Under review as a conference paper at ICLR 2021

OFFER PERSONALIZATION USING TEMPORAL CONVO-
LUTION NETWORK AND OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Lately, personalized marketing has become important for retail/e-retail firms due
to significant rise in online shopping and market competition. Increase in online
shopping and high market competition has led to an increase in promotional ex-
penditure for online retailers, and hence, rolling out optimal offers has become
imperative to maintain balance between number of transactions and profit. In this
paper, we propose our approach to solve the offer optimization problem at the in-
tersection of consumer, item and time in retail setting. To optimize offer, we first
build a generalized non-linear model using Temporal Convolutional Network to
predict the item purchase probability at consumer level for the given time period.
Secondly, we establish the functional relationship between historical offer values
and purchase probabilities obtained from the model, which is then used to esti-
mate offer-elasticity of purchase probability at consumer item granularity. Finally,
using estimated elasticities, we optimize offer values using constraint based opti-
mization technique. This paper describes our detailed methodology and presents
the results of modelling and optimization across categories.

1 INTRODUCTION

In most retail settings, promotions play an important role in boosting the sales and traffic of the
organisation. Promotions aim to enhance awareness when introducing new items, clear leftover
inventory, bolster customer loyalty, and improve competitiveness. Also, promotions are used on a
daily basis in most retail environments including online retailers, supermarkets, fashion retailers,
etc. A typical retail firm sells thousands of items in a week and needs to design offer for all items
for the given time period. Offer design decisions are of primary importance for most retail firms, as
optimal offer roll out can significantly enhance the business’ bottom line.

Most retailers still employ a manual process based on intuition and past experience of the category
managers to decide the depth and timing of promotions. The category manager has to manually solve
the promotion optimization problem at consumer-item granularity, i.e., how to select an optimal offer
for each period in a finite horizon so as to maximize the retailer’s profit. It is a difficult problem to
solve, given that promotion planning process typically involves a large number of decision variables,
and needs to ensure that the relevant business constraints or offer rules are satisfied. The high volume
of data that is now available to retailers presents an opportunity to develop machine learning based
solutions that can help the category managers improve promotion decisions.

In this paper, we propose deep learning with multi-obective optimization based approach to solve
promotion optimization problem that can help retailers decide the promotions for multiple items
while accounting for many important modelling aspects observed in retail data. The ultimate goal
here is to maximize net revenue and consumer retention rate by promoting the right items at the
right time using the right offer discounts at consumer-item level. Our contributions in this paper
include a) Temporal Convolutional Neural Network architecture with hyperparameter configurations
to predict the item purchase probability at consumer level for the given time period. b) Design and
implementation of Fi-maximization algorithm which optimises for purchase probability cut-off at
consumer level. ¢) Methodology to estimate offer elasticity of purchase probability at consumer item
granularity. d) Constraint based optimization technique to estimate optimal offers at consumer-item
granularity.

Under review as a conference paper at ICLR 2021

2 RELATED WORK

There has been a significant amount of research conducted on offer-based revenue management
over the past few decades. Multiple great works have been done to solve Promotion Optimiza-
tion problem. One such work is Cohen et al.| (2017), where the author proposes general classes of
demand functions (including multiplicative and additive), which incorporates post-promotion dip
effect, and uses Linear integer programming to solve Promotion Optimization problem. In one of
the other work [[Cohen & Perakis| (2018)], the author lays out different types of promotions used
in retail, and then formulates the promotion optimization problem for multiple items. In paper|Co-
hen & Perakis|(2018), the author shows the application of discrete linearization method for solving
promotion optimization. Gathering learnings from the above papers, we create our framework for
offer optimization. The distinguishing features of our work in this field include (i) the use of a non-
parametric neural network based approach to estimate the item purchase probability at consumer
level, (ii) the establishment of the functional relationship between historical offer values and pur-
chase probabilities, and (iii) the creation of a new model and efficient algorithm to set offers by
solving a multi-consumer-item promotion optimization that incorporates offer-elasticity of purchase
probability at a reference offer value

3 METHODOLOGY

We built seperate models for each category, as we understand that consumer purchase pattern and
personalized marketing strategies might vary with categories.

3.1 MODELLING

In our model setup, we treat each relevant consumer-item as an individual object and shape them
into bi-weekly time series data based on historical transactions, where the target value at each time
step (2 weeks) takes a binary input, 1/0 (purchased/non purchased). Relevancy of the consumer-
item is defined by items transacted by consumer during training time window. Our Positive samples
(purchased/1) are time steps where consumer did transact the item, whereas Negative samples (non
purchased/0) are the time steps where the consumer did not buy that item. We apply sliding windows
testing routine for generating out of time results. The time series is split into 3 parts - train (48
weeks), validation (2 weeks) and test (2 weeks). All our models are built in a multi-object fashion
for an individual category, which allows the gradient movement to happen across all consumer-item
combinations split in batches. This enables cross-learning to happen across consumers/items. A row
in time series is represented by

ycil = h(ib Cty -5 Ct-ns iCt, (R}} icl—m dt? (E3} dl—l’l) (1)

where y.j is purchase prediction for consumer ’c’ for item ’i’ at time ’t’. 'n’ is the number of time
lags. i; denotes attributes of item ’i’ like category, department, brand, color, size, etc at time ’t’. ¢;
denotes attributes of consumer ’c’ like age, sex and transactional attributes at time ’t’. ¢, denotes
the transactional attributes of consumer ’c’ at a lag of ’t-n’ time steps. ic; denotes transactional
attributes such as basket size, price, offer, etc. of consumer ’c’ towards item ’i’ at time 't’ . d is
derived from datetime to capture trend and seasonality at time ’t’.

3.1.1 FEATURE ENGINEERING

Based on available dataset, we generate multiple features for the modelling activity. Some of the
feature groups we perform our experiments are:

Datetime: We use transactional metrics at various temporal cuts like week, month, etc. Datetime
related features capturing seasonality and trend are also generated. Consumer-Item Profile: We
use transactional metrics at different granularities like consumer, item, and consumer-item. We also
create features like Time since first order, Time since last order, time gap between orders, Reorder
rates, Reorder frequency, Streak - user purchased the item in a row, Average position in the cart, Total
number of orders. Price/Promotions: We use relative price and historical offer discount percentage
to purchase propensity at varying price, and discount values. Lagged Offsets: We use statistical
rolling operations like mean, median, variance, kurtosis and skewness over temporal regressors for
different lag periods to generate offsets.

Under review as a conference paper at ICLR 2021

3.1.2 Loss FUNCTION

Since we are solving Binary Classification problem, we believe that Binary Cross-Entropy should
be the most appropriate loss function for training the models. We use the below formula to calculate
Binary Cross-Entropy:

Hy=—%3N ylog(p(y)) + (1 — y).log(1 - p(y)) 2)

here Hj, represents computed loss, y is the target value (label), and p(y) is the predicted probability
against the target. The BCELoss takes non-negative values. We can infer from Equation [3 that
Lower the BCELoss, better the Accuracy.

3.1.3 MODEL ARCHITECTURE

Traditional machine learning models may not be a suitable choice for modelling & (Equation [T))
due to non-linear interactions between the features. Sequence to Sequence [Sutskever et al.| (2014)]
neural network architectures seems to be sound choice for tackling our problem. Hence, we use
Entity Embeddings [Guo & Berkhahn|(2016)] + Temporal Convolutional Network (TCN) (Figure/[I))
architecture for building all the models across categories. Originally proposed in [Lea et al.[(2016)],
TCN can take a sequence of any length and map it to an output sequence of the same length. For this
to accomplish, TCN uses a 1D fully-convolutional network (FCN) architecture, where each hidden
layer is the same length as the input layer, and zero padding of length (kernel size-1) is added to
keep subsequent layers the same length as previous ones. Also, the convolutions in the architecture
are causal, meaning that there is no information leakage from future to past. To achieve this, TCN
uses causal convolutions [Bai et al.| (2018)], convolutions where an output at time t is convolved
only with elements from time t and earlier in the previous layer. For 1-D sequence input x and filter
f the dilated convolution operation DC on element k of the sequence is defined as:

DC(k) = (zxaf)(k) = Z;:ol f(@) - xkq, swherez € R and f : {0,...,n—1} >R (3

where d is the dilation factor, n is the filter size, and k-d; accounts for the direction of the past. When
d =1, a dilated convolution reduces to a regular convolution. Using larger dilation enables an output
at the top level to represent a wider range of inputs, thus effectively expanding the receptive field of
a ConvNet.

As can be seen in Figure |1} Our network architecture comprises of 3 dilated Convolutions com-
bined with entity embeddings [[Guo & Berkhahn|(2016))]. Post Convolutions and concatenation with
embedding tensor, the created tensor flows through 3 fully connected ReLU layers yielding to sig-
moid dense layer. To seggregate static and temporal features, we group input tensor into 4 seperate
tensors, as can be seen in[I}

Static Categorical: These are categorical features that do not vary with time. This includes con-
sumer attributes like sex, marital status and location along with different item attributes like category,
department and brand. Temporal Categorical: These are categorical features that vary with time.
It includes all the datetime related features like week, month of year, etc. Static Continuous: These
features are static but continuous. This includes certain consumer attributes like age and weight,
item attributes like size, and certain derived features like target encoded features. Temporal Con-
tinuous: These are time varying continuous features. All consumer and item related traditional
attributes like number of orders, add to cart order, etc. falls under this bucket.

3.1.4 HYPERPARAMETER TUNING

We use documented best practices along with our experimental results to choose model hyperpa-
rameters. Hyperparameter Optimization is performed over validation dataset. We list some of the
hyperparameters along with the values we tune for Deep neural network models.

Optimizer Parameters: RMSProp [Bengio & CA|(2015)] and Adam are used as optimizers across
model runs. The learning rate is experimentally tuned to le-3. We also have weight decay of le-5
which helps a bit in model Regularization. Scheduler Parameters: CyclicLR [Smith|(2017))] and
ReduceLROnPlateau [Zaheer et al.|(2018)] Learning rates are used as schedulers across model runs.
we use le-3 as max Ir and 1e-6 as base Ir for cyclical learning rate along with the step size being the
function of length of train loader. ReduceLROnPlateau is tuned at le-6 as min Ir. SWA: Stochastic

Under review as a conference paper at ICLR 2021

Figure 1: Temporal Convolutional Network (TCN)

Static Consumer Attributes like Sex,
Marital Status, location, etc.

Static continuous Consumer
Attributes like Age, Height, etc.

Temporal Consumer Transactional
Attributes like # orders

Datetime attributes like Week of
month, Month of Year, etc.

Static continuous Item Attributes like
Size, # Ounces, etc.

Static Item Attributes like
Department, Category, Brand, etc.

Temporal Item Transactional
Attributes like #orders

Label Encoded all Static Categorical Label Encoded all Temporal
features Categorical features

Target Encoded datetime and all
categorical features

v v v v

Temporal Item Attributes like Pricing,
Promotional offers, etc.

| Static Categorical | | Temporal Categorical | | Static Continuous | | Temporal Continuous |
Entity Embeddings Entity Embeddings
Tensor Shape 2D Tensor Shape 3D

Concatenation

v

DilatedConv Layer (ks = 1, d = 2%)

DilatedConv Layer (ks = 2, d = 21)

DilatedConv Layer (ks = 2 d = 2%)

" | CONV1D Downsampling |

I Concatenation I<7 \/
v | CONVTRANSPOSE1D Upsampling |

I Fully Connected Layer (ReLU) I v
| Fully Connected Layer (ReLU) |

I Concatenation ldj

I Fully Connected Layers (ReLU) (# Layers = 3) I

I Output Dense Layer (Sigmoid) I

Weight Averaging (SWA) [Izmailov et al| (2018)] is used to improve generalization across Deep
Learning models. SWA performs an equal average of the weights traversed by SGD with a modified
learning rate schedule. We use le-3 as SWA learning rate. Parameter Average: This is a method
to average the neural network parameters of n best model checkpoints post training, weighted by
validation loss of respective checkpoints.

Apart from these parameters we also iterate to tune network parameters like number of epochs,
batch size, number of Fully Connected Layers, convnet parameters (kernel size, dilations, padding)
and embedding sizes for the categorical features. Binary Cross-Entropy [3|is used as loss function
for all the models trained across categories. Neural Network models are built using deep learning
framework PyTorch [Paszke et al.|(2017)], and are trained on GCP instance containing 6 CPUs and
a single GPU.

3.2 F;-MAXIMIZATION

Post stacking, we optimize for purchase probability threshold based on probability distribution at
a consumer level using F|-Maximization. This enables optimal thresholding of consumer level
probabilities to maximize F; measure [Lipton et al.| (2014)]. To illustrate the above, let us say we
generated purchase probabilities for 'n’ items out of *b’ actually purchased items by consumer ’c’.
Now, let us visualize the actuals and predictions @) of 'n’ predicted items for consumer ’c’.

Ac = [a17a27~-aan} vaj S {091} 3 Pc = [pl;pZa "7pn] vpj S [07 1} (4)

A_ represents the actuals for consumer ’c¢’, with a; being 1/0 (purchased/non purchased). P repre-
sents the predictions for consumer ¢’ for the respective item, with p; being probability value. ’n’
represents total items for which the model generated purchase probabilities for consumer 'c’. Now
we apply Decision rule D() which converts probabilities to binary predictions, as described below in
Equation 3]

1 Dj > P Tc

5
0 Otherwise)

D(Pre): P X0 — P lxn op = {

Under review as a conference paper at ICLR 2021

P’C = [pylap’Zv "ap,n} vp’] € {0’1}) k= Z?:lp’i (6)

Pr, is the probability cut-off to be optimized for maximizing F; measure [Lipton et al.| (2014)] for
consumer "¢’. Decision rule D() converts probabilities P, to binary predictions P such that if p; is
less than Pr. then p'; equals 0, otherwise 1. 'k’ is the sum of predictions generated post applying
Decision rule D(). Now we solve for F; measure using equations and formulae described below.

a
. T , ,
Ve, =P x AT = (p . pn)><<..> (7
Qn
.. _ VPrC _ VPrc __ 2XPrecisione X Recallc VPrc
Precision. = —= , Recall. = —~ , F, = Precisions | Recalls = 2% Tt (8)

Vp;, represents the number of items with purchase probabilities greater than Pr, which were actually
purchased (True Positives). As can be seen, Formulae [8|is used to calculate Precision, Recall and
F,-score for consumer ’c’.

, subjectto: Pr.e€ (0,1) 9)

Equation 9] represents the optimization function we solve to generate purchase predictions (1/0) for
each consumer. Figure[5]- Section] shows the predicted probability distributions.

3.3 ELASTICITY FRAMEWORK

After modelling, we establish the functional relationship between historical offer values and pur-
chase probabilities obtained from the model, which is then used to estimate offer-elasticity of pur-
chase probability at consumer item granularity. Given that our output layer of deep net is sigmoid
and we are modelling for probability values, sigmoid function (Figure [2)) seemed to us as an apt
choice to study the variation of purchase probability with offer percent. We also perform multiple
experiments as described in Figure[d]- Section[d]to see the goodness of fit of sigmoid curve over our
dataset across different categories. The average R? value for 8 categories is seen to be approximately
75 percent.

1
= 1+ e—(az+b) ’

f(x) fla)=axfz)x (- f(z) (10)
Since the functional relationship might vary with categories, we learn seperate parameters of sigmoid
for each category. We then use sigmoid curve to estimate elasticities, the x-elasticity of y measures
the fractional response of y to a fraction change in x, which can be written as:

d
x — elasticity of y : e(x,y) = dy;y (11)
x/x

We incorporate equation [T1] to determine the offer-elasticity of purchase probability. We use his-
torical offer percent values at consumer-item granularity, identified using following criteria in that
order: a) average of last 4 weeks non-zero offer percent values of the consumer-item combination
b) average of historical non-zero offer percent values of the consumer-item combination c) average
of last 4 weeks non-zero offer percent values of all same age consumer-item combinations within
that category. Using Equations [10[and we establish the offer-elasticity of purchase probability
(equation [I2)) as shown below, k being the offer percent and f(k) being purchase probability.

k

e(k, f(k)) = f (k) x o) = ek f(k) =axkx (1= [f(k) (12)

3.4 OFFER OPTIMIZATION

Post estimation of offer-elasticity of purchase probability, for each category, we solve the below op-
timization function (Equation to maximize Net Revenue, with Consumer Retention Rate greater

Under review as a conference paper at ICLR 2021

Figure 2: Purchase probability vs. Offer percentage

PURCHASE
PROBABILITY
v)
1=
. 1
v=16) = T
dy . ae—(az+b)
de f(z) = (1 + e~ (az+b))2
0.5~ 1
= f(z) =ax f(z) x (1 - f(2))
109 P (k1(K))
B k
Elasticity = e(k, f(k)) = f (k) x w5~
] FiR)
| |
K 50% OFFER PERCENTAGE (x) 100%

than category threshold (R;.).

n

Hiz?x Z[IP - % X (ki 4+mi x ki) < Lpe (f(ki) +mi x e(ki, f(Ki)) x f(ki))

st : ;i =005xj Y j € Z and je (—20,20)
(ki + 7 X kl) S (01702)

" (13)

1

- > W (f(ki) +mi % e(ki, f(ki) X f(ki)) >= R
i=1

1 x> Pr,

0 Otherwise

(o) = {

In the equation above, 7 is the total consumer-item samples modelled for a particular category. I,
is the price of the item, k; and f(k;) being the offer percent and purchase probability for the i
consumer-item. 7); is the change in offer percent k;. 1p, () denotes the Indicator function at Pr,
which is the optimal probability cut-off obtained from F;-Maximization algorithm for consumer ’c’
(Equation [9). €(k;, f(ki)) denotes the k; percent offer-elasticity of f(k;) purchase probability. R
denaotes the Retention rate cut-off of category c. 0o; and o, refers to offer range for that category.
This is determined using the latest 2 weeks of consumer-item samples. We solve the Equation
[[3] using Linear Programming approach to compute optimal offer at consumer-item granularity.
We observe that there is variance in the optimal offers generated from optimization engine across
categories.We have shown the distribution of offers across categories in Figure[f]- Section[d]

4 EXPERIMENTS AND RESULTS

We use kaggle dataset available at AmExpert 2019. Figure[7]shows the schema of the data we have
used to build our models. As mentioned in Section[3} we use a maximum of 1 year data aggregated
at bi-weekly level at consumer-item granularity. We split the data into three part train, validation and
test based on our validation strategy. We generate consumer - item - bi-weekly data with purchase/
non purchase being the target , and use this data to train all our models.

4.1 EXPERIMENT SETUPS

We start with exploratary data analysis, looking at the data from various cuts. We study the vari-
ations of different features with our target (purchase/ non purchase). Some of our studies include
category-wise sales distribution, density of transactions with varying offer percent and density of

Under review as a conference paper at ICLR 2021

Figure 3: Exploratory Data Analysis

Graph -1 - 1.0! Graph -2 1.0 5 Graph -3
* Groaery
« Pharmaceutical
= Natural Products 2 08 2 08
Dairy,Juces & Snacks s]

g g
= Skin & Hair Care g g
§ o5 £ os

I I
« Packaged Meat 5 s
= Prepared Food z 04 z 04
« Bakery H &
= seafood
= Flowers & Plants 0.2 0.2

0 0
0% 20% 40% 60% 80% 0 4 8 10 12
Offer Percentage Basket Size

Graph-1: Category-wise sales distribution, Graph-2: density of transactions with varying offer percent, and Graph-3: density of

transactions with varying basket size

transactions with varying basket size (Figure[3). We observe that Grocery and Pharmaceutical con-
tributes to approximately 77 percent of total sales. We also look at order probability variations at
different temporal cuts like week, month and quarter, transactional metrics like total orders, total
reorders, recency, gap between orders, at both consumer and item levels. We then perform multiple
experiments with the above mentioned features and different hyperparameter configurations to land
at reasonable hyperparameters to perform final experiments and present our results.

Figure 4: Offer-elasticity of purchase probability

Grocery Bakery Pharmaceutical Packaged Meat

Purchase Probabilty [y)

o 1 2 . 4 s e W 0 o 1 2 . 4 s e W @ o 1 2 % 4 s o 0 #@ o 1 2 . 4 s e W &
Offer percentage) Offer percentage (x) Offer percentage () Offer percentage (x)

Seafood Skin & Hair Care Dairy, Juices & Snacks Flowers & Plants

purchase Probabily y)

o 1 2 B s so e W @ o 1 2 ® s 0 e W @ o 10 2 . 4 s © 0 8 o 1 2 B @ s e W
Offer Percentage (x) Offr percentage (x) Offer Percentage (x) Offer percentage (x)

Category level visualizations describing the sensitivity of change in offer with purchase probability

Figure 5: Probability Distributions

Chart 1 Chart 2 Chart 3

45.62%

s1o3% 3a53%

304

3
o 126m

2
E

25%

10.83%

935%

B
1%
8 1

K 200 g

a34% E
202% 100% 098% 072% 003% 003% 001% * 073% 072% 003% 003% 001%
0%

0 01 02 03 04 05 05 07 08 09 1 o 01 02 03 04 05 06 07 08 09 1 0 o1 02 03 04 05 05 07 08 09 1
Predicted Probabilty for actual labels equal 0 Predicted Probability for actual labels equal 1 Probabilty cut-off post F1-Maximization

Chart-1: Predicted probability distribution at actual label equals 0, Chart-2: Predicted probability distribution at actual label equals
1, and Chart-3: cut-off probability distribution post F;-Maximization

4.2 RESULTS AND OBSERVATIONS

Figure [shows the functional relationship of offer percetage with purchase probability obtained
across different categories. It also contains the equations and goodness of fit in the form of R? for
each category. Seafood and Bakery are the top 2 best fitted categories with R? values of 0.83 and 0.82
respectively. Figure 5| Chart-1 and Chart-2 shows the predicted probability distribution when actual
label equals 0 and 1 respectively over the validation data split. Chart-3 shows the cut-off probability

Under review as a conference paper at ICLR 2021

distribution post Fj-Maximization, and, we observe that highest density of cut-off probability lies
between 0.2 to 0.3. Table |l| presents the accuracy values post Modelling and F;-Maximization. It
also has the average elasticity values along with weighted offer percent computed post optimization.
From model performance perspective , it is observed that Grocery category has least BCELoss of
0.0283. Pharmaceutical and Meat categories followed Grocery with BCELoss of 0.0296 and 0.0299
respectively. Also, Grocery has the best F; score of 0.512 followed by Meat and Pharmaceutical
scoring 0.511 and 0.509 respectively. Vegetables is the most elastic category with elasticity value of
1.53, whereas Packaged meat and Skin and Hair care are the least elastic categories with elasticity
value of 0.62. From Figure[6] we can see the graphical representation of distribution of optimal offer
calculated through optimization. We find Skin and Hair care along with Pharmaceutical to be left
skewed, whereas Vegetables as well as Flowers and Plants to be right skewed.

Figure 6: Consumer-Item percent distribution with offer percent across categories

Grocery Bakery Pharmaceutical Packaged Meat

Seafood Natural Products

ptimalOfe Percentge opimal o

Prepared Food Flowers & Plants Vegetables (cut)

Category level vi tions of fr y distribution of offers generated by optimization engine

a4

Table 1: Model Results and Elasticity

[Category | Sample size | BCELoss | Precision | Recall | Fi-Score | Avg Elasticity | Weighted Offer Percent |
Grocery 28,990 0.0283 0.524 0.501 0.512 1.13 23.37
Bakery 1,628 0.0415 0.346 0.391 0.367 1.06 22.15
Pharmaceutical 20,492 0.0296 0.538 0.483 0.509 0.73 17.89
Packaged Meat 1,473 0.0329 0.473 0.452 0.462 0.62 19.15
Seafood 539 0.0382 0.497 0.379 0.43 0.89 16.23
Natural Products 2,399 0.0319 0.451 0.524 0.485 0.95 21.78
Dairy, Juices, Snacks 2,060 0.0396 0.394 0.492 0.438 1.04 22.02
Prepared Food 1,407 0.0472 0.338 0.295 0.315 1.03 28.27
Skin, Hair Care 1,906 0.0391 0.429 0.453 0.441 0.62 7.93
Meat 1,767 0.0299 0.498 0.524 0.511 0.94 18.92
Flowers, Plants 491 0.0483 0.275 0.318 0.295 1.43 30.24
Vegetables (cut) 124 0.0469 0.364 0.267 0.308 1.53 37.92

5 CONCLUSION

We have presented our detailed methodology to solve the offer optimization problem at the intersec-
tion of consumer, item and time in retail setting. We have also presented the results of our models
and optimization in the form of model accuracies and graphical representations at a category level.
At the same time we understand that computation strategy is a key aspect in modelling millions of
consumers, and we intend to further explore this aspect by building Transfer Learning framework
Yosinski et al.| (2014). We are also working to further improve our Sequence to Sequence neural
network architectures to improve accuracy and decrease computation time.

Under review as a conference paper at ICLR 2021

REFERENCES

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Yoshua Bengio and MONTREAL CA. Rmsprop and equilibrated adaptive learning rates for non-
convex optimization. corr abs/1502.04390, 2015.

Maxime Cohen and Georgia Perakis. Promotion optimization in retail. Available at SSRN 3194640,
2018.

Maxime C Cohen, Ngai-Hang Zachary Leung, Kiran Panchamgam, Georgia Perakis, and Anthony
Smith. The impact of linear optimization on promotion planning. Operations Research, 65(2):
446468, 2017.

Kris Johnson Ferreira, Bin Hong Alex Lee, and David Simchi-Levi. Analytics for an online retailer:
Demand forecasting and price optimization. Manufacturing & Service Operations Management,
18(1):69-88, 2016.

Cheng Guo and Felix Berkhahn. Entity embeddings of categorical variables. arXiv preprint
arXiv:1604.06737, 2016.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Colin Lea, Rene Vidal, Austin Reiter, and Gregory D Hager. Temporal convolutional networks:
A unified approach to action segmentation. In European Conference on Computer Vision, pp.
47-54. Springer, 2016.

Zachary C Lipton, Charles Elkan, and Balakrishnan Naryanaswamy. Optimal thresholding of clas-
sifiers to maximize f1 measure. In Joint European Conference on Machine Learning and Knowl-

edge Discovery in Databases, pp. 225-239. Springer, 2014.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV), pp. 464-472. IEEE, 2017.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104-3112, 2014.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? In Advances in neural information processing systems, pp. 3320-3328, 2014.

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive meth-

ods for nonconvex optimization. In Advances in neural information processing systems, pp. 9793—
9803, 2018.

Under review as a conference paper at ICLR 2021

A APPENDIX

Figure 7: Data Schema

Campaign Data

Iltem Data
item_id
brand
brand_type
category
selling_price

* A

item_id

campaign_id e campaign_id
»| e campaign_type
e start_date
e end_date
Train °
e id) °
e campaign_id coupon_id .
e coupon_id ‘* :
e customer_id -
e redemption_status Coupon Item Mapping item_id
e coupon_id
e item_id
customer_id customer_id
v l
(zustgggnlzrerizographlcs Customer Transaction Data
e age range i e date)
e marital status customer_id . gustomer_ld
o rented D s ftem_id
o family_size i quant|t¥
e no_of _children e other_discount
e income_bracket e coupon_discount

10

	Introduction
	Related Work
	Methodology
	Modelling
	Feature Engineering
	Loss Function
	Model Architecture
	Hyperparameter Tuning

	F1-Maximization
	Elasticity Framework
	Offer Optimization

	Experiments and Results
	Experiment Setups
	Results and Observations

	Conclusion
	Appendix

