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ABSTRACT

Equalized odds, as a popular notion of algorithmic fairness, aims to ensure that sen-
sitive variables, such as race and gender, do not unfairly influence the algorithm’s
prediction when conditioning on the true outcome. Despite rapid advancements,
current research primarily focuses on equalized odds violations caused by a single
sensitive attribute, leaving the challenge of simultaneously accounting for multiple
attributes largely unaddressed. We bridge this gap by introducing an in-processing
fairness-aware learning approach, FairICP, which integrates adversarial learning
with a novel inverse conditional permutation scheme. FairICP offers a theoretically
justified, flexible, and efficient scheme to promote equalized odds under fairness
conditions described by complex and multi-dimensional sensitive attributes. The
efficacy and adaptability of our method are demonstrated through both simulation
studies and empirical analyses of real-world datasets.

1 INTRODUCTION

Machine learning models are increasingly important in aiding decision-making across various appli-
cations. Ensuring fairness in these models—preventing discrimination against minorities or other
protected groups—remains a significant challenge (Mehrabi et al., 2021). To address different needs,
several fairness metrics have been developed in the literature (Mehrabi et al., 2021; Castelnovo et al.,
2022). Our work focuses on the equalized odds criterion (Hardt et al., 2016), defined as

Ŷ ⊥⊥ A | Y. (1)

Here, Y is the true outcome, A is the sensitive attribute(s) that we care to protect (e.g. gender/race/age),
and Ŷ is the prediction given by any model.

While fairness-aware machine learning has progressed rapidly, most existing algorithms targeting
equalized odds can only handle a single protected attribute. However, real-world scenarios can
involve biases arising from multiple sensitive attributes simultaneously. For example, in healthcare
settings, patients’ outcomes might be influenced by a combination of race, gender, and age (Ghassemi
et al., 2021; Yang et al., 2022). Furthermore, ignoring the correlation between multiple sensitive
attributes can lead to fairness gerrymandering (Kearns et al., 2018), where a model appears fair when
considering each attribute separately but exhibits unfairness when attributes are considered jointly.

To address these limitations, we introduce FairICP, a flexible fairness-aware learning scheme that
encourages equalized odds for complex sensitive attributes. Our method leverages a novel Inverse
Conditional Permutation (ICP) strategy to generate conditionally permuted copies Ã of sensitive
attributes A given Y without the need to estimate the multi-dimensional conditional density and
encourages equalized odds via enforcing similarity between (Ŷ , A, Y ) and (Ŷ , Ã, Y ). An illustration
of the FairICP framework is provided in Figure 1.

Our contributions can be summarized as follows:

• Inverse Conditional Permutation (ICP): We introduce the ICP strategy to efficiently generate Ã,
as conditional permutations of A given Y , without estimating the multi-dimensional conditional
density of A|Y . This makes our method scalable and applicable to complex sensitive attributes.

• Theoretical Guarantees: We theoretically demonstrate that the equalized odds condition holds
asymptotically for (Ŷ , Ã, Y ) when the Ã is generated by ICP. By combining ICP with adversarial
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training, we develop FairICP, a fairness-aware learning method that we empirically show to be
effective and flexible in both regression and classification tasks.

• Empirical Validation: Through simulations and real-world data experiments, we demonstrate
FairICP’s flexibility and its superior fairness-accuracy trade-off compared to existing methods
targeting equalized odds. Our results also confirm that ICP is an effective sensitive attribute
re-sampling technique for achieving equalized odds with increased dimensions.

Sensitive 
Attributes

Input Data

...

Inverse Conditional
Permutation

Predictor

Prediction

"Fair data" satisfying Original data

Discriminator

Ethnicity

Sex

Financial
Status

...

Figure 1: Illustration of the FairICP framework. A, X , and Y denote the sensitive attributes, features, and
labels. We generate Ã as permuted copies ("fake" copies) of A that asymptotically satisfy equalized odds, using
a novel inverse conditional permutation (ICP) strategy, and construct a fairness-aware learning method through
regularizing the distribution of (Ŷ , A, Y ) toward the distribution of (Ŷ , Ã, Y ).

Background and related work Fairness in machine learning has emerged as a critical area of
research, with various notions and approaches developed to address potential biases in algorithmic
decision-making. These fairness concepts can be broadly categorized into three main types: (1) group
fairness (Hardt et al., 2016), which aims to ensure equal treatment across different demographic
groups; (2) individual fairness (Dwork et al., 2012), focusing on similar predictions for similar
individuals; and (3) causality-based fairness (Kusner et al., 2017), which considers fairness in
counterfactual scenarios. Given a fairness condition, existing fair ML methods for encouraging it
can be classified into three approaches: pre-processing (Zemel et al., 2013; Feldman et al., 2015),
in-processing (Agarwal et al., 2018; Zhang et al., 2018), and post-processing (Hardt et al., 2016).

Our work focuses on in-processing learning for equalized odds fairness (Hardt et al., 2016), a group
fairness concept. Equalized odds requires that predictions are independent of sensitive attributes
conditional on the true outcome, unlike demographic parity (Zemel et al., 2013), which demands un-
conditional independence. The conditional nature of equalized odds makes it particularly challenging
when dealing with complex sensitive attributes that may be multidimensional and span categorical,
continuous, or mixed types. While several studies have successfully addressed demographic parity un-
der multiple sensitive attributes (Kearns et al., 2018; Creager et al., 2019), existing work on equalized
odds primarily considers one-dimensional sensitive attributes, with no prior work designed to handle
multi-dimensional continuous or mixed-type sensitive attributes. For example, Mary et al. (2019)
introduces a penalty term using the Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient
to accommodate for a continuous sensitive attribute in both regression and classification setting.
Another line of in-processing algorithms for equalized odds uses adversarial training for single
sensitive attribute (Zhang et al., 2018; Louppe et al., 2017; Romano et al., 2020). Our proposed
FairICP is the first in-processing framework specifically designed for equalized odds learning with
complex sensitive attributes.

Selected review on metrics evaluating equalized odds violation Reliable evaluation of equalized
odds violations is crucial for comparing equalized odds learning methods and assessing model
performance in real-world applications. While numerous methods have been proposed to test
for parametric or non-parametric conditional independence, measuring the degree of conditional
dependence for multi-dimensional variables remains challenging. We note recent progress in two
directions. One direction is the resampling-based approaches (Sen et al., 2017; Berrett et al., 2020;
Tansey et al., 2022). These methods allow flexible and adaptive construction of test statistics for
comparisons. However, their accuracy heavily depends on generating accurate samples from the
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conditional distribution of A|Y , which can be difficult to verify in real-world applications with
unknown A|Y . Efforts have also been made towards direct conditional dependence measures for
multi-dimensional variables. Notably, Azadkia & Chatterjee (2021) proposed CODEC, a non-
parametric, tuning-free conditional dependence measure. This was later generalized into the Kernel
Partial Correlation (KPC) (Huang et al., 2022):
Definition 1.1. Kernel Partial Correlation (KPC) coefficient ρ2 ≡ ρ2(U, V |W ) is defined as:

ρ2(U, V |W ) :=
E
[
MMD2

(
PU |WV , PU |W

)]
E
[
MMD2

(
δU , PU |W

)] ,

where (U, V,W ) ∼ P and P is supported on a subset of some topological space U ×V×W , MMD is
the maximum mean discrepancy - a distance metric between two probability distributions depending
on the characteristic kernel k(·, ·) and δU denotes the Dirac measure at U .
Under mild regularity conditions (see details in Huang et al. (2022)), ρ2 satisfies several good
properties for any joint distribution of (U, V,W ) in Definition 1.1: (1) ρ2 ∈ [0, 1]; (2) ρ2 = 0 if and
only if U ⊥⊥ V |W ; (3) ρ2 = 1 if and only if U is a measurable function of V given W . A consistent
estimator ρ̂2 calculated by geometric graph-based methods (Section 3 in Huang et al. (2022)) is also
provided in R Package KPC (Huang, 2022). With KPC, we can rigorously quantify the violation of
equalized odds by calculating ρ̂2(Ŷ , A | Y ), where A can take arbitrary form and response Y can be
continuous (regression) or categorical (classification).

2 METHOD

We begin by reviewing how to conduct fairness-aware learning via sensitive attribute resampling to
encourage equalized odds and its challenges with complex attributes. We then introduce our proposed
method, FairICP, which leverages the simpler estimation of Y |A to perform resampling, providing
theoretical guarantees and practical algorithms. All proofs in this section are deferred to Appendix A.

Let (Xi, Ai, Yi) for i = 1, . . . , ntr be i.i.d. generated triples of (features, sensitive attributes,
response). Let fθf (.) be a prediction function with model parameter θf . While fθf (.) can be any
differentiable prediction function, we consider it as a neural network throughout this work. Let
Ŷ = fθf (X) be the prediction for Y given X . For a regression problem, Ŷ is the predicted value
of the continuous response Y ; for a classification problem, the last layer of fθf (.) is a softmax
layer and Ŷ is the predicted probability vector for being in each class. We also denote X =

(X1, . . . , Xntr
) ,A = (A1, . . . , Antr

), Y = (Y1, . . . , Yntr
) and Ŷ = (Ŷ1, . . . , Ŷntr

).

2.1 BASELINE: FAIRNESS-AWARE LEARNING VIA SENSITIVE ATTRIBUTE RESAMPLING

We begin by presenting the baseline model developed by Romano et al. (2020), Fair Dummies
Learning (FDL), whose high-level model architecture is the same as FairICP. We then discuss the
challenge it may face when dealing with complex sensitive attributes.

The key idea of FDL is to construct a synthetic version (a "fake" copy) of the original sensitive
attribute as Ã based on conditional randomization (Candès et al., 2018), drawing independent
samples Ãi from Q(·|Yi) for i = 1, . . . , ntr where the Q(·|y) is the conditional distribution of A
given Y = y. Since the re-sampled Ã is generated independently without looking at the features X,
and consequently, the predicted responses Ŷ, Ã satisfies equalized odds: Ŷ ⊥⊥ Ã | Y . Given the
resampled sensitive attribute, FDL uses the fact that

A satisfies equalized odd if and only if (Ŷ , A, Y )
d
= (Ŷ , Ã, Y ),

and promotes equalized odds by enforcing the similarity between joint distributions of (Ŷ , A, Y )

and (Ŷ , Ã, Y ) via an adversarial learning component(Goodfellow et al., 2014), where the model
iteratively learn how to separate these two distributions and optimize a fairness-regularized prediction
loss. More specifically, define the negative log-likelihood loss, the discriminator loss, and value
function respectively:

Lf (θf ) = EXY

[
− log pθf (Y | X)

]
, (2)

Ld (θf , θd) = EŶ AY [− logDθd(Ŷ , A, Y )] + EŶ ÃY [− log(1−Dθd(Ŷ , Ã, Y ))], (3)
Vµ(θf , θd) = (1− µ)Lf (θf )− µLd(θf , θd), (4)
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where Dθd(.) is the classifier parameterized by θd which separates the distribution of (Ŷ , A, Y ) and
the distribution of (Ŷ, Ã,Y), and µ ∈ [0, 1] is a tuning parameter that controls the prediction-fairness
trade-off. Then, FDL learns θf , θd by finding the minimax solution

θ̂f , θ̂d = argmin
θf

max
θd

Vµ(θf , θd). (5)

Challenges with complex sensitive attributes FDL generates Ã through conditional randomiza-
tion and resamples it from the (estimated) conditional distribution Q(A | Y ). However, FDL was
proposed primarily for the scenario with a single continuous sensitive attribute, as the estimation
of Q(A | Y ) is challenging when the dimension of A increases due to the curse of dimensionality
(Scott, 1991). For categorical variables, combining categories to model dependencies leads to an ex-
ponentially decreasing amount of data in each category, making estimation unreliable. Also, when A
includes mixed-type variables, modeling the joint conditional distribution q(A|Y ) becomes complex.
Therefore, an approach that allows A to have flexible types and scales well with its dimensionality is
crucial for promoting improved equalized odds in many social and medical applications.

2.2 FAIRICP: FAIRNESS-AWARE LEARNING VIA INVERSE CONDITIONAL PERMUTATION

To circumvent the challenge in learning the conditional density of A given Y , we propose the Inverse
Conditional Permutation (ICP) sampling scheme, which leverages Conditional Permutation (CP)
(Berrett et al., 2020) but pivots to estimate Y given A, to generate a permuted version of Ã which is
guaranteed to satisfy the equalized odds defined in eq. (1) asymptotically.
Recap of CP and its application in encouraging equalized odds. FDL constructs synthetic and
resampled sensitive attributes based on conditional randomization. CP offers a natural alternative
approach to constructing the synthetic sensitive attribute Ã (Berrett et al., 2020). Here, we provide
a high-level recap of the CP sampling and demonstrate how we can apply it to generate synthetic
sensitive attributes Ã. Let Sn denote the set of permutations on the indices {1, . . . , n}. Given
any vector x = (x1, . . . , xn) and any permutation π ∈ Sn, define xπ =

(
xπ(1), . . . , xπ(n)

)
as the

permuted version of x with its entries reordered according to the permutation π. Instead of drawing a
permutation Π uniformly at random, CP assigns unequal sampling probability to permutations based
on the conditional probability of observing AΠ given Y :

P {Π = π | A,Y} =
qn (Aπ | Y)∑

π′∈Sn
qn (Aπ′ | Y)

. (6)

Here, q(· | y) is the density of the distribution Q(· | y) (i.e., q(· | y) is the conditional density of A
given Y = y ). We write qn(· | Y) :=

∏n
i=1 q (· | Yi) to denote the product density. This leads to the

synthetic Ã = AΠ, which, intuitively, could achieve a similar purpose as the ones from conditional
randomization for encouraging equalized odds when utilized in constructing the loss eq. (5).

Compared to the conditional randomization strategy in FDL, one strength of CP is that its generated
synthetic sensitive attribute Ã is guaranteed to retain the marginal distribution of the actual sensitive
attribute A regardless of the estimation quality of q(·|y). However, it still relies strongly on the
estimation of q(·|y) for its permutation quality and, thus, does not fully alleviate the issue arising
from multivariate density estimation as we mentioned earlier.

ICP circumvents density estimation of A | Y . To circumvent this challenge associated with
estimating the multi-dimensional conditional density q(·|y) which can be further complicated by
mixed sensitive attribute types, we propose the indirect ICP sampling strategy. ICP scales better with
the dimensionality of A and adapts easily to various data types.

ICP begins with the observation that the distribution of (AΠ,Y) is identical as the distribution of
(A,YΠ−1). Hence, instead of determining Π based on the conditional law of A given Y , we first
consider the conditional permutation of Y given A , which can be estimated conveniently using
standard or generalized regression techniques, as Y is typically one-dimensional. We then generate
Π by applying an inverse operator to the distribution of these permutations. Specifically, we generate
Ã = AΠ according to the following probabilities:

P {Π = π | A,Y} =
qn (Yπ−1 | A)∑

π′∈Sn
qn (Yπ′−1 | A)

. (7)

We adapt the parallelized pairwise sampler developed for the vanilla CP to efficiently generate
ICP samples (see Appendix B) and show that the equalized odds condition Ŷ ⊥⊥ Ã | Y holds
asymptotically when Ã is generated by ICP.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 2.1. Let (X,A,Y) be i.i.d observations of sample size n, S(A) denote the unordered set
of rows in A, and p be the dimension of A. Let Ã be sampled via ICP based on eq. (7). Then,

(1) If Ŷ ⊥⊥ A | Y , we have (Ŷ,A,Y)
d
=(Ŷ, Ã,Y).

(2) If (Ŷ,A,Y)
d
=(Ŷ, Ã,Y), we have Ŷ ⊥⊥ A | (Y and S(A)). Further, when log p

n → 0, the
asymptotic equalized odds condition holds: for any constant vectors t1 and t2,

P
[
Ŷ ≤ t1, A ≤ t2|Y

]
− P

[
Ŷ ≤ t1|Y

]
P [A ≤ t2|Y ]

n→∞→ 0. (8)

Remark 2.2. It is important to clarify the distinction between sampling Ã directly from Q(·|Y )

and the Ã obtained from CP or ICP. For the former, Ã depends only on the observed responses by
design, whereas Ã from permutation-based sampling depends on both the observed responses Y and
sensitive attributes A. Hence, the equivalence between (Ŷ,A,Y)

d
=(Ŷ, Ã,Y) and Ŷ ⊥⊥ A | Y

may not hold for permuted Ã even when the true conditional distributions are available to us. To see
this, imagine we only have one observation, then we always have (Ŷ,A,Y) = (Ŷ, Ã,Y) using
permuted Ã regardless of what the dependence structure looks like. Note this invalidity of using
permutation-based Ã in the finite sample setting is not only true for equalized odds but also true for
demographic parity, the unconditional fairness concept, and this aspect of the permutation-based
fairness-aware learning is rarely discussed in the literature.

Remark 2.3. Theorem 2.1 establishes the asymptotic equivalence between (Ŷ,A,Y)
d
=(Ŷ, Ã,Y)

and Ŷ ⊥⊥ A | Y as n → ∞, with the only requirement being log p
n → 0. It shows that ICP pays

an almost negligible price and offers a fast-rate asymptotic equivalence but circumvents the density
estimation of A | Y .

FairICP encourages equalized odds with complex sensitive attributes We propose FairICP, an
adversarial learning procedure following the same formulation of the loss function shown previously
in the discussion for FDL (Section 2.1) but utilizing the permuted sensitive attributes Ã using ICP,
i.e., eq. (7), as opposed to the one from direct resampling using estimated q(A|y). Let L̂f (θf ) and
L̂d(θf , θd) be the empirical realizations of the losses Lf (θf ) and Ld(θf , θd) defined in (2) and (3)
respectively. Algorithm 1 presents the details. We justify the objective function used in Algorithm 1
by examining its population-level formulation given in eq. (5). When this objective achieves its
theoretical minimum using ICP-generated fake copies Ã, the resulting solution simultaneously
optimizes prediction accuracy and ensures asymptotic fairness.

Theorem 2.4. If there exists a minimax solution (θ̂f , θ̂d) for Vµ (., .) defined in eq. (5) such that
Vµ(θ̂f , θ̂r) = (1 − µ)H(Y | X) − µ log(4), where the fake copies Ã are generated from ICP
and H(Y | X) = EXY [− log p(Y | X)] denotes the conditional entropy, then fθ̂f (·) achieves the

optimal prediction loss Lf

(
θ̂f

)
= H(Y | X) and satisfies the asymptotic equalized odds condition

given in eq. (8)..
In practice, the assumption of the existence of an optimal and fair predictor in terms of equalized
odds may not hold (Tang & Zhang, 2022). In this situation, setting µ to a large value will preferably
enforce f to satisfy equalized odds while setting µ close to 0 will push f to be optimal: an increase
in accuracy would often be accompanied by a decrease in fairness and vice-versa.

ICP enables equalized odds testing with complex sensitive attributes As a by-product of ICP,
we can now also conduct more reliable testing of equalized odds violation given complex sensitive
attributes. Following the testing procedure proposed in Holdout Randomization Test (Tansey et al.,
2022) and adopted by Romano et al. (2020) which uses a resampled version of Ã from the conditional
distribution of A|Y , we can utilize the conditionally permuted copies to test if equalized odds are
violated after model training. Algorithm 2 provides the detailed implementation of this hypothesis
testing procedure: we repeatedly generate synthetic copies Ã via ICP and compare T (Ŷ,A,Y) to
those using the synthetic sensitive attributes T (Ŷ, Ã,Y) for some suitable test statistic T . According
to Theorem 2.1, (Ŷ, Ã,Y) will have the same distribution as (Ŷ,A,Y) if the prediction Ŷ satisfies
equalized odds, consequently, the constructed p-values from comparing T (Ŷ,A,Y) and T (Ŷ, Ã,Y)
are valid for controlling type-I errors.
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Algorithm 1 FairICP: Fairness-aware learning via inverse conditional permutation
Input: Data (X,A,Y) = {(Xi, Ai, Yi)}i∈Itr

Parameters: penalty weight µ, step size α, number of gradient steps Ng , and iterations T .
Output: predictive model f̂θ̂f (·) and discriminator D̂θ̂d

(·).
1: for t = 1, . . . , T do
2: Generate permuted copy Ã by eq. (7) using ICP as implemented in Appendix B.
3: Update the discriminator parameters θd by repeating the following for Ng gradient steps:

θd ← θd − α∇θdL̂d(θf , θd).

4: Update the predictive model parameters θf by repeating the following for Ng gradient steps:

θf ← θf − α∇θf

[
(1− µ)L̂f (θf )− µL̂d(θf , θd)

]
.

5: end for
Output: Predictive model f̂θ̂f (·).

Proposition 2.5. Suppose the test observations (Xte,Ate,Yte) = {(Xi, Yi, Ai) for 1 ≤ i ≤ nte}
are i.i.d. and Ŷte = {f̂(Xi) for 1 ≤ i ≤ nte} for a learned model f̂ independent of the test data.
If H0 : Ŷte ⊥⊥ Ate | Yte holds, then the output p-value pv of Algorithm 2 is valid, satisfying
P{pv ≤ α} ≤ α for any desired Type I error rate α ∈ [0, 1].

Algorithm 2 Hypothesis Test for Equalized Odds with ICP

Input: Data (Xte,Ate,Yte) = {(Ŷi, Ai, Yi)}, 1 ≤ i ≤ ntest

Parameter: the number of synthetic copies K.
1: Compute the test statistic T on the test set: t∗ = T (Ŷte,Ate,Yte).
2: for k = 1, . . . ,K do
3: Generate permuted copy Ãk of Ate using ICP.
4: Compute the test statistic T using fake copy on the test set: t(k) = T (Ŷte, Ãk,Y

te).
5: end for
6: Compute the p-value: pv = 1

K+1

(
1 +

∑K
k=1 I

[
t∗ ≥ t(k)

])
.

Output: A p-value pv for the hypothesis that equalized odds equation 1 holds.

2.3 DENSITY ESTIMATION

The estimation of conditional densities is a crucial part of both our method and previous work (Berrett
et al., 2020; Romano et al., 2020; Mary et al., 2019; Louppe et al., 2017). However, unlike the
previous work which requires the estimation of A | Y , our proposal looks into the easier inverse
relationship of Y | A. To provide more theoretical insights into how the quality of density estimation
affects ICP and CP differently, we have additional analysis in Appendix C.

In practice, ICP can easily leverage the state-of-the-art density estimator and is less disturbed by the
increased complexity in A, due to either dimension or data types. Unless otherwise specified, in this
manuscript, we applied Masked Autoregressive Flow (MAF) (Papamakarios et al., 2017) to estimate
the conditional density of Y |A when Y is continuous and A1, . . . , Ak can take arbitrary data types
(discrete or continuous) 1. In a classification scenario when Y ∈ {0, 1, . . . , L}, one can always fit a
classifier to model Y |A. To this end, FairICP is more feasible to handle complex sensitive attributes
and is suitable for both regression and classification tasks.

1In Papamakarios et al. (2017), to estimate p(U = u | V = v), U is assumed to be continuous while V can
take arbitrary form, but there are no requirements about the dimensionality of U and V
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3 EXPERIMENTS

In this section, we conduct numerical experiments to examine the effectiveness of the proposed
method on both synthetic datasets and real-world datasets. All the implementation details are included
in Appendix D.

3.1 SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate the performance of our proposed method
FairICP, compared to existing methods. The simulations allow us to: (1) assess the quality of the
conditional permutations generated by ICP; (2) understand how FairICP can utilize these permutations
to produce a better accuracy-fairness tradeoff when dealing with complex sensitive attributes.

3.1.1 THE QUALITY OF CONDITIONAL PERMUTATIONS
First, we investigate whether ICP can generate better conditional permutations than the vanilla CP
by comparing them to the oracle permutations (generated using the ground truth in the simulation
setting). We measure the Total Variation (TV) distance between the distributions of permutations
generated by ICP/CP and those of the ground truth on a restricted subset of permutations.

Simulation Setup: We consider the following data-generating process: 1) Let A =
(U1, . . . , UK0

, UK0+1, . . . , UK0+K)Θ1/2, where Uj are independently generated from a mixed
Gamma distribution 1

2Γ(1, 1) +
1
2Γ(1, 10), and Θ is a randomly generated covariance matrix with

Θ
1
2 eigenvalues equal-spaced in [1, 5]; 2) Generate Y ∼ N

(√
ω
∑K0

j=1 Aj , σ
2 + (1− ω) ∗K0

)
.

Here, Y is influenced only by the first K0 components of A, and is independent of the remaining K
components. The parameter ω ∈ [0, 1] controls the dependence on A.

We set K0 ∈ {1, 5, 10}, K ∈ {0, 5, 10, 20, 50, 100}, ω = 0.6, and the sample size for density
estimation and evaluating the conditional permutation distribution to both be 200. Since the ground
truth dependence structure between the mean of A and Y is linear, we consider density estimation
q̂Y |A based on regularized linear fit when comparing CP and ICP, where we assume q(y|A) or q(A|y)
to be Gaussian. We estimate the conditional mean for ICP using LASSO regression (or OLS when
K0 = 1 and K = 0) with conditional variance based on empirical residuals, and we estimate qA|Y
for CP via graphical LASSO (or using empirical covariance when K0 = 1 and K = 0). We compare
permutations generated by ICP/CP using estimated densities and those using the true density, which
is known in simulation up to a normalization constant.

Evaluation on the Quality of Permutations Due to the large permutation space, the calculation of
the actual total variation distance is infeasible. To circumvent this challenge, we consider a restricted
TV distance where we restrict the permutation space to swapping actions. Concretely, we consider the
TV distance restricted to permutations π that swap i and j for i ̸= j, i, j = 1, . . . , n and the original
order, and compare ICP/CP to the oracle conditional permutations on such n(n−1)

2 permutations only.

K0=1 K0 = 5 K0 = 10

0 5 10 20 50 100 0 5 10 20 50 100 0 5 10 20 50 100
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Figure 2: Restricted TV distances (log 10 transformed) between permutations generated by ICP/CP using
estimated densities and the oracle permutations generated by true density. Each graph contains results over 20
independent trials as the noise level K increases, with K0 = 1, 5, 10 respectively.

Results Figure 2 shows restricted TV distance between permutations generated by CP/ICP and
the oracle conditional permutations using the true densities, averaged over 20 independent trials.
We observe that the restricted TV distances between permutations by ICP and the oracle are much
lower compared to those from CP with increased sensitive attribute dimensions (for both unrelated
sensitive attribute dimension K and the relevant sensitive attribute dimension K0), with their results
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comparable at one-dimensional settings. These results confirm our expectation that ICP can provide
higher quality sampling by considering a less challenging density estimation task (see Appendix C.1
for more discussions). When using the default MAF density estimation, we observe a similar trend
with ICP showing consistently better sampling quality compared to CP (Appendix C.2).

3.2 COMPARATIVE PERFORMANCE OF FAIRICP AND BASELINE METHODS

Next, we compare the performance of models trained using different resampling methods. Specifically,
we compare four models: (1) FairICP (Algorithm 1 with estimated density q̂(Y |A)); (3) Oracle
(Algorithm 1 with true density q(Y |A)); (3) FDL (Romano et al., 2020). Apart from the baseline
FDL, we also consider another similar but a new model in our simulation (4) FairCP (Algorithm 1
who are almost identical to FairICP with the only difference being permutations generated by CP
using estimated density q̂(A|Y ), aiming to investigate if the gain of ICP over CP in generating
accurate permutation actually affect the downstream predictive model training. With the ground truth,
the synthetic experiments are where we can reliably evaluate the violation of the equalized odds
condition of different methods.

Simulation Setup We conduct experiments under two simulation settings where A influence Y
through X , which is the most typical mechanism in the area of fair machine learning (Kusner et al.,
2017; Tang & Zhang, 2022; Ghassami et al., 2018).

1. Simulation 1: The response Y depends on two set of features X∗ ∈ RK and X ′ ∈ RK :

Y ∼ N
(
ΣK

k=1X
∗
k +ΣK

k=1X
′
k, σ

2
)
, X∗

1:K ∼ N (
√
wA1:K , (1− w)IK), X ′

1:K ∼ N (0K , IK).

2. Simulation 2: The response Y depends on two features X∗ ∈ R and X ′ ∈ R:

Y ∼ N
(
X∗ +X ′, σ2

)
, X∗ ∼ N (

√
wA1, 1− w), X ′ ∼ N (0, 1).

In both settings, A are generated independently from a mixture of Gamma distributions: Ak ∼
1
2Γ(1, 1) +

1
2Γ(1, 10), where k = 1, . . . ,K for Simulation 1 (where all the A1:K affects Y ) and

k = 1, . . . ,K + 1 for Simulation 2 (where only A1 affects Y , with the rest serving as noises to
increase the difficulty of density estimation). We set K ∈ {1, 5, 10}, ω ∈ {0.6, 0.9} to investigate
different levels of dependence on A, and the sample size for training/test data to be 500/400. For all
models, we implement the predictor f as linear model and discriminator d as neural networks; for
density estimation part, we utilize MAF (Papamakarios et al., 2017) for all methods except the oracle
(which uses the true density).

Evaluation on the Accuracy-Fairness Tradeoff For the evaluation of equalized odds, we consider
the empirical KPC = ρ̂2(Ŷ , A | Y ). Additionally, we examine if the KPC measure is suitable for
comparing the degree of equalize odds violation for different models, we also compared the results
the trade-off curve using KPC as a measure of equalized odds violation to that based on the power
on rejecting the hypothesis test outlined by Algorithm 2 using the true conditional density of Y |A,
with the test statistics T = KPC and targeted type I error rate set at α = 0.05.1 The greater ρ̂2 or
rejection power indicates stronger conditional dependence between A and Ŷ given Y .

Results Figure 3 show the trade-off curves between prediction loss and violation of equalized
odds measured by KPC and its associated fairness testing power by Algorithm 2 with T = KPC
under Simulation 1 and Simulation 2 respectively, with K ∈ {1, 5, 10} under the high-dependence
scenario w = 0.9 (Similar results with low dependence on A are shown in Appendix D.1). We train
the predictor f as linear models and the discriminator d as neural networks with different penalty
parameters µ ∈ [0, 1]. The results are based on 100 independent runs with a sample size of 500 for
the training set and 400 for the test set.

Figure 3A shows the results from Simulation 1. All approaches reduce to training a plain regression
model for prediction when µ = 0, resulting in low prediction loss but a severe violation of fairness
(evidenced by large KPC and statistical power); as µ increases, models pay more attention to fairness
(lower KPC and power) by sacrificing more prediction loss. FairICP performs very closely to the

1Note that, in Simulation 2 only A1 influences the Y , so the test will be based on ρ̂2(Ŷ , A1 | Y ) to exclude
the effects of noise (though the training is based on A1:K+1 for all methods to evaluate the performance under
noise).
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Figure 3: Prediction loss and violation of equalized odds in simulation over 100 independent runs under
Simulation 1/Simulation 2 and w = 0.9. For each setting, conditional dependence measure KPC and statistical
power P{p-value < 0.05} are shown in the left column and right column respectively. From top to bottom
shows the results on different choices of sensitive attribute dimension K. The X-axis represents the metrics of
equalized odds and the Y-axis is the prediction loss. The Pareto front for each algorithm is obtained by varying
the fairness trade-off parameter µ.

oracle model while outperforming FDL as the dimension of K gets larger, which fits our expectation
and follows from the increased difficulty of estimating the conditional density of A|Y . Figure 3B
shows the results from Simulation 2 and delivers a similar message as Figure 3A. The gaps between
FairICP and FDL are also wider compared to the results in Figure 3 as K increases, which echos less
percent of information about A needed for estimating P (Y |A) in Simulation 2.
Remark 3.1. The power measure (Algorithm 2) depends on how the permutation/sampling is con-
ducted in practice. In simulations, we can trust it by utilizing the true conditional density, but its
reliability hinges on the accuracy of density estimation. In contrast, the direct KPC measure is
independent of density estimation.

3.3 REAL-DATA EXPERIMENTS

In this section, we consider several real-world scenarios where we may need to protect multiple
sensitive attributes. For all experiments, the data is repeated divided into a training set (60%) and a
test set (40%) 100 times, with the average results on the test sets reported .
• Communities and Crime Data Set: This dataset contains 1994 samples and 122 features. The

goal is to build a regression model predicting the percentage of violent crimes for US cities based
on neighborhood characteristics while protecting ethnic information. Specifically, we take all three
minority races (African American, Hispanic, Asian, referred to as "3 dim") as sensitive attributes
instead of only one race as done in the previous literature. We keep all the sensitive attributes
used as continuous variables (instead of binarizing them as most previous work did), representing
the percentage of each race. We also consider the case where A only includes one race (African
American, referred to as “1 dim") for better comparisons.

• ACSIncome Dataset: We use the ACSIncome dataset derived from the American Community
Survey (ACS) (Ding et al., 2021). We subsample 100,000 instances with 10 features such as
education, occupation, and marital status. The task is a binary classification to predict whether an
individual’s annual income exceeds $50,000. For sensitive attributes, we consider a mixed-type set:
sex (male, female), race (Black, non-Black), and age (continuous). To the best of our knowledge,
this is the first work exploring fairness with mixed-type sensitive attributes in this context.

• Adult Dataset: The dataset contains census data extracted from the 1994 U.S. Census Bureau
database and consists of 48,842 instances. Each instance represents an individual with attributes
such as age, education level, occupation, and more. The task is to predict whether an individual’s
annual income exceeds $50,000, making it a binary classification problem. We use both sex and
race as sensitive attributes to construct a fair classifier that satisfies the equalized odds criterion.
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Crimes (one race) Crimes (all races) ACS Income Adult COMPAS
Loss (Std) KPC (Power) Loss (Std) KPC (Power) Loss (Std) KPC (Power) Loss (Std) KPC (Power) DEO Loss (Std) KPC (Power) DEO

Baseline (Unfair) 0.340(0.039) 0.130(0.68) 0.340(0.039) 0.259(1.00) 0.212(0.002) 0.067(1.00) 0.155(0.004) 0.020(0.06) 0.418 0.336(0.013) 0.046(0.41) 0.858

FairICP 0.386(0.045) 0.016(0.10) 0.418(0.047) 0.054(0.37) 0.221(0.004) 0.022(0.80) 0.159(0.004) 0.003(0.08) 0.197 0.352(0.023) 0.031(0.20) 0.264
HGR 0.386(0.044) 0.026(0.16) 0.596(0.050) 0.068(0.48) 0.224(0.004) 0.025(0.82) 0.162(0.004) 0.004(0.10) 0.217 0.364(0.033) 0.030(0.20) 0.395

FDL 0.402(0.046) 0.023(0.17) 0.621(0.48) 0.058(0.37) / / / / / / / /

Reduction / / / / / / 0.167(0.003) 0.005(0.12) 0.223 0.373(0.022) 0.028(0.22) 0.247

Table 1: Comparisons of methods encouraging equalized odds across five real data tasks. FairICP (ours),
FDL, HGR, and Reduction are compared, with "Baseline (Unfair)" included as a reference which is the pure
prediction model. Reported are mean prediction loss (standard deviations), equalized odds violations (mean
KPC and testing power P{p-value < 0.05}, DEO for Adult/COMPAS datasets). Fairness trade-off parameters in
equalized-odds models are selected for similar violation levels.

• COMPAS Dataset: This is ProPublica’s COMPAS recidivism dataset that contains 5278 examples
and 11 features (Fabris et al., 2022). The goal is to build a binary classifier to predict recidivism
with two chosen binary sensitive attributes A: race (white vs. non-white) and sex. Of note,
although this dataset has been widely used to evaluate fair ML methods (Fabris et al., 2022),
the intrinsic biases inside this data could still produce a potential mismatch between algorithmic
fairness practices and criminal justice research (Bao et al., 2022).
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Figure 4: Prediction loss and violation of equalized odds (measured by KPC) obtained by different methods on
Crimes/ACS Income/Adult/COMPAS data over 100 random splits. The Pareto front for each algorithm is obtained
by varying the fairness trade-off parameter. Similar results measured by testing power is in Appendix D.3.
Results We compare FairICP with three state-of-the-art baselines encouraging equalized odds with
the predictor f implemented as a neural network (the results for linear regression/classification is
reported in Appendix D.6): FDL (Romano et al., 2020), HGR (Mary et al., 2019) and Exponentiated-
gradient reduction (Agarwal et al., 2018) (referred to as "Reduction"). These baselines are originally
designed for different tasks. Among them, Reduction is designed for binary classification with
categorical sensitive attributes, FDL is advocated for its ability to work with continuous sensitive
attributes, and HGR handles both continuous and categorical sensitive attributes, but how to generalize
it to handle multiple sensitive attributes has not been discussed by the authors 1.

In Table 1, we compare FairICP to these baseline alternatives regarding their predictive performance
after choosing model-specific fairness trade-off parameters to achieve similar levels of equalized
odds violation across methods. Figure 4 shows their full Pareto trade-off curves using KPC (see
Appendix D.3 for trade-off curves based on testing powers , Appendix D.4 for trade-off curves based
on DEO in Adult/COMPAS dataset and Appendix D.5 for running time). We observe that FairICP
provides the best performance across all tasks, with only a higher computational cost compared to
HGR. These results confirm that the effective multi-dimensional resampling scheme ICP enables
FairICP to achieve an improved prediction and equalized odds trade-off compared to existing baselines
in the presence of complex and multi-dimensional sensitive attributes.

4 DISCUSSION

We introduced a flexible fairness-aware learning approach FairICP to achieve equalized odds with
complex sensitive attributes, by combining adversarial learning with a novel inverse conditional
permutation strategy. Theoretical insights into the FairICP were provided, and we further conducted
numerical experiments on both synthetic and real data to demonstrate its efficacy and flexibility. We
also notice the potential computational challenges for complex datasets brought by the adversarial
learning framework (also mentioned in Zhang et al. (2018); Romano et al. (2020)), which should
be more carefully dealt with by implementing more efficient techniques, and we view it as a future
direction of improving FairICP.

1In Mary et al. 2019, since their method can’t be directly adapted to multiple sensitive attributes, we compute
the mean of the HGR coefficients of each attribute as a penalty.
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A PROOFS

Proof of Theorem 2.1. Let S(A) = {A1, . . . , An} denote the row set of the observed n realizations
of sensitive attributes (unordered and duplicates are allowed). Let X, Ŷ := f(X) and Y be the
associated n feature, prediction, and response observations. Recall that, with slight abuse of notations,
we have used q(.) to denote both the density for continuous variable or potentially point mass
for discrete observations. For example, if we have a continuous variable U and discrete variable
V , then, qU,V (u, v) = qU |V (u|v)qV (v) with qV (v) the point mass at v for V and qU |V (u|v) is
the conditional density of U given V = v. Similar convention is adopted for the definition of
P, e.g., P(U = u, V = v) = qU |V (u|v)qV (v), P(U = u, V ≤ v) =

∑
v′≤v qU |V (u|v)qV (v′),

P(U ≤ u, V ≤ v) =
∑

v′≤v

∫
qU |V (u

′|v′)qV (v′)du′.

1. Task 1: Show that (Ŷ,A,Y)
d
= (Ŷ, Ã,Y) given conditional independence Ŷ ⊥⊥ A|Y .

Proof of Task 1. Recall that conditional on S(A) = S for some S = {a1, ..., an}, we have
(Berrett et al., 2020):

P {A = aπ|S(A) = S,Y} =
qnA|Y (aπ | Y)∑

π′∈Sn
qnA|Y (aπ′ | Y)

, (9)

where a = (a1, ..., an) is the stacked a values in S. On the other hand, conditional on S(Ã) = S,
by construction:

P
{
Ã = aπ|S(A) = S,Y

}
=

qnY |A (Yπ−1 | a)∑
π′ qnY |A (Yπ′−1 |a)

=
qnA|Y (aπ | Y)∑
π′ qnA|Y (aπ | Y)

. (10)

where the last equality utilizes the following fact,

qnY |A (Yπ−1 | a)∑
π′ qnY |A (Yπ′−1 |a)

=
qnY,A (Yπ−1 ,a)∑

π′∈Sn
qnY,A (Yπ′−1 ,a)

=
qnY,A (Y,aπ)∑

π′∈Sn
qnY,A (Y,aπ′)

=
qnA|Y (aπ | Y)∑
π′ qnA|Y (aπ′ | Y)

.

Hence, by construction, we must have P
{
Ã = aπ|S(A) = S,Y

}
= P {A = aπ|S(A) =

S,Y} and thus, Ã|Y d
= A|Y:

P(A ≤ t|Y ) = ES|YP(A ≤ t|Y, S(A) = S)] = ES|Y P(Ã ≤ t|Y, S(A) = S)] = P(Ã ≤ t|Y ).

Additionally, under the assumption that A ⊥⊥ Ŷ |Y , Ã ⊥⊥ Ŷ |Y by construction since Ã depends on
the observed data only through Y and S(A). Consequently, we have

qŶ,A,Y(ŷ,a,y) = qŶ|Y(ŷ|y)qA|Y(a|y)qY(y) = qŶ|Y(ŷ|y)qÃ|Y(a|y)qY(y) = qŶ,Ã,Y(ŷ,a,y).

2. Task 2: Show the further conditioned conditional independence Ŷ ⊥⊥ A| (Y and S(A)) given
(Ŷ,A,Y)

d
= (Ŷ, Ã,Y).

Proof of Task 2. When P(Ŷ = ŷ,A = a,Y = y) = P(Ŷ = ŷ, Ã = a,Y = y), we have

P(Ŷ = ŷ,A = a | Y = y, S(A) = S) (11)

= P(Ŷ = ŷ, Ã = a | Y = y, S(Ã) = S)

(b1)
= P(Ŷ = ŷ | Y = y, S(A) = S)P(Ã = a | Y = y, S(A) = S)

(b2)
= P(Ŷ = ŷ | Y = y, S(A) = S)P(A = a | Y = y, S(A) = S) (12)

Here, step (b1) holds since Ã depends only on Y and S(Ã) and (b2) holds due to the distributional
equivalence between Ã and A after the conditioning.
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3. Task 3: Show the asymptotic equalized odds given (Ŷ,A,Y)
d
= (Ŷ, Ã,Y).

Proof of Task 3. Let t1 and t2 be constant vectors of the same dimensions as Ŷ and A, and t3 be a
constant vector of the same dimension as Y . Construct augmented matrix t1, t2, t3 where t11. = t1,
t21. = t2 and t1i. =∞, t2i. =∞ for i = 2, . . . , n, and t3i. = t3 the same for all i = 1, . . . , n.

Let (Ŷ1, A1, Y1) be a from the same distribution as (Ŷ , A, Y ). Then,

P
(
Ŷ1 ≤ t1, A1 ≤ t2|Y1 = t3

)
(b1)
= P

(
Ŷ1 ≤ t1, A1 ≤ t2|Y = t3

)
=

P
(
Ŷ1 ≤ t1, A1 ≤ t2,Y = t3

)
P(Y = t3)

(b2)
=

P
(
Ŷ ≤ t1,A ≤ t2,Y = t3

)
P(Y = t3)

,

where step (b1) has used the fact that (Xi, Ai, Yi), for i = 1, . . . , n are independently generated,
thus, conditioning on additional independent Y2, . . . , Yn does not change the probability; step
(b2) holds because t1i. and t2i., for i = 2, . . . , n, take infinite values and do not modify the event
considered. Utilizing eq. (12), have further have

P
(
Ŷ ≤ t1,A ≤ t2,Y = t3

)
P(Y = t3)

=ES|Y

[
P
(
Ŷ ≤ t1,A ≤ t2|Y = t3, S(A) = S

)]
=ES|Y

[
P
(
Ŷ ≤ t1|Y = t3, S(Ã) = S

)
P
(
A ≤ t2|Y = t3, S(A) = S

)]
(b3)
= ES|Y

[
P
(
Ŷ1 ≤ t1|Y = t3, S(A) = S

)
P
(
A1 ≤ t2|Y = t3, S(A) = S

)]
=P

(
Ŷ1 ≤ t1|Y1 = t3

)
P
(
A1 ≤ t2|Y1 = t3

)
+∆

where step (b3) has used again the fact that t1i. = ∞ and t2i. = ∞, for i = 2, . . . , n, and ∆ is
defined as

∆ = ES|Y

[
P
(
Ŷ1 ≤ t1|Y = t3, S(A) = S

) (
P
(
A1 ≤ t2|Y = t3, S(A) = S

)
− P

(
A1 ≤ t2|Y1 = t3

))]
,

= ES|Y

[
P
(
Ŷ1 ≤ t1|Y = t3, S(A) = S

) (
P
(
A1 ≤ t2|Y = t3, S(A) = S

)
− P

(
A1 ≤ t2|Y1 = t3

))]
Our goal is equivalent to bound |∆|. Notice that since t31. = . . . = t3n. = t3 are the same for all n
samples, A1, . . ., An are exchangeable given S(A) = S. Consequently, we obtain that

|∆| ≤ ES|Y
[
|P

(
A1 ≤ t2|Y = t3, S(A) = S

)
− P

(
A1 ≤ t2|Y1 = t3

)
|
]

=
∑
S

|P
(
A1 ≤ t2 | Y = t3, S(A) = S

)
P
(
S(A) = S|Y = t3

)
− P

(
A1 ≤ t2|Y1 = t3

)
P
(
S(A) = S|Y = t3

)
|

(b4)
=

∑
S

|F̂S(t2)− F (t2)|P
(
S(A) = S|Y = t3

)
,

where step (b4) has used the exchangeability of A1, .., An when t3i are the same for i = 1, . . . , n ,
which leads to P

(
A1 ≤ t2|Y = t3, S(A) = S

)
being the S-induced empirical c.d.f evaluated at

t2:

F̂S(t2) = P
(
A1 ≤ t2|Y = t3, S(A) = S

)
=

1

n

n∑
i=1

p∏
j=1

1{Sij ≤ t2j}.

Also, S is a set n samples A generated conditional on Y = t3, and Ft3(.) denote the theoretical
c.d.f of A|Y = t3: F (t2) = ES|Y F̂

S(t2) = P(A1 ≤ t2|Y1 = t3). To bound ∆, we utilize
Lemma 4.1 in (Naaman, 2021), which generalizes Dvoretzky–Kiefer–Wolfowitz inequality to
multi-dimensional empirical c.d.f:
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Proposition A.1 (Lemma 4.1 in (Naaman, 2021)). For any sequence of independent
p−dimensional random variables x, and Fn(.) be the empirical c.d.f of x from n samples:

P( sup
θ∈Rp

|F̂n(θ)− EFn(θ)| > t) ≤ p(n+ 1) exp(−2nt2)

.

Using this result, we have

P(sup
t2
|F̂S

t3(t
2)− Ft3(t

2)| > δ) ≤ p(n+ 1) exp(−2nt2).

Combine this equality with the bound for |∆|, we have

P(|∆| > C
log p+ log n

n
)→ 0,

for a sufficiently large C as n→∞. We thus reached our conclusion that

lim
n→∞

[
P
(
Ŷ ≤ t1, A1 ≤ t2|Y = t3

)
− P

(
Ŷ ≤ t1|Y = t3

)
P
(
A ≤ t2|Y = t3

)]
→ 0,

Proof of Theorem 2.4. For fixed f , the optimal discriminator D∗ is reached at

θ̂∗d = argmin
θd
Ld (θf , θd) ,

in which case, the discriminating classifier is Dθ∗
d
(·) =

pŶ AY (·)
pŶ AY (·) + pŶ ÃY (·)

(See Proposition 1 in

(Goodfellow et al., 2014)), and Ld reduces to

Ld (θf , θd) = log(4)− 2 · JSD
(
pŶ AY ∥ pŶ ÃY

)
where JSD is the Jensen-Shannon divergence between the distributions of (Ŷ , A, Y ) and (Ŷ , Ã, Y ).
Plug this this into Vµ(θf , θd), we reach the single-parameter form of the original objective:

Vµ (θf ) = min
θd

Vµ(θf , θd) = (1− µ)Lf (θf ) + 2µ · JSD (pŶ AY ∥ pŶ ÃY )− µ log(4)

≥ (1− µ)H(Y | X)− µ log(4),

where the equality holds at θ∗ = argminθf V (θf ). In summary, the solution value (1− µ)H(Y |
X)− µ log(4) is achieved when:

• θ̂f minimizes the negative log-likelihood of Y | X under f , which happens when θ̂f are the
solutions of an optimal predictor f . In this case, Lf reduces to its minimum value H(Y | X)

• θ̂f minimizes the Jensen-Shannon divergence JSD
(
pŶ AY ∥ pŶ ÃY

)
, Since the Jensen–Shannon

divergence between two distributions is always non-negative, and zero if and only if they are equal.

The second characterization is equivalent to the condition (Ŷ AY )
d
=(Ŷ ÃY ). Note that this is a

population level characterization with E corresponding to the case where n → ∞. As a result, by
the asymptotic equalized odds statement in Theorem 2.1, we have that f̂θ̂f also satisfies equalized
odds.

Proof of Proposition 2.5. The proposed test is a special case of the Conditional Permutation Test
(Berrett et al., 2020), so the proof is a direct result from Theorem 2.1 in our paper and Theorem 1 in
(Berrett et al., 2020) .
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B SAMPLING ALGORITHM FOR ICP

To sample the permutation Π from the probabilities:

P {Π = π | A,Y} = qn (Yπ−1 | A)∑
π′∈Sn

qn (Yπ′−1 | A)
,

we use the Parallelized pairwise sampler for the CPT proposed in Berrett et al. (2020), which is
detailed as follows:

Algorithm 3 Parallelized pairwise sampler for the ICP

Input: Data (A,Y), Initial permutation Π[0], integer S ≥ 1.
1: for s = 1, . . . , S do
2: Sample uniformly without replacement from {1, . . . , n} to obtain disjoint pairs

(is,1, js,1) , . . . ,
(
is,⌊n/2⌋, js,⌊n/2⌋

)
.

3: Draw independent Bernoulli variables Bs,1, . . . , Bs,⌊n/2⌋ with odds ratios

P {Bs,k = 1}
P {Bs,k = 0}

=
q
(
Y(Π[s−1](js,k)) | Ais,k

)
· q

(
Y(Π[s−1](is,k)

| Ajs,k

)
q
(
Y(Π[s−1](is,k)) | Ais,k

)
· q

(
Y(Π[s−1](js,k)) | Ajs,k

) .
Define Π[s] by swapping Π[s−1] (is,k) and Π[s−1] (js,k) for each k with Bs,k = 1.

4: end for
Output: Permuted copy Ã = AΠ[S]−1 .

C ADDITIONAL COMPARISONS OF CP/ICP

When we know the true conditional laws qY |A(.) (conditional density Y given A) and qA|Y (.)
(conditional density A given Y ), both CP and ICP show provide accurate conditional permutation
copies. However, both densities are estimated in practice, and the estimated densities are denoted
as q̌Y |A(.) and q̌A|Y (.) respectively. The density estimation quality will depend on both the density
estimation algorithm and the data distribution. While a deep dive into this aspect, especially from the
theoretical aspects, is beyond the scope, we provide some additional heuristic insights to assist our
understanding of the potential gain of ICP over CP.

C.1 WHEN ICP MIGHT IMPROVE OVER CP?

According to proof argument of Theorem 4 in Berrett et al. (2020), let Aπm be some permuted copies
of A according to the estimated conditional law q̌A|Y (), an upper bound of exchangeability violation
for A and Aπ is related to the total variation between the estimated density q̌A|Y (.) and qA|Y (.)
(Theorem 4 in Berrett et al. (2020)):

dTV {((Y,A), (Y,Aπ))|Y), ((Y, Ǎ), (Y,Aπ))|Y)}

≤dTV (

n∏
i=1

q̌A|Y (.|yi),
n∏

i=1

qA|Y (.|yi))
(b1)

≤
n∑

i=1

dTV (q̌A|Y (.|yi), qA|Y (.|yi)), (13)

where step (b1) is from Lemma (B.8) from Ghosal & van der Vaart (2017). We adapt the proof
arguments of Theorem 4 in Berrett et al. (2020) to the ICP procedure.

Specifically, let Yπ be the conditional permutation of Y according to q̌Y |A(.) and Y̌ be a new copy
sampled according to q̌Y |A(.). We will have

dTV {((Y,A), (Yπ,A)|A)} ≤
n∑

i=1

dTV (q̌Y |A(.|Ai), qY |A(.|Ai)). (14)
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There is one issue before we can compare the two CP and ICP upper bounds for exchangeability
violations: the two bounds consider different variables and conditioning events. Notice that we care
only about the distributional level comparisons, hence, we can apply permutation π−1 to (Y,A)
and (Y,Aπ−1). The resulting (Yπ−1 ,Aπ−1) is equivalent to (Y,A) and the resulting (Y,Aπ−1)
is exactly the ICP conditionally permuted version. Next we can remove the conditioning event by
marginalizing out Y and A in (13) and (14) respectively. Hence, we obtain upper bounds for violation
of exchangeability using CP and ICP permutation copies, which is smaller for ICP if q̌Y |A(.) is more
accurate on average:

EA

[
dTV (q̌Y |A(.|A), qY |A(.|A))

]
< EY

[
dTV (q̌A|Y (.|Y ), qA|Y (.|Y ))

]
.

C.2 ICP ACHIEVED HIGHER QUALITY EMPIRICALLY WITH MAF DENSITY ESTIMATION

Here, we compare ICP and CP using MAF-generated densities. The data-generating process is the
same as Section 3.1. Note that by design, the linear fit shown in the main paper is favored over MAF
for estimating qY |A in this particular example. There may be better density estimation choices in
other applications, but overall, estimating Y |A can be simpler and allows us to utilize existing tools,
e.g., those designed for supervised learning.
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Figure 5: Restricted TV distances (log 10 transformed) between permutations generated by ICP/CP using
estimated densities by MAF and the oracle permutations generated by true density. Each graph contains results
over 20 independent trials as the noise level K increases, with K0 = 1, 5, 10 respectively.

D EXPERIMENTS ON FAIRNESS-AWARE LEARNING METHODS COMPARISONS

In both simulation studies and real-data experiments, we implement the algorithms with the hy-
perparameters chosen by the tuning procedure as in Romano et al. (2020), where we tune the
hyperparameters only once using 10-fold cross-validation on the entire data set and then treat the
chosen set as fixed for the rest of the experiments. Then we compare the performance metrics of
different algorithms on 100 independent train-test data splits. This same tuning and evaluation scheme
is used for all methods, ensuring that the comparisons are meaningful. For KPC (Huang et al., 2022),
we use R Package KPC (Huang, 2022) with the default Gaussian kernel and other parameters.

D.1 EXPERIMENTS ON SYNTHETIC DATASETS

For all the models evaluated (FairICP, FairCP, FDL, Oracle), we set the hyperparameters as follows:

• We set f as a linear model and use the Adam optimizer with a mini-batch size in {16, 32, 64},
learning rate in {1e-4, 1e-3, 1e-2}, and the number of epochs in {20, 40, 60, 80, 100, 120, 140,
160, 180, 200}. The discriminator is implemented as a four-layer neural network with a hidden
layer of size 64 and ReLU non-linearities. We use the Adam optimizer, with a fixed learning rate
of 1e-4.

D.1.1 LOW SENSITIVE ATTRIBUTE DEPENDENCE CASES

We report the results with A-dependence w = 0.6 in Figure 6.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.02 0.04 0.06 0.08 0.10 0.12
KPC: dim = 1

2.05

2.10

2.15

2.20

2.25
Lo

ss

Violation of Equalized Odds:
 test on KPC

Oracle 
FairICP 
FairCP 
FDL 

0.00 0.02 0.04 0.06 0.08
KPC: dim = 5

10.5

11.0

11.5

12.0

Lo
ss

0.02 0.04 0.06
KPC: dim = 10

21

22

23

24

25

26

Lo
ss

0.2 0.4 0.6 0.8
Power: dim = 1

2.05

2.10

2.15

2.20

2.25

Violation of Equalized Odds:
 test on statistical power

0.2 0.4 0.6
Power: dim = 5

10.5

11.0

11.5

12.0

0.1 0.2 0.3 0.4 0.5
Power: dim = 10

21

22

23

24

25

26

Increased Dim
ensions

A

(a) Simulation 1

0.00 0.02 0.04 0.06 0.08 0.10
KPC: dim = 1

2.05

2.10

2.15

2.20

2.25

2.30

Lo
ss

Violation of Equalized Odds:
 test on KPC

Oracle 
FairICP 
FairCP 
FDL 

0.02 0.04 0.06 0.08 0.10
KPC: dim = 5

2.0

2.1

2.2

2.3

2.4

Lo
ss

0.02 0.04 0.06 0.08 0.10
KPC: dim = 10

2.0

2.2

2.4

2.6

Lo
ss

0.2 0.4 0.6 0.8
Power: dim = 1

2.05

2.10

2.15

2.20

2.25

2.30

Violation of Equalized Odds:
 test on statistical power

0.2 0.4 0.6 0.8
Power: dim = 5

2.0

2.1

2.2

2.3

2.4

0.2 0.4 0.6 0.8
Power: dim = 10

2.0

2.2

2.4

2.6

Increased Dim
ensions

B

(b) Simulation 2

Figure 6: Prediction loss and metrics of fairness in simulation over 100 independent runs under Simula-
tion 1/Simulation 2 and w = 0.6. For each setting, conditional dependence measure KPC and statistical power
P{p-value < 0.05} are shown in the left column and right column respectively. From top to bottom shows the
results on different choices of noisy sensitive attribute dimension of K. The X-axis represents the metrics of
fairness and the Y-axis is the prediction loss. Each graph shows the proposed method, FDL, and oracle model
with different hyperparameters µ.

D.2 REAL DATA MODEL ARCHITECTURE

Regression task For FairICP and FDL, the hyperparameters used for linear model and neural
network are as follows:

• Linear: we set f as a linear model and use the Adam optimizer with a mini-batch size in {16, 32,
64}, learning rate in {1e-4, 1e-3, 1e-2}, and the number of epochs in {20, 40, 60, 80, 100}. The
discriminator is implemented as a four-layer neural network with a hidden layer of size 64 and
ReLU non-linearities. We use the Adam optimizer, with a fixed learning rate of 1e-4. The penalty
parameter µ is set as {0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

• Neural network: we set f as a two-layer neural network with a 64-dimensional hidden layer and
ReLU activation function. The hyperparameters are the same as the linear ones.

For HGR, the hyperparameters used for the linear model and neural network are as follows:

• Linear: we set f as a linear model and use the Adam optimizer with a mini-batch size in {16, 32,
64}, learning rate in {1e-4, 1e-3, 1e-2}, and the number of epochs in {20, 40, 60, 80, 100}. The
penalty parameter λ is set as {0, 0.25, 0.5, 0.75, 1, 2, 4, 8, 16}.

• Neural network: we set f as a two-layer neural network with a 64-dimensional hidden layer and
ReLU activation function. The hyperparameters are the same as the linear ones.

Classification task For FairICP, the hyperparameters used for linear model and neural network are
as follows:

• Linear: we set f as a linear model and use the Adam optimizer with a mini-batch size in {64, 128,
256}, learning rate in {1e-4, 1e-3, 1e-2}, and the number of epochs in {50, 100, 150, 200, 250,
300}. The discriminator is implemented as a four-layer neural network with a hidden layer of
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size 64 and ReLU non-linearities. We use the Adam optimizer, with a fixed learning rate in {1e-4,
1e-3}. The penalty parameter µ is set as {0, 0.3, 0.5, 0.7, 0.8, 0.9}.

• Neural network: we set f as a two-layer neural network with a 64-dimensional hidden layer and
ReLU activation function. The hyperparameters are the same as the linear ones.

For HGR, the hyperparameters used for the linear model and neural network are as follows:

• Linear: we set f as a linear model and use the Adam optimizer with a mini-batch size in {64, 128,
256}, learning rate in {1e-4, 1e-3, 1e-2}, and the number of epochs in {20, 40, 60, 80, 100}. The
penalty parameter λ is set as {0, 0.0375, 0.075, 0.125, 0.25, 0.5}.

• Neural network: we set f as a two-layer neural network with a 64-dimensional hidden layer and
ReLU activation function. The hyperparameters are the same as the linear ones.

D.3 PARETO TRADE-OFF CURVES BASED ON EQUALIZED ODDS TESTING POWER
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Figure 7: Prediction loss and violation of equalized odds (measured by Power) obtained by different methods
on Crimes/ACS Income/Adult/COMPAS data over 100 random splits. The Pareto front for each algorithm is
obtained by varying the fairness trade-off parameter.

D.4 PARETO TRADE-OFF CURVES BASED ON DEO

Apart from KPC and the corresponding testing power, we also consider the standard fairness metric
based on confusion matrix (Hardt et al., 2016; Cho et al., 2020) designed for binary classification
task with categorical sensitive attributes to quantify equalized odds:

DEO :=
∑

y∈{0,1}

∑
z∈Z
|Pr(Ŷ = 1 | Z = z, Y = y)− Pr(Ŷ = 1 | Y = y)|,

where Ŷ is the predicted class label.
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Figure 8: Prediction loss and violation of equalized odds (measured by DEO) obtained by different methods on
Adult/COMPAS data over 100 random splits. The Pareto front for each algorithm is obtained by varying the
fairness trade-off parameter.
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D.5 RUNNING TIME

Crimes (one race) Crimes (all races) ACS Income Adult COMPAS
FairICP 29.4 34.6 680.7 293.1 59.8

HGR 14.6 17.8 309.8 98.2 61.4
FDL 28.9 39.2 / / /

Reduction / / / 334.1 171.1

Table 2: The running time (in seconds) to run a single point on the trade-off curve for each method.
Each number is an average of 5 trials.

D.6 PARETO TRADE-OFF CURVES USING LINEAR MODELS

We report the results with f as a linear model in Figure 9 for the Communities and Crime dataset (re-
gression), in Figure 10 for the Adult dataset and in Figure 11 for the COMPAS dataset (classification),
which are similar to NN version.
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Figure 9: Prediction loss and violation of equalized odds (measured by KPC and statistical power P{p-value <
0.05}) obtained by 3 different training methods in Communities and Crime data over 100 random splits. Each
graph shows the results of using different A: 1 dim = (African American) and 3 dim = (African American,
Hispanic, Asian). The Pareto front for each algorithm is obtained by varying the fairness trade-off parameter.

0.2 0.3 0.4 0.5
DEO

0.181

0.182

0.183

0.184

0.185

0.186

0.187

0.188

0.189

Lo
ss

Violation of Equalized Odds: 
test on dependence measure DEO

FairICP
Reduction
HGR

0.005 0.010 0.015 0.020 0.025 0.030 0.035
KPC

0.181

0.182

0.183

0.184

0.185

0.186

0.187

0.188

0.189

Lo
ss

Violation of Equalized Odds: 
test on dependence measure KPC

FairICP
Reduction
HGR

0.2 0.4 0.6 0.8
Power

0.181

0.182

0.183

0.184

0.185

0.186

0.187

0.188

0.189

Lo
ss

Violation of Equalized Odds: 
test on power

FairICP
Reduction
HGR

Figure 10: Prediction loss and violation of equalized odds (measured by KPC, statistical power P{p-value <
0.05} and DEO) obtained by 3 different training methods in Adult data over 100 random splits. The Pareto front
for each algorithm is obtained by varying the fairness trade-off parameter.
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Figure 11: Prediction loss and violation of equalized odds (measured by KPC, statistical power P{p-value <
0.05} and DEO) obtained by 3 different training methods in COMPAS data over 100 random splits. The Pareto
front for each algorithm is obtained by varying the fairness trade-off parameter.
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