respectively. Chuang & Jegelka (2022) proved that TMDK(Ga, Gb) is a pseudo-metric
that fails to distinguish only graphs that cannot be separated by K+1 iterations of the WL test. Thus,
assuming that 0 /∈ Ω, TMDK(Ga, Gb) is WL equivalent on G≤N (Ω).

In addition, it is easy to see from the definition of TMD that it satisfies the following properties:

1. TMDK((A, α · X), (B, α · Y)) = α · TMDK(X,Y) for any α ≥ 0.

2. The TMD metric is piecewise linear in (X,Y).

These properties will be used to show that under the above assumptions, the embedding computed
by FSW-GNN is bi-Lipschitz with respect to TMD.

C PROOFS

C.1 DS METRIC

Here we prove Theorem 3.1 that says that our augmented DS metric, defined in (8) is indeed a WL
metric.

Theorem 3.1. [Proof in Appendix C.1] Let ρDS : G≤N

(
Rd

)
×G≤N

(
Rd

)
→ R≥0 be as in (8). Then

ρDS is a WL-equivalent metric on G≤N

(
Rd

)
.

Proof. We first prove that it is symmetric and satisfies the triangle inequality. The metric is sym-
metric as if a pair’s minimum is obtained at S then the exact value is obtained for the opposite pair
with ST and vice-versa. We point out that the matrix norm we consider is a sub-multiplicative norm,
like the operator norm, Forbinius norm or the l1 norm. Let (V1,A,X), (V2,B,Y), (V3, C,Z) three

2This definition slightly varies from from the original definition in Chuang & Jegelka (2022), due to our
choice to set the depth weight to 1 and using the 1-Wasserstein which is equivalent to optimal transport.
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arbitrary graphs with |Vi| = ni, i = 1, 2, 3. Then the following holds:

α := dA,B = |n1 − n2|+minS∈Π(n1,n2)||AS − SB||+
∑
i,j

Si,j ||Xi − Yj ||

β := dB,C = |n2 − n3|+minS∈Π(n2,n3)||BS − SC||+
∑
i,j

Si,j ||Yi − Zj ||

γ := dA,C = |n1 − n3|+minS∈Π(n1,n3)||AS − SC||+
∑
i,j

Si,j ||Xi − Zj ||

We want to prove γ ≤ β + α. The minimum of the first two equations is obtained in S1, S2.
Define S3 = S1 · S2 and note that S3 ∈ Π(n1, n3). We use the property that for S ∈ Π(n1, n2),
T ∈ Π(n2, n3), ||S · T || ≤ ||S|| · ||T ||, and ||S|| ≤ 1. This holds, for example, for entrywise
ℓp-norms for p ≥ 1 and for the ℓ2 − ℓ2 operator norm. Then

||AS3 − S3C|| = ||AS1S2 − S1S2C|| = ||AS1S2 − S1BS2 + S1BS2 − S1S2C||
≤ ||AS1S2 − S1BS2||+ ||S1BS2 − S1S2C|| = ||(AS1 − S1B) · S2||+ ||S1 · (BS2 − S2C)||

≤ ||S2|| · ||AS1 − S1B||+ ||S1|| · ||BS2 − S2C|| ≤ ||AS1 − S1B||+ ||BS2 − S2C||

Next, we show the second part is also smaller:∑
i,j

S3
i,j · |Xi − Yj | =

∑
i,j

∑
k

S1
i,k · S2

k,j · ||Xi − Zj || ≤
∑
i,j

∑
k

S1
i,k · S2

k,j · (||Xi − Zk||+ ||Zk − Yj ||)

=
∑
i,j

n∑
k=1

S1
i,k · S2

k,j · ||Xi − Zk||+
∑
i,j

n∑
k=1

S1
i,k · S2

k,j · ||Yj − Zk||

We now open both sums:∑
i,j

∑
k

S1
i,k · S2

k,j · ||Xi − Zk|| =
∑
k

∑
j

∑
i

S1
i,k · S2

k,j · ||Xi − Zk|| =
∑
k

∑
j

S2
k,j

∑
i

S1
i,k · ||Xi − Zk|| =∑

k

∑
j

S2
k,j · fk =

∑
k

fk
∑
j

S2
k,j =

∑
k

fk =
∑
i,j

S1
i,j · ||Xi − Yj ||

With the same argument, we obtain that∑
i,j

∑
k

S1
i,k · S2

k,j · ||Yj − Zk|| =
∑
i,j

S2
i,j · ||Yi − Zj ||

So overall we found matrix S3 such that:

||AS3 − S3C||+
∑
i,j

S3
i,j ||Xi − Zj || ≤ ||AS1 − S1B||+

∑
i,j

S1
i,j ||Xi − Yj ||+ ||BS2 − S2C||

+
∑
i,j

S3
i,j ||Yi − Zj || = α+ β

We took specific feasible matrices in the minimization problems, and thus the minimum is even
smaller, so γ ≤ α+ β.

Now, we show that our metric ρDS is equivalent to WL. Clearly any pair of graphs with different
numbers of vertices are distinguished both by WL and by ρDS. Thus, in the following we assume
that the two graphs have the same number of vertices.

We begin first with some needed definitions.

Partitions Most of our techniques are inspired by Scheinerman & Ullman (2013). Given G =
(A,X), we define a stable partition V = P1 ∪ P2... ∪ Pk if

∀u, v ∈ Pi,Xu =Xv (15)
∀l ∈ [k], |Nu ∩ Pl| =|Nv ∩ Pl| (16)
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In simple words, two nodes in the same partition must have the same feature and the same number
of neighbors with the same feature. Note that each singleton is a valid stable partition. We can
characterize a partition as a k tuple, and in the i′th place, we put a tuple of the common feature and
a vector telling the number of neighbors in other partitions. We say that graphs have the same stable
partition; if, up to permitting of the k tuple indices, we have the same k tuple.

Lemma C.1. The number of colors in 1-WL can’t increase at level n. In addition, all nodes with
the same color at step n make a stable partition.

Proof. By the pinhole principle, as the number of colors can’t decrease, after at most n iterations,
the number of different colors will stay the same. Denote by P = (P1, ..,Ps) a partition of the
nodes with the same coloring at the n iteration, and be c ∈ C some color, we claim that nodes in
the same partition, have the same number of neighbors with color c. As otherwise those nodes that
now have same coloring will have different coloring in the next n + 1 iteration. But as the number
of colors doesn’t decrease (because of the concatenation of the current color), we have at least one
more color, a contradiction. So, we found a stable partition.

Lemma C.2. The following conditions are equivalent:

• G ∼=1−WL H

• Both graphs have a common stable partition.

Proof. Assume we have the same common partition. Up to renaming the names of the vertices of
the nodes in the first graphs, we assume we have the same stable partition with the same parameters.
Assume that a common stable partition exists P = P1 ∪ .. ∪ Pk. Then, by simple induction on the
number of iterations, we will prove that all nodes in the same partition have the same color in both
graphs.
Basis Nodes in the same partition have the same initial feature and, thus, have the same color (in
both graphs).
Step By the induction hypothesis, all nodes in the same partition iteration T have the same color;
and they both have the same number of neighbors with the same color, so the aggregation yields the
same output. Thus, in iteration T +1, those nodes also have the same color. Note that this argument
is symmetric to both graphs; thus, the 1-WL test will not distinguish them.

On the other hand, if we have the same 1-WL embedding, then we partition the nodes to those classes
with the same color at iteration n. We have to show this partition is valid. First, by definition, those
nodes u, v ∈ Pi have the same node feature (by iteration 1); next, if u, v don’t have the same
combinatorial degree in Pl, then their color won’t be the same at iteration n + 1. But, as shown in
lemma C.1, the number of distinct colors can’t increase at iteration n. Thus, we found a common
stable partition.

Before proving the following lemma, we revise a definition from Scheinerman & Ullman (2013).
Given S ∈ Rn×n, we say S is composable if there exists P,Q, S1, S2 such that

S = P · (S1 ⊕ S2) ·Q
Such that P,Q are permutation matrices. By simple induction, we can write M as a direct sum of
an indecomposable

S = P · (S1 ⊕ S2 ⊕ ...⊕ St) ·Q

Lemma C.3. Let S ∈ Π(n, n) and assume it’s in the form of S = S1 ⊕ ...⊕Sk such that all blocks
are indecomposable and

∑
i,j Si,j · ||Xi − Yj || = 0. Denote by i1, ..., ik+1 the indices define the

start and the end of S1, ..., St and by Ik := [ik, ik+1]. Then Xi = Yj ,∀t ∈ [k],∀i, j ∈ It.

Proof. Given t ∈ [k], we build a bipartite graph from It to itself, such that two indexes i, j are
connected if Si,j > 0. Note that this graph is connected, as otherwise, St could be composed into
its connected components, and thus St would be composable. Given a path P = (i1, ..., il) in
the graph, note that by definition, as the metric vanishes, and Sij ,ij+1 > 0, so Xij = Yij+1 , thus
Xi = Yj , i ∈ Ik, j ∈ Ik and we are done.
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Theorem C.4. Be G,H two featured graphs, then

d(G,H) = 0 ⇐⇒ GWL∼H

We first prove that if the two graphs are 1-WL equivalent, then this metric vanishes. We may assume
they have the same stable partition as we proved above. Take P = P1 ∪ .. ∪ Pt, rename the nodes
such that they come in consecutive order and denote by n1, n2, .., nk the sizes of the partitions. Note
that by definition, ∀u, v ∈ Pi, both have the same feature and number of neighbors in all Pl. As
in the book Scheinerman & Ullman (2013), define S := 1

n1
Jn1

⊕ ... ⊕ 1
nj
Jnk

and from the book
Scheinerman & Ullman (2013), we know that AS = SB. As all nodes in the same partition have
the same feature, Xi = Yj ,∀i, j ∈ Ik = [nt, nt+1],∀t ∈ [k], so as S is non-zero only on indexes in
the same partition then also this metric vanishes, so also the sum vanishes on S.

For the next direction, be G = (A,X),H = (B,Y) two graphs and assume there exists a matrix of
the form of S = P (S1 ⊕ ...⊕ St)Q such that the metric vanishes and denote by D = S1 ⊕ ...⊕ St

We show we can choose S such that it’s a block matrix.

||PDQ · A − B · PDQ|| =||P · (DQA ·Q−1 − P−1BP ·D) ·Q|| =∗ ||DQA ·Q−1 − P−1BP ·D||∑
i,j

Si,j · |Xi − Yj | =
∑
i,j

(PDQ)i,j · |Xi − Yj | =
∑
i,j

Dπ−1
1 (i),π2(j)

· |Xi − Yj | =∑
i,j

Di,j · |Xπ1(i) − Yπ−1
2 (j)|

(*) - note that the first equality is because permutation matrices preserve the norm. We define two
graphs Ĝ = (QAQ−1, QX) ∼= G, Ĥ = (P−1AP, P−1Y) ∼= H. So, we can choose S to be a
diagonal block matrix. Note that D defines a partition of the nodes, and we will prove that it’s a
stable partition of both graphs. From SA = BS, we obtain, as in the book Scheinerman & Ullman
(2013), that each of the two nodes u, v ∈ Pk has the same number of neighbors in Pl,∀l ∈ [t]. Next,
by the lemma C.3, we know that Xi = Yj ,∀i, j ∈ Ik, so nodes in the same partition have the same
feature. Thus, this partition is stable. So, Ĝ, Ĥ have exactly the same partition. Then G,H have the
same partition up to isomorphism, and by lemma C.2, both graphs are 1-WL equivalent.

C.2 FSW-GNN: EQUIVALENCE TO WL

We now prove Theorem 3.2 that says the FSW-GNN is equivalent to WL.

Theorem 3.2 (Informal). [Proof in Appendix C.2] Consider the FSW-GNN architecture for input
graphs in G≤N

(
Rd

)
, with T = N iterations, where Φ(t),Ψ are just linear funtions, and all features

(except for input features) are of dimension m ≥ 2Nd+ 2. Then for Lebesgue almost every choice
of model parameters, the graph embedding defined by the architecture is WL equivalent.

The formal requirements of the theorem are as follows: Φ(t) and Ψ are all matrices with output
dimension m, whose entries are drawn independently from a absolutely-continuous distributions
over R. The FSW embeddings depend on random parameters as described in (Amir & Dym, 2024).
These embeddings should be generated independently, and have output dimension m.

Under these assumptions, with probability 1, all the matrices Φ(t) and Ψ and FSW embedding
instances are injective (see in (Amir & Dym, 2024) Theorem 4.1 and Appendix A.1), and therefore
the resulting MPNN is WL equivalent.

C.3 FSW-GNN: BI-LIPSCHITZNESS

We first prove Lemma 3.4.

Lemma 3.4. [Proof in Appendix C.3] Let f, g : M → R≥0 be nonnegative piecewise-linear func-
tions defined on a compact polygon M ⊂ Rd. Suppose that for all x ∈ M , f(x) = 0 if and only if
g(x) = 0. Then there exist real constants c, C > 0 such that

c · g(x) ≤ f(x) ≤ C · g(x), ∀x ∈ M. (14)
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Proof. It is enough to prove the left-hand side of (14). The right-hand side can then be proved by
reversing the roles of f and g.

Let A = {x ∈ M | g(x) > 0}. Suppose by contradiction that there exists a sequence {xi}∞i=1 ∈ A
such that

f(xi)

g(xi)
−−−→
i→∞

0. (17)

Since M is compact, we can assume without loss of generality that xi −−−→
i→∞

x0 ∈ M . Since g(x)

is bounded on M , equation (17) implies that f(xi)−−−→
i→∞

0. By continuity, f(x0) = 0 and thus

g(x0) = 0.

Let L1, . . . , LK ⊆ M be the mutual refinement of the linear regions of f and g. That is, on each Lk,
both f and g are linear. Moreover, by a finite number of further refinements, we can assume that all
the Lk’s are compact convex polytopes. Since there are finitely many Lk’s, by taking a subsequence
of {xi}∞i=1, we can assume without loss of generality that all of the xi’s belong to L1. Since L1 is
compact, x0 ∈ L1.

Since f(x0) = g(x0) = 0, the restriction of f and g to L1 can be expressed by

f(x) = ⟨a, x− x0⟩, g(x) = ⟨b, x− x0⟩, (18)

with a, b ∈ Rd being constant vectors.

Let v1, . . . , vr be the vertices of the convex polytope L1, and let K ⊆ Rd be the polyhedral cone
generated by {v1 − x0, . . . , vr − x0}, namely

K :=

{
r∑

i=1

θi(vi − x0)

∣∣∣∣∣ θ1, . . . , θr ≥ 0

}
. (19)

First, note that by construction, x0+K ⊇ L1. To see this, set one θi to 1 and the rest to zero in (19).
This yields x0 +K ∋ x0 + 1(vi − x0) = vi. Since x0 +K contains all the vertices of L1 and both
sets are convex, x0 +K contains L1.

Second, we argue that any x ∈ x0 + K that is sufficiently close to x0 belongs to L1. This can be
shown by noting that if the distance from x ∈ x0 + K to x0 is small enough, it can be written as
x = x0 +

∑r
i=1 θi(vi − x0) with

∑r
i=1 θi ≤ 1. Set θ0 = 1−

∑r
i=1 θi. Then

x = θ0x0 +

r∑
i=1

θivi,

and since x is a convex combination of points that belong to L1 it is in L1.

Thus:

0 = lim
i→∞

f(xi)

g(xi)
≥ inf

x∈L1∩A

f(x)

g(x)
= inf

x∈L1∩A

⟨a, x− x0⟩
⟨b, x− x0⟩

(a)
= inf

u∈(L1−x0)∩(A−x0)

⟨a, u⟩
⟨b, u⟩

(b)
= inf

u∈(L1−x0)|⟨b,u⟩>0

⟨a, u⟩
⟨b, u⟩

(c)
≥ inf

u∈K|⟨b,u⟩>0

⟨a, u⟩
⟨b, u⟩

(d)
= inf

u∈K|⟨b,u⟩=1
⟨a, u⟩,

(20)

where (a) is by change of variables u = x− x0; (b) is since the domains (L1 − x0)∩ (A− x0) and
{u ∈ L1 − x0 | ⟨b, u⟩ > 0} are identical; (c) holds since K ⊇ L1 − x0; and (d) holds since K is
closed to positive scalar multiplication, and the ratio ⟨a,u⟩

⟨b,u⟩ is invariant to such scaling.

Let B = {u ∈ K | ⟨b, u⟩ = 1}. It follows from (20) that either there exists u0 ∈ B such that
⟨a, u0⟩ ≤ 0, or

inf
u∈B

⟨a, u⟩ = 0 (21)

and the infimum is not attained. We shall now show that the latter option is impossible. Note that
for all u ∈ Rd,

|⟨a, u⟩| = ∥a∥ · dist
(
u, a⊥

)
,
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where a⊥ is the hyperplane in Rd perpendicular to a, and dist
(
u, a⊥

)
is the Euclidean distance

from u to the set a⊥. Since the infimum in (21) equals zero, the distance between B and a⊥ equals
zero. Although not compact, both B and a⊥ are closed convex polytopes, and thus dist

(
B, a⊥

)
= 0

implies that the two sets intersect.3 Hence, the infimum of zero in (21) is attained, which is a
contradiction. Thus, there exists u0 ∈ B such that ⟨a, u0⟩ ≤ 0.

Let δ > 0 small enough such that x0 + δu0 ∈ L1, and thus
0 ≤ f(x0 + δu0) = ⟨a, (x0 + δu0)− x0⟩ = δ⟨a, u0⟩ ≤ 0,

and
g(x0 + δu0) = ⟨b, (x0 + δu0)− x0⟩ = δ⟨b, u0⟩ = δ · 1 > 0,

which is a contradiction.

We now turn to the full proof of Theorem 3.3.
Theorem 3.3. [Proof in Appendix C.3] Let Ω ⊂ Rd be compact. Under the assumptions of The-
orem 3.2, the FSW-GNN is bi-Lipschitz with respect to ρDS on G≤N (Ω). If, additionally, Ω is a
compact polygon that does not contain 0, then the FSW-GNN is bi-Lipschitz with respect to TMD
onG≤N (Ω).

Proof. Following the reasoning in the main text, the rest of the proof is as follows: Let G, G̃ ∈
G≤N (Ω), G = (V,E,X) and G̃ =

(
Ṽ , Ẽ, X̃

)
, with n and ñ vertices respectively. It is enough to

show that the bi-Lipschitz ratio is bounded on all choices of X ∈ Ωn, X̃ ∈ Ωñ, since there is a finite
number of choices of n, ñ ≤ N and edges E, Ẽ. Define the function f

(
X, X̃

)
= ∥hG − hG̃∥1,

g
(
X, X̃

)
= ρ

(
G, G̃

)
, where ρ is either ρDS or TMD. By the comment above, both f and g are

piecewise linear. Since both FSW-GNN and the metric ρ are WL-equivalent, f and g have the same
zero set. Thus, Lemma 3.4 guarantees the existence of Lipschitz constants c, C.

Finally, note that by equivalence of all norms on a finite dimensional space, the same bi-Lipschitz
equivalence holds if we replace the one-norm in the definition of f with any other norm. Q.E.D.

D EXPERIMENT DETAILS

We used the Adam optimizer for all experiments.

For the empirical distortion evaluation, we used pairs of graphs G, G̃, each of which consisting of
four vertices and the edges 1−2−3−4−1. Two random vectors v0,∆v ∈ Rd were drawn i.i.d. Gaus-
sian and normalized to unit length. In G all vertex features were set to v0, whereas in G̃ they were
set to v0 + εσ∆v, with σ = 1 for v2, v4 and −1 for v1, v3. We used ε = {1, 1e− 1, . . . , 1e− 6},
and generated 100 pairs for each value of ε, and evaluated the constants C, c for the resulting pairs.
This experiment was repeated 10 times and the average distortion was taken. To ensure accurate
results, we used 64-bit floating-point arithmetic in this experiment.

For the NeighborsMatch problem from (Alon & Yahav, 2020), we used the protocol developed in this
paper: we used their implementation for the MPNNs we compared to, with a hidden dimension of
64 for all models, searched for each of its best hyper-parameters, and reported the training accuracy.
For fair comparison with rival models, we repeated each sample 100 times, as was done in Alon &
Yahav (2020).

For the Ring dataset, we used the results from Di Giovanni et al. (2023) and trained our models with
a hidden dimension of 64.

For the LRGB dataset, we trained all models under the constraint of 500K parameters. In contrast,
for the MolHIV dataset, there was no restriction, and we trained the models with 40K parameters.

For the transductive learning tasks, we used a hidden dimension of 128 across all models.
3This holds since the distance between two closed convex polytopes can be presented as the optimal objec-

tive value of a quadratic program (QP), which always has an optimal solution; see, for example, Part Proposi-
tion 1.4.12 in (Bertsekas, 2009).
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Timing Here we show the average time per epoch for FSW-GNN, GIN and GCN, on the Peptides
Struct task.

Model GIN GCN FSW-GNN
Avg Time per Epoch 12.16 14.25 49.3

Table 6: Comparison of Average Time per Epoch for Different Models
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