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Abstract

To deal with ambiguities in partial multi-label learning (PML), state-of-the-art
methods perform disambiguation by identifying ground-truth labels directly. How-
ever, there is an essential question:“Can the ground-truth labels be identified
precisely?". If yes, “How can the ground-truth labels be found?". This paper
provides affirmative answers to these questions. Instead of adopting hand-made
heuristic strategy, we propose a novel Mutual Information Label Identification
for Partial Multi-Label Learning (MILI-PML), which is derived from a clear
probabilistic formulation and could be easily interpreted theoretically from the
mutual information perspective, as well as naturally incorporates the feature/label
relevancy into consideration. Extensive experiments on synthetic and real-world
datasets clearly demonstrate the superiorities of the proposed MILI-PML.

1 Introduction

Partial multi-label learning (PML) [1, 2] is a weakly supervised learning problem, where each instance
is associated with a set of candidate labels, but only a part of them are the ground-truth labels while
others are false positive labels.

In recent years, many real-world applications are arising due to the growing demand for identifying
ground-truth labels from partially labeled data, which are easier and less costly to obtain. For example,
in crowdsourcing image annotation, a web image might be annotated online by a potential unreliable
annotator with many specific labels, but only some of them are accurate.

PML aims to train a classifier from partially labeled data so as to predict the ground-truth labels for
an unseen instance automatically. The main challenge is how to deal with the ambiguities caused by
false positive labels in candidate label set. One straightforward way is to simply treat all candidate
labels equally as the ground-truth labels, and then solve the PML problem by standard multi-label
classification methods [3, 4]. However, these methods can be easily misled by the noisy false-positive
labels in the candidate set, and fail to generalize well in testing. To deal with the problem, the
state-of-the-art PML research attempts to identify the ground-truth labels directly from the candidate
label set, which becomes a popular and effective disambiguation strategy.

However, there are two fundamental issues, “Can the ground-truth labels be identified precisely?". If
yes, “How can the ground-truth labels be found?". Moreover, the state-of-the-art PML methods are
constructed by hand-designed heuristic modeling under considerations like feature/label correlations
with no theoretical interpretation.

In this paper, instead of hand-made heuristic modeling, we propose a novel MILI-PML model, which
is derived from a clear probabilistic formulation and can be easily interpreted theoretically by infor-
mation theory. Besides, MILI-PML naturally incorporates the feature/label relevancy considerations
rather than that of heuristic modeling.
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To answer the first question “CAN", we define an ε-identifiable score function to evaluate whether a
PML method is workable for identifying the ground-truth labels precisely. Moreover, we demonstrate
that the derived MILI-PML is ε-identifiable under certain assumptions and conditions theoretically.

To answer the second question “HOW", we design an efficient optimization algorithm called MILI
Algorithm to optimize the objective function.

Extensive experiments are conducted on six synthetic datasets as well as four real-world datasets.
The experimental results demonstrate that the proposed MILI-PML consistently outperforms the
state-of-the-art methods in terms of five widely-used multi-label metrics including ranking loss,
hamming loss, one error, coverage, and average precision.

2 Related Work

Partial multi-label learning (PML) [5, 6] is different from multi-label learning [7, 8, 9] or partial label
learning [10, 11, 12, 13]. In PML, each instance is associated with a set of candidate labels, which
contains multiple ground-truth labels and the others are false positive labels. The state-of-the-art
PML studies attempt to identify the ground-truth labels directly from the candidate label set.

[14] propose PARTICLE to extract credible labels with high confidence via propagation matrix and
use the identified labels to train multi-label classifiers. [15] propose DRAMA to get the reliable labels
with high confidence by employing the feature manifold, and then use the identified labels to train the
multi-label classifier.

Moreover, [1] propose PML-lc and PML-fp to optimize the label ranking confidence matrix in
training classifiers which considers the label correlations and the feature prototype respectively. [16]
develop fPML to optimize the label confidentce matrix by considering feature and label correlations.
[17] propose PML-LRS to get label ranking which utilizes the low-rank and sparse decomposition to
train classifiers while considering the feature and label interdependencies. [18] develop MUSER to
train classifiers by decreasing the feature noise and label redundancy via mapping with orthogonality
constraint and graph Laplacian regularization, which considers the feature correlation and label
correlation simultaneously.

However, existing methods have two common issues. First, models are hand-made heuristic with no
theoretical interpretation. Second, existing partial multi-label learning (PML) methods assume that
the ground-truth labels exist in the candidate label set and identify them directly. We then have the
question:“Can the ground-truth labels be identified precisely?". If yes, “How can the ground-truth
labels be found?".

3 The Model Derivation

In this section, we derive our method, i.e., MILI-PML, from the following probabilistic formulation.
Assume S = {(xi, yi) : i = 1, . . . , n} are drawn i.i.d. n times from a probability distribution
P . Each observation is a pairwise example (x, y), consisting of a d-dimensional feature vector
x = [x1, . . . , xd]T , and a q-dimensional candidate label vector y = [y1, . . . , yq]T , drawn from the
underlying random variables X = [X1, . . . , Xd]T and Y = [Y1, . . . , Yq]T .

We adopt a q-dimensional binary vector v : a 1 indicating the label is selected, a 0 indicating it is
discarded. Notation yv indicates the vector of selected labels, that is, the full vector y projected onto
the dimensions specified by v. Notation yv̄ is the complement, i.e., the vector of remaining candidate
labels. The full label vector y can therefore be expressed as y = {yv, yv̄}, which means y is the
concatenation of yv and yv̄ . In PML, yv is selected from y.

Assume that Q is a hypothetical predictive model with two parameters: v representing which labels
are selected and w representing parameter used for prediction. In order to identify the ground-truth
labels from the candidate label set for PML, we can maximize the conditional likelihood of training
dataset with respect to parameters {v, w}. The conditional likelihood given all training examples
S = {(xi, yi) : i = 1, . . . , n} can be expressed as follows:

L(v, w|S) =

n∏
i=1

Q(yiv|xi, w) (1)
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For convenience, we use the conditional log-likelihood corresponding to Eq. (1) as follows:

`(v, w|S) =
1

n

n∑
i=1

logQ(yiv|xi, w) (2)

By multiplying and dividing classifier Q by the distribution of identified ground-truth labels given
features, i.e., P (yv|x), we can re-write the above as follows:

`(v, w|S) =
1

n

n∑
i=1

log
Q(yiv|xi, w)

P (yiv|xi)
+

1

n

n∑
i=1

logP (yiv|xi) (3)

Similarly, we can expand the second term in Eq. (3) by multiplying and dividing the probability
P (y|x), and get the following formulation:

`(v, w|S) =
1

n

n∑
i=1

log
Q(yi

v|xi, w)

P (yi
v|xi)

+
1

n

n∑
i=1

log
P (yi

v|xi)

P (yi|xi)
+

1

n

n∑
i=1

logP (yi|xi) (4)

Furthermore, we use E(X,Y) to denote the expectation of the random variables (X,Y). When
n→ +∞, Eq. (4) can be reformated as follows:

`(v, w|S) =E(X,Y)

{
log

Q(yv|x, w)

P (yv|x)

}
+E(X,Y)

{
log
P (yv|x)

P (y|x)

}
+ E(X,Y)

{
logP (y|x)

}
(5)

The first term of Eq. (5) equals to the following KL-divergence:

E(X,Y)

{
log

Q(yv|x, w)

P (yv|x)

}
= −DKL(P (Yv|X)||Q(Yv|X, w)) (6)

As y = {yv, yv̄}, the second term of Eq. (5) can be derived into the following formulation:

E(X,Y)

{
log

P (yv|x)

P (y|x)

}
= −E(X,Y)

{
log

P (y|x)

P (yv|x)

}
=−

∑
(x,y)

P (x, y) log
P (yv̄, x|yv)

P (x|yv)

=−
∑
(x,y)

P (x, y) log
P (yv̄, x|yv)

P (x|yv)P (yv̄|yv)
−
∑

(yv̄,yv)

P (yv̄, yv) logP (yv̄|yv)

= −I(Yv̄,X|Yv) +H(Yv̄|Yv) = −I(Yv̄,X|Yv)

(7)

In Eq. (7), I(Yv̄,X|Yv) is the conditional mutual information and H(Yv̄|Yv) is the conditional
entropy. The last equality holds as a result of the conditional entropy H(Yv̄|Yv) = 0. This is
because in PML setting, Yv is selected from Y, once Yv is known, then Y is of course known in
advance, meanwhile, Yv̄ is complementary to Yv , thus, the uncertainty remaining in Yv̄ is zero, i.e.,
H(Yv̄|Yv) = 0. The detailed derivation of Eq. (7) can be found in the supplementary materials.

Moreover, the third term of Eq. (5) equals to the conditional entropy −H(Y|X), i.e.,

1

n

n∑
i=1

logP (yi|xi) = −H(Y|X) (8)

Combining together, we get the derived objective function as follows:

`(v, w|S)=−DKL(P (Yv|X)||Q(Yv|X, w))− I(Yv̄,X|Yv)−H(Y|X) (9)

The first term is a KL-divergence between the true and predicted ground-truth label distributions
given features. The value of this term depends on how well the model Q can approximate P . The
second term is the conditional mutual information between the remaining candidate labels and the
features, given the identified ground-truth labels. The value of this term depends solely on the choice
of ground-truth labels, and will decrease as the selected ground-truth label set Yv explains more
about features X, until eventually becoming zero when the remaining candidate labels Yv̄ are all false
positive labels, which contain no additional information about X . The last term is the conditional
entropy of all candidate labels given features. This term quantifies the uncertainty remaining in the
candidate labels after we know all features of training data, which is independent of parameters v and
w as a constant.
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4 Theoretical Analysis

To answer the first question:“Can the ground-truth labels be identified precisely?", we define an
ε-identifiable score function to decide whether a PML method can identify the ground-truth label
precisely. Intuitively, the score of an identifiable score function increases when a ground-truth label
is added to the identified label set compared to that of a false positive label. Thus, the ε-identifiable
score function can be defined as follows,
Definition 1 (ε-identifiable Score Function). Let Ŝ be the identified label set; yk be a ground-truth
label and yk̄ be a false positive label. Let ε be a non-negative constant. A score function g : 2[q] → R
is said to be ε-identifiable if the following property holds: for every yk /∈ Ŝ and yk̄ /∈ Ŝ, we have
g(Ŝ ∪ {yk})− g(Ŝ ∪ {yk̄}) ≥ ε.

We will use this definition to derive the following theorem, which demonstrates that our objective
function is an ε-identifiable score function and is capable of identifying the ground-truth label from
the candidate label set.
Theorem 1. Let yk and yk̄ denote any unidentified ground-truth label and any false positive label
respectively. Let Yk and Yk̄ represent the random variables of yk and yk̄ respectively, and that
yk, yk̄ ∈ v̄ and yk, yk̄ /∈ v. Then, for any identified ground-truth label set v, our objective function
`(v, w|S) is an ε-identifiable score function on condition that,

I(Yk,X)− I(Yk,Yv) + I(Yk,Yv|X)−DKL1 ≥ I(Yk̄,X)− I(Yk̄,Yv) + I(Yk̄,Yv|X)−DKL2

where DKL1 = DKL

(
P (Yv ∪ Yk|X)||Q(Yv ∪ Yk|X, w)

)
and DKL2 = DKL

(
P (Yv ∪ Yk̄|X)||Q(Yv ∪ Yk̄|X, w)

)
(10)

Proof.

g(Ŝ ∪ {yk})− g(Ŝ ∪ {yk̄}) =
{
− I
(

Yv̄\Yk,X
∣∣Yv ∪ Yk

)
+ I
(

Yv̄\Yk̄,X
∣∣Yv ∪ Yk̄

)}
+{

−DKL

(
P (Yv ∪ Yk|X)||Q(Yv ∪ Yk|X, w)

)
+DKL

(
P (Yv ∪ Yk̄|X)||Q(Yv ∪ Yk̄|X, w)

)}
(11)

Firstly, we derive the first part of Eq. (11), i.e., −I
(

Yv̄\Yk,X
∣∣Yv ∪Yk

)
+ I
(

Yv̄\Yk̄,X
∣∣Yv ∪Yk̄

)
.

Due to the chain rule that I(Y,X) = I(Yv,X) + I(Yv̄,X|Yv), we have

−I
(

Yv̄\Yk,X
∣∣Yv ∪ Yk

)
= −

{
I(Y,X)− I(Yv ∪ Yk,X)

}
= I(Yv ∪ Yk,X)− I(Y,X)

= I(Yv,X) + I(Yk,X|Yv)− I(Y,X)

= I(Yv,X) + I(Yk,X)− I(Yk,Yv) + I(Yk,Yv|X)− I(Y,X)

(12)

Similarly, we can get,

− I
(

Yv̄\Yk̄,X
∣∣Yv ∪ Yk̄

)
= I(Yv,X) + I(Yk̄,X)− I(Yk̄,Yv) + I(Yk̄,Yv|X)− I(Y,X) (13)

Therefore, we have the following expression,

The first part of Eq. (11) = −I
(

Yv̄\Yk,X
∣∣Yv ∪ Yk

)
+ I
(

Yv̄\Yk̄,X
∣∣Yv ∪ Yk̄

)
=
{
I(Yk,X)− I(Yk,Yv) + I(Yk,Yv|X)

}
−
{
I(Yk̄,X)− I(Yk̄,Yv) + I(Yk̄,Yv|X)

} (14)

where I(Yk,X) is the mutual information between a ground-truth label yk and features, which means
the correlation between the two items; I(Yk,Yv) is the mutual information between a ground-truth
label yk and the existing identified ground-truth label set, which means the redundancy between the
two items; I(Yk,Yv|X) is the feature-conditional redundancy, which means the good information
still remaining between ground-truth label yk and the existing identified label set v after features are
known.
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Thus, the interpretation of the first part of Eq. (14), i.e., I(Yk,X)− I(Yk,Yv) + I(Yk,Yv|X), is the
overall correlation of a ground-truth label yk and features x, which equals the correlation between a
ground-truth label yk and features x minus the overall redundancy of label yk with existing identified
label set, based on which we can evaluate the effectiveness to include the label yk into the ground-truth
label set.

Similarly, the second part of Eq. (14) stands for the overall correlation between a false-positive label
yk̄ and features x, which equals the correlation between a false-positive label yk̄ and features x minus
the overall redundancy of label yk̄ with existing identified label set.

It is naturally hold that the first part should be larger than the sencond part as the overall correlation
between a ground-truth label yk and features ought to be stronger than that of a false-positive label
yk̄ and features.

After that, we illustrate the second part of Eq. (11), i.e.,−DKL

(
P (Yv∪Yk|X)||Q(Yv∪Yk|X, w)

)
+

DKL

(
P (Yv ∪ Yk̄|X)||Q(Yv ∪ Yk̄|X, w)

)
. The interpretaion of DKL

(
P (Yv ∪ Yk|X)||Q(Yv ∪

Yk|X, w)
)

is how well can the predictive model Q approximate the true probability distribution P
when a ground-truth label yk is added to the existing identified label set v; that is, the information
loss when using Q to approximate P . The more precise the approximation is, the smaller is the
KL-divergence value.

Similarly,DKL

(
P (Yv∪Yk̄|X)||Q(Yv∪Yk̄|X, w)

)
can be interpreted as how well can the predictive

model Q approximate the true probability distribution P when a a false-positive label yk̄ is added
to the existing identified label set v. The more imprecise the approximation is, the bigger is the
KL-divergence value.

It is naturally hold that the KL-divergence value should be smaller when the ground-truth label
yk is added to the existing identified label set v than that of the false-positive label yk̄, that is,
DKL

(
P (Yv ∪ Yk̄|X)||Q(Yv ∪ Yk̄|X, w)

)
≥ DKL

(
P (Yv ∪ Yk|X)||Q(Yv ∪ Yk|X, w)

)
.

Therefore, combined with the derivation of the first part of Eq. (11), we can get the condition for our
objective function `(v, w|S) to be an ε-identifiable score function as follows,

I(Yk,X)− I(Yk,Yv) + I(Yk,Yv|X)−DKL1 ≥ I(Yk̄,X)− I(Yk̄,Yv) + I(Yk̄,Yv|X)−DKL2

where DKL1 = DKL

(
P (Yv ∪ Yk|X)||Q(Yv ∪ Yk|X, w)

)
and DKL2 = DKL

(
P (Yv ∪

Yk̄|X)||Q(Yv ∪ Yk̄|X, w)
)

, which concludes the proof.

Remark. The condition of Eq. (10) requires that the overall correlation between a ground-truth label
yk and features should be stronger than the overall correlation between a false-positive label yk̄ and
features. From the above theoretical analysis, we can see that the ground-truth labels can be identified
correctly by the proposed MILI-PML under given conditions and assumptions in Theorem 1.

5 Optimization

To answer the second question:“How can the ground-truth labels be found?", we design an efficient
algorithm to optimize the proposed MILI-PML.

The goal of partial multi-label learning (PML) is to maximize `(v, w|S) of Eq. (9), which is equivalent
to minimizing −`(v, w|S). Consequently, we can rewrite the objective function of MILI-PML as
follows:

−`(v, w|S) =DKL(P (Yv|X)||Q(Yv|X, w)) + I(Yv̄,X|Yv) +H(Y|X) (15)

As the last term H(Y|X) is a constant, we only need to consider optimizing the first term and
the second term together in Eq. (15). Thus, minimizing −`(v, w|S) is equivalent to minimizing
DKL(P (Yv|X)||Q(Yv|X, w)) + I(Yv̄,X|Yv), that is,

arg min
v,w
−`(v, w|S) = arg min

v,w
DKL(P (Yv|X)||Q(Yv|X, w)) + I(Yv̄,X|Yv) (16)
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Algorithm 1 Alternating Optimization (MILI Algorithm)
Goal: Solve the Optimization Problem of Eq. (16) : identifying the ground-truth label set v as well
as training a predictive model parameter w;
Input: training data S = {(xi, yi) : i = 1, . . . , n};
Output: the predictive model parameter w.

1: Initialize the ground-truth label set vi for each instance by randomly choosing from the corre-
sponding candidate label set v̄i; t = 0; F 0(v, w) = 0;

2: repeat
3: Fix v, update w in Eq. (17) according to Gradient Descent Algorithm.
4: Fix w, update v in Eq. (19) according to Algorithm 2;
5: t = t+1;
6: Calculate F t+1(v, w);
7: until |F

t+1(v,w)−F t(v,w)|
|F t(v,w)| < δ;

8: Output the optimal solution vi for each instance xi, i ∈ {1, . . . , n} and the predictive model
parameter w.

We design an alternating optimization algorithm called Mutual Information Label Identification
Algorithm (i.e., MILI Algorithm) to optimize the two parameters v (the ground-truth label set
parameter) and w (the predictive model parameter) in Eq. (16) by fixing one and updating the other.
Complete procedures of MILI Algorithm are summarized in Algorithm 1.

For convenience, we denote the objective function in Eq. (16) as F (v, w) =
DKL(P (Yv|X)||Q(Yv|X, w)) + I(Yv̄,X|Yv), which is used to set the stopping creteria in
Algorithm 1.

Specifically, when v is fixed to update w, Eq. (16) is equivalent to optimize the following problem as
the second term I(Yv̄,X|Yv) becomes a constant.

arg min
w

E(X,Y) logP (yv|x)− E(X,Y) logQ(yv|x, w) = arg min
w
−E(X,Y) logQ(yv|x, w) (17)

Moreover, we can use the sample estimation to approximate E(X,Y) logQ(yv|x, w) based on the Law
of Large Numbers as follows:

E(X,Y) logQ(yv|x, w) ≈ 1

n

n∑
i=1

logQ(yi
v|xi, w) (18)

To this end, we can employ the gradient descent algorithm to optimize Eq. (17).

Next, we fix w to update v. The first term of Eq. (16) can be decomposed to be E(X,Y) logP (yv|x)−
E(X,Y) logQ(yv|x). Meanwhile, due to the chain rule that I(Y,X) = I(Yv,X) + I(Yv̄,X|Yv), min-
imizing I(Yv̄,X|Yv) is equivalent to maximizing I(Yv,X). Therefore, Eq. (16) can be reformulated
as follows:

arg max
v
−E(X,Y) logP (yv|x) + E(X,Y) logQ(yv|x) + I(Yv,X) (19)

Moreover, we can identify ground-truth labels yk from v̄ one by one and add to v. Thus, Eq. (19) is
equivalent to the following formulation:

arg max
yk∈v̄

−E(X,Y) logP (yk|x, yv) + E(X,Y) logQ(yk|x, yv) + I(Yk,X|Yv) (20)

In practice, we can use the empirical distribution and sample estimation to approximate the three
terms in Eq. (20) based on the Law of Large Numbers. To this end, we can employ greedy strategy to
optimize Eq. (19). Procedures of this implementation can be found in Algorithm 2.

Here, we explain some main steps of Algorithm 1. Step 2–7 summarizes the core iteration procedures,
among which Step 3 and Step 4 are the alternating strategy to optimize the two parameters w and
v, respectively. At Step 6, the objective function value F (v, w) is calculated. Finally, the stopping
condition is set to δ-optimal and we choose δ to be 10−5 in practice (Step 7).
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Algorithm 2 Fix w, update v.
Goal: Solve the Optimization Problem of Eq. (19).
Input: training data S = {(xi, yi) : i = 1, . . . , n};
Output: the ground-truth label set vi for each instance i ∈ {1, . . . , n}.

1: Initialize t = 0; vi0 = ∅ and let v̄i0 be the initial candidate label set for each instance xi,
i ∈ {1, . . . , n};

2: while I(Yk,X|Yvi
t
) > ε do

3: Identifying the ground-truth label yik by Eq. (20);
4: Update the ground-truth label set by vit+1 = vit ∪ yik;
5: Update the remaining candidate label set by v̄it+1 = v̄it\yik;
6: t = t+ 1;
7: end while
8: Output vi by vi = vi

t̂
.

6 Experiments

In this section, we conduct experiments to evaluate the classification performance of the proposed
MILI-PML and compare it with six state-of-the-art PML methods.

6.1 Datasets

Experiments are conducted on six synthetic PML datasets1 and four real-world PML datasets (i.e.
YeastBP [16], Music-emotion [19], Music-style [19], MIRFlickr [19, 14] of different scales, the
characteristics of which are summarized in the supplementary materials. For real-world PML datasets,
candidate labels are collected from web users which are further examined by human labelers to
specify the ground-truth labels. For synthetic datasets, given the configuration strategy over multi-
label datasets in [1, 14], we construct the candidate label set by randomly choosing irrelevant labels
together with the ground-truth labels (GLs) for each multi-label instance. Specifically, different
settings are considered by varying the average number of candidate labels (#CLs (avg.)) for each
multi-label dataset. Accordingly, in this paper, we generate thirty synthetic PML datasets. For brevity,
we report the detailed results of two configurations for each dataset, i.e. avg. #CLs (avg.) being 7 and
11 for Enron, Corel5k, Eurlex-sm; 9 and 13 for Eurlex-ed and Mediamill; 45 and 65 for CAL500.

Table 1: Experimental results of the proposed MILI-PML with six state-of-the-art PML baselines on
four real-world as well as six synthetic PML datasets in terms of ranking loss. The best result (the
smaller the better) is in bold.

Dataset #CLs (avg.) MILI-PML PAR-VLS DRAMA PML-lc fPML PML-LRS MUSER
YeastBP 30.43 .357±.017 .436±.032 .407±.021 .382±.036 .414±.012 .418±.031 .341±.015
Music-emotion 5.29 .171±.008 .260±.005 .218±.013 .254±.006 .352±.015 .281±.005 .189±.021
Music-style 6.04 .162±.007 .182±.021 .178±.013 .267±.013 .238±.019 .179±.007 .171±.006
MIRFlickr 3.35 .081±.005 .203±.007 .189±.010 .146±.008 .163±.025 .107±.002 .093±.006

Enron 7 .082±.002 .297±.007 .194±.012 .338±.004 .128±.017 .207±.021 .114±.003
11 .096±.004 .312±.006 .210±.015 .341±.002 .127±.008 .215±.017 .123±.004

Corel5k 7 .012±.015 .345±.070 .193±.052 .161±.013 .132±.027 .193±.016 .015±.004
11 .015±.007 .383±.056 .201±.065 .171±.014 .138±.013 .202±.021 .017±.005

Eurlex-sm 7 .041±.003 .058±.014 .051±.007 .079±.017 .313±.072 .183±.006 .043±.005
11 .047±.006 .067±.009 .063±.016 .081±.016 .368±.016 .197±.008 .049±.003

Eurlex-ed 9 .045±.006 .064±.013 .068±.008 .083±.016 .328±.009 .198±.008 .041±.003
13 .062±.017 .069±.025 .071±.013 .092±.018 .412±.024 .217±.010 .043±.002

CAL500 45 .175±.007 .353±.014 .235±.007 .316±.008 .268±.015 .281±.013 .179±.024
65 .203±.027 .471±.012 .317±.016 .365±.014 .287±.019 .347±.016 .213±.021

Mediamill 9 .127±.009 .135±.008 .201±.007 .216±.015 .203±.007 .193±.107 .173±.002
13 .151±.004 .198±.004 .301±.012 .316±.009 .225±.008 .212±.023 .187±.021

6.2 Baselines

We compare the proposed MILI-PML method with the six state-of-the-art PML approaches.
1http://mulan.sourceforge.net/datasets-mlc.html
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Table 2: Experimental results of the proposed MILI-PML with six state-of-the-art PML baselines on
four real-world as well as six synthetic PML datasets in terms of average precision. The best result
(the larger the better) is in bold.

Dataset #CLs (avg.) MILI-PML PAR-VLS DRAMA PML-lc fPML PML-LRS MUSER
YeastBP 30.43 .151±.027 .082±.031 .083±.017 .140±.035 .096±.021 .085±.023 .154±.031
Music-emotion 5.29 .603±.018 .527±.006 .582±.012 .541±.023 .538±.015 .516±.014 .598±.033
Music-style 6.04 .722±.017 .717±.031 .693±.013 .627±.010 .659±.017 .716±.018 .718±.013
MIRFlickr 3.35 .807±.015 .685±.017 .707±.014 .743±.018 .731±.015 .796±.012 .801±.016

Enron 7 .784±.002 .601±.006 .613±.002 .679±.003 .751±.012 .782±.011 .771±.003
11 .683±.005 .587±.006 .556±.012 .660±.004 .670±.006 .683±.007 .681±.005

Corel5k 7 .283±.012 .205±.012 .235±.014 .253±.023 .264±.017 .237±.013 .280±.003
11 .279±.007 .196±.036 .218±.025 .226±.013 .258±.015 .217±.011 .276±.015

Eurlex-sm 7 .752±.013 .741±.024 .744±.017 .718±.037 .685±.022 .699±.016 .751±.025
11 .749±.016 .721±.016 .728±.013 .716±.006 .628±.027 .615±.017 .748±.023

Eurlex-ed 9 .753±.016 .735±.013 .727±.016 .719±.024 .686±.010 .696±.015 .755±.023
13 .748±.027 .728±.015 .725±.023 .715±.017 .668±.014 .681±.016 .752±.012

CAL500 45 .626±.017 .446±.024 .563±.027 .581±.018 .531±.025 .516±.023 .620±.014
65 .585±.021 .432±.012 .481±.015 .434±.015 .412±.022 .448±.014 .479±.018

Mediamill 9 .769±.019 .756±.018 .698±.017 .685±.025 .695±.017 .689±.010 .716±.012
13 .728±.014 .699±.024 .687±.014 .685±.019 .674±.018 .686±.013 .702±.021

Table 3: Experimental results of the proposed MILI-PML with six state-of-the-art PML baselines
on four real-world as well as six synthetic PML datasets in terms of coverage. The best result (the
smaller the better) is in bold.

Dataset #CLs (avg.) MILI-PML PAR-VLS DRAMA PML-lc fPML PML-LRS MUSER
YeastBP 30.43 .422±.024 .731±.032 .417±.025 .489±.036 .494±.012 .668±.031 .431±.015
Music-emotion 5.29 .373±.008 .461±.005 .428±.013 .434±.006 .451±.015 .483±.005 .387±.021
Music-style 6.04 .182±.007 .208±.021 .217±.032 .367±.013 .238±.019 .279±.007 .216±.006
MIRFlickr 3.35 .208±.005 .263±.007 .289±.010 .248±.008 .267±.025 .287±.002 .233±.016

Enron 7 .281±.022 .397±.007 .394±.012 .431±.004 .421±.017 .415±.021 .314±.033
11 .293±.014 .416±.026 .415±.015 .446±.022 .426±.018 .417±.017 .323±.024

Corel5k 7 .225±.017 .415±.070 .439±.052 .361±.011 .342±.017 .293±.015 .238±.014
11 .275±.027 .463±.026 .451±.025 .373±.014 .338±.023 .372±.021 .278±.005

Eurlex-sm 7 .152±.003 .162±.014 .171±.007 .358±.017 .363±.012 .183±.006 .174±.005
11 .187±.006 .263±.009 .257±.016 .471±.016 .426±.016 .267±.008 .219±.003

Eurlex-ed 9 .239±.016 .244±.013 .278±.018 .483±.026 .386±.029 .238±.018 .241±.013
13 .246±.017 .279±.025 .277±.013 .492±.018 .412±.024 .247±.010 .245±.012

CAL500 45 .585±.027 .872±.024 .838±.027 .936±.038 .875±.025 .865±.033 .679±.027
65 .593±.027 .953±.012 .917±.016 .955±.014 .881±.019 .878±.016 .712±.012

Mediamill 9 .205±.019 .211±.018 .298±.024 .317±.012 .217±.013 .291±.019 .212±.022
13 .215±.021 .321±.027 .362±.015 .376±.007 .266±.017 .322±.021 .257±.010

• PARTICLE [14]: An identifying method, which tries to extract credible labels with high-
confidence values by label propagation procedure, and then trains classifiers by applying
two exisiting multi-label models, which are PAR-VLS and PAR-MAP for short. Here, we
choose PAR-VLS for comparison.

• DRAMA [15]: An identifying method, which tries to get the reliable labels with high-
confidence by considering the structure of feature space, and then induces a gradient
boosting model to train classifiers.

• PML-fp and PML-lc [1]: An embedding method, which attempts to figure out the label
confidence by minimizing the ranking loss and exploiting data structure information with
two models: one considering feature prototype (i.e., PML-fp) and the other considering
label correlations (i.e., PML-lc). Here, we choose PML-lc for comparison.

• fPML [16]: An embedding method, which figures out the label confidence by adopting a
feature and label coherent matrix to factorize the original matrix for prediction.

• PML-LRS [17]: An embedding method, which utilizes low-rank and sparse decomposition to
capture the ground-truth label matrix and irrelevant label matrix from the observed candidate
label matrix.

• MUSER [18]: An embedding method, which considers redundant labels together with noisy
features and figures out the label confidence via optimizing correlation matrix.
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For all PML baselines, we set the trade-off parameters as suggested in the original papers. Details
can be found in the supplementary materials.

For MILI-PML, we employ the simple Binary Relevance [20, 21] as the predictive classifier Q in
the MILI-PML model. In addition, LIBLINEAR [22] with L2-regularized square hinge loss is also
employed to train the binary classifiers in Binary Relevance (BR).

Evaluation metrics: We employ five widely-used multi-label metrics including ranking loss, hamming
loss, one error, coverage, and average precision to evaluate the performance of all methods. More
details about these evaluation metrics can be found in [23, 24, 25]. Besides, on each dataset, five-fold
cross validation is performed where the mean metric value as well as standard deviation are recorded
for each comparing method.

6.3 Experimental Results

Due to the page limit, we only report the performance comparisons of the proposed MILI-PML with
six state-of-the-art PML methods on four real-world datasets and six synthetic datasets in terms of
ranking loss, average precision and coverage in Tables 1, 2, 3 respectively. Besides, similar results
can be observed in other metrics and we report the detailed results of hamming loss and one error
metrics in the supplementary materials. From the overall results, we make the following observations:

• The proposed MILI-PML consistently outperforms all baselines on most real-world datasets,
like Music-emotion, Music-style and MIRFlickr datasets, while is comparable to the best
performance on YeastBP dataset. For example, MILI-PML is comparable to MUSER in
terms of ranking loss and average precision, while comparable to DRAMA in terms of
coverage.

• MILI-PML is superior to all baselines on most synthetic datasets, like Enron, Corel5k,
Eurlex-sm, CAL500 and Mediamill while is comparable to the best performance on Eurlex-
ed dataset. Specifically, MILI-PML is comparable to MUSER in terms of ranking loss and
average precision, comparable to PML-LRS and MUSER in terms of coverage.

• It is obvious to observe that MILI-PML performs the best on most real-world as well as
most synthetic datasets, except on YeastBP and Eurlex-ed. This is maybe because the
number of feature and class combinations is relatively large compared with the number of
instances in YeastBP and Eurlex-ed datasets, which increases the difficulty for identifying
the ground-truth labels.

• The overall results demonstrate the superiorities of MILI-PML, which mainly owes to the
natural consideration of the relevancy between features and labels as well as the overall
redundancy of including an identified label into the ground-truth label set in the derived MILI-
PML. This aligns with our theoretical analysis that MILI-PML is ε-identifiable and capable
of identifying the ground-truth labels correctly on the given conditions and assumptions of
the data distribution.

7 Conclusion

This paper provides a new insight into partial multi-label learning problem from the perspective of
mutual information. Instead of using hand-made heuristic modeling, we propose a novel method
called MILI-PML, which is derived from a clear probabilistic formulation directly and can be easily
interpreted theoretically by information theory as a result of naturally incorporating the relevancy
considerations. Moreover, we present two fundamental issues about the assumption of existing PML
research. To answer the first question “CAN", we define an ε-identifiable score function to evaluate
whether a PML method is workable for identifying the ground-truth labels precisely. Furthermore,
we demonstrate that the derived MILI-PML is ε-identifiable under certain assumptions and conditions
theoretically. To answer the second question “HOW", we design an efficient optimization algorithm
called MILI Algorithm to optimize the objective function. Extensive experiments are conducted
on six synthetic PML datasets and four real-world PML datasets. The experimental results clearly
demonstrate that the proposed MILI-PML consistently outperforms the state-of-the-art methods
in terms of five widely-used multi-label metrics including ranking loss, hamming loss, one error,
coverage, and average precision.
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