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Figure 1. Given an input image and a sequence of relative camera pose transformations, our method synthesizes more consistent novel
view images. Our method does not need to re-train the baseline model (Zero123) and supports arbitrary relative camera poses.

Abstract
Large diffusion models demonstrate remarkable zero-

shot capabilities in novel view synthesis from a single im-
age. However, these models often face challenges in main-
taining consistency across novel and reference views. A
crucial factor leading to this issue is the limited utilization
of contextual information from reference views. Specifically,
when there is an overlap in the viewing frustum between
two views, it is essential to ensure that the correspond-
ing regions maintain consistency in both geometry and ap-
pearance. This observation leads to a simple yet effective
approach, where we propose to use epipolar geometry to
locate and retrieve overlapping information from the in-
put view. This information is then incorporated into the
generation of target views, eliminating the need for train-
ing or fine-tuning, as the process requires no learnable
parameters. Furthermore, to enhance the overall consis-
tency of generated views, we extend the utilization of epipo-
lar attention to a multi-view setting, allowing retrieval of
overlapping information from the input view and other tar-
get views. Qualitative and quantitative experimental re-
sults demonstrate the effectiveness of our method in signifi-
cantly improving the consistency of synthesized views with-
out the need for any fine-tuning. Moreover, This enhance-
ment also boosts the performance of downstream applica-
tions such as 3D reconstruction. The code is available at
https://github.com/botaoye/ConsisSyn.

1. Introduction

Synthesizing high-quality novel view images from a sin-
gle input image is a long-standing and challenging prob-
lem. It requires inheriting the appearance of objects in the

observed regions of the input image while also hallucinat-
ing unseen regions. Recent studies [13, 38] approach this
problem as an image-to-image translation task and imple-
ment it using diffusion models [10, 27], drawing inspira-
tion from their successful application in 2D image genera-
tion [21, 23]. While they exhibit remarkable zero-shot ca-
pabilities when trained with large-scale 2D and 3D datasets,
they still face challenges in maintaining 3D consistency be-
tween the target view and the generated multi-view images,
due to the probabilistic nature of diffusion models. This
limitation adversely affects downstream applications such
as 3D reconstruction [19, 34].

In this paper, we propose to improve the consistency of
synthesized multi-view images by optimizing the utiliza-
tion of reference image information. Notably, maintain-
ing consistency between the generated image and the cor-
responding observed regions in the input view is a crucial
requirement in the task of single-image conditioned novel
view synthesis. However, existing methods often overlook
this constraint by merely considering the input image as a
condition or network input, which fails to guarantee such
consistency. One straightforward method to fulfill this con-
straint is by warping the content from the input to the target
view and subsequently conducting outpainting for the re-
maining regions [41, 44]. However, 3D warping relies on
precise depth information, which is hard to obtain. Addi-
tionally, direct warping struggles with occlusion and illu-
mination variations across different views.

We aim to utilize this constraint to improve the consis-
tency in a more adaptable way. Despite the intricacies of
obtaining depth, we can still reduce the search space for lo-
cating corresponding points by incorporating other 3D ge-
ometric priors. As depicted in Fig. 2, the corresponding
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points in the reference views must be on the epipolar line.
Therefore, we propose an epipolar attention module to lo-
cate and gather contextual information. For each point in
the target view visible in the reference view, we can first
constrain the corresponding point to its respective epipolar
line in the reference image. Subsequently, we ascertain the
corresponding location along the epipolar line by feature
matching. The features at the localized positions are then
retrieved and used to constrain the target view generation.

More specifically, we first perform DDIM inversion on
the input view and reconstruct the input image using the
initial noise provided by the DDIM inversion. This pro-
cess yields intermediate features of the input view, which
can then be employed to constrain the generation of target
views. Then, in the epipolar attention module, we traverse
the corresponding epipolar line in the input view for ev-
ery point within the target view. During this process, we
compute the similarity between the features of the target
point and those sampled from the input view. This similar-
ity score is then used to aggregate the corresponding fea-
tures from the input view. This soft operation is more adept
at handling complex scenarios, such as occlusion (detailed
analysis can be found in the Supplementary Material). Ad-
ditionally, to avoid any parameter training or fine-tuning,
we employ a simple parameter duplication strategy, i.e., we
copy all parameters directly from the self-attention layer to
obtain the epipolar attention parameters. To further improve
the consistency between different target views, we expand
the application of epipolar attention to a multi-view context.
Specifically, we generate multiple target views in an auto-
regressive manner. When generating a specific novel view,
we consider the input view and previously generated target
views close to the current viewpoint as context views. We
employ epipolar attention to aggregate overlapping infor-
mation from all context views, rather than solely from the
input view, thereby improving consistency among all gen-
erated views. It is worth mentioning that our epipolar at-
tention reduces the search space compared to locating cor-
responding points in the full image. Therefore, it requires
much less memory when retrieving information from mul-
tiple views, making it more friendly to GPUs with small
memory capacity.

We conduct experiences on the Google Scanned Ob-
jects [6] dataset to verify the zero-shot novel view synthesis
capability and evaluate our method on both generated im-
age quality and the view consistency [38]. Additionally,
we apply our method to the downstream 3D reconstruction
task [34] and compare it against the mesh constructed by
our baseline model.

The main contributions of this work are:
• We propose a novel epipolar attention method to locate

and retrieve the corresponding information in the ref-
erence view, which is then inserted into the generation
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Figure 2. When the camera viewing frustum of two views over-
laps, for a point on one of the images, we can find its correspon-
dence on the epipolar line of the other view.
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1) S.V. Condition ✓ ✓ ✓ ✓ × ✓ ✓ ✓
2) Generalizability ✓ ✓ ✓ ✓ × × ✓ ✓
3) No Extra Training × × × × × × × ✓
4) Multi-view Consis × ✓ ✓ ✓ ✓ ✓ ✓ ✓
5) Free Trajectory ✓ × × × ✓ ✓ ✓ ✓

Table 1. Comparison with related methods. Each row repre-
sents the ability to: 2) generalize well to arbitrary objects, 3) work
without requiring extra retraining, 4) generate multi-view consis-
tent images, and 5) generate images in arbitrary camera poses. See
Sec. 4.4 for a detailed comparison.

process of the target view to enhance the consistency
between multi-view images.

• Experimental results show that our method effectively
improves the consistency of the synthesized multi-
view images without any training or fine-tuning while
maintaining the quality of the generated images.

• We apply the synthesized multi-view images to a
downstream 3D reconstruction task, and the results
show that the more consistent images further improve
the 3D reconstruction results.

2. Related Work
Diffusion Models for Novel View Synthesis. Diffu-
sion models show impressive results on the text-to-image
task [20, 21, 23]. Therefore, a line of work aims to extend
it to the novel view synthesis (NVS) task, where they gen-
erate novel view images based on reference images and de-
sired relative camera poses. Such synthesized multi-view
images find utility in various applications such as distil-
lation purposes [3, 12, 19, 33, 37], or for directly train-
ing NeRF-like 3D assets [15, 16, 34]. 3DiM [38] imple-
ments this idea by training a diffusion model conditioned
on reference images and relative camera poses. SparseFu-



sion [46] and GeNVS [2] first generate course latent fea-
ture of the target view as additional input to the diffusion
model. However, these methods are trained on objects from
specific classes or relatively small datasets, making it chal-
lenging to generalize to arbitrary objects. Zero123 [13] ob-
tains impressive zero-shot generalizability by fine-tuning a
2D diffusion model, i.e., Stable Diffusion [21], on a large-
scale 3D rendered dataset [4]. However, novel view im-
ages generated by Zero123 can suffer from consistency
problems, especially when relatively large pose transforma-
tions are present. To address this issue, some very recent
studies [14, 24, 25, 39, 42] try to add additional modules
and fine-tune the Zero123 or LDM model to obtain better
consistency, which requires significant computational re-
sources. In contrast to these approaches, we focus on en-
hancing the consistency of pre-trained models without the
need for any fine-tuning. Tab. 1 provides an overview com-
parison, while Sec. 4.4 offers a detailed comparison.

Image-to-Image Translation. Image-to-image translation
(I2I) involves learning a mapping from an input image to an
output image while preserving specific properties like the
scene layout or object structure. Our paper’s primary focus
can be viewed as an I2I task, where the condition is the pose,
aiming to transform the input image to the desired pose.
One of the main challenges in the pose-guided novel view
generation task is maintaining consistency between the tar-
get images and the input image. This challenge shares sim-
ilarities with the issues encountered in text-guided image-
to-image translation tasks [1, 9, 11, 17, 31]. For instance,
works such as [1, 9, 31] manipulate self-attention, cross-
attention, or spatial features within the U-Net [22] structure
to preserve the desired concept in the input image. How-
ever, these methods primarily target 2D image translation or
editing tasks, lacking 3D structural information and strug-
gling to discern what to preserve or discard in the context
of the NVS task. In contrast, our method incorporates 3D
geometry information into the translation process to better
preserve the desired information in the input view.

Epipolar Geometry in DNN. Epipolar geometry is used in
many previous works [8, 28, 30, 35, 40]. They often inte-
grate epipolar geometry into network modules and employ
it for network training. In contrast, we use the epipolar ge-
ometry to generate images without training or fine-tuning to
localize better and retrieve the corresponding information
using the features from a trained diffusion model.

3. Preliminaries

In this section, we revisit the pose-conditional diffusion
model used in our approach (Sec. 3.1), and the DDIM in-
version technique used to invert the reference image back
to the initial Gaussian noise (Sec. 3.2).

3.1. Pose-Conditioned Diffusion Model

Diffusion models [5, 10, 26, 27] are probabilistic gener-
ative models, which transform an initial Gaussian noise
xT ∼ N (0, I) into an arbitrary meaningful data distribu-
tion. During training, the diffusion forward process is ap-
plied, in which Gaussian noise is added to the clean data x0

(image in our case):

xt =
√
αt · x0 +

√
1− αt · z, (1)

where z ∼ N (0, I) is the random noise and {αt}, t ∈ [0, T ]
is the noise schedule indexed by time step t. During infer-
ence, the backward diffusion process is utilized to progres-
sively denoise xT to obtain the clean data. This denoising
process is facilitated by a neural network ϵθ (xt, t), which
predicts noise at each step.

We focus on employing the diffusion model for synthe-
sizing novel views from a single input view. This can be
seen as an image-to-image translation process that trans-
forms the original image into a novel view image based on
their relative camera pose transformation. Formally, given
the reference view image xr and the relative camera pose
transformation ∆p = (R,T) between the reference view
and the target view, the denoising network predicts noise
conditioned on both xr and ∆p, denoted as:

zt = ϵθ (xt, t | xr,∆p) . (2)

In this work, we leverage a pre-trained pose-conditioned
diffusion model (Zero123 [13]), which in turn is fine-turned
from a Latent Diffusion Model [21]. The network is im-
plemented using a U-Net [22] structure, consisting of sev-
eral residual blocks [7], self-attention blocks, and cross-
attention blocks [32]. At each time step t, the feature maps
from the previous layer l − 1 are first feeded in the resid-
ual block to obtain feature F l

t. Subsequently, projection
layers are employed to generate distinct query Q, key K,
and value V feature maps (for simplicity, excluding time
step t and layer index l). The output feature of the self-
attention block, denoted as F̂ , is computed using the opera-
tion F̂ = A·V , where the attention matrix A is determined
as follows:

A = Softmax

(
QK⊤
√
d

)
, (3)

where d is the feature dimension.

3.2. DDIM Inversion

During backward diffusion, deterministic DDIM sam-
pling [27] is commonly used to convert noise xT into clean
data x0. In contrast, DDIM inversion [5, 27] converts the
original clean image data x0 back to Gaussian noise xT

by incrementally adding the noise predicted by the network
ϵθ. We also employ DDIM inversion to convert the input
image to its initial noise xR. Throughout this conversion,
we utilize the input image feature and a fixed relative pose
transformation of [0, 0, 0] as the network condition.
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Figure 3. Overview of our method. (a) We first perform DDIM inversion on the input image to obtain the initial noise, which is shared
during the multi-view image generation process. Throughout the generation of each view, our epipolar attention block efficiently locates
and retrieves corresponding information from both the input image and other target views. (b) The architecture of our 3D epipolar attention
module. (c) Location of our inserted epipolar attention block.

4. Approach
As mentioned above, our goal is to improve the consistency
of the synthetic multi-view image by locating and retriev-
ing the corresponding information (features) in the refer-
ence view that overlap with the target view and then using
the retrieved features to constrain the target view generation
process. Therefore, we first explicate the methodology for
computing the epipolar line and sampling points along it to
effectively reduce the searching space concerning the corre-
sponding locations (Sec. 4.1). Then, we will describe how
to locate the corresponding locations along the epipolar line
(Sec. 4.2). The general idea is to find the correspondence
between a point in the target view and sampled points on
the epipolar line through feature similarity. To better ob-
tain the similarity information, we analyze the attributes of
different features in the U-Net block and then find the ap-
propriate features used to compute the similarity. Next, we
introduce the parameter duplication strategy that facilitates
the training-free module, and how to inject the retrieved ref-
erence features to constrain the generation process of the
target views (Sec. 4.3). Finally, we will provide a detailed
analysis of our epipolar attention (Sec. 4.4). Fig. 3 shows
the overall framework of our tuning-free multi-view epipo-
lar attention that enables consistent novel view synthesis.

4.1. Point Sampling from Epipolar Lines

Ideally, with the target view’s depth map, we can accu-
rately find its correspondence in the reference view by un-
projecting each point to 3D space and then re-projecting it
into the reference view. However, obtaining an accurate
depth value for arbitrary real-world objects remains chal-
lenging, if not infeasible. Alternatively, when considering
a point pi in the target view, its corresponding point p′

i in
the reference view, if visible, must lie on the corresponding

epipolar line li. Therefore, we opt to find the corresponding
feature in the reference view along the epipolar line, which
significantly reduces the search space and the memory re-
quired for subsequent computations.

We assume that the synthesized novel view images have
the same camera intrinsic parameters K as the reference im-
age, as being commonly set for the NVS task. Specifically,
given the relative camera rotation R and translation t from
the reference image to the target image, for each point pi in
the target image, the corresponding epipolar line li is:

li = R[t]×K
−1pi, (4)

where li is the epipolar line of pi in the reference image,
and [t]× is the skew-symmetric matrix representation of
t. Despite the unknown exact camera focal length f , the
computation of the epipolar lines li remains feasible, as the
computation can be independent of f (see Supplementary
Material for proof).

Subsequently, we sample a set of points denoted as p′ ∈
P ′ along the epipolar line, specifically along the direction of
the image width, at intervals of each feature pixel. Note that
some sample points may be outside the feature plane and
will be masked during the similarity calculation and feature
retrieval process.

4.2. Corresponding Point Searching

Paired Feature Acquiration. The epipolar sampling op-
eration essentially reduces the search space of the corre-
sponding points. However, how to more accurately locate
the actual corresponding point in the epipolar line remains
unsolved. Previous works [29, 43] show that the features
extracted by diffusion models show good semantic corre-
spondence between two input images. Thus, a plausible
approach is to seek the corresponding position in the ref-
erence image for each pixel in the target view by assessing



the similarity between their respective features. However,
previous feature matching methods [29, 43] require feed-
ing two paired images into the diffusion model separately
and extracting their features for matching, making them un-
suitable for our scenario where the target image is pending
generation. To address this, we employ DDIM inversion,
as detailed in Sec. 3.2, to acquire noise from the reference
image. This noise is then utilized to concurrently recon-
struct the reference image alongside the denoising process
of the target image, which we used to obtain the paired fea-
tures. Specifically, we progressively denoise the DDIM in-
versed initial noise xR of the reference image using DDIM
sampling and set the relative camera pose transformation as
[0, 0, 0] so that the reference image can be recovered. Mean-
while, we use the same xR as the initial noise to generate
the target view. We can then obtain paired features by re-
trieving the features in the same denoising step and at the
corresponding layer of both the input and target generation
branches. Since the sampled point in the epipolar line is
in the sub-pixel location, we employ bilinear interpolation
to obtain the feature value of each point p′

i in the epipolar
line. We then analyze the similarity of the corresponding
intermediate feature of the target and reference branch.
Computing Epipolar Attention. We now have access to
the paired features of the input and target images. However,
the specific features within the U-Net structure to utilize, as
well as the methodology for calculating their similarity, re-
main unclear. Previous feature matching methods [29, 43]
calculate the similarity of output feature F of the attention
block use cosine similarity CosSim(F tgt(q), [F ref (q

′)])
([·] is the bilinear interpolation operation), followed by a
softmax operation. However, our experiments reveal that
the similarity derived from these features does not align
well with our intended application. The resulting similar-
ity map exhibits a relatively uniform distribution, indicating
insufficient localization of the desired corresponding loca-
tion and inadequate corresponding feature aggregation (see
Fig. C.1. in the supp. mat.). It is important to note that
the query and key features employed within the multi-head
self-attention block are intended for similarity calculation,
so we opt to use the query Q from the target branch and the
key K from the reference branch to compute the similarity
according to Eq. 3. Such similarity scores can pinpoint the
corresponding location (see Fig. C.1. in the supp. mat.).

4.3. Reference Feature Injection

After finding the location of the corresponding point, we
introduce how to use such information to constrain the gen-
eration process of the target image. First, to neglect the ne-
cessity of further training or fine-tuning, we employ a sim-
ple parameter duplication strategy, as shown in Fig. 3(c), in
which we directly instantiated the epipolar attention block
with the well-trained parameters of the self-attention block.

Target View Full Attn Epipolar Attn

0.521

0.594

0.003

0.002

Figure 4. Comparison between our epipolar attention and the full
attention. Our epipolar attention better locates and retrieves the
corresponding information in the reference view.

Similar to the attention operation [32], we use the weighted
sum to aggerate the corresponding information in the refer-
ence image as follows:

F̂ src =
∑
p′∈P′

sim
(
Qtgt(p),Kref (p

′)
)
· F src (p

′) , (5)

where sim(·) is the similarity calculation operation as Eq. 3.
Similar to the residual connection in the original U-Net
block, we fuse the output feature from our epipolar atten-
tion block with the original self-attention block with a pre-
defined weight parameter α, which can be formulated as
F = αF̂ src + (1− α)F̂ .
Attending Multi-Views at Once. While aggregating the
overlapping feature from the input view improves the con-
sistency between the output view and the input view, the
consistency between different target views still is not well
preserved as there are regions in the target images that are
not visible to the input views. We further extend the epipo-
lar attention to the multi-view setting to address this issue.
Specifically, we generate multiple views ∆pi, i ∈ [1, N ] in
an auto-regressive manner. When synthesizing a specific
novel view ∆pi, we designate it as the target view. M
previous views, along with the input view, are considered
context views, collectively containing specific information
that overlaps with the target view. Subsequently, we apply
epipolar attention to all context views and compute the av-
erage features derived from these views. Fig. 3 (a) shows
an example synthesis process for view ∆pi.

4.4. Discussion About the Epipolar Attention

Comparison with Full Image Attention. An alternative
to our epipolar attention mechanism is directly using full
attention to gather corresponding information in the refer-
ence view, which finds the corresponding points in the full
image. In contrast, our epipolar attention significantly re-
duces the search space for the corresponding point search-
ing by introducing additional geometric priors. Illustrated
in Fig. 4, our method exhibits sharper similarity scores and
more precise localization of corresponding positions, result-
ing in a more effective retrieval of desired corresponding
features. Thus, as shown in Tab. 5, epipolar attention per-



forms better than full attention, especially when multiple
reference views are employed. Additionally, by reducing
the search space, our epipolar attention significantly de-
creases memory consumption during the feature retrieval
process. The space and time complexity of the epipolar at-
tention is O(L3), while that of the full attention is O(L4),
where L is the length of the feature map.
Comparison with Recent Methods. Some recent
works, such as MVDream [25], SyncDreamer [14], and
Zero123++ [24], also aim to improve the consistency of
synthesized multi-view images. However, these methods
require time-consuming re-training. Moreover, they con-
strain the camera pose during training, limiting their ability
to synthesize images to a fixed set of camera poses. For
example, MVDream [25] can only synthesize images with
four fixed camera views. In contrast, our method can syn-
thesize consistent multi-view images with arbitrary camera
poses without re-training.

Previous work, i.e., PGD [30] also utilizes epipolar at-
tention in the generation task. However, it differs from
our method mainly in two aspects. 1) Our method aims to
enhance baseline model consistency without tuning, while
PGD treats epipolar attention as a network module requiring
full network training, making it resource-intensive. These
differences also lead to problem formulation in using epipo-
lar constraints. PGD computes per-pixel distances to the
epipolar line as an additional weight map multiplied by
the original attention matrix, thereby altering the original
distribution of attention weights. Consequently, this ap-
proach is not suitable for a non-training pipeline. In con-
trast, we aim to locate and retrieve corresponding informa-
tion from the reference views using the epipolar constraint
to roughly approximate the correspondence, followed by
sampling and soft fine-locating. Thus, we avoid the need
for time-consuming retraining. Furthermore, our method
reduces GPU memory consumption compared to PGD, as
PGD still utilizes full attention. Inserting PGD’s epipo-
lar module into our pipeline yields inferior results and has
no significant improvements over full attention (see Tab.4
and Tab. 5). 2) To make the whole pipeline work without
any fine-tuning, we invest considerable effort in its design,
which is not explored in PGD. For instance, we provide in-
sights into how to generate input view features based on pre-
trained Zero123, determine appropriate features for simi-
larity computation, and how to extend epipolar attention to
multi-view setting.

5. Experiments

5.1. Experimental Setups

Dataset. Following previous work [13, 14], we evaluate
our work on the Google Scanned Object (GSO) [6] dataset
to verify the zero-shot novel view image synthesis capa-

bility. We also provide results for additional datasets in
the Supplementary Material. Specifically, we randomly se-
lect 30 objects from the GSO dataset with various object
categories. Unlike recent approaches [14, 25] that aim to
enhance the consistency of novel view synthesis models
by generating multiple fixed-view images, our method can
generate images from any camera pose and any number of
views. Therefore, we conduct experiments under different
camera pose settings to validate our approach: specifically,
1) 16-views with free camera pose: for each object, we cir-
cularly render 16 views with the elevation angles ranging in
[−10°, 40°] and the azimuth angles are evenly distributed in
[0°, 360°]. 2) 16-views with fixed camera pose: We maintain
a constant elevation angle of 30° and uniformly sample az-
imuth angles (same as SyncDreamer [14]). 3) 32-views with
free camera pose: Similar to the first setting, but we sample
32 views. It’s important to note that our method does not
require additional training or fine-tuning on any datasets.
Metrics. To validate the effectiveness of our method, we
mainly evaluate it based on three criteria: 1) Quality Score.
We evaluate the image quality of synthesized multi-view
images by measuring their similarity with ground truth im-
ages. Following prior research [13, 46], we report the
similarity between the synthesized images and the ground
truth images with standard metrics: PSNR, SSIM [36],
and LPIPS [45]. 2) Multi-view Consistency Score. As the
primary goal of our work is to improve the consistency
of generated images, we also employ the 3D consistency
score [38] to verify the consistency among the synthesized
images. Specifically, we train an Instant-NGP [18] with
the input image and part of the synthesized novel view im-
ages of our model and evaluate the similarity between the
remaining synthesized images and the rendered images of
Instant-NGP. For the synthesized multi-view images of each
object, we allocate 3/4 for training and reserve the remain-
ing 1/4 for validation. Intuitively, if the consistency of syn-
thesized images is improved, the NeRF-like model will train
a better object representation, and the re-rendered images
will agree more with the validation images. 3) Input Con-
sistency Score. To assess the faithfulness of synthesized im-
ages in preserving the identity of the input condition image,
we introduce the input consistency score. This score calcu-
lates the similarity of each synthesized image with the input
condition image, utilizing the LPIPS metric.

In addition, we use synthesized multi-view images to
train a neural 3D reconstruction model (NeuS [34]) and re-
port commonly used Chamfer Distances (CD) and Volume
IoUs between the trained 3D model and the ground truth.
Baselines. Given that our main goal is to improve the
consistency of the trained baseline model without further
fine-tuning, we mainly compare our approach with the used
baseline model Zero123 [13]. Additionally, we compare
our method to the SOTA approaches such as PGD [30] and
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Figure 5. Qualitative comparison with the baseline for generating a sequence of novel view images. The results demonstrate that our
method synthesizes more consistent multi-view images compared to our baseline model (Zero123). In addition, compared to SyncDreamer,
our method visually maintains better similarity to the conditioned image and appears more natural.

Table 2. Comparison of multi-view consistency, image quality,
and input consistency of synthesized multi-view images at the 16-
view setting with free camera pose.

Multi-view Consistency Quality Score Input Consis.

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ LPIPS↓
Zero123 15.225 0.645 0.408 14.255 0.747 0.208 0.303

SyncDreamer 14.830 0.626 0.434 12.650 0.713 0.254 0.317
Ours 18.300 0.734 0.355 14.947 0.763 0.191 0.282

Table 3. Comparison of multi-view consistency, image quality,
and input consistency at the 16-view setting with fixed camera
pose as SyncDreamer [14].

Multi-view Consistency Quality Score Input Consis.

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ LPIPS↓
Zero123 16.556 0.682 0.378 14.592 0.750 0.207 0.305

SyncDreamer 22.424 0.812 0.268 15.269 0.749 0.196 0.300
Ours 21.151 0.780 0.302 15.293 0.764 0.184 0.287

Table 4. Comparison of multi-view consistency and image qual-
ity scores of synthesized multi-view images at the 32-view setting
with free camera pose.

Multi-view Consistency Quality Score

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Zero123 16.515 0.694 0.378 15.142 0.733 0.211

PGD [30] 18.481 0.720 0.343 15.281 0.739 0.205
Ours 20.655 0.792 0.305 15.268 0.742 0.203

SyncDreamer [14] using the same Zero123 base model.
Implementation Details. We use the official checkpoint
provided by Zero123 [13], which is trained on objaverse [4]
for 165,000 steps. We inject our epipolar attention layer
after step T = 4 and layer L = 10 by default. We find that
feature fusion weight α = 0.5, and the number of context
views M = 2 work better.

5.2. Comparison With Baseline Models

The quantitative comparison on three settings are shown in
Tab. 2, Tab. 3, and Tab. 4. The qualitative comparison is
shown in Fig. 5.
Multi-view Consistency. Tab. 3 presents the 3D consis-
tency scores compared to our baseline model (Zero123)
and SyncDreamer. The results indicate a significant im-
provement across all three metrics achieved by our method

Table 5. Ablation Study on consistency score and quality score.
Each of the different design choices is added to the baseline model.

PSNR↑ SSIM↑ LPIPS↓
Baseline (Zero123) 16.515 0.694 0.378

+ Full Attention (Single) 18.208 0.749 0.346
+ Epipolar Attention (Single) 18.514 0.761 0.342

+ Full Attention (Multi) 19.511 0.784 0.312
+ Epipolar Attention (Multi) 20.655 0.792 0.305

when compared with Zero123. While our method exhibits
a marginally lower numerical consistency score compared
to SyncDreamer, it enables the synthesis of images with
arbitrary camera poses. This capability is illustrated in
Tab. 2, where our method consistently enhances consis-
tency with changes in camera pose settings, whereas Sync-
Dreamer fails to do so and exhibits inferior results com-
pared to Zero123. Furthermore, our method facilitates the
synthesis of multi-view images with any number of cam-
era views. This versatility is demonstrated in Tab. 4, where
our method continues to achieve significant improvements
in consistency scores, while SyncDreamer is unable to op-
erate under such conditions.

Meanwhile, Fig. 5 provides a qualitative comparison
with the baseline. While both our method and SyncDreamer
enhance consistency, our method visually preserves better
similarity to the input image, including color and texture de-
tails. The input consistency score further corroborates this.
Image Quality. While our primary goal centers around en-
hancing the consistency of synthesized multi-view images,
we also evaluate the image quality by comparing the simi-
larity with the ground truth images. The results shown in
Tab. 2, Tab. 3, and Tab. 4 indicate that our method also
enhances the image quality under different settings besides
improving the consistency. Moreover, our method shows
better image quality compared with SyncDreamer even in
the 16-view setting with fixed camera pose.
Input Consistency. Input consistency terms whether the re-
sults align with the input image. Fig. 5 illustrates that both
our method and SyncDreamer enhance multi-view consis-
tency. However, the color and texture details of Sync-
Dreamer’s results diverge from the input image and appear
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Figure 6. Qualitative Comparison for different design choices. Our method, employing
multi-view epipolar attention, demonstrates the best consistency.

Input Zero123 Sync-
Dreamer Ours

Figure 7. Our method shows better direct 3D
reconstruction [34].

visually unnatural. This discrepancy is evident in the input
consistency score presented in Tab. 3, indicating lower sim-
ilarity with the condition image in the SyncDreamer results.

5.3. Ablation Study

The overall quantitative results are shown in Tab. 5, and the
qualitative comparisons are shown in Fig. 6.
Full Attention vs. Epipolar Attention. The results pre-
sented in Tab.5 and Fig.6 demonstrate that our epipolar at-
tention mechanism can synthesize more consistent multi-
view images compared with full attention. Furthermore, our
epipolar attention achieves a greater performance improve-
ment compared to full attention when using multiple refer-
ence images. This could be attributed to the fact that our
epipolar attention more effectively localizes target informa-
tion, as depicted in Fig. 4, thereby reducing noise from the
reference images. In the multi-view setting, where multi-
ple reference images are utilized, this noise reduction be-
comes particularly crucial. Moreover, it is noteworthy that
the epipolar attention mechanism consumes less GPU mem-
ory compared to our baseline, as discussed in Sec. 4.4.
Attending Single-View vs. Multi-View. Applying the
epipolar attention significantly improves the consistency be-
tween the input and target views. However, the consistency
between different views in the unobserved regions of the
input view is not well preserved. After implementing our
epipolar attention in the multi-view setting, the consistency
across the generated multi-view images is further improved.
The last row in Tab. 5 shows that after applying our multi-
view epipolar attention, the consistency score is further im-
proved compared with the single-view setting. Besides, the
qualitative result in Fig. 6 also shows better consistency
among different target views.

5.4. Downstream Application
To demonstrate the effectiveness of our method, we also ap-
plied it to the downstream 3D reconstruction task. Specifi-

Table 6. Comparison of 3D reconstruction results. Our method
significantly improves the reconstruction quality.

Chamfer Dist.↓ Volume IoU↑
Zero123 0.017 0.819

SyncDreamer 0.013 0.847
Ours 0.014 0.842

cally, we trained the NeuS model [34] directly using images
synthesized by our method, Zero123, and SyncDreamer, re-
spectively. The quantitative results in Tab. 6 show that the
consistent multi-view images synthesized by our method
can significantly improve the 3D reconstruction quality.
Additionally, our method exhibits similar performance to
SyncDreamer which requires time-consuming re-training.
The qualitative results in Fig. 7 show that it is challenging
to train the NeuS model directly due to the lack of consis-
tency in the images generated by Zero123. In contrast, our
method generates more consistent multi-view images and,
therefore, better reconstructs the geometry and texture de-
tails. We show improvements on other downstream applica-
tions such as image-to-3D in the Supplementary Material.

6. Conclusion
In this paper, we propose a method to improve the consis-
tency of multi-view images synthesized by a pose-guided
diffusion model without any training or fine-tuning. Specif-
ically, for each pixel in the target view, we use epipolar at-
tention to locate and retrieve features at corresponding lo-
cations in the input view and insert them into the generation
process of the target view to enhance consistency. We also
extend epipolar attention to the multi-view setting by syn-
thesizing multiple views and retrieving information from
the input and other target views. Experimental results show
that our method can improve the consistency of the gen-
erated multi-view images and further benefit downstream
applications such as 3D reconstruction.
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