
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

passage: Ensuring Completeness and Responsiveness of Public
SPARQL Endpoints with SPARQL ContinuationQueries

Anonymous Author(s)

Abstract

Being able to query online public knowledge graphs such as Wiki-
data or DBpedia is extremely valuable. However, these queries can
be interrupted due to the fair use policies enforced by SPARQL end-
point providers, leading to incomplete results. While these policies
help maintain the responsiveness of public SPARQL endpoints, they
compromise the completeness of query results, which limits the fea-
sibility of various downstream tasks. Ideally, we should not have to
choose between completeness and responsiveness. To address this
issue, we introduce and formalize the concept of SPARQL continua-

tion queries. When a SPARQL endpoint interrupts a query, it returns
partial results along with a SPARQL continuation query to retrieve
the remaining results. If the continuation query is also interrupted,
the process repeats, generating further continuation queries until
the complete results are obtained. In our experimentation, we show
that our continuation server passage ensures completeness and
responsiveness while delivering high performance.

ACM Reference Format:

Anonymous Author(s). 2024. passage: Ensuring Completeness and Respon-
siveness of Public SPARQL Endpoints with SPARQL Continuation Queries.
In . ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 Introduction

Context and motivation: Linked Open Data (LOD) principles
have led to the publication of billions of RDF triples [8, 24]. The
ability to query online public SPARQL endpoints such as Wikidata
or DBpedia is extremely valuable. However, SPARQL queries are
often too long or complex, which violates the fair use policy applied
by public SPARQL endpoint providers [4]. While these policies
are mandatory to ensure service responsiveness, they compromise
the completeness of query results, wasting resources to compute
incomplete queries.
To illustrate, consider the query Q1 of Figure 1 that retrieves the
women leading cities in Europe. This query times out on Wikidata
after 60 seconds, returning only partial results. The partial results of
Q1 remain useless for answering the query. When completeness is
not ensured, many downstream tasks, such as processing aggregate
queries [12], creating portals [15], indexing [18], or computing
summaries for federation engines [21], cannot be performed.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SELECT ?mayor WHERE {
?country wdt:P30 wd:Q46. # countries of Europe |tp1|=30650
?city wdt:P17 ?country. # and their cities |tp2|=17913461
?city wdt:P6 ?mayor. # whose mayor |tp3|=32464
?mayor wdt:P21 wd:Q6581072 } # is a woman |tp4|=2433035

Figure 1: The Query𝑄1 about women leading cities in Europe

times out after 60 seconds on Wikidata.

Related works: Different approaches have been proposed to en-
sure both completeness and responsiveness: Linked Data Fragments
(LDF) [14, 27] and variants [1, 13], web preemption principle [19],
Smart-KG [7] or WiseKG [6]. All these approaches deliver different
trade-offs in terms of performance but raise two important issues:
the execution time of a single query can be seriously impacted com-
pared to current SPARQL engines, and more importantly, they are
not compliant with SPARQL endpoints, which is a strong limitation
for adoption. The research question is how to provide a SPARQL
endpoint able to deliver completeness, responsiveness, and high
performance.

Approach and contributions: Inspired by the concept of con-
tinuations in programming languages and web [22, 25], we intro-
duce the notion of SPARQL continuation queries. The idea is simple:
when a SPARQL endpoint server reaches its time quota, it returns
partial results along with a SPARQL query designed to return miss-
ing results, i.e., a continuation query. If the user wants to obtain
missing results, she sends the continuation query to the SPARQL
server, which may return partial results and another continuation
query. The complete results of the original query are obtained by
combining the partial results from all continuation queries. To the
best of our knowledge, this is the first proposal to combine respon-
siveness, completeness, and compliance with the SPARQL standard.
The contributions of this paper are as follows:

• We introduce and formalize the concept of continuation
queries and define the continuation query problem.

• We propose passage as a solution to the continuation query
problem. We provide a formal framework that models par-
tial executions and continuous evaluations. We prove its
correctness and termination, and we analyze its complexity.

• We developed a SPARQL query engine built on the Blaze-
graph storage system, capable of executing core SPARQL
queries with continuations. The remaining SPARQL opera-
tors are executed through the Comunica smart client [26].

• We compare the performance of passage against state-of-
the-art SPARQL engines on the Wikidata benchmark [3].
Experimental results show that passage achieves perfor-
mance comparable to Blazegraph and outperforms Apache
Jena while ensuring completeness and responsiveness.

This paper is organized as follows: Section 2 defines the contin-
uation query problem. Section 3 presents passage, our approach

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

for solving the continuation query problem. Section 4 reviews the
state-of-the-art SPARQL query engines that ensure both respon-
siveness and completeness. Section 5 presents our experimental
results. Section 6 concludes and outlines future work.

2 The Continuation Query Problem

Weassume that the reader is familiar with RDF and core SPARQL [17,
20], i.e. triple patterns, basic graph patterns, joins, unions, filters,
and optionals. SPARQL evaluation semantics are detailed in [17, 20].
In short, the evaluation of a SPARQL query 𝑄 over a graph 𝐺 is
defined as a function J𝑄K

𝐺
which returns a bag of mappings.

The key idea of our approach is quite simple: when a SPARQL
endpoint has to interrupt a query, instead of only returning par-
tial results, it also returns a continuation query that can compute
missing results.

Definition 2.1 (Continuation query). Let T𝑄U
𝐺
be a partial evalua-

tion function of𝑄 over𝐺 , i.e., it returns partial results. The SPARQL
continuation query 𝑄𝑐 of T𝑄U

𝐺
returns the missing results of 𝑄

over 𝐺 : J𝑄K
𝐺
= T𝑄U

𝐺
⊎ J𝑄𝑐K𝐺 .

Problem 1 (Continuation qeries). As continuation queries

might be longer than allowed by time quotas, the problem is: how to

compute a finite sequence of continuation queries 𝑄1
𝑐 , . . . , 𝑄

𝑛
𝑐 , where

𝑄𝑖+1
𝑐 is the continuation query of𝑄𝑖

𝑐 , and𝑄
1
𝑐 the continuation query of

𝑄 , such that it provides correct and complete results: J𝑄K
𝐺
= T𝑄U

𝐺

⊎
1≤𝑖≤𝑛

T𝑄𝑖
𝑐U𝐺 .

3 passage: SPARQL Continuation Queries

passage overhauls the notion of partial evaluation to include con-
tinuation queries that allow retrieving the remaining results of a
partial evaluation.

Like the traditional SPARQL evaluation [17, 20], the continous
evaluation of a query 𝑄 over a graph 𝐺 includes an additional pa-
rameter: a bag of mappings Ω that represents intermediate results
(also called environment [17]). Initially, Ω is a singleton set contain-
ing the empty mapping 𝜇∅ with an empty domain that is compatible
with any mapping. Therefore, L𝑄M𝜇∅

𝐺
corresponds to the evaluation

of the query without restrictions J𝑄K
𝐺
.

Definition 3.1 (Continuous evaluation L𝑄MΩ
𝐺
). The continuous eval-

uation of a query 𝑄 over a graph 𝐺 with a bag of mappings Ω as
an environment, denoted L𝑄MΩ

𝐺
, returns (Ω𝑝 , 𝑄𝑐). Ω𝑝 is a partial

query result, i.e., a bag of solution mappings compatible with Ω
(Ω𝑝 ⊆ Ω ⊲⊳ J𝑄K

𝐺
) and 𝑄𝑐 is 𝑄’s continuation query, such that

Ω ⊲⊳ J𝑄K
𝐺
= Ω𝑝 ⊎ J𝑄𝑐K𝐺 .

3.1 Requirement

The rewriting rules that create continuation queries of passage rely
on the assumption that the evaluation of a triple pattern is determin-
istic and returns a list of mappings: JtpK𝜇

𝐺
= [𝜇1, . . . 𝜇card(JtpK

𝐺
⊲⊳ 𝜇)].

While this constraint on triple pattern evaluations is stronger than
SPARQL’s [5], many SPARQL engines such as Blazegraph or Apache
Jena rely on data structures such as B-Trees that already return
such a list of elements deterministically.

With this assumption, the evaluation of a Slice of triple pattern
also becomes deterministic and returns a list of mappings. Then, a

wd:Q5

wd:H1

wd:H2

wd:H3

wd:O1

wd:O2

wd:O3

wdt
:P3

1

wdt:P31

wdt:P31

wdt
:P1

06

wdt:P106

wdt:P106

Figure 2: An example of graph comprising 6 triples about

humans (wd:Q5) and occupations (wdt:P106).

solution to the continuation queries problem for triple patterns con-
sists of evaluating disjoint slices of the triple pattern and concate-
nate their lists of solution mappings as: JtpK𝜇

𝐺
= JSlice(tp, 0, 𝑖)K𝜇

𝐺
·

JSlice(tp, 𝑖, card(JtpK
𝐺
⊲⊳ 𝜇) − 𝑖)K𝜇

𝐺
where 0 ≤ 𝑖 < card(JtpK

𝐺
⊲⊳ 𝜇).

3.2 Core SPARQL Evaluation

Core SPARQL includes triple patterns, joins, unions, optionals, and
filters [20]. However, the specification of the evaluation for SPARQL
continuation queries starts with the empty case, allowing simplifi-
cation of logical plans:

Definition 3.2 (Empty continuation L𝑃M∅
𝐺
and L{}MΩ

𝐺
). Let 𝑃 be a

graph pattern, and Ω be a bag of mappings, the evaluation of:
• an empty environment is L𝑃M∅

𝐺
= (∅, {});

• an empty graph pattern is L{}MΩ
𝐺
= (Ω, {}).

The smallest unit of core SPARQL is the triple pattern, whose
evaluation produces mappings. The continuation query requires the
offset of Slice(𝑃, offset, limit), which we simplify to Slice(𝑃, offset)
when the limit equals the remaining the number of results.

Definition 3.3 (Triple pattern evaluation LtpMΩ
𝐺
). Let a triple pat-

tern evaluation JtpK𝜇
𝐺
= [𝜇1, . . . 𝜇𝑘] where 𝑘 = 𝑐𝑎𝑟𝑑 (JtpK

𝐺
⊲⊳ 𝜇)

and i, 0 ≤ 𝑖 ≤ 𝑘 , a point when the continuous evaluation of tp with
environment 𝜇 can be stopped. The continuous evaluation of a triple
pattern tp with an environment 𝜇 is defined as:

LtpM𝜇
𝐺
= (⦃𝜇1, . . . 𝜇𝑖⦄, Slice(Extend(𝜇, tp), 𝑖))

where Slice(Extend(𝜇, tp), 𝑖) =

{} if 𝑖 ≥ card(JtpK

𝐺
⊲⊳ 𝜇)

Extend(𝜇, tp) if 𝑖 = 0
Slice(tp, 𝑖) if 𝜇 = 𝜇∅

Definition 3.4 (Sliced triple pattern evaluation). Let a sliced triple
pattern evaluation JSlice(Extend(𝜇, tp), 𝑖)K𝜇

′

𝐺
= [𝜇𝑖+1, . . . 𝜇𝑖+𝑗 , . . . 𝜇𝑛]

where 𝑛 = card(𝜇′ ⊲⊳ 𝜇 ⊲⊳ JtpK
𝐺
), the continuous evaluation of

Slice(Extend(𝜇, tp), 𝑖) with environment 𝜇′ can be stopped at any
point 1 ≤ 𝑗 ≤ 𝑛 − 𝑖 . That is, for any 𝑗 between 1 and 𝑛 − 𝑖:

LSlice(Extend(𝜇, tp), 𝑖)M𝜇
′

𝐺
=
(⦃𝜇𝑖+1, . . . 𝜇𝑖+𝑗⦄,
Slice(Extend(𝜇, tp), 𝑖 + 𝑗))

Definition 3.5 (Extend evaluation LExtend(𝐸, 𝑃)M𝜇
𝐺
). The evalua-

tion of an extend with a mapping 𝜇 over a graph pattern 𝑃 is:

LExtend(𝜇, 𝑃)M𝜇
′

𝐺
= (𝜇 ⊲⊳ Ω𝑝 , Extend(𝜇,𝑄𝑝)) where L𝑃M𝜇

′

𝐺
= (Ω𝑝 , 𝑄𝑝)

LExtend(𝜇)M𝜇
′

𝐺
= LExtend(𝜇, {})M𝜇

′

𝐺

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

passage : Ensuring Completeness and Responsiveness of Public SPARQL Endpoints with SPARQL ContinuationQueries Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Example 3.6. To illustrate, let us consider the Graph 𝐺𝑒𝑥 of Fig-
ure 2 that contains 6 triples, 3 triples of which are about humans:
wd:H1, wd:H2, and wd:H3. An end-user wants to enumerate all hu-
man beings in the graph with the SPARQL query:
SELECT * WHERE { ?human wdt:P31 wd:Q5 } # get all human beings

The continuous evaluation of this query LtpM𝜇∅
𝐺

where tp = (?human

wdt:P31 wd:Q5) may be interrupted at any point between 1 and
card(tp) = 3. For example, being interrupted after the first mapping
we obtain:

LtpM𝜇∅
𝐺

= (⦃{?human → wd:H1}⦄, Slice(Extend(𝜇∅, tp), 1))
= (⦃{?human → wd:H1}⦄, Slice(tp, 1))

The end-user receives a first partial result {?human → wd:H1},
along with the continuation query that corresponds to the following
SPARQL query:
SELECT * WHERE { ?human wdt:P31 wd:Q5 } OFFSET 1 # skip first result

To retrieve missing results, the end-user sends back this regular
SPARQL query. It is designed to skip the first produced result thanks
to the offset clause. Again, the continuous evaluation stops after
having computed one mapping, resulting in:

LSlice(tp, 1)M𝜇∅
𝐺

= (⦃{?human → wd:H2}⦄, Slice(tp, 2))
The end-user receives a second partial result {?human → wd:H2}
with a SPARQL continuation query corresponding to:
SELECT * WHERE { ?human wdt:P31 wd:Q5 } OFFSET 2 # skip two results

The end-user sends back this SPARQL query designed to skip the
two first results. When the continuous evaluation stops again after
having produced one mapping, the result is:

LSlice(tp, 1)M𝜇∅
𝐺

= (⦃{?human → wd:H3}⦄, Slice(tp, 3))
= (⦃{?human → wd:H3}⦄, {})

The continuation query becomes the empty graph pattern, since
the offset reached the cardinality of the triple pattern. When the
end-user receives the third result, she acknowledges that she got
correct and complete results since the last continuation query is
empty.
The solution of the continuation queries problem has not been
computed beforehand, but it is obtained from the partial executions
completed within the allowed time quota. For this example, the
sequence of continuation queries is Slice(tp, 1), Slice(tp, 2), {}. The
partial evaluation of these queries provides the two solutions that
complete the partial evaluation of tp.

Core SPARQL includes conjunctive queries with the join operator
between two graph patterns. Since the results of one side depends
on the results of the other side, we devise a general rule for envi-
ronments with multiple mappings as the union of the evaluations
over every mapping:

L𝑃MΩ𝐺 = (Ωℎ ⊎ Ω𝑡 ,Union(𝑄ℎ, 𝑄𝑡)) where

Ω = 𝜇 ⊎ Ω𝑜

L𝑃M𝜇
𝐺
= (Ωℎ, 𝑄ℎ)

L𝑃MΩ𝑜

𝐺
= (Ω𝑡 , 𝑄𝑡)

The evaluation of a join operator can be stopped at any point during
the evaluation of its operands. For clarity, let us assume that the
left operand is evaluated first, with the resulting mappings passed

as the environment to the right operand. Both operands could be
stopped. In this case, the continuation query of a join operator
includes the remaining evaluation of its left operand (which still
needs to be operated with the right operand) and the remaining
evaluation of the right operand with the new environment.

Definition 3.7 (Join evaluation LJoin(𝑃𝑙 , 𝑃𝑟)M𝜇𝐺). The continuous
evaluation of a join between two graph patterns 𝑃𝑙 and 𝑃𝑟 with
environment 𝜇 is:

LJoin(𝑃𝑙 , 𝑃𝑟)M𝜇𝐺 = (Ω𝑙𝑟 , 𝑄𝑐) where

L𝑃𝑙 M

𝜇

𝐺
= (Ω𝑙 , 𝑄𝑙)

L𝑃𝑟 M
Ω𝑙

𝐺
= (Ω𝑙𝑟 , 𝑄𝑙𝑟)

𝑄𝑐 = Union(Join(𝑄𝑙 , 𝑃𝑟), 𝑄𝑙𝑟)
The SPARQL continuation query of a conjunctive query includes

a union, therefore, we define the continuous evaluation of disjunc-
tions. The continuation query of a union operator unions solution
mappings and continuation queries of both operands:

Definition 3.8 (Union evaluation LUnion(𝑃𝑙 , 𝑃𝑟)M𝜇𝐺). The contin-
uous evaluation of a union between two graph patterns 𝑃𝑙 and 𝑃𝑟
with a mapping 𝜇 as environment is:

LUnion(𝑃𝑙 , 𝑃𝑟)M𝜇𝐺 = (Ω𝑙 ⊎ Ω𝑟 , 𝑄𝑐) where

L𝑃𝑙 M

𝜇

𝐺
= (Ω𝑙 , 𝑄𝑙)

L𝑃𝑟 M
𝜇

𝐺
= (Ω𝑟 , 𝑄𝑟)

𝑄𝑐 = Union(𝑄𝑙 , 𝑄𝑟)
We consider the evaluation of basic graph patterns (BGPs) as an

instance of a join evaluation where 𝑃𝑙 is the first triple pattern and
𝑃𝑟 corresponds to the remaining triple patterns.

Example 3.9. To illustrate the evaluation of conjunctive queries,
let us consider the Graph 𝐺𝑒𝑥 of Figure 2. An end-user wants to
retrieve all human beings along with their occupations – a query
𝑄
bgp

that times out after 60 seconds on theWikidata public SPARQL
endpoint:
SELECT * WHERE {
?human wdt:P31 wd:Q5 . # tp1: all human beings
?human wdt:P106 ?occupation } # tp2: along with their occupations

The continuous evaluation of the query Join(tp1, tp2) where tp1 =
(?human wdt:P31 wd:Q5) and tp2 = (?human wdt:P106 ?occupation)
is LJoin(tp1, tp2)M

𝜇∅
𝐺
. Assuming an interruption after having read

the first mapping of tp1, the resulting continuous evaluation is:

LJoin(tp1, tp2)M
𝜇∅
𝐺

=
(∅,Union(Join(Slice(tp1), 1), tp2),

Extend({?human → wd:H1}, tp2))
The end-user receives no results yet, with a SPARQL continuation
query corresponding to:
SELECT * WHERE {
{ SELECT * WHERE { # part I
BIND (wd:H1 AS ?human) # skip reading the first triple
?human wdt:P106 ?occupation }

} UNION {
{ SELECT * WHERE { ?human wdt:P31 wd:Q5 } OFFSET 1 } # part IIA
?human wdt:P106 ?occupation }} # part IIB

The end-user sends back this query𝑄1
bgp

to the passage endpoint to
get complete results. Again, assuming an interruption after having
read the first mapping of tp2, the result of the continuous evaluation
is the following:

L𝑄1
bgp

M𝜇∅
𝐺

=

(⦃{?human → wd:H1, ?occupation → wd:O1}⦄,
Union(Join(Slice(tp1, 1), tp2),

Extend({?human → wd:H1}, Slice(tp2, 1))))
3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

The resulting continuation query𝑄2
bgp

is mostly similar to𝑄1
bgp

since
only the left graph pattern of the union progressed; and this graph
pattern is already a sliced triple pattern. The end-user receives a
result, and a SPARQL continuation query corresponding to:

SELECT * WHERE {
{ SELECT * WHERE { # part I

BIND (wd:H1 AS ?human)
?human wdt:P106 ?occupation } OFFSET 1 # skip the first result

} UNION {
{ SELECT * WHERE { ?human wdt:P31 wd:Q5 } OFFSET 1 } # part IIA
?human wdt:P106 ?occupation }} # part IIB

The end-user sends back this continuation query 𝑄2
bgp

to the pas-
sage endpoint to get complete results. This time, the endpoint
manages to fully compute the query L𝑄2

bgp
M𝜇∅
𝐺

= (J𝑄2
bgp

K𝜇∅
𝐺
, {}), i.e.,

the end-user receives two additional results {?human → wd:H1,
?occupation → wd:O2} and {?human → wd:H3, ?occupation →
wd:O3}; and acknowledges query termination with the empty con-
tinuation query.

Definition 3.10 (Optional evaluation LLeftJoin(𝑃𝑙 , 𝑃𝑟)M𝜇𝐺). The eval-
uation of a left join (or optional) between two graph patterns 𝑃𝑙
and 𝑃𝑟 with a mapping 𝜇 as environment is:

LLeftJoin({}, 𝑃𝑟)M𝜇𝐺 =

(⦃𝜇⦄, {}) if L𝑃𝑟 M

𝜇

𝐺
= (∅, {})

(⦃𝜇⦄ d|><| Ω𝑟 , {}) if L𝑃𝑟 M
𝜇

𝐺
= (Ω𝑟 , {})

(∅, LeftJoin(Extend(𝜇),𝑄𝑟)) if L𝑃𝑟 M
𝜇

𝐺
= (∅,𝑄𝑟)

L𝑃𝑟 M
𝜇

𝐺
otherwise

LLeftJoin(𝑃𝑙 , 𝑃𝑟)M𝜇𝐺 = (Ω𝑙𝑟 , 𝑄𝑐)

w
he

re

L𝑃𝑙 M

𝜇

𝐺
= (Ω𝑙 , 𝑄𝑙)

LLeftJoin({}, 𝑃𝑟)MΩ𝑙

𝐺
= (Ω𝑙𝑟 , 𝑄𝑙𝑟)

𝑄𝑐 = Union(LeftJoin(𝑄𝑙 , 𝑃𝑟), 𝑄𝑙𝑟)

Example 3.11. To illustrate, let us consider the Graph 𝐺𝑒𝑥 of
Figure 2. An end-user wants to retrieve all human beings, and their
occupations, if they have any, with the SPARQL query 𝑄𝑜𝑝𝑡 :

SELECT * WHERE {
?human wdt:P31 wd:Q5 # tp1: all human beings
OPTIONAL { # opt: with or without

?human wdt:P106 ?occupation }} # tp2: their occupations

Assuming that the query execution is interrupted after the first
triple of tp1, the evaluation L𝑄

opt
M𝜇∅
𝐺

= LLeftJoin(tp1, tp2)M
𝜇∅
𝐺

is:

L𝑄
opt

M𝜇∅
𝐺

=

(∅,Union(LeftJoin(Extend({?human → wd:H1}),
Extend({?human → wd:H1}, tp2)),

LeftJoin(Slice(tp1, 1), tp2)))

After simplifying, the resulting continuation query 𝑄1
opt

is mostly
similar to the first continuation query 𝑄1

bgp
since the graph to ex-

plore is identical. However, Joins are replaced by LeftJoins in this
SPARQL query:

SELECT * WHERE {
{ BIND (wd:H1 AS ?human)

OPTIONAL { ?human wdt:P106 ?occupation }
} UNION {

{ SELECT * WHERE { ?human wdt:P31 wd:Q5 } OFFSET 1 }
OPTIONAL { ?human wdt:P106 ?occupation }}}

The end-user sends back this query 𝑄1
opt

to the passage endpoint.
After reading the first triple of the second triple pattern tp2, passage

interrupts the query execution. The continuous evaluation returns:

L𝑄1
opt

M𝜇∅
𝐺

=

(⦃{?human → wd:H1, ?occupation → wd:O1}⦄,
Union(Slice(Extend({?human → wd:H1}, tp2), 1)),

LeftJoin(Slice(tp1, 1), tp2))
The end-user receives one result and a continuation query 𝑄2

opt

where the LeftJoin of the visited graph pattern became a Join since
it produced a result. Therefore, the rest of the computation cannot
return the left mapping alone anymore. 𝑄2

opt
corresponds to the

following SPARQL query:
SELECT * WHERE {
{ SELECT * WHERE {
BIND (wd:H1 AS ?human) # cannot be returned alone
?human wdt:P106 ?occupation } OFFSET 1 # since it became a join

} UNION {
{ SELECT * WHERE { ?human wdt:P31 wd:Q5 } OFFSET 1 }
OPTIONAL { ?human wdt:P106 ?occupation }}

After having read anothermapping for tp2, the first part of the union
is removed as it can no longer produce any result. The continuous
evaluation returns:

L𝑄2
opt

M𝜇∅
𝐺

=
(⦃{?human → wd:H1, ?occupation → wd:O2}⦄,
LeftJoin(Slice(tp1, 1), tp2)))

Then, if the evaluation continues mapping by mapping:

L𝑄3
opt

M𝜇∅
𝐺

=

(∅,Union(LeftJoin(Extend({?human → wd:H2}),
Extend({?human → wd:H2}, tp2)),

LeftJoin(Slice(tp1, 2), tp2)))

L𝑄4
opt

M𝜇∅
𝐺

=

(⦃{?human → wd:H2}⦄,
LeftJoin(Extend({?human → wd:H3},

Extend({?human → wd:H3}, tp2)))
L𝑄5

opt
M𝜇∅
𝐺

= (⦃{?human → wd:H3, ?occupation → wd:O3}⦄, {})
The continuous evaluation returned complete and correct results
with 4 results, where 1 result is about a human wd:H2 without
occupations.

Core SPARQL also includes filters to remove some solution map-
pings. We only consider expressions that do not include graph
patterns in their definition, such as not exists.

Definition 3.12 (Filter evaluation LFilter(𝐸, 𝑃)M𝜇
𝐺
). The evaluation

of a filter with an expression 𝐸 over a graph pattern 𝑃 is:

LFilter(𝐸, 𝑃)M𝜇
𝐺
= (Filter(𝐸,Ω𝑝), Filter(𝐸,𝑄𝑝)) where L𝑃M𝜇

𝐺
= (Ω𝑝 , 𝑄𝑝)

3.3 Properties of Continuation Queries

By implementing continuation queries, an endpoint becomes re-
sponsive and compliant with the SPARQL standard. It avoids con-
voy effects by interrupting query executions when they reach the
timeout threshold. However, it is crucial that it provides correct
and complete results when executing the sequence of continuation
queries.

Theorem 3.13 (Correctness). Given a SPARQL query 𝑄 =𝑄0
𝑐 ,

a sequence of continuation queries, 𝑄1
𝑐 , . . . , 𝑄

𝑛
𝑐 where 𝑄𝑖+1

𝑐 is the con-

tinuation query of 𝑄𝑖
𝑐 , and their associated partial solution map-

pings Ω𝑖
𝑐 = T𝑄𝑖−1

𝑐 U
𝐺
; the continuous evaluation provides complete

and sound results, i.e., J𝑄K
𝐺
=
⊎

1≤𝑖≤𝑛 Ω
𝑖
𝑐 .

Proof. Please refer to Appendix A. □
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

passage : Ensuring Completeness and Responsiveness of Public SPARQL Endpoints with SPARQL ContinuationQueries Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

For end-users to acknowledge completeness of results, and to
bound the overhead in terms of generated traffic, two issues remain:
(i) the sequence of continuation queries must be finite, (ii) and the
size of generated queries must be bounded.

Theorem 3.14 (Termination). Assuming a sequence of contin-

uations queries 𝑄1
𝑐 , . . . 𝑄

𝑖+1
𝑐 , this sequence is finite – the continuous

evaluation terminates – when at least one triple pattern in each con-

tinuation continuation query 𝑄𝑖
𝑐 progressed by returning at least one

mapping.

Proof. Please refer to Appendix B. □

To bound the overhead in terms of generated traffic, the size
of each continuation query must be bounded as well. However, as
illustrated in Examples 3.9 and 3.11, the continuation query can
comprise more triple patterns than its partially executed query.
𝑄
bgp

has 2 triple patterns, but its first continuation query𝑄1
bgp

has 3
triple patterns. We focus our analysis on a one-mapping-at-a-time
evaluation strategy where the pipeline of iterators in charge of
executing the query contains at most 1 mapping at any time.

Theorem 3.15 (Continuation Query Size). Given a query 𝑄

of size(𝑄) = 𝑛 triple patterns, the size of its continuation query 𝑄𝑐

satisfies size(𝑄𝑐) = O(𝑛· (𝑛+1)2) if the bag of environment mappings

|Ω | used in 𝑄𝑐 to pass solution mappings from the left operand to the

right operand of joins and optionals satisfies |Ω | ≤ 1.

Proof. Please refer to Appendix C. □

Theorem 3.15 states that the continuation query size is quadrati-
cally upper-bounded by the number of triple patterns of the previ-
ous query. Therefore, to limit the expansion of continuation queries,
passage always evaluates the smallest branch of a union in terms
of the number of triple patterns. Using this smallest-branch-first
evaluation strategy, every continuation query is bounded by the
number of triple patterns in the initial query. For example, in 𝑄1

bgp
:

L𝑄1
bgp

M𝜇∅
𝐺

=

(⦃{?human → wd:H1, ?occupation → wd:O1}⦄,
Union(Join(Slice(tp1, 1), tp2),

Extend({?human → wd:H1}, Slice(tp2, 1))))

passage evaluates Extend(. . . , tp2) in priority. If interrupted dur-
ing this execution, it does not generate additional triple patterns
in the continuation query. If this triple pattern is executed com-
pletely, it is removed from the continuation query. Then, passage
prioritizes the second branch of the union that comprises 2 triple
patterns. If the query execution is interrupted, its continuation
query comprises a union between 1 triple pattern (replacing the
one that was completed), and 2 triple patterns (the current ones).
passage’s continuations queries of 𝑄

bgp
never comprise more than

size(𝑄
bgp

) · (size(𝑄
bgp

)+1)
2 = 3 triples patterns with a one-mapping-at-a-

time execution.
The one-mapping-at-a-time smallest-branch-first execution of

passage ensures that the size of every continuation query 𝑄𝑐 is
bounded by the size of initial query. The next section on experi-
mentations empirically demonstrates that not only execution times
of passage are on par with that of Blazegraph, but the size of
continuation queries remain small over the continuous executions.

4 Related Work

Different approaches have been developed to build SPARQL engines
that guarantee both responsiveness and completeness:

SPARQL endpoints. They follow the SPARQL protocol1, which
describes a means for conveying SPARQL queries and updates to a

SPARQL processing service and returning the results via HTTP to the

entity that requested them. Without setting quotas and by using a
first-come first-served execution policy [11], SPARQL endpoints
are subject to convoy effects [9]: one long-running query occupies
the server resources and prevents other queries from executing,
leading to long waiting time and degraded average completion time
for queries. From the queuing theory [23] with an M/G/1 queue,
the variance of the service time (job duration) directly impacts the
mean waiting time in a queue. Higher variance leads to longer wait-
ing times. Enforcing quotas in time on SPARQL endpoints reduces
the variance of query execution time and consequently improves
the responsiveness of the the SPARQL endpoint.
Unfortunately, if quota enforcement preserves the SPARQL end-
point responsiveness, SPARQL endpoints with quotas are no longer
delivering complete results and may waste computing resources to
provide partial results.

Restricted-interface servers. LinkedData Fragments (LDF) [14,
27] restrict a server interface to a fragment of the SPARQL algebra.
Therefore, query processing must be distributed between a smart
client as Comunica[26] in charge of operators not implemented by
the LDF server.
With Triple Pattern Fragments (TPF) [27], the LDF server only
serves pages of triple patterns. A smart client [26] decomposes the
SPARQL query into a sequence of triple pattern queries evaluated
by the TPF server. The TPF server ensures responsiveness and com-
pleteness as serving one page of results of a triple pattern can be
done in a bounded time thanks to adequate indexation. However,
compared to a traditional SPARQL engine, the execution time of
queries is significantly impacted due to the intense data transfer
between the smart client and the TPF server [19]. With brTPF [16],
the server can process a union of triple patterns. The smart client
can ask for several mappings at a time, significantly reducing the
number of calls to the server. With Star Pattern Fragments (SPF) [1],
the server can process star queries. The smart client can decom-
pose SPARQL queries into star queries and process them on the SPF
server. This strategy significantly reduces the data transfer between
the SPF server and the smart client. Whatever the approach TPF,
brTPF, or SPF, the smart client may perform joins on the client
side, generating high data transfer with a substantial impact on
performance compared to a traditional SPARQL engine. Moreover,
LDF servers are not compliant with the SPARQL endpoint standard,
limiting the adoption. Compared to LDF, passage operates as a
SPARQL endpoint and supports continuations for core SPARQL
operators. By declaring passage’s interface in Comunica [26], end-
users can execute any SPARQL query, i.e., Comunica decomposes
the query such that only core SPARQL subqueries are sent to pas-
sage.
Smart-KG [7] and WiseKG [6] combine an LDF server with pre-
defined and compressed partitions of triples. Thanks to a cost model,

1https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/

5

https://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Average total execution time (min) for BGPs and

OPTs queries with different CPU configurations. Total repre-

sents the sum of execution times of both BGPs and OPTs.

1vCPU 4vCPU

Total BGPs OPTs Total BGPs OPTs

Blazegraph 238.86 141.17 97.69 89.21 51.49 37.72
Apache Jena 610.06 347.76 262.30 611.41 347.41 264.00
SaGe 407.12 277.92 129.20 409.11 278.83 130.28
passage 143.72 86.58 57.14 130.52 79.96 50.56
SaGe 60s 413.81 279.02 134.79 413.17 278.65 134.52
passage 60s 145.30 87.38 57.92 132.24 80.94 51.30

Table 2: Average size of continuation queries or saved plans,

and average number of continuation queries (#TO) for pas-

sage 60s or average number of suspended plans for SaGe 60s.

BGPs OPTs

size #TO/Total size #TO/Total

SaGe 60s 1.182kB 5.177/292.67 1.927kB 3.070/152.67

1v
CP

U

passage 60s 0.821kB 1.492/62.67 0.827kB 1.556/41.67
SaGe 60s 1.168kB 5.197/296 1.929kB 3.044/153.67

4v
CP

U

passage 60s 0.780kB 1.390/57 0.649kB 1.372/30.33

a smart client can process queries between TPF or SPF and down-
load a partition of triples from the server for processing on a smart
client. Using pre-defined and compressed partitions of triples can
significantly reduce the data transfer between an LDF server and a
smart client.
While using pre-defined partitions is an effective optimization tech-
nique that can be used by any smart client, it is difficult to integrate
into a standard SPARQL.

Web preemption. SaGe suspends SPARQL queries after a quan-
tum of time to return partial results with a saved physical plan [2,
12, 19]. The physical plan can be reloaded by the server, allowing it
to restart from where it had been stopped. SaGe ensures responsive-
ness and completeness for BGPs, some aggregate queries[12], and
a subset of property path queries[2]. However, SaGe is not compli-
ant with the SPARQL endpoint standard. It requires to extend the
interface of the server for re-loading saved plans.
In passage, saved plan are replaced by continuation queries that
are just regular SPARQL queries. When a saved plan is encoded and
compressed, a continuation query is just human readable. When a
new server interface is required to reload saved plan, a continuation
query is just executed as new SPARQL query, maybe with a plan
different from its previous query. Compared to SaGe, continuation
queries are defined in a formal framework allowing to express the
continuation problem, proving its correctness, its termination and
computing space complexities. Web preemption is defined at the
physical level, continuation queries are defined at the logical level.

5 Experiments Study

This experimental study aims to answer three questions empirically:

(1) What is the difference in execution time between passage
with quotas and passage without quotas?

(2) What are the average size and number of generated contin-
uation queries?

(3) How does the execution time of queries with passage com-
pare to that of representative SPARQL engines?

passage is implemented in Java on top of Blazegraph’s storage
and supports core SPARQL operators. To ensure logarithmic access
times to triple patterns by offset, we rely on the augmented bal-
anced trees index of Blazegraph2. Additionally, we extended the
smart client Comunica [26] to decompose queries for passage, i.e.,
SPARQL operators not supported by passage are executed within
Comunica. The code for reproducible experiments is publicly avail-
able on GitHub at: https://anonymous.4open.science/r/passage-
experiments-C0D3.

5.1 Experimental Setup

Datasets: We use the WDBench [3], a real-world large dataset
extracted from Wikidata containing around 1.25 billion triples.

Queries: We focus on basic graph pattern queries (BGPs) and
optional queries (OPTs) fromWDBench that fail to complete within
a 60-second timeout on Blazegraph, as those terminating within
60 seconds are considered to be adequately handled by current
SPARQL engines. Specifically, we randomly selected 49 BGPs and
38 OPTs, which take between one to five minutes to execute on
Blazegraph using a single vCPU core with 54 GB of RAM. The
selected BGPs contain 2 to 6 triple patterns, while the OPTs contain
2 to 19 triple patterns.

Approaches: We compare the following approaches:
• passage: We run passage query engine the Blazegraph storage
without a timeout and with a 60-second timeout, denoted
passage and passage-60s, respectively. The 60 seconds was
chosen to comply with Wikidata’s fair-use policy.

• Blazegraph: We run Blazegraph (v 2.1.4), a high-performance
SPARQL engine currently servingWikidata, without any quota
or limitations.

• Apache Jena: A popular open-source framework for building
Semantic Web and Linked Data applications3. Jena (v 5.1.0)
runs with its TDB2 data storage, and we set its query execution
timeout to 10 minutes.

• SaGe [19]: A SPARQL query engine based on Web Preemption.
We run the SaGe query engine without a time quantum and
with a 60-second time quantum, denoted SaGe and SaGe-60s,
respectively. The data is stored in read-only HDT files [10].

We did not include TPF [27] or brTPF [13] as they are already
outperformed by SaGe [19]. Similarly, we excluded Smart-KG [7]
and WiseKG [6] because they require pre-computing partitions of
triples for query processing. Serving partitions of triples is not part
of the SPARQL endpoint protocol and is irrelevant in our context.

Hardware Configuration: We run all the servers on a local
cloud instance with Ubuntu 20.04.4.LTS, an AMD EPYC 7513-Core
processor with 16 vCPUs allocated to the VM, 1 TB SSD, and 64
GB of RAM. To ensure a fair resource distribution among the dif-
ferent approaches, we conducted experiments using two different

2https://github.com/blazegraph/database/wiki/BTreeGuide
3https://jena.apache.org/

6

https://anonymous.4open.science/r/passage-experiments-C0D3
https://anonymous.4open.science/r/passage-experiments-C0D3
https://jena.apache.org/

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

passage : Ensuring Completeness and Responsiveness of Public SPARQL Endpoints with SPARQL ContinuationQueries Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 3: Execution time for BGPs queries group by number of triple patterns in the query with 1vCPU.

Figure 4: Execution time for OPTs queries group by number of triple patterns in the query with 1vCPU.

configurations: one with a single virtual CPU (1vCPU) and another
with four virtual CPUs (4vCPU), both with 54 GB of RAM allocated
to the virtual machine. The 1vCPU setup servers as a fair baseline
for all engines, particularly those that do not utilize parallelism,
ensuring no engine gains an unfair advantage frommulti-threading.
The 4vCPU setup allows us to evaluate the potential improvement
from increased computational resources and parallel processing.

Evaluation Metrics: We always ensure that our approach pas-
sage produces complete results using Blazegraph’s results as ground
truth. Presented results correspond to the average obtained of three
successive executions of the queries workloads. We measure:
• Total workload execution time: is the total time the engine
takes to execute queries workload and get complete results.

• Number of continuation queries: is the number of continua-
tions for each query.

• Size of continuation queries: is the size of a continuation query
in kilobytes.

5.2 Experimental Results

What is the difference in execution time between passage with quotas

and passage without quotas?

Table 1 presents the average execution time for different query
workloads across the two vCPU configurations, comparing various

approaches. The difference in execution time between passage-
60s and passage for 1vCPU is 1.58 minutes. The total number of
generated continuation queries is approximately 104 (as shown in
Table 2). By dividing the 1.58 minutes overhead by 104, we find the
overhead per continuation query to be nearly 900ms.

Applying the same analysis for SaGe and SaGe-60s, the over-
head for interrupting queries in the 1vCPU setup amounts to 6.69
minutes over 413 minutes of execution. The total number of in-
terruptions for SaGe-60s for this workload is approximately 589,
resulting in an overhead of about 681 milliseconds per interruption
in SaGe, which is slightly less than that of passage-60s. Compared
to SaGe, the continuation queries in passage-60s require parsing
and optimization, which explains the slight difference in time per
interruption. However, re-optimizing continuation queries may
lead to better execution plans, representing a good trade-off in
performance.

What are the average size and number of generated continuation

queries?

Table 2 presents the average size and number of continuation
queries for BGPs and OPTs queries across different configurations.
For passage-60s, regardless of the configuration, the average num-
ber of continuation queries remains low, always fewer than 2. In

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

contrast, SaGe-60s generates more saved plans; for instance, it gen-
erates an average of 5 for BGPs queries. As passage-60s is faster
than SaGe-60s, passage-60s is less interrupted than SaGe-60s.

Regarding query size, passage-60s consistently produces small
query sizes, averaging around 0.8 KB, irrespective of the workload
or configuration. In comparison with SaGe-60s, the size of the
suspended plans are larger than the size of continuation queries of
passage-60s, whatever the setup.

How does the execution time of queries with passage compare to

that of representative SPARQL engines?

Table 1 presents the performance of passage-60s with SaGe-60s,
Blazegraph, and Apache Jena. The quota of 60s applies only to
passage-60s and SaGe-60s, which ensure both completeness and
responsiveness. BlazeGraph and Apache Jena execute the workload
without interruption, i.e., without quota. While they ensure the
completeness, they do not guarantee the responsiveness.

On the 1vCPU configuration, passage-60s is the fastest engine
for BGPs and OPTs queries. It is slightly faster than Blazegraph
but approximately 3 times faster than Sage-60s and 4 times faster
than Jena. On the 4vCPU configuration, Blazegraph is the best-
performing engine. Blazegraph implements intra-query parallelism
and takes advantage of the 4vCPU while other engines continue to
use mainly 1vCPU. JENA and SaGe-60s have very similar execution
time with 1vCPU, passage-60s execution time is slightly improved.

For further detail, Figures 3, and 4 illustrate execution time per
query for 1vCPU for BGPs and OPTs queries, respectively. In these
figures, queries are grouped by the number of triple patterns labeled
along the x-axis, while the y-axis shows the average execution time
through 3 runs in minutes, ranging from zero to ten. The queries
are ordered by Blazegraph’s execution time within each group. Red
"t" marks appear above some bars, indicating those queries timed
out on the engine. The horizontal red line at 1min represents the
quota of 60s.

Figure 3 presents the result for BGPs queries. Blazegraph exe-
cutes a query within 1min and 5min. Jena’s execution times are
significantly higher for many queries than other engines, with fre-
quent timeouts at 10 minutes (12 out of 49 queries), likely due to
join order. SaGe-60s can terminate all the workload queries except
query q646 due to poor join ordering.

In contrast, our engine, passage-60s, delivers good overall per-
formance with an average execution time of 106.02 seconds and
only one timeout on a complex query (q646). This is also caused
by the join order; after fixing the join order, the execution time
dropped drastically from over 10 min to just 3 seconds. While Jena
outperforms passage in a few isolated cases, these are exceptions
due to specific join orders.

For OPTs queries in Figure 4, Jena times out after 10min on nearly
half of the workload (17 queries out of 38), though it occasionally
performs better than passage-60s on 2 queries due to efficient join
order. passage consistently outperforms all other engines, with an
average execution time of 90.21 seconds, completing 13 queries in
less than 60 seconds.

The detailed results for 4vCPU are available in Appendix D.
Overall, we observe that passage consistently delivers high per-

formance in the same order of magnitude as Blazegraph while
ensuring results completeness and responsiveness.

6 Conclusion and Future Work

In this paper, we introduced the concept of SPARQL continuation
query to enable public SPARQL endpoints to achieve completeness,
responsiveness and performance without wasting computation
resources. When query execution reaches the timeout, the end-
point interrupts it, returns partial results along with a continuation
query that efficiently represents the missing results in a SPARQL-
compliant format. To support continuations, passage relies on two
key assumptions: (1) Triple pattern evaluations must return an or-
dered list of mappings, a condition easily met when RDF triples are
indexed by traditional B-trees. (2) Each partial evaluation of a con-
tinuation query must ensure progress, meaning it processes at least
one scan of any triple pattern of the query. This requires efficient
access to an offset in the triple patterns, a feature already supported
in Blazegraph storage and HDT. With these two requirements in
place, any SPARQL engine can be transformed into a continuous
SPARQL engine capable of providing completeness, responsiveness,
and robust performance, as demonstrated in our experiments.

For future work, we plan to work on intra-query parallelism for
continuations queries to speed up the execution of core SPARQL
queries. Additionally, we plan to support more SPARQL clauses
such as count, group by, and distinct, gradually deporting smart
clients operations to servers to enhance performance.

References

[1] Christian Aebeloe, Ilkcan Keles, Gabriela Montoya, and Katja Hose. 2020. Star
Pattern Fragments: Accessing Knowledge Graphs through Star Patterns. CoRR
abs/2002.09172 (2020). arXiv:2002.09172 https://arxiv.org/abs/2002.09172

[2] Julien Aimonier-Davat, Hala Skaf-Molli, and Pascal Molli. 2021. Processing
SPARQL Property Path Queries Online with Web Preemption. In The Semantic

Web - 18th International Conference, ESWC 2021, Virtual Event, June 6-10, 2021,

Proceedings (Lecture Notes in Computer Science, Vol. 12731), Ruben Verborgh,
Katja Hose, Heiko Paulheim, Pierre-Antoine Champin, Maria Maleshkova, Óscar
Corcho, Petar Ristoski, and Mehwish Alam (Eds.). Springer, 57–72. https://doi.
org/10.1007/978-3-030-77385-4_4

[3] Renzo Angles, Carlos Buil Aranda, Aidan Hogan, Carlos Rojas, and Domagoj
Vrgoč. [n. d.]. WDBench: A Wikidata Graph Query Benchmark. In The Semantic

Web – ISWC 2022 - 21st International Semantic Web Conference, Virtual Event,

October 23–27, 2022. Springer-Verlag, Berlin, Heidelberg, 714–731.
[4] Carlos Buil Aranda, Aidan Hogan, Jürgen Umbrich, and Pierre-Yves Vanden-

bussche. 2013. SPARQL Web-Querying Infrastructure: Ready for Action?. In
The Semantic Web - ISWC 2013 - 12th International Semantic Web Conference,

Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part II (Lecture Notes in

Computer Science, Vol. 8219). Springer, 277–293. https://doi.org/10.1007/978-3-
642-41338-4_18

[5] Carlos Buil Aranda, Axel Polleres, and Jürgen Umbrich. 2014. Strategies for
Executing Federated Queries in SPARQL1.1. In The Semantic Web - ISWC 2014 -

13th International Semantic Web Conference, Riva del Garda, Italy, October 19-23,

2014. Proceedings, Part II (Lecture Notes in Computer Science, Vol. 8797). Springer,
390–405. https://doi.org/10.1007/978-3-319-11915-1_25

[6] Amr Azzam, Christian Aebeloe, Gabriela Montoya, Ilkcan Keles, Axel Polleres,
and Katja Hose. 2021. WiseKG: Balanced Access to Web Knowledge Graphs. In
WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April

19-23, 2021, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila
Zia (Eds.). ACM / IW3C2, 1422–1434. https://doi.org/10.1145/3442381.3449911

[7] Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel Polleres.
2020. SMART-KG: Hybrid Shipping for SPARQL Querying on the Web. InWWW

’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, Yennun Huang,
Irwin King, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM / IW3C2, 984–994.
https://doi.org/10.1145/3366423.3380177

[8] Christian Bizer, Tom Heath, and Tim Berners-Lee. 2009. Linked Data - The Story
So Far. Int. J. Semantic Web Inf. Syst. 5, 3 (2009), 1–22. https://doi.org/10.4018/
jswis.2009081901

[9] Mike W. Blasgen, Jim Gray, Michael F. Mitoma, and Thomas G. Price. 1979. The
Convoy Phenomenon. Operating Systems Review 13, 2 (1979), 20–25. https:
//doi.org/10.1145/850657.850659

[10] Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutiérrez, Axel Polleres,
and Mario Arias. 2013. Binary RDF representation for publication and exchange

8

https://arxiv.org/abs/2002.09172
https://arxiv.org/abs/2002.09172
https://doi.org/10.1007/978-3-030-77385-4_4
https://doi.org/10.1007/978-3-030-77385-4_4
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-319-11915-1_25
https://doi.org/10.1145/3442381.3449911
https://doi.org/10.1145/3366423.3380177
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.1145/850657.850659
https://doi.org/10.1145/850657.850659

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

passage : Ensuring Completeness and Responsiveness of Public SPARQL Endpoints with SPARQL ContinuationQueries Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

(HDT). J. Web Sem. 19 (2013), 22–41. https://doi.org/10.1016/j.websem.2013.01.
002

[11] Dennis W. Fife. 1968. R68-47 Computer Scheduling Methods and Their Counter-
measures. IEEE Trans. Computers 17, 11 (1968), 1098–1099. https://doi.org/10.
1109/TC.1968.226869

[12] Arnaud Grall, ThomasMinier, Hala Skaf-Molli, and Pascal Molli. 2020. Processing
SPARQL Aggregate Queries with Web Preemption. In The Semantic Web - 17th

International Conference, ESWC 2020, Heraklion, Crete, Greece, May 31-June 4,

2020, Proceedings (Lecture Notes in Computer Science, Vol. 12123), Andreas Harth,
Sabrina Kirrane, Axel-Cyrille Ngonga Ngomo, Heiko Paulheim, Anisa Rula,
Anna Lisa Gentile, Peter Haase, and Michael Cochez (Eds.). Springer, 235–251.
https://doi.org/10.1007/978-3-030-49461-2_14

[13] Olaf Hartig and Carlos Buil-Aranda. 2016. brTPF: Bindings-Restricted
Triple Pattern Fragments (Extended Preprint). CoRR abs/1608.08148 (2016).
arXiv:1608.08148 http://arxiv.org/abs/1608.08148

[14] Olaf Hartig, Ian Letter, and Jorge Pérez. 2017. A Formal Framework for Com-
paring Linked Data Fragments. In The Semantic Web - ISWC 2017 - 16th Inter-

national Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceed-

ings, Part I (Lecture Notes in Computer Science, Vol. 10587). Springer, 364–382.
https://doi.org/10.1007/978-3-319-68288-4_22

[15] Ali Hasnain, Qaiser Mehmood, and Syeda Sana e Zainab ang Aidan Hogan. 2016.
SPORTAL: Profiling the Content of Public SPARQL Endpoints. Int. J. Semantic

Web Inf. Syst. 12, 3 (2016), 134–163.
[16] Lars Heling, Maribel Acosta, Maria Maleshkova, and York Sure-Vetter. 2018.

Querying Large Knowledge Graphs over Triple Pattern Fragments: An Empiri-
cal Study. In The Semantic Web - ISWC 2018 - 17th International Semantic Web

Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings, Part II. 86–102.
https://doi.org/10.1007/978-3-030-00668-6_6

[17] Mark Kaminski, Egor V. Kostylev, and Bernardo Cuenca Grau. 2017. Query
Nesting, Assignment, and Aggregation in SPARQL 1.1. ACM Trans. Database

Syst. 42, 3, Article 17 (Aug. 2017), 46 pages.
[18] PierreMaillot, Olivier Corby, Catherine Faron, Fabien Gandon, and FranckMichel.

2023. IndeGx: A model and a framework for indexing RDF knowledge graphs
with SPARQL-based test suits. J. Web Semant. 76 (2023), 100775. https://doi.org/
10.1016/J.WEBSEM.2023.100775

[19] Thomas Minier, Hala Skaf-Molli, and Pascal Molli. 2019. SaGe: Web Preemp-
tion for Public SPARQL Query Services. In The World Wide Web Conference

2019 (WWW’19). San Francisco, United States. https://doi.org/10.1145/3308558.
3313652

[20] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. 2009. Semantics and
complexity of SPARQL. ACM Trans. Database Syst. 34, 3 (2009), 16:1–16:45.
https://doi.org/10.1145/1567274.1567278

[21] Thi Hoang Thi Pham, Hala Skaf-Molli, Pascal Molli, and Brice Nédelec. 2024.
Online Sampling of Summaries from Public SPARQL Endpoints. In Companion

Proceedings of the ACM Web Conference 2024 (Singapore, Singapore) (WWW ’24).
Association for Computing Machinery, New York, NY, USA, 617–620. https:
//doi.org/10.1145/3589335.3651543

[22] Christian Queinnec. 2004. Continuations and Web Servers. High. Order Symb.

Comput. 17, 4 (2004), 277–295. https://doi.org/10.1007/S10990-004-4866-Z
[23] G. Robert Redinbo. 1977. Queueing Systems, Volume I: Theory-Leonard Klein-

rock. IEEE Trans. Commun. 25, 1 (1977), 178–179. https://doi.org/10.1109/TCOM.
1977.1093722

[24] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. 2014. Adoption of
the Linked Data Best Practices in Different Topical Domains. In The Semantic

Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda,

Italy, October 19-23, 2014. Proceedings, Part I (Lecture Notes in Computer Science,

Vol. 8796). Springer, 245–260. https://doi.org/10.1007/978-3-319-11964-9_16
[25] Christopher S. Strachey and Christopher P. Wadsworth. 2000. Continuations: A

Mathematical Semantics for Handling Full Jumps. High. Order Symb. Comput.

13, 1/2 (2000), 135–152. https://doi.org/10.1023/A:1010026413531
[26] Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande, and Ruben Ver-

borgh. 2018. Comunica: A Modular SPARQL Query Engine for the Web. In The

Semantic Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey,

CA, USA, October 8-12, 2018, Proceedings, Part II (Lecture Notes in Computer Science,

Vol. 11137), Denny Vrandecic, Kalina Bontcheva, Mari Carmen Suárez-Figueroa,
Valentina Presutti, Irene Celino, Marta Sabou, Lucie-Aimée Kaffee, and Elena
Simperl (Eds.). Springer, 239–255. https://doi.org/10.1007/978-3-030-00668-6_15

[27] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Lau-
rens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert. 2016.
Triple Pattern Fragments: A low-cost knowledge graph interface for the Web. J.
Web Sem. 37-38 (2016), 184–206. https://doi.org/10.1016/j.websem.2016.03.003

A Proof of Correctness

Proof. Given a solution to the continuation queries problem,
𝑄1
𝑐 , . . . , 𝑄

𝑛
𝑐 , and its associated solution mappings Ω𝑖

𝑐 = T𝑄𝑖−1
𝑐 U

𝐺

(with𝑄0
𝑐 =𝑄), it must hold that J𝑄K

𝐺
=
⊎

1≤𝑖≤𝑛 Ω
𝑖
𝑐 .Wemust demon-

strate that every continuation step satisfies J𝑄𝑖
𝑐K𝐺 = Ω𝑖+1

𝑐 ⊎ J𝑄𝑖+1
𝑐 K

𝐺
.

We prove it by induction on the structure of the query 𝑄 .
The base case corresponds to a triple pattern, 𝑄 = tp. By Defini-

tion 3.3, its evaluation is:

JtpK𝜇
𝐺

= ⦃𝜇1, . . . 𝜇𝑖⦄ ⊎ JSlice(Extend(𝜇, tp), 𝑖)K𝐺
⇔ {Definitions 3.3 and 3.4}

⦃𝜇1, . . . 𝜇𝑘⦄ = ⦃𝜇1, . . . 𝜇𝑖⦄ ⊎ ⦃𝜇𝑖+1, . . . 𝜇𝑘⦄

For the inductive case 𝑄 = Join(𝑃𝑙 , 𝑃𝑟), the inductive hypothesis
is: J𝑃𝑙 K

𝜇

𝐺
= Ω𝑙 ⊎ J𝑃𝑙𝑐 K𝐺 and J𝑃𝑟 K

Ω𝑙

𝐺
= Ω𝑙𝑟 ⊎ J𝑃𝑟𝑐 K

Ω𝑙

𝐺
. Therefore:

JJoin(𝑃𝑙 , 𝑃𝑟)K𝜇𝐺 = {Definition 3.7}
Ω𝑙𝑟 ⊎ JUnion(Join(𝑃𝑙𝑐 , 𝑃𝑟), Extend(Ω𝑙 , 𝑃𝑟𝑐))K𝐺

= {definitions of Union, Join, and Extend}
Ω𝑙𝑟 ⊎ (J𝑃𝑙𝑐K𝐺 ⊲⊳ J𝑃𝑟K𝐺) ⊎ J𝑃𝑟𝑐K

Ω𝑙

𝐺

= {inductive hypothesis}
J𝑃𝑟 K

Ω𝑙

𝐺
⊎ (J𝑃𝑙𝑐 K𝐺 ⊲⊳ J𝑃𝑟 K𝐺)

= {by J𝑃𝑟 K
Ω𝑙

𝐺
}

(Ω𝑙 ⊲⊳ J𝑃𝑟 K𝐺) ⊎ (J𝑃𝑙𝑐 K𝐺 ⊲⊳ J𝑃𝑟 K𝐺)
= {distributivity join over union}
(Ω𝑙 ⊎ J𝑃𝑙𝑐 K𝐺) ⊲⊳ J𝑃𝑟 K𝐺)

= {inductive hypothesis}
J𝑃𝑙 K

𝜇

𝐺
⊲⊳ J𝑃𝑟 K𝐺

For the inductive case 𝑄 = LeftJoin({}, 𝑃𝑟), the inductive hy-
pothesis is: J𝑃𝑟 K

Ω𝑙

𝐺
= Ω𝑟 ⊎ J𝑃𝑟𝑐 K

Ω𝑙

𝐺
and we should demonstrate that:

JLeftJoin({}, 𝑃𝑟)K𝐺 = TLeftJoin({}, 𝑃𝑟)U𝐺 ⊎ JLeftJoin({}, 𝑃𝑟)𝑐K𝐺 .
By Definition 3.10, there are four cases for TLeftJoin({}, 𝑃𝑟)U𝐺 and
LeftJoin({}, 𝑃𝑟)𝑐 :
(Case 1) TLeftJoin({}, 𝑃𝑟)U𝐺 = ⦃𝜇⦄ and LeftJoin({}, 𝑃𝑟)𝑐 = {} with
J𝑃𝑟 K

𝜇

𝐺
= ∅ ⊎ J{}K

𝐺
:

JLeftJoin({}, 𝑃𝑟)K𝐺 = {Definition 3.10}
TLeftJoin({}, 𝑃𝑟)U𝐺 ⊎ JLeftJoin({}, 𝑃𝑟)𝑐K𝐺

= {Case 1}
⦃𝜇⦄ ⊎ J{}K𝐺

= {inductive hypothesis}
⦃𝜇⦄ d|><| J𝑃𝑟 K

𝜇

𝐺

(Case 2)TLeftJoin({}, 𝑃𝑟)U𝐺 = ⦃𝜇⦄ d|><| Ω𝑟 and LeftJoin({}, 𝑃𝑟)𝑐 = {}
given that J𝑃𝑟 K

𝜇

𝐺
= Ω𝑟 ⊎ J{}K

𝐺
:

JLeftJoin({}, 𝑃𝑟)K𝐺 = {Definition 3.10}
TLeftJoin({}, 𝑃𝑟)U𝐺 ⊎ JLeftJoin({}, 𝑃𝑟)𝑐K𝐺

= {Case 2}
⦃𝜇⦄ d|><| Ω𝑟 ⊎ J{}K𝐺

= {definition of {}}
⦃𝜇⦄ d|><| Ω𝑟

= {Case 2 and inductive hypothesis}
⦃𝜇⦄ d|><| J𝑃𝑟 K𝐺

9

https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1109/TC.1968.226869
https://doi.org/10.1109/TC.1968.226869
https://doi.org/10.1007/978-3-030-49461-2_14
https://arxiv.org/abs/1608.08148
http://arxiv.org/abs/1608.08148
https://doi.org/10.1007/978-3-319-68288-4_22
https://doi.org/10.1007/978-3-030-00668-6_6
https://doi.org/10.1016/J.WEBSEM.2023.100775
https://doi.org/10.1016/J.WEBSEM.2023.100775
https://doi.org/10.1145/3308558.3313652
https://doi.org/10.1145/3308558.3313652
https://doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/3589335.3651543
https://doi.org/10.1145/3589335.3651543
https://doi.org/10.1007/S10990-004-4866-Z
https://doi.org/10.1109/TCOM.1977.1093722
https://doi.org/10.1109/TCOM.1977.1093722
https://doi.org/10.1007/978-3-319-11964-9_16
https://doi.org/10.1023/A:1010026413531
https://doi.org/10.1007/978-3-030-00668-6_15
https://doi.org/10.1016/j.websem.2016.03.003

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

(Case 3) TLeftJoin({}, 𝑃𝑟)U𝐺 = ∅ and LeftJoin({}, 𝑃𝑟)𝑐 =
LeftJoin(Extend(𝜇), 𝑃𝑟𝑐) given that J𝑃𝑟 K

𝜇

𝐺
= ∅ ⊎ J𝑃𝑟𝑐 K𝐺 :

JLeftJoin({}, 𝑃𝑟)K𝐺 = {Definition 3.10}
TLeftJoin({}, 𝑃𝑟)U𝐺 ⊎ JLeftJoin({}, 𝑃𝑟)𝑐K𝐺

= {Case 3}
∅ ⊎ JLeftJoin(Extend(𝜇), 𝑃𝑟𝑐)K𝐺

= {definitions of LeftJoin and Extend}
⦃𝜇⦄ d|><| J𝑃𝑟𝑐 K𝐺

= {Case 3 and inductive hypothesis}
⦃𝜇⦄ d|><| J𝑃𝑟 K𝐺

(Case 4) TLeftJoin({}, 𝑃𝑟)U𝐺 = Ω𝑟 and LeftJoin({}, 𝑃𝑟)𝑐 = 𝑃𝑟𝑐 with
J𝑃𝑟 K

𝜇

𝐺
= Ω𝑟 ⊎ J𝑃𝑟𝑐 K𝐺 and |Ω𝑟 | > 0:

JLeftJoin({}, 𝑃𝑟)K𝐺 = {Definition 3.10}
TLeftJoin({}, 𝑃𝑟)U𝐺 ⊎ JLeftJoin({}, 𝑃𝑟)𝑐K𝐺

= {Case 4}
Ω𝑟 ⊎ J𝑃𝑟𝑐 K𝐺

= {Case 4 and inductive hypothesis}
J𝑃𝑟 K

𝜇

𝐺

= {by J𝑃𝑟 K
𝜇

𝐺
}

⦃𝜇⦄ ⊲⊳ J𝑃𝑟 K𝐺
= {inductive hypothesis}
⦃𝜇⦄ ⊲⊳ (Ω𝑟 ⊎ J𝑃𝑟𝑐 K𝐺)

= {by |Ω𝑟 | > 0 and Ω𝑟 = T𝑃𝑟U
𝜇

𝐺
}

(⦃𝜇⦄ ⊲⊳ (Ω𝑟 ⊎ J𝑃𝑟𝑐 K𝐺)) ⊎ (⦃𝜇⦄\(Ω𝑟 ⊎ J𝑃𝑟𝑐 K𝐺))
= {definition of LeftJoin}
⦃𝜇⦄ d|><| (Ω𝑟 ⊎ J𝑃𝑟𝑐 K𝐺)

= {inductive hypothesis}
⦃𝜇⦄ d|><| J𝑃𝑟 K𝐺

Given that we have proved for each of the four cases that
TLeftJoin({}, 𝑃𝑟)U𝐺 ⊎ JLeftJoin({}, 𝑃𝑟)𝑐K𝐺 = ⦃𝜇⦄ d|><| J𝑃𝑟 K𝐺 , we have
shown that 𝑄𝑖

𝑐 = LeftJoin({}, 𝑃𝑟) satisfies J𝑄𝑖
𝑐K𝐺 = Ω𝑖+1

𝑐 ⊎ J𝑄𝑖+1
𝑐 K

𝐺

For the inductive case 𝑄 = 𝑄𝑜 = LeftJoin(𝑃𝑙 , 𝑃𝑟), the inductive
hypothesis is: J𝑃𝑙 K

𝜇

𝐺
= Ω𝑙 ⊎ J𝑃𝑙𝑐 K𝐺 and JLeftJoin({}, 𝑃𝑟)KΩ𝑙

𝐺
= Ω𝑙𝑟 ⊎

JLeftJoin({}, 𝑃𝑟)𝑐KΩ𝑙

𝐺
. Therefore:

J𝑄𝑜K
𝜇

𝐺

= {Definition 3.10}
Ω𝑙𝑟 ⊎ JUnion(LeftJoin(𝑃𝑙𝑐 , 𝑃𝑟), Extend(Ω𝑙 , LeftJoin({}, 𝑃𝑟)𝑐))K𝐺

= {definitions of Union, LeftJoin, and Extend}
Ω𝑙𝑟 ⊎ J𝑃𝑙𝑐 K𝐺 d|><| J𝑃𝑟 K𝐺 ⊎ Ω𝑙 ⊲⊳ JLeftJoin({}, 𝑃𝑟)𝑐K𝐺

The values of Ω𝑙𝑟 and LeftJoin({}, 𝑃𝑟)𝑐 follow the four cases detailed
for JLeftJoin({}, 𝑃𝑟)K𝐺 , so we shall split Ω𝑙 into four bags Ω1 . . . Ω4
where each of these bags includes all the 𝜇s that fall into each of
those four cases:
For Ω1: JLeftJoin({}, 𝑃𝑟)KΩ1

𝐺
= Ω1 ⊎ J{}K

𝐺
;

For Ω2: JLeftJoin({}, 𝑃𝑟)KΩ2
𝐺

= Ω2 d|><| Ω𝑟 ⊎ J{}K
𝐺
;

For Ω3: JLeftJoin({}, 𝑃𝑟)KΩ3
𝐺

= ∅ ⊎ JLeftJoin(Extend(Ω3), 𝑃𝑟𝑐)K𝐺 ;
For Ω4: JLeftJoin({}, 𝑃𝑟)KΩ4

𝐺
= Ω𝑟 ⊎ J𝑃𝑟𝑐 K𝐺 .Moreover: Ω𝑙𝑟 = Ω1 ⊎ (Ω2 d|><| Ω𝑟) ⊎ Ω𝑟 ; and

JLeftJoin({}, 𝑃𝑟)𝑐K𝐺 = JLeftJoin(Extend(Ω3), 𝑃𝑟𝑐)K𝐺 ⊎ J𝑃𝑟𝑐 K𝐺 .

J𝑄𝑜K
𝜇

𝐺

= {inductive hypotheses and split described above}
JLeftJoin({}, 𝑃𝑟)KΩ1

𝐺
⊎ JLeftJoin({}, 𝑃𝑟)KΩ2

𝐺
⊎ JLeftJoin({}, 𝑃𝑟)KΩ3

𝐺

⊎JLeftJoin({}, 𝑃𝑟)KΩ4
𝐺

⊎ J𝑃𝑙𝑐 K𝐺 d|><| J𝑃𝑟 K𝐺
= {split}
JLeftJoin({}, 𝑃𝑟)KΩ𝑙

𝐺
⊎ J𝑃𝑙𝑐 K𝐺 d|><| J𝑃𝑟 K𝐺

= {definition of LeftJoin}
Ω𝑙 ⊲⊳ J{}K𝐺 d|><| J𝑃𝑟 K𝐺 ⊎ J𝑃𝑙𝑐 K𝐺 d|><| J𝑃𝑟 K𝐺

= {evaluation of {} and distributivity}
(Ω𝑙 ⊎ J𝑃𝑙𝑐 K𝐺) d|><| J𝑃𝑟 K𝐺

= {inductive hypotheses}
J𝑃𝑙 K𝐺 d|><| J𝑃𝑟 K𝐺
Given that we have proved

TLeftJoin(𝑃𝑙 , 𝑃𝑟)U𝐺 ⊎ JLeftJoin(𝑃𝑙 , 𝑃𝑟)𝑐K𝐺 = J𝑃𝑙 K𝐺 d|><| J𝑃𝑟 K𝐺 , we have
shown that 𝑄𝑖

𝑐 = LeftJoin(𝑃𝑙 , 𝑃𝑟) satisfies
J𝑄𝑖

𝑐K𝐺 = Ω𝑖+1
𝑐 ⊎ J𝑄𝑖+1

𝑐 K
𝐺

The inductive cases 𝑄 = Union(𝑃𝑙 , 𝑃𝑟), 𝑄 = Extend(𝜇, 𝑃), and
𝑄 = Filter(𝐸, 𝑃) are similar as they depend only on the continuation
query of their operands and therefore, we detail only the first one.

For the inductive case 𝑄 = 𝑄𝑢 = Union(𝑃𝑙 , 𝑃𝑟), the inductive
hypothesis is: J𝑃𝑙 K

𝜇

𝐺
= Ω𝑙 ⊎ J𝑃𝑙𝑐 K𝐺 and J𝑃𝑟 K

𝜇

𝐺
= Ω𝑟 ⊎ J𝑃𝑟𝑐 K𝐺 . There-

fore:

J𝑄𝑢K𝜇
𝐺

= {Definition 3.8}
Ω𝑙 ⊎ Ω𝑟 ⊎ JUnion(𝑃𝑙𝑐 , 𝑃𝑟𝑐)K𝐺

= {definitions of Union }
Ω𝑙 ⊎ Ω𝑟 ⊎ J𝑃𝑙𝑐 K𝐺 ⊎ J𝑃𝑟𝑐 K𝐺

= {hypothesis inductive}

J𝑃𝑙 K
𝜇

𝐺
⊎ J𝑃𝑟 K

𝜇

𝐺

Therefore 𝑄𝑖
𝑐 = Union(𝑃𝑙 , 𝑃𝑟) satisfies J𝑄𝑖

𝑐K𝐺 = Ω𝑖+1
𝑐 ⊎ J𝑄𝑖+1

𝑐 K
𝐺

As we have shown that J𝑄𝑖
𝑐K𝐺 = Ω𝑖+1

𝑐 ⊎ J𝑄𝑖+1
𝑐 K

𝐺
is satisfied in

the base case and the inductive cases, we have completed the proof
of Theorem 3.13.

□

B Proof of Termination

Proof. Given 𝑄 = 𝑄0
𝑐 and 𝑄𝑖+1

𝑐 the continuation query of 𝑄𝑖
𝑐 ,

the sequence of continuation queries𝑄1
𝑐 , . . . 𝑄

𝑛
𝑐 is finite if the space

explored by 𝑄𝑖+1
𝑐 is strictly smaller than the space explored by 𝑄𝑖

𝑐 .
Given the definition of continuation queries, this condition does not
hold in general, but only for executions were each partial execution
is able to make some progress in the evaluation of the query.
Wemust prove that the space explored does not increase over contin-
uations, i.e., space(𝑄𝑖+1

𝑐) ≤ space(𝑄𝑖
𝑐), then identify the restrictions

needed to ensure that an execution makes progress.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

passage : Ensuring Completeness and Responsiveness of Public SPARQL Endpoints with SPARQL ContinuationQueries Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

First, we define the space explored by a graph pattern as follows:

space(tp) = card(JtpK𝐺)
space(Slice(Extend(𝜇, tp), 𝑖)) =max(card(JtpK𝐺 ⊲⊳ 𝜇) − 𝑖, 0)
space(Join(𝑃𝑙 , 𝑃𝑟)) = space(𝑃𝑙) · space(𝑃𝑟)
space(LeftJoin(𝑃𝑙 , 𝑃𝑟)) = space(Join(𝑃𝑙 , 𝑃𝑟))
space(Union(𝑃𝑙 , 𝑃𝑟)) = space(𝑃𝑙) + space(𝑃𝑟)
space(Filter(𝐸, 𝑃)) = space(𝑃)
space(Extend(Ω, 𝑃)) = (1/(2 + |Ω |)) · space(𝑃)
For the base case, 𝑄𝑖 is a triple pattern tp, its continuation query

is Slice(Extend(𝜇, tp), 𝑖). This continuation query explores a smaller
space when 𝑖 is greater than zero and the same space when 𝑖 is zero.

The inductive cases Join(𝑃𝑙 , 𝑃𝑟) and LeftJoin(𝑃𝑙 , 𝑃𝑟) are similar
and we detail only the first one. We have as inductive hypothesis
that space(𝑃𝑙𝑐) ≤ space(𝑃𝑙) and space(𝑃𝑟𝑐) ≤ space(𝑃𝑟). For a con-
junctive query 𝑄 𝑗 = Join(𝑃𝑙 , 𝑃𝑟), we have the continuation query
𝑄 𝑗𝑐 = Union(Join(𝑃𝑙𝑐 , 𝑃𝑟), Extend(Ω𝑙 , 𝑃𝑟𝑐)). By definitions of the
respective space for Union, Join, and Extend:

space(𝑄 𝑗𝑐) = space(𝑃𝑙𝑐) · space(𝑃𝑟) + (1/(2 + |Ω𝑙 |)) · space(𝑃𝑟𝑐)
For space(𝑄 𝑗𝑐) to be smaller than space(𝑃𝑙) · space(𝑃𝑟), we identify
a restriction: space(𝑃𝑙𝑐) must be at most space(𝑃𝑙) − 1. Therefore:

space(𝑃𝑙𝑐) · space(𝑃𝑟) + (1/(2 + |Ω𝑙 |)) · space(𝑃𝑟𝑐)
≤ {constraint}
(space(𝑃𝑙) − 1) · space(𝑃𝑟) + (1/(2 + |Ω𝑙 |)) · space(𝑃𝑟𝑐)

= {arithmetic}
space(𝑃𝑙) · space(𝑃𝑟) − space(𝑃𝑟) + (1/(2 + |Ω𝑙 |)) · space(𝑃𝑟𝑐)

For this space to be smaller than space(𝑃𝑙) · space(𝑃𝑟), it is sufficient
that (1/(2 + |Ω𝑙 |)) · space(𝑃𝑟𝑐) < space(𝑃𝑟) and this follows from
the inductive hypothesis.

The inductive cases Union(𝑃𝑙 , 𝑃𝑟), Filter(𝐸, 𝑃), and Extend(𝜇, 𝑃)
are similar and we detail only the first one. The continuation query
of Union(𝑃𝑙 , 𝑃𝑟) is Union(𝑃𝑙𝑐 , 𝑃𝑟𝑐).

space(Union(𝑃𝑙𝑐 , 𝑃𝑟𝑐)) = space(𝑃𝑙𝑐) + space(𝑃𝑟𝑐)
For this space to be smaller than the space explored byUnion(𝑃𝑙 , 𝑃𝑟)
at least one of space(𝑃𝑙𝑐) < space(𝑃𝑙) or space(𝑃𝑟𝑐) < space(𝑃𝑟)
must hold.

The overall restriction we need to impose to obtain a finite se-
quence of continuation queries is that the partial evaluation of
at least one triple pattern in 𝑄𝑖

𝑐 has progressed by returning at
least one mapping. If 𝑄𝑖

𝑐 is a join or optional, for these operands
their left operand must have progressed. This last restriction is
due to the way the join and optional are formalized, where the
solution mappings from the left operand are injected into the right
operand. □

C Proof of Query Size

Theorem 3.15 states that there is a bound on the number of triple
patterns in a continuation query, i.e., the size of 𝑄𝑐 , the continua-
tion query of𝑄 satisfies size(𝑄𝑐) = O(size(𝑄) · (size(𝑄)+1)

2) given that
Ω the bag of environment mappings used in 𝑄𝑐 to pass solution
mappings from the left operand to the right operands is at most 1.

Proof. We must prove that, size(𝑄𝑐) ≤ 𝑐 · size(𝑄) · (size(𝑄)+1)
2 for

some constant 𝑐 .
First, we define the size of a graph pattern as follows:

size(tp) = 1

size(Slice(Extend(𝜇, tp), 𝑖)) =

{
1 if 𝑖 < |JtpK

𝐺
⊲⊳ 𝜇 |)

0 otherwise
size(Join(𝑃𝑙 , 𝑃𝑟)) = size(𝑃𝑙) + size(𝑃𝑟)
size(LeftJoin(𝑃𝑙 , 𝑃𝑟)) = size(Join(𝑃𝑙 , 𝑃𝑟))
size(Union(𝑃𝑙 , 𝑃𝑟)) = size(Join(𝑃𝑙 , 𝑃𝑟))
size(Filter(𝐸, 𝑃)) = size(𝑃)
For the base case, 𝑄 = tp: size(Slice(Extend(𝜇, tp), 𝑖)) ≤ 𝑐 . This

expression holds for 𝑐 ≥ 1 because tp’s continuation query is a
sliced triple pattern Slice(Extend(𝜇, tp), 𝑖) comprising at most one
triple pattern.

For the inductive cases 𝑄 = Join(𝑃𝑙 , 𝑃𝑟) or 𝑄 = LeftJoin(𝑃𝑙 , 𝑃𝑟)
with partial results from 𝑃𝑙 , |Ω𝑙 |, the inductive hypothesis is:
size(𝑃𝑙𝑐) ≤ 𝑐 · size(𝑃𝑙) · (size(𝑃𝑙)+1)2 and size(𝑃𝑟𝑐) ≤ 𝑐 · size(𝑃𝑟) · (size(𝑃𝑟)+1)2 .
Let 𝑙𝑐 , 𝑟𝑐 , 𝑙 , 𝑟 be size(𝑃𝑙𝑐), size(𝑃𝑟𝑐), size(𝑃𝑙), size(𝑃𝑟). According to
Definitions 3.7 and 3.10 the size of the continuation query is:

𝑙𝑐 + 𝑟 + 𝑟𝑐 · |Ω𝑙 | ≤ {inductive hypothesis}

𝑐 · 𝑙 · (𝑙 + 1)
2

+ 𝑟 + 𝑐 · 𝑟 · (𝑟 + 1)
2

· |Ω𝑙 |

≤ {arithmetic and |Ω𝑙 | ≤ 1}

𝑐 · 𝑙2
2

+ 𝑐 · 𝑙
2

+ 𝑟 + 𝑐 · 𝑟 2
2

+ 𝑐 · 𝑟
2

This size must be at most 𝑐 ·𝑙2
2 + 𝑐 · 𝑙 · 𝑟 + 𝑐 ·𝑙

2 + 𝑐 ·𝑟
2 + 𝑐 ·𝑟2

2 . Since 𝑃𝑙
has at least one triple pattern (𝑙 ≥ 1), 𝑐 ≥ 1 is enough to make this
last condition hold.
Given that 𝑐 ≥ 1, we have that the size of a continuation query of
a Join(𝑃𝑙 , 𝑃𝑟) or LeftJoin(𝑃𝑙 , 𝑃𝑟) (with size(𝑃𝑙) = 𝑙 and size(𝑃𝑟) = 𝑟)
has a size that is bound by (𝑙+𝑟) · (𝑙+𝑟+1)

2 .
For the inductive cases 𝑄 = Union(𝑃𝑙 , 𝑃𝑟), the size of continu-

ation query depends only on the size of the continuation queries
of the operators, i.e., size(𝑃𝑙𝑐) + size(𝑃𝑟𝑐). By inductive hypothesis,
this size is bound by 𝑐 · size(𝑃𝑙) · (size(𝑃𝑙)+1)

2 + 𝑐 · size(𝑃𝑟) · (size(𝑃𝑟)+1)
2

and this last expression is less than 𝑐 · size(𝑃𝑙)2
2 + 𝑐 · size(𝑃𝑙) ·size(𝑃𝑟)

2

+𝑐 · size(𝑃𝑙)
2 + 𝑐 · size(𝑃𝑟)

2 + 𝑐 · size(𝑃𝑟)2
2 if 𝑐 · size(𝑃𝑙) ·size(𝑃𝑟)

2 ≥ 0.
Given that 𝑐 ≥ 1, this last expression holds and the size of the con-
tinuation query of Union(𝑃𝑙 , 𝑃𝑟) (with size(𝑃𝑙) = 𝑙 and size(𝑃𝑟) = 𝑟)
is at most 𝑐 · (𝑙+𝑟) · (𝑙+𝑟+1)

2 .
For the filter and extend, the proof is similar to the one for unions

as the operand already satisfies the property. □

D Additional Experimental Results

Figures 5 and 6 detail the performance in execution time of all
approaches in the setup with 4vCPU. As expected, Blazegraph’s
performance is significantly better than the 1vCPU configuration,
with an average execution time of 63.05 seconds for BGPs queries
and 60.09 seconds for OPTs queries. It clearly benefits from the addi-
tional computational resources and parallel processing capabilities.
It surpasses all other engines across all queries, with a significant

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Figure 5: Execution time comparison for BGPs queries group by number of triple patterns in the query with 4vCPU

Figure 6: Execution time comparison for OPTs queries group by number of triple patterns in the query with 4vCPU

margin compare to Jena and SaGe-60s. All other engines do not
impement intra-query parallelism and their performances are quite
similar to whose observed in figures 3 and 4. It is worth noting
that passage-60s’s performance is slightly better in this configura-
tion, while Jena and SaGe-60s do not get any improvement. Overall,

passage’s performance without intra-query parallelism support
remains in the same of order of magnitude than Blazegraph, and it
leaves behind Jena and SaGe-60s in both configurations.

12

	Abstract
	1 Introduction
	2 The Continuation Query Problem
	3 passage: SPARQL Continuation Queries
	3.1 Requirement
	3.2 Core SPARQL Evaluation
	3.3 Properties of Continuation Queries

	4 Related Work
	5 Experiments Study
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusion and Future Work
	References
	A Proof of Correctness
	B Proof of Termination
	C Proof of Query Size
	D Additional Experimental Results

