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Abstract

For many practical problems, it is important to measure similarity between graphs. This
can be done via graph kernels. One particular application where the choice of a graph kernel
is essential is assessing the quality of graph generative models. However, despite the vast
number of graph kernels available in the literature, only basic kernels are usually considered
for generative model evaluation. In this paper, we fill this gap and analyze how different
graph kernels perform as an ingredient in the pipeline of generative model performance
evaluation. To conduct a detailed analysis, we propose a framework for comparing graph
kernels in terms of which high-level structural properties they are sensitive to: heterogeneity
of degree distribution, the presence of community structure, the presence of latent geometry,
and others. For this, we design continuous transitions between random graph models that
affect a particular property and measure which graph kernel is sensitive to the corresponding
change. We show that using such diverse models with the corresponding transitions is crucial
for evaluation: many kernels can successfully capture some properties and fail on others.
We also found some well-known kernels that show good performance in our experiments but
have been previously overlooked in the literature on evaluating graph generative models.

1 Introduction

Many real-world objects can be represented as graphs: social and citation networks, molecules, the Internet,
transportation networks, and so on. For a number of practical problems, it is important to measure similarity
or distance between graphs, e.g., graph classification, graph clustering, or evaluating graph generative models.

A number of graph kernels have been proposed in the literature to evaluate the similarity between
graphs (Kriege et al., 2020; Nikolentzos et al., 2021). Graph kernels are often based on some graph statistics
like node degrees, shortest path lengths, small subgraph counts, and so on. Thus, different kernels capture
different graph properties. However, it is not obvious which properties are captured by a given kernel. This
makes it challenging to choose a suitable kernel for a particular problem.

One important application of graph kernels is evaluating the performance of graph generative models. To
evaluate such a model, one needs a measure that compares a generated set of graphs with a reference set,
which is a non-trivial task (O’Bray et al., 2022; Thompson et al., 2022). A standard approach is to convert
all graphs to some vector representations or to compute similarities (kernel values) for pairs of graphs and
then aggregate the values into a similarity measure. The most widespread measure of (dis)similarity is
maximum mean discrepancy (MMD) which measures the distance between two sets of elements given the
pairwise kernel values. The problem of choosing the right measure for graph generative model evaluation
has gained significant attention recently (O’Bray et al., 2022; Thompson et al., 2022; Shirzad et al., 2022).
In particular, it was shown that the choice of a kernel (or even a particular parameter for a given kernel) for
MMD computation may drastically affect the outcome of the model comparison (O’Bray et al., 2022).

Despite recent research, the problem of choosing the right graph kernel for evaluating graph generative models
is under-explored. Indeed, despite the vast number of graph kernels available in the literature, only very
basic options are usually considered for generative model evaluation, e.g., based on the degree distribution
or clustering coefficient. In this paper, we fill this gap and analyze how different graph kernels perform as

1



Under review as submission to TMLR

an ingredient of the generative model performance evaluation pipeline. To conduct a detailed analysis, we
propose a framework for comparing graph kernels in terms of their sensitivities to different graph properties.
For this, we choose several pairs of random graph models that are different in a particular graph property —
the presence of community structure, degree distribution, latent geometry, etc. Then, we design continuous
transitions between the models: in each transition, the presence of a given property gradually increases. To
evaluate whether a particular kernel is sensitive to a particular type of change, we generate several sets of
graphs at different points of the transition and check whether the kernel is able to distinguish these different
sets. As a result, we provide a detailed comparison of graph kernels that can help practitioners in choosing
the best one for their application. Our framework aligns well with how the performance of graph generative
models is evaluated and thus can help in the development of better measures for this task.

One of our main observations is that many kernels are sensitive to some of the properties while being insensi-
tive to others. For example, our experiments show that the popular Weisfeiler-Leman kernel is insensitive to
geometry, which makes it unsuitable for tasks like molecular modeling, where the nodes (atoms) have spatial
locations. This shows the importance of using different structural properties for assessing which charac-
teristics a kernel is sensitive to. Among the best-performing kernels in our experiments is the long-known
Shortest Path kernel that has not been used previously in the context of evaluating the performance of graph
generative models. Other good-performing kernels are the Graphlet kernel, the Pyramid Match kernel, and
the kernel based on the NetLSD-wave graph representation.

The proposed framework and the obtained results can help practitioners in choosing suitable kernels for
graph generative model analysis.

2 Preliminaries

In this work, we analyze graph kernels and focus on undirected graphs G = (V, E) with no node/edge
attributes since most of the known kernels can be applied to such graphs.

2.1 Measuring graph similarity

Various approaches can be used to measure similarity or dissimilarity between graphs. Two major research
directions are concentrated on graph distances and graph kernels.

Graph distances measure dissimilarity between graphs and are supposed to satisfy the metric axioms. How-
ever, the positivity axiom is usually violated in the sense that the distance between two different graphs
can be equal to zero. Indeed, if we guarantee that D(G, G′) = 0 if and only if G and G′ are isomorphic,
then computing such distance is at least as hard as graph isomorphism testing, which is infeasible for most
applications.

In turn, a graph kernel is a symmetric, positive semidefinite function defined on the space of graphs. This
function can be expressed as an inner product in some Hilbert space. A survey of many graph kernels can
be found in, e.g., Kriege et al. (2020); Nikolentzos et al. (2021).

We conduct a comparative analysis of graph kernels. Let us note that any kernel K(·, ·)
can be transformed to a distance measure (up to the positivity axiom) as, e.g., D(G1, G2) =√

K(G1, G1) + K(G2, G2) − 2K(G1, G2). Similarly, there are multiple ways of transforming a graph dis-
tance to a graph kernel.

A typical approach to defining a kernel or distance for graphs is to describe each graph based on its char-
acteristics: degree distribution, substructure counts, shortest path lengths, spectral properties, and so on.
The obtained descriptors can then be used to compute a graph kernel or graph distance. Some kernels are
defined for graphs with discrete node labels. However, they can be applied to unlabeled graphs as well: for
this, we assume that all node labels are equal.

Let us now define several known graph kernels.
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Degree histogram (DH) kernel A graph G is represented by a vector fG, where the i-th coordinate is
the number of nodes of degree i. Then, the degree histogram kernel is computed as the scalar product of fG

and fG′ . Equivalently, the degree histogram kernel is given by

DH(G1, G2) =
∑

u∈V (G1)

∑
v∈V (G2)

1{deg(u) = deg(v)},

where deg(u) be the degree of u.

Weisfeiler-Leman (WL) subtree kernel was proposed in Shervashidze et al. (2011) and is based on
the WL color refinement procedure. This procedure works as follows. Initially, all nodes have their labels
(or one fixed label for unlabelled graphs). At each iteration, a node’s label is replaced by another label
identifying a multiset of labels of its neighbors. The procedure stops when it converges. Based on that, the
WL kernel for l iterations is

WL(G1, G2) =
l∑

i=0

∑
u∈V (G1)

∑
v∈V (G2)

1{wliG1
(u) = wliG2

(v)},

where wliG1
(u) is the label at i-th iteration of the WL procedure.

The Shortest Path (SP) kernel was introduced in Borgwardt & Kriegel (2005). Each shortest path is
described by the following triplet: its length and labels of starting and ending nodes. Then, the graph is
represented by a vector fG, where each coordinate is the frequency of a particular triplet in a graph. Then,
the kernel is a scalar product of fG and fG′ . In our setting, where each node has the same label, the SP
kernel compares the shortest-path histograms. Thus, the vector fG can be interpreted as a signature of the
topology described by the network.

The Graphlet kernel was proposed in Pržulj (2007). Graphlets are small connected subgraphs of a graph.
Consider graphlets of size k. We assign an index to each graphlet and let fG be a vector such that its i-th
entry is equal to the frequency of occurrence of i-th graphlet in G. Then, the kernel can be computed as the
scalar product of fG and fG′ .

Weisfeiler-Lehman optimal assignment (WL-OA) kernel was introduced by (Kriege et al., 2016)
and it improves the WL kernel by finding the optimal matching of nodes. Formally,

WL-OA(G1, G2) = max
B∈B(V1,V2)

∑
v1,v2∈B

k(v1, v2) ,

where B(V1, V2) is the set of all bijections between the node sets and

k(v1, v2) =
l∑

i=0
1{wliG1

(v1) = wliG2
(v2)} .

Since WL-OA requires a bijections between the nodes, it can be applied only to graphs of the same size.

The Neighborhood Subgraph Pairwise Distance (NSPDK) kernel proposed in Costa & De Grave
(2010) considers pairs of rooted subgraphs of radius r′ ≤ r whose roots are located at distance d′ ≤ d from
each other. A kernel kr′,d′(G1, G2) counts the number of such pairs of rooted subgraphs in the first graph
that are identical to pairs in the second graph. Then,

NSPD(G1, G2) =
r∑

r′=0

d∑
d′=0

kr′,d′(G1, G2)
kr′,d′(G1, G1)kr′,d′(G2, G2) .

To make the computation of this kernel feasible, graph invariants can be employed to encode each rooted
subgraph. Then, these invariants can be compared instead of graph isomorphism checking.
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NetLSD treats a graph as a dynamic system and simulates heat and wave diffusion processes on nodes
and edges of a given graph, followed by measuring system conditions at fixed timestamps (Tsitsulin et al.,
2018). More formally, let λj be the j-th smallest eigenvalue of the normalized Laplacian of a graph G. For
a timestamp t, we define the heat trace ht and wave trace wt of a graph G as follows:

ht =
∑

j

e−tλj , wt =
∑

j

e−itλj . (1)

Here t > 0 for the heat trace and t ∈ [0, 2π) for the wave trace.

Then, the heat trace signature and wave trace signature of G are defined as the sequences of the corresponding
traces at different timestamps, i.e., h(G) = {ht}t∈Th

and w(G) = {wt}t∈Tw
. As in the original article, we

use 250 log-spaced time stamps between 10−2 and 102 for Th and 250 equally-spaced time stamps between
0 and 2π for Tw, respectively.

Finally, the NetLSD distance (heat or wave) between two graphs G and G′ can be computed as any distance
measure between the corresponding signatures. In our comparison, we use NetLSD representations to obtain
a graph kernel. For this, we measure the cosine similarity between the graph representations.

Pyramid Match kernel proposed in Nikolentzos et al. (2017) first embeds the vertices of each graph
into a low-dimensional vector space using the eigenvectors of the d largest (in magnitude) eigenvalues of the
graph’s adjacency matrix. Since the signs of these eigenvectors are arbitrary, it replaces all their components
by their absolute values. Each vertex is thus a point in the d-dimensional unit hypercube. To find an
approximate correspondence between the sets of vertices of two graphs, the kernel maps these points to
multi-resolution histograms, and compares the emerging histograms with a weighted histogram intersection
function, see Nikolentzos et al. (2017) for more details.

2.2 Kernels for evaluating graph generative models

To evaluate a graph generative model, one needs to compare a set of graphs produced by the model with
some reference set of graphs (not available to the model during training). Typically, the comparison consists
of two steps. First, each graph is described as a point in a vector space, or for each pair of graphs their
similarity is defined. Then, two sets of points or two sets of similarity values are compared. Arguably the
most widely-used approach is to define a kernel K(·, ·) for measuring the similarity of graphs and then use
maximum mean discrepancy (MMD) to measure the distance between two sets of graphs G1 and G2:

MMD2(G1, G2) = 1
|G1|2

∑
G1,G2∈G1

K(G1, G2) + 1
|G2|2

∑
G1,G2∈G2

K(G1, G2) − 2
|G1||G2|

∑
G1∈G1

∑
G2∈G2

K(G1, G2).

If K(G1, G2) is a kernel, then it can be expressed as K(G1, G2) = ⟨f(G1), f(G2)⟩ for some vector represen-
tation f(G). Then, MMD2 = ∥µ1 − µ2∥2, where µi = 1

|Gi|
∑

G∈Gi
f(G). Thus, MMD is indeed a distance.

Besides MMD, there are other approaches to compare distributions: Fréchet Distance (Heusel et al., 2017),
Improved Precision & Recall (Kynkäänniemi et al., 2019), Density & Coverage (Naeem et al., 2020). Overall,
there are many ways to compare two distributions of graphs.

The work by O’Bray et al. (2022) is the most relevant to our study. The authors consider graphs without node
features and labels and compare several typically used MMD-based measures. To define a kernel, O’Bray
et al. (2022) describe each graph by a vector via simple structural characteristics: a histogram of the degree
distribution, a histogram of local clustering coefficients, or eigenvalues of the Laplacian. Then, different
transformations for obtaining a kernel are considered: the first Wasserstein distance (EMD), total variation
distance (TV), and the radial basis function kernel (RBF). Each transformation has a parameter that needs
to be specified. The main conclusion of their paper is that for different kernels and their hyperparameters,
the outcome of the models’ comparison may drastically differ. In the present paper, we note that the two-
step procedure of first computing a graph representation and then applying a transformation to get a kernel
can be replaced by considering any of the kernels available in the literature such as the shortest path or the
graphlet kernels described above. Thus, we cover various graph kernels and compare their performance.
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Another contribution of O’Bray et al. (2022) is their approach to comparing measures: they propose to make
perturbations to a given set of graphs and measure whether MMD correlates with the degree of change. The
considered modifications are the following: random edge insertions, random edge deletions, random rewiring
operations, and random node additions. The key distinction of our paper is that we design specific graph
distribution changes that target particular graph properties and allow us to give a much more detailed
understanding of what can be captured by a particular kernel.

Thompson et al. (2022) also compares evaluation measures for graph generative models and assumes that
graphs may have features of nodes and edges. They consider two types of measures: classic (as in O’Bray
et al. (2022)) and based on neural representations. Thompson et al. (2022) suggest adopting the widely
used measures from image generation literature (Fréchet Distance, Improved Precision & Recall, Density
& Coverage). But for graphs (in contrast to images), this would require training a neural network for
each dataset. Instead, the authors suggest using representations obtained via a randomly initialized Graph
Isomorphism Network (GIN) (Xu et al., 2019). To obtain a graph representation, a readout function is applied
to aggregate node representations at each GIN layer and then the obtained vectors are concatenated. In
the experiments, Thompson et al. (2022) measure the rank correlation between the degree of perturbation
and the measure and show that the proposed randomly initialized GNNs work well. Several aspects are
tested: fidelity (whether a measure can detect random graphs added to a set of graphs or detect randomly
rewired edges); diversity (a measure should be sensitive to mode dropping and mode collapse); sensitivity to
node and edge features; sample efficiency (the minimum number of samples to discriminate a set of random
graphs from real samples). However, in terms of graph structure, only random rewiring and the Erdős–Rényi
random graph model are considered. Finally, Shirzad et al. (2022) propose replacing a randomly initialized
GIN model with a contrastively trained GNN model, which makes the obtained evaluation measure dataset-
dependent.

3 Comparing graph kernels

In this section, we describe the proposed framework for comparing graph kernels. The main questions we
want to address is ‘What structural characteristics are captured by what kernel?’. With ‘captured’, we mean
that the kernel can distinguish two sets of graphs if they differ in that particular aspect. To measure the
sensitivity of a kernel to a graph characteristic, we consider a sequence of graph generators where, at each
step, the considered graph characteristic is more present. To that end, we consider graph generators that
include a step parameter θ which we vary between 0 and 1 to increase the value of the characteristic. We
describe below which graph generators we consider and how we interpolate between them.

In all of our generators, we keep the number of nodes n constant, and we also preserve the expected number
of edges m (except when the target characteristic is density). We use the Erdős-Rényi (ER) random graph
model as baseline generator. In the Erdős-Rényi model, each edge is added independently with probability
p = m/

(
n
2
)
.

3.1 Structural graph characteristics

In this section, we discuss structural graph characteristics that we consider in our research and introduce
the generative models that are used for each of these characteristics.

Density Density is the simplest graph characteristic. We model this by varying the probability p in the
basic Erdős-Rényi model.

Degree heterogeneity The degree distribution of an ER graph differs from what is observed in real-world
networks: ER graphs have Binomially distributed degrees, leading to a variance that is lower than the mean
degree. However, many real-world networks have a much more heterogeneous degree distribution, where the
variance is often many times larger than the mean degree. Many networks even seem to have power-law
degree distributions, leading to many hubs and a high degree variance (Barabási & Bonabeau, 2003). Several
generative models incorporate degree heterogeneity by prescribing an (expected) degree sequence, as can be
done with the Configuration Model and the Chung-Lu model (Chung & Lu, 2002; Van der Hofstad, 2016).
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We use the Chung-Lu model because it is a generalization of ER and is simple to work with. The input
to this model is the vector of the expected degrees (w1, . . . , wn)T . Given the expected degrees, an edge
between two nodes u and v is added with probability wuwv∑

i
wi

independently of all other edges. We sample the
prescribed degrees from a Pareto distribution with power-law exponent γ ≥ 2 and scale parameter chosen
to ensure that the expected number of edges equals m. In the limit γ → ∞, this is equivalent to the ER
model, while small finite values lead to degree sequences with high variance.

Clustering In many real-world networks, nodes with common neighbors are more likely to be connected
to each other (Watts & Strogatz, 1998; Van der Hofstad, 2016). This phenomenon is often referred to as
clustering (Holland & Leinhardt, 1971; Peixoto, 2022), and it results in an abundance of triangles, which is
often quantified by the clustering coefficient. Social networks and many other real graphs are well-known
for having a high degree of clustering (Holland & Leinhardt, 1971; McPherson et al., 2001).

There are two main mechanisms that are used to explain and model clustering: community structure and
latent geometry. In our analysis, we treat these as two different graph characteristics.

Community structure Many real-world networks contain groups of nodes that are more densely con-
nected to each other than to the rest of the network. In network science, these groups are referred to as
communities (Fortunato, 2010), and they often have a natural interpretation, like friend groups in social
networks or subject areas in citation networks. In addition, the presence of community structure can ex-
plain the clustering that is observed in real networks: the presence of densely connected groups leads to an
increased number of triangles.

The simplest generative model for community structure is the Planted Partition (PP) model (Holland et al.,
1983), where we are given a partition of the network nodes into communities, and node pairs of the same
community connect with probability pin, while node pairs of different communities connect with probability
pout. We consider two communities of size n/2 each, and we parameterize pin, pout as

pin(λ) = 4mλ

n2(1 + λ) − 2λn
, pout(λ) = 4m

n2(1 + λ) − 2λn
, (2)

so that the expected number of edges equals m, while pin/pout = λ. This parametrization of the PP model
reduces to the ER model for λ = 1, and the (expected) global clustering coefficient increases monotonously
with λ.

Latent geometry Community structure explains clustering by assuming a certain (finite) set of types,
and that nodes of the same type have a higher likelihood of connecting than nodes of different types. The
Random Geometric (RG) model generalizes this notion by considering a continuous type space and assuming
that nodes whose types are similar to each other have a larger probability of connecting to each other. In
citation networks, for example, papers tend to cite papers on related topics. This continuous type space can
be thought of as some feature space, and the (dis)similarity may be quantified by some distance measure
in this space. However, often one only has access to the network connections, and not the positions in the
feature space. In such cases, we say that the network has a latent geometry.

The simplest way to model this is by assigning to each node a coordinate in some latent space, and connecting
two nodes if their distance is lower than some threshold. This model is referred to as a random geometric
graph (Penrose, 2003). We consider a two-dimensional torus geometry, where each node is assigned a coor-
dinate in [0, 1)2 uniformly at random, and two nodes are connected whenever their distance is below some
threshold r. We choose r to ensure that the network has m edges in expectation, see Appendix A.1.

Dimensionality Whenever a network has latent geometry, its connections depend highly on the character-
istics of that geometry. For example, networks with hyperbolic geometry tend to have a high level of degree
heterogeneity (Krioukov et al., 2010). In particular, the dimension of the latent space heavily affects both
the local properties (e.g., clustering) and global characteristics (e.g., diameter). In general, the clustering
coefficient decreases with dimension.
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To model varying dimensionality, we use the random geometric graph model: we consider a torus with width
1 and height h ∈ (0, 1]. For h = 1, this corresponds to the standard two-dimensional torus, while the limit
h ↓ 0 results in a one-dimensional torus, i.e., a circle. Note that the radius r that leads to m edges in
expectation, depends on h. The desired value of r(h, m) is derived in Appendix A.1.

Complementarity In some particular types of networks, such as protein-protein interaction networks
and economic networks (Talaga & Nowak, 2022; Mattsson et al., 2021), it has been observed that the
clustering coefficient is significantly lower than that of an ER graph with the same number of edges. Instead,
these graphs have a large number of quadrangles (cycles of length four), leading to a locally bipartite
structure (Estrada, 2006). This phenomenon is usually explained by complementarity (Talaga & Nowak,
2022): in these networks, nodes do not connect if they are similar to each other, but if they differ in some
specific way. In economic networks, for example, companies that produce a certain product will trade with
companies that are in need of that particular product. This leads ‘similar’ nodes to have many common
neighbors, but rarely a direct connection. In turn, dissimilar nodes have a high likelihood of connecting.

There are several random graph models for complementarity: one option is disassortative community struc-
ture, e.g., by a PP model with pin < pout, but there are also ways to model complementarity using latent
geometry. We model complementarity by a latent spherical geometry (Talaga & Nowak, 2022). This has the
nice property that each point in the latent space has a unique antipodal point at maximum distance. We
assign each node to a point on the hypersphere (with radius 1) uniformly at random and connect two nodes
if their distance exceeds π − r for some value of r, chosen to ensure m edges in expectation. We refer to this
generator as the Spherical Complementarity (SC) model.

3.2 Interpolating graph characteristics

For each graph characteristic, we define an interpolation between two graph generators, so that the strength
of that characteristic changes monotonously along the transition. We parametrize each of these interpolations
by a step parameter θ ∈ [0, 1], so that θ = 0 leads to the ‘left’ generator, while θ = 1 leads to the ‘right’
generator. We make use of the fact that most of the generating models introduced in Section 3.1 are
generalizations of the ER model. In these cases, we simply parameterize a transition away from the ER
model. The ER model is chosen with p = m/

(
n
2
)

so that the expected number of edges equals m. For
the geometric models used for latent geometry and complementarity, we will take a different approach to
interpolate between generators.

Density (ER(p)) We use the ER model with the edge probability p(θ + 1). Thus, when θ changes from
0 to 1, the edge probability increases from p to 2p.

Heterogeneity (ER↔CL) We use the Chung-Lu (CL) model with weights drawn from a Pareto distri-
bution with power-law exponent 1 + 1/θ and scale chosen such that the expected number of edges equals m.
Note that θ = 0 leads to a power-law exponent ∞, i.e., all the weights are constant and the corresponding
CL model is equivalent to the ER model. The values θ > 0.5 give weight distributions with infinite variance,
which leads to a high variance in the degree distribution.

Communities (ER↔PP) We use the PP model with pin, pout as given in equation 2 for λ = 1 +
c(n, m)θ,where c(n, m) is a constant so that θ = 0 leads to pin = pout = p, while θ = 1 leads to every vertex
having (in expectation) one neighbor outside its community. This value is derived in Appendix A.2.

Latent geometry (ER↔Torus) For this transition, we take the mixture of an ER graph and a RG torus
graph: we generate a graph from each generator and denote their adjacency matrices by A(ER) and A(RG).
We construct the adjacency matrix A as follows: for each node pair with indices 1 ≤ i < j ≤ n we draw an
independent Bernoulli random variable Bij with success probability θ and set Aij = A

(ER)
ij + Bij(A(RG)

ij −
A

(ER)
ij ). Hence, θ = 0 leads to A = A(ER), while θ = 1 leads to A = A(RG). We complete the adjacency

matrix symmetrically: Aij = Aji for i > j and Aii = 0.
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(a) Comparison with θ∗ = 0. (b) Comparison with θ∗ = 1.

Figure 1: Scatter plots of the MMD values of the SP kernel for the ER↔CL interpolation.

Dimensionality (Torus↔Circle) To interpolate between a two- and one-dimensional torus, we consider
a torus of height h = 1 − θ and connection radius r(h, m) as derived in Appendix A.1. This way, θ = 0 leads
to a torus on [0, 1)2 while h ↓ 0 leads to a one-dimensional torus (a circle).

Complementarity (ER↔SC) For this transition, we take the same approach as for the interpolation
ER↔Torus: we construct a graph by taking a mixture of graphs generated by the ER and SC models, such
that θ = 0 results in an ER graph, while θ = 1 results in a SC graph.

3.3 Measuring the sensitivity of a kernel

We now explain how we quantify the sensitivity of a kernel w.r.t. an interpolation between graph generators.
We consider a discretization Θ ⊂ [0, 1] of the interpolation such that {0, 1} ⊂ Θ. For θ ∈ Θ, let Gθ

denote a set of g graphs sampled independently from the interpolation generator at step θ. Furthermore,
let MMD(Gθ1 , Gθ2 ; K) denote the MMD value between Gθ1 and Gθ2 w.r.t. the kernel K. We compare each
θ ∈ Θ to each endpoint θ∗ ∈ {0, 1}. For each endpoint θ∗ ∈ {0, 1}, we quantify the sensitivity of the kernel
K w.r.t. the interpolation as the Spearman correlation between MMD(Gθ∗ , Gθ; K) and |θ − θ∗|. If this value
is close to 1, it means that the MMD values tend to increase when transitioning θ away from θ∗. But if this
value is close to zero, it indicates that there is no clear monotone relation between θ and MMD(Gθ1 , Gθ2 ; K).
This leads to two different correlation coefficients r0 and r1, corresponding to the different values of θ∗. See
Figure 1 for an illustration.

To ensure the independence of the different MMD values that are used to compute a correlation coefficient,
we sample two different sets of graphs for each MMD value. Between each pair of θ’s that we compare, we
compute s MMD values. This results in sampling s · g graphs for each θ ∈ Θ \ {0, 1}, and (1 + |Θ|) · s · g
graphs for each θ∗ ∈ {0, 1}.

4 Experiments

4.1 Setup

We follow the framework described in the previous section. In most of our experiments, we consider graphs
with n = 50 nodes and (in expectation) m = 190 edges. We discretize the interpolation interval [0, 1] by
Θ = {0.0, 0.1, . . . , 1.0}. Thus, we have |Θ| = 11 steps in our interpolation. We consider sets of g = 100
graphs and compute s = 30 different MMD values for each pair of interpolation steps that we compare.

In this work, we mostly focus on small graphs since evaluating graph generative models is typically applied
to small networks: e.g., in molecular modeling, the graphs consist of a relatively small number of atoms.
Additionally, let us note that not all kernels are scalable: for instance, the graphlet kernel has a prohibitively

8



Under review as submission to TMLR

high computational cost. Thus, for smaller graphs, we can include all popular graph kernels in our experi-
ments. However, for the completeness of the study, we also consider larger graphs with n = 1000 nodes and
(in expectation) m = 3800 edges, so that the average degree is the same in both experiments.

In our experiments, we use the following kernels and representations:

• Node degree histogram kernel (Degree);
• Shortest Path (SP) kernel (Borgwardt & Kriegel, 2005);
• Weisfeiler-Leman (WL) kernel (Shervashidze et al., 2011) with l = 5;
• Weisfeiler-Lehman optimal assignment (WL-OA) kernel (Kriege et al., 2016) with l = 5;
• Graphlet kernel (Pržulj, 2007) with k = 3 and k = 4 (referred to as Graphlet-3 and Graphlet-4,

respectively);
• Neighborhood Subgraph Pairwise Distance kernel (NSPDK) (Costa & De Grave, 2010) with r = 3,

d = 4;
• Pyramid Match (PM) kernel (Nikolentzos et al., 2017) with Pyramid histogram level 4 and the

dimension of the hypercube 6;
• NetLSD graph representations (Tsitsulin et al., 2018) with heat and wave diffusion process;
• Random GIN (RandGIN) representations (Thompson et al., 2022).

These kernels are described in Section 2.1.

For most graph kernels, we use the GraKeL python library (Siglidis et al., 2020). Following Nikolentzos et al.
(2021), we normalize the kernel values as K(G1, G2)/

√
K(G1, G1)K(G2, G2). Since our research compares

graph kernels as ingredients of evaluation measures, we have to fix their hyperparameters before running the
experiments. For the considered kernels, we use their default hyperparameters listed above (that are either
the default parameters of the implementation or the most commonly used parameters in the literature).
For the Graphlet kernel, however, the considered values of k are limited by 4 due to high computational
complexity of the kernel. For this kernel, we consider and compare its performance for two parameter values:
k = 3 and k = 4. For NetLSD and RandGIN we use the implementation provided by the authors with the
default parameters. In both cases, we use cosine similarity to convert graph representations to kernel values.
Thus, for all the obtained kernels we have K(G, G) = 1. Our code and experiments are available through
this (anonymized) repository.1

4.2 Results and discussion

The results are shown in Table 1 and the respective computation times are reported in Appendix B. We see
that most kernels perform well on some of the interpolations while performing badly on others. This shows
the importance of using different interpolations for assessing the sensitivity of kernels. Recall that in this
aspect, our framework extends the works by O’Bray et al. (2022); Thompson et al. (2022).

We note that some transitions are easier to detect by all the kernels: for heterogeneity, all kernels show
relatively good and stable performance. In contrast, for communities, geometry, dimensionality, and com-
plementarity the difference in performance between different kernels is large: some kernels have correlations
larger than 0.97, while others may have near-zero performance, which suggests that these kernels are com-
pletely insensitive to these characteristics. Finally, while most kernels perform well on the density transition,
this turns out to be challenging for NSPDK. Let us now go over each kernel individually and summarize the
results.

The Degree histogram kernel is added to our analysis as it is similar to the degree kernel used in
previous studies O’Bray et al. (2022); Thompson et al. (2022). As expected, this kernel can perfectly detect
the transformations of density and heterogeneity since they directly affect the degree distribution. However,
the degree histogram kernel is not sensitive to all other transformations. This shows the limitations of using
simple graph characteristics to compare graph distributions and motivates the analysis of more advanced
kernels that we conduct in our study.

1Available at https://anonymous.4open.science/r/graph-kernels-BC69/

9

https://anonymous.4open.science/r/graph-kernels-BC69/


Under review as submission to TMLR

Table 1: Sensitivity of kernels to various structural characteristics measured via the Spearman correlation
as described in Section 3.3. We measure two sensitivity values r0 and r1 for two endpoints and report their
average (r0 + r1)/2. The top three results are colored.

Density
ER(p)

Heterogeneity
(ER↔CL)

Communities
(ER↔PP)

Geometry
(ER↔Torus)

Dimensionality
(Torus↔Circle)

Complementarity
(ER↔SC)

Degree 0.996 0.992 0.332 0.073 0.229 0.083
SP 0.994 0.953 0.959 0.957 0.985 0.929
WL 0.996 0.993 0.387 0.150 0.468 0.097

WL-OA 0.996 0.993 0.408 0.601 0.549 0.428
Graphlet-3 0.996 0.988 0.979 0.972 0.721 0.972
Graphlet-4 0.996 0.991 0.973 0.980 0.843 0.970

NSPDK 0.365 0.956 0.373 0.854 0.589 0.580
PM 0.981 0.990 0.950 0.922 0.826 0.923

NetLSD-heat 0.996 0.939 0.948 0.956 0.950 0.794
NetLSD-wave 0.996 0.943 0.970 0.983 0.614 0.955

RandGIN 0.938 0.947 0.132 0.527 0.067 0.285

The Weisfeiler-Leman kernel and the related WL-OA kernel are considered to be powerful graph
kernels. However, in our experiments, we observe that they only perform well on interpolations that are well
detected by the degree histogram kernel. Indeed, WL and WL-OA are the best kernels for heterogeneity,
which is expected as the first step of the WL procedure is based on node degrees. Similarly, both of them
can detect the density transformation well. In contrast, for all the remaining interpolations, the Spearman
correlation coefficient is quite small. Based on these results, we can assume that WL-based kernels are mostly
sensitive to the degree distributions. However, it is worth noting that both WL and WL-OA dominate the
degree histogram kernel for all interpolations since they are based on more advanced graph statistics that
go beyond immediate neighbors.

Comparing WL and WL-OA, we note that the latter dominates for all considered transformations. This
confirms that the procedure of node matching improves the sensitivity of this kernel.

The Shortest Path kernel has quite stable performance. Indeed, its correlation values always exceed
0.9 (in fact, it is the only kernel with this property), even for the most difficult transitions — communi-
ties, geometry, dimensionality, complementarity. Interestingly, SP is not among the best kernels for simple
transitions (heterogeneity and density), while still having good performance. Notably, SP is the best for
dimensionality, which is arguably the most subtle transition. This can be explained by the fact that short-
est path lengths capture both local and global information of the graphs, making this kernel sensitive to
non-trivial transitions.

Figure 2 shows the shortest path distribution for different graph generators. It can be clearly seen that all
models are distinguishable. In particular, we see that the SP kernel is sensitive to dimensionality: the Circle
results in much longer path lengths than the Torus.

The Graphlet kernel is another good option in terms of the overall performance: it is among the
best-performing kernels for all interpolations but dimensionality, where the difference with the SP kernel
is noticeable. The poorer performance for dimensionality may be explained by the fact that the graphlet
kernel is not able to capture the global properties of graphs which are affected when we vary the dimension
(e.g., its diameter). Figure 3 additionally illustrates the difficulty of the dimensionality transition: it turns
out that for small values of θ (when the height h is not too small), the distribution of graphlets does not
change much, and thus the MMD values are close to zero up to θ = 0.7. We also see that increasing the
kernel sizes from 3 to 4 significantly improves the performance for dimensionality since this change makes
the considered neighborhoods larger. For all other interpolations, increasing graphlet sizes does not lead to
noticeable improvements.
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(a) Erdős–Rényi (b) Chung-Lu (c) PPM

(d) Torus (e) Circle

Figure 2: The distribution of shortest path lengths for different graph generators, -1 corresponds to discon-
nected node pairs.

(a) Comparison with θ∗ = 0. (b) Comparison with θ∗ = 1.

Figure 3: Scatter plots of the MMD values of the Graphlet-3 kernel for the torus↔circle interpolation.
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The Neighborhood Subgraph Pairwise Distance kernel was previously used in the analysis
by Thompson et al. (2022) and has shown reasonably good results in their experiments. In contrast, our
analysis with diverse transformations shows certain shortcomings of this kernel. In particular, NSPDK turns
out to be insensitive to community structure and density. Other interpolations that are hard to detect for
this kernel are dimensionality and complementarity. We hypothesize that such poor performance for some
of the transitions can be explained by a particular graph invariant used to compare two rooted subgraphs
(as the exact graph isomorphism is infeasible). Unfortunately, this graph invariant also makes this kernel
harder to theoretically analyze or intuitively explain.

Let us note that NSPDK has the advantage that it can be used for graphs with node attributes. However,
when graphs do not have node labels or attributes, we do not advise using this kernel.

The Pyramid Match kernel is another kernel that seems to be sensitive to all the characteristics.
Similarly to the graphlet kernel, PM does not perform so well on dimensionality. Let us also note that PM
is dominated by Graphlet-4 for each interpolation. On the other hand, this kernel is scalable and thus it
is a good option for larger graphs where the Graphlet kernel cannot be applied. Similarly to NSPDK, the
pyramid match kernel has a complex construction procedure and thus its performance is hard to intuitively
interpret. Still, our diverse transformations allow us to get some insights into such complex graph kernels.

The NetLSD representations are also sensitive to most of the properties. On almost all the transitions,
NetLSD-wave outperforms NetLSD-heat. The notable exception is Dimensionality, which is arguably the
most challenging interpolation. Here, NetLSD-heat is the second-best, while the performance of NetLSD-
wave is quite poor. We illustrate the difference between NetLSD-heat and NetLSD-wave for this transition
in Figure 5, where each cell shows the MMD value for two samples of graphs: corresponding to steps θ1 and
θ2. As expected, in both cases we see near-zero MMD values on the diagonal θ1 = θ2 since the distributions
are the same. For a good kernel, we also expect that MMD increases monotonically as we move away from
the diagonal while keeping θ1 (or θ2) fixed since the distributions become more different. In particular, for
θ2 = 1, we expect the distance to monotonically increase when we move from θ1 = 1 to θ1 = 0. This is
indeed the case for NetLSD-heat, but surprisingly not the case for NetLSD-wave.

2 4 6 8 10

−0.5

0

0.5

Timescales

Figure 4: NetLSD-wave traces for Dimensionality

Figure 5b shows that the distance between graph
samples for θ1 = 0.6 and θ2 = 1 is larger than the
distance between θ1 = 0 and θ2 = 1, which is quite
unexpected. To additionally illustrate this phe-
nomenon, Figure 4 shows the NetLSD-wave traces
from which the graph representations are obtained.
One can see that the trace for θ = 0 is indeed closer
to θ = 1.0 than θ = 0.6. Taking into account
quite complex nature of NetLSD-wave graph repre-
sentation, we currently cannot explain this behavior.
However, our framework allows one to detect such
peculiar properties of graph representations.

Random GIN representations were proposed in Thompson et al. (2022) in the context of evaluating
graph generative models. We note that there are some differences in our setup. First, our graphs do not
have node features, while being able to process such features is one of the main advantages of RandGIN.
Second, Thompson et al. (2022) use GIN representations to compute measures like precision, recall, or Fréchet
Distance. Instead, we use RandGIN to construct a graph kernel that can be used with the MMD framework:
we do this to compare all kernels and representations in the unified setup. Our results show that when
used within our framework, the kernel based on RandGIN is not sensitive to interpolations as communities,
geometry, dimensionality, and complementarity. We see that the performance of RandGIN is dominated
by the performance of WL-OA. This can be expected since the expressive power of message-passing neural
networks is known to be upper-bounded by the WL test (Xu et al., 2019).
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(a) NetLSD-heat (b) NetLSD-wave

Figure 5: Heatmap of MMD values for Dimensionality transition. MMD measures the distance between two
samples of graphs corresponding to steps θ1 and θ2.

Table 2: Sensitivity of kernels to various structural characteristics for graphs on 1000 nodes.

Heterogeneity
(ER↔CL)

Communities
(ER↔PP)

Geometry
(ER↔Torus)

Dimensionality
(Torus↔Circle)

Complementarity
(ER↔SC)

WL 0.996 -0.030 0.741 0.226 0.561
WL-OA 0.996 0.099 0.948 0.210 0.871

PM 0.975 0.931 0.989 0.238 0.981
NetLSD Heat 0.910 0.530 0.985 0.631 0.958
NetLSD Wave 0.957 0.648 0.993 0.211 0.981

RandGIN 0.931 -0.041 0.849 0.219 -0.080
Degree 0.996 -0.034 -0.009 -0.015 0.132

4.3 Experiments on larger graphs

Results for scalable kernels on larger graph datasets with 1000 nodes are shown in Table 2. To reduce the
computation time of these experiments, we set the number of packs to s = 10 instead of 30. We see that these
results are consistent with those discussed above for smaller graphs. In particular, NetLSD-heat is better
than NetLSD-wave for all transitions but Dimensionality, while NetLSD-heat is the best scalable kernel for
Dimensionality transition.

5 Conclusion

In this paper, we analyze the expressivity of graph kernels in the context of evaluating the performance of
graph generative models. We first note that previous research on this subject used only a limited set of
graph kernels. We significantly extend this set and consider a list of long-known graph kernels. To conduct a
detailed analysis of the kernels, we develop a framework that allows us to check whether a kernel is insensitive
to a particular high-level structural graph property. For this, we carefully design an experimental setup based
on interpolations between random graph generators differing in a particular structural property.

The results of our experiments confirm the main points of our paper. First, it is important to consider graph
kernels beyond those usually considered for evaluating the performance of graph generative models. Indeed,
some well-known kernels that show good performance in our experiments have been previously overlooked in
the literature on this subject. Examples of such kernels include Shortest Path and Pyramid Match kernels.
Second, we observe that the wide diversity of the considered structural properties is critical for a thorough
evaluation: it is often the case that a particular graph kernel is sensitive to some characteristics while being
insensitive to others.
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The results shown in Table 1 can be useful when deciding which graph kernel is most suitable when evaluating
generative models in a particular application. For example, our experiments show that the popular Weisfeiler-
Lehman kernel is insensitive to geometry. In certain applications, geometry can be especially relevant, e.g., for
the application of molecular modeling because atoms have spatial locations. In this case, our analysis shows
that using the WL kernel is not a good option. Let us also note that kernels with different properties can
potentially be combined with each other by, e.g., averaging their values. Indeed, if one kernel is sensitive to
a particular characteristic while another kernel is sensitive to another characteristic, then their combination
is expected to be sensitive to both of them. However, a detailed analysis of such combinations is beyond the
scope of the current paper.

Limitations

It is important to keep in mind that it can be challenging (or even impossible) to change one graph character-
istic keeping all other properties fixed. While we attempt to isolate the characteristic of interest, it is likely
that some other properties are affected to some extent. However, let us note that if a kernel turns out to be
insensitive to a particular interpolation this implies that it is insensitive to the underlying characteristics.
Also, for clustering we consider two different ways to increase it, thus reducing the possible bias from a
particular generator.

Another limitation of our work is that we only consider graphs without attributes. Our general framework
easily extends to attributed graphs, but the main challenge would be to design meaningful graph genera-
tors for this scenario: there are many ways to combine standard graph generators with different attribute
distributions.

Finally, our study considers relatively small graphs. Our main motivation is that evaluating graph generative
models using graph kernels is typically applied to such small networks. For example, in molecular modeling,
the graphs consist of a relatively small number of atoms. Other applications where small graphs are relevant
include modeling ego networks in sociology. Additionally, we note that not all kernels are scalable: for
instance, the graphlet kernel has a prohibitively high computational cost on large networks. We consider
smaller graphs so that we can include all popular graph kernels in our experiments.
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A Derivations for graph generators

A.1 Random geometric models

For a two-dimensional torus with width 1 and height h ≤ 1, we find the radius r that leads to m edges in
expectation. Two nodes are connected when their distance is smaller than r, i.e., whenever the second node
is inside a circle with radius r around the first node. If h ≥ 2r, then the surface area of this circle is simply
πr2, while the total area of the torus is h. Therefore, the expected edge density is πr2. Solving

(
n
2
)

· π
h r2 = m

leads to

r =
√

h · m

π ·
(

n
2
) ,

which is valid as long as 2r ≤ h, i.e., whenever h ≥ 4m

π·(n
2) . Otherwise, the circle overlaps itself, which leads

to a smaller surface area, given by the following integral

A(h, r) =
h/2∫

−h/2

√
r2−y2∫

−
√

r2−y2

1dxdy = 2r2

h
2r∫

− h
2r

√
1 − u2du = r2h

√
1 −

(
h

2r

)2
+ 2r2 arcsin

(
h

2r

)
.

To obtain m edges in expectation, we need to choose r such that A(h, r)/h = m/
(

n
2
)
. After substituting

z = h
2r , we get

m(
n
2
) = h

2

(√
1
z2 − 1 + 1

z2 arcsin(z)
)

= h

2 f(z).

We then use Newton-Raphson iteration to solve f(z) = 2m

h(n
2) . Let us denote the obtained value by z =

f−1
(

2m

h(n
2)

)
. Finally, we take the radius r = h

2z . In summary, we choose the radius as

r(h, m) =


√

h·m
π·(n

2) if h ≥ 4m

π·(n
2) ,

h

2f−1

(
2m

h(n
2)

) else. (3)

The one-dimensional torus (the circle) is approximated as h ↓ 0. For a circle, we need r = m

2(n
2) to obtain

m edges in expectation. In the remainder, we show that f−1
(

2m

h(n
2)

)
∼ h

m

(
n
2
)

as h ↓ 0, so that indeed

r(h, m) → m

2(n
2) : first, note that f(z) ∼ 2/z as z ↓ 0, so that

f

(
h

m

(
n

2

))
= 2m

h
(

n
2
) + o(h−1) ⇒ f−1

(
2m

h
(

n
2
)) = f−1

(
f

(
h

m

(
n

2

))
+ o(h−1)

)
.

Next, we take the Taylor expansion of f−1 around f
(

h
m

(
n
2
))

:

f−1
(

f

(
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m

(
n

2

))
+ o(h−1)

)
= f−1
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f ′
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2
)))) = h
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(
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2

)
+ o(h−1)

f ′
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(
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2
)) .
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Finally, the derivative is given by f ′(z) = −2 arcsin(z)
z3 ∼ z−2, so that the second term is o(h). In conclusion,

we have

f−1

(
2m

h
(

n
2
)) = h

m

(
n

2

)
+ o(h),

as required.

A.2 Planted partition model

For the transition between ER and PP, we want θ = 1 to lead to every node having one connection to the
other community in expectation. We use equation 2 with λ = 1 + c(n, m) · θ. We compute

1 = pout(1 + c(n, m)) · n

2 = 2m

n · (2 + c(n, m)) − 2(1 + c(n, m)) .

This leads to the solution
c(n, m) = 2 · m + 1 − n

n − 2 .

B Computation times

Table 3 shows the average computation time for comparing two graph sets for each of the kernels and graph
transitions. Note that the experiments of Table 1 require s · |Θ| = 330 such comparisons for each transition
and kernel.

Heterogeneity
(ER↔CL)

Communities
(ER↔PP)

Geometry
(ER↔Torus)

Dimensionality
(Torus↔Circle)

Complementarity
(ER↔SC)

Degree 0.14 0.15 0.13 0.14 0.14
SP 1.13 1.13 1.13 1.05 1.13
WL 0.15 0.19 0.18 0.19 0.19

WL-OA 1.16 1.27 1.11 1.03 1.18
Graphlet-3 11.32 8.70 7.68 5.97 9.00
Graphlet-4 150.86 85.37 70.08 35.75 91.08

NSPDK 41.37 40.46 36.70 24.83 38.48
PM 0.63 0.64 0.62 0.60 0.63

NetLSD-heat 0.74 0.78 0.73 0.89 0.81
NetLSD-wave 0.88 0.89 0.85 1.04 0.96

RandGIN 0.43 0.46 0.43 0.44 0.45

Table 3: The average computation times (in seconds) for comparing two sets of g = 100 graphs, each
consisting of n = 50 vertices. The shown times are averaged over the |Θ| = 11 interpolation steps. The
experiments were conducted on a laptop with AMD Ryzen 7 8840HS CPU and 16GB RAM.
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