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Abstract001

The rapid progress and widespread availabil-002
ity of text-to-image (T2I) generation models003
have heightened concerns about the misuse of004
AI-generated visuals, particularly in the con-005
text of misinformation campaigns. Existing006
AI-generated image detection (AGID) meth-007
ods often overfit to known generators and fal-008
ter on outputs from newer or unseen models.009
To systematically address this generalization010
gap, we introduce the Visual Counter Tur-011
ing Test (VCT2), a comprehensive benchmark012
of 166,000 images, comprising both real and013
synthetic prompt-image pairs produced by six014
state-of-the-art (SoTA) T2I systems: Stable015
Diffusion 2.1, SDXL, SD3 Medium, SD3.5016
Large, DALL·E 3, and Midjourney 6. We017
curate two distinct subsets: COCOAI, featur-018
ing structured captions from MS COCO, and019
TwitterAI

1, containing narrative-style tweets020
from The New York Times. Under a unified021
zero-shot evaluation, we benchmark 17 leading022
AGID models and observe alarmingly low de-023
tection accuracy, 58% on COCOAI and 58.34%024
on TwitterAI. To transcend binary classifica-025
tion, we propose the Visual AI Index (VAI), an026
interpretable, prompt-agnostic realism metric027
based on twelve low-level visual features, en-028
abling us to quantify and rank the perceptual029
quality of generated outputs with greater nu-030
ance. Correlation analysis reveals a moderate031
inverse relationship between VAI and detection032
accuracy: Pearson ρ of −0.532 on COCOAI033
and ρ of −0.503 on TwitterAI; suggesting that034
more visually realistic images tend to be harder035
to detect, a trend observed consistently across036
generators. We release COCOAI and TwitterAI037
to catalyze future advances in robust AGID and038
perceptual realism assessment.039

1 Introduction040

The rapid advancement of text-to-image (T2I) gen-041

erative models, such as Stable Diffusion (Rom-042

1Midjourney 6 is excluded from TwitterAI due to prompt
filtering constraints.

Figure 1: An AI-generated image of Pope Francis wear-
ing a gigantic white puffer jacket went viral on social
media platforms like Reddit and Twitter (X) in March
2023. This image sparked widespread media discus-
sions on the potential misuse of generative AI tech-
nologies, becoming an iconic example of AI-generated
misinformation. For more details, see the Forbes story.

bach et al., 2022; Podell et al., 2023; Esser et al., 043

2024), DALL·E (Ramesh et al., 2021, 2022; Betker 044

et al., 2023), Midjourney (Midjourney, 2024), and 045

Imagen (Saharia et al., 2022), has revolutionized 046

visual content creation. These models unlock pow- 047

erful creative workflows and democratize image 048

synthesis at scale. However, their widespread ac- 049

cessibility also raises critical concerns about vi- 050

sual misinformation and content authenticity. As 051

illustrated in Figure 1, synthetic images can con- 052

vincingly mimic journalistic or photographic style, 053

blurring the boundary between real and generated 054

content. This growing threat has prompted global 055

attention. In March 2023, an open letter (Marcus, 056

2023) warned that generative AI could destabilize 057

the global information ecosystem. The European 058

Commission reported a significant decline in online 059

content moderation accuracy, from 90.4% in 2020 060

to just 64.4% in 2022 (Commission, 2022). Mean- 061

while, social platforms process over 3.2 billion im- 062

ages and 720,000 hours of video daily (T.J. Thom- 063

son, 2020), with synthetic media projected to ac- 064

count for 90% of online content by 2026 (Europol, 065

1

https://huggingface.co/datasets/anonymous1233/COCO_AI
https://huggingface.co/datasets/anonymous1233/twitter_AI
https://www.forbes.com/sites/mattnovak/2023/03/26/that-viral-image-of-pope-francis-wearing-a-white-puffer-coat-is-totally-fake/


2024).066

Despite increasing demand for reliable detec-067

tion tools, existing AI-generated image detection068

(AGID) methods often fail to generalize to im-069

ages from unseen generators or real-world contexts.070

Watermark-based approaches remain fragile, easily071

circumvented via cropping, filtering, or adversarial072

manipulation (Zhao et al., 2025). Meanwhile, prior073

AGID benchmarks (Zhu et al., 2023; Sha et al.,074

2023) suffer from limited real-image diversity, nar-075

row prompt coverage, outdated model inclusion,076

and closed access, impeding rigorous evaluation077

and progress.078

To address these limitations, we introduce the079

Visual Counter Turing Test (VCT2), a large-080

scale benchmark dataset for zero-shot AGID evalu-081

ation. VCT2 contains approximately 166,000 im-082

ages, including 26,000 real prompt-image pairs083

and 140,000 synthetic images produced by six084

SoTA T2I models: Stable Diffusion 2.1, SDXL,085

SD3 Medium, SD3.5 Large, DALL·E 3, and Mid-086

journey 6, spanning both open-source and propri-087

etary systems. The prompts in VCT2 are drawn088

from two semantically distinct sources to capture089

both structured and open-ended language. The090

COCOAI subset uses object-centric captions from091

MS COCO (Lin et al., 2014), a staple in vision-092

language research. The TwitterAI subset comprises093

narrative-style tweets authored by The New York094

Times (@nytimes), providing real-world, journal-095

istic prompts rich in nuance and context. This di-096

versity allows us to evaluate AGID methods across097

a wide range of generation styles and domains.098

To enable more nuanced evaluation beyond bi-099

nary classification, we introduce the Visual AI In-100

dex (VAI), a model-agnostic, interpretable metric101

that quantifies the perceptual realism of an image102

based solely on its visual content. VAI produces a103

scalar score derived from twelve handcrafted, low-104

level image features, including texture complexity,105

frequency-domain statistics, Haralick features, and106

image sharpness. These features have been selected107

based on their empirically observed alignment with108

human judgments of realism. Correlation analy-109

sis further supports the utility of VAI as a proxy110

for detection difficulty: we observe a moderate in-111

verse relationship between VAI scores and AGID112

detection accuracy across generative models (Pear-113

son ρ = −0.503 on TwitterAI and ρ = −0.532 on114

COCOAI), indicating that more visually realistic115

images tend to be harder to detect. Our realism116

scores offer a prompt and model-agnostic lens into117

the perceptual quality of generated images. 118

We evaluate 17 AGID methods under a stan- 119

dardized zero-shot setting, using publicly available 120

implementations and default model checkpoints. 121

Our goal is to assess how well these methods gen- 122

eralize across a variety of text-to-image models, 123

including open-source systems like Stable Diffu- 124

sion 2.1, SDXL, SD3 Medium, and SD3.5 Large, as 125

well as proprietary models such as DALL·E 3 and 126

Midjourney 6, and across two domains: structured 127

and high quality MS COCO captions and images 128

and narrative-style tweets and real world images 129

from The New York Times. Experimental results 130

(Section 4) reveal model generalization gaps by no- 131

ticeable detection performance degradation, with 132

average detection accuracy of 58% on COCOAI and 133

58.34% on TwitterAI. We observe lower detection 134

accuracy on COCOAI compared to TwitterAI. This 135

is likely because COCO prompts produce images 136

that are more photo-realistic and visually similar to 137

real photos. In contrast, TwitterAI generations often 138

include creative or unusual visual patterns, leading 139

to more detectable differences. Notably, DALL·E 140

3 and SD3.5 consistently yield the lowest detection 141

accuracy across both domains. To summarize, our 142

main contributions are: 143

(i) We introduce the Visual Counter Turing 144

Test (VCT2) benchmark to evaluate the generaliza- 145

tion capabilities of AI-generated image detection 146

methods across diverse prompt styles and real im- 147

age sources, including MS COCO and Twitter, as 148

well as six state-of-the-art synthetic image genera- 149

tors. 150

(ii) We define the VisualAI Index (VAI), a scalar 151

metric to quantify perceptual realism based on 152

twelve interpretable low-level visual features. 153

2 Recent Advances in AI-Generated Im- 154

age Detection Techniques 155

AI-generated image detection (AGID) is becoming 156

increasingly vital as synthetic content continues to 157

grow in both photorealism and scale. Detection 158

methods vary widely in their design assumptions, 159

feature representations, and robustness to distribu- 160

tion shifts, such as changes in generative models, 161

prompt styles, or real image characteristics that 162

diverge from photographic norms. 163

To facilitate systematic evaluation, we categorize 164

AGID approaches into three broad groups: 165

(i) Generation Artifact-Based Methods: These 166

methods target low-level signals introduced 167
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during the image synthesis process, such as168

upsampling artifacts, denoising residuals, or169

color inconsistencies. While often computa-170

tionally efficient, they tend to be fragile under171

post-processing or model variation.172

(ii) Feature Representation-Based Methods:173

These rely on high-level semantic or per-174

ceptual features extracted via CNNs, Vision175

Transformers, or CLIP-style encoders. They176

typically offer stronger generalization across177

domains, though may miss fine-grained gen-178

erative artifacts.179

(iii) Hybrid Methods: These approaches inte-180

grate both low- and high-level cues, and often181

leverage contrastive learning, multi-modal em-182

beddings, or text–image alignment to enhance183

robustness under distributional shifts.184

Figure 2 illustrates this taxonomy. We evaluate 17185

publicly available AGID models spanning all three186

categories, selected based on their methodological187

diversity, recent relevance, and open-source avail-188

ability. Each method is tested in a standardized189

zero-shot setting using its default checkpoint, with-190

out any fine-tuning on the VCT2 benchmark. This191

taxonomy provides a reference framework for in-192

terpreting detection trends discussed in Section 4,193

with further implementation details outlined in Ap-194

pendix B.195
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Generation Artifact-Based Detection

NPR (Tan et al., 2023)

DM Image Detection (Corvi et al., 2023)

Fake Image Detection (Doloriel and Cheung, 2024)

DRCT (Chen et al.)

Feature Representation-Based Detection

CNNDetection (Wang et al., 2020)

GAN Image Detection (Mandelli et al., 2022)

DIRE (Wang et al., 2023)

LASTED (Wu et al., 2023)

De-Fake (Sha et al., 2023)

Deep Fake Detection (Aghasanli et al., 2023)

SSP (Chen et al., 2024)

RINE (Koutlis and Papadopoulos, 2024)

OCC-CLIP (Liu et al.)

Universal Fake Detect (Ojha et al., 2023)

C2P-CLIP (Tan et al., 2024)

Hybrid Techniques
AIDE (Yan et al., 2024)

FatFormer (Liu et al., 2024)

Figure 2: The taxonomy of AI-generated image
detection techniques, categorized into three main
groups: Generation Artifact-Based Detection, Fea-
ture Representation-Based Detection, and Hybrid Tech-
niques.

3 The Visual Counter Turing Test (VCT2)196

Benchmark Dataset197

We introduce the Visual Counter Turing Test198

(VCT2), a large-scale benchmark designed to eval-199

uate AI-generated image detection (AGID) tech- 200

niques. VCT2 includes the following: 201

• Approximately 26,000 real image–prompt 202

pairs, combining our curated Twitter dataset 203

and the benchmark MS COCO dataset; 204

• Approximately 140,000 synthetic images, gen- 205

erated using six state-of-the-art text-to-image 206

models; open-source models: Stable Diffu- 207

sion 2.1, SDXL, SD3 Medium, SD3.5 Large; 208

and two proprietary models: DALL·E 3, Mid- 209

journey 6. 210

• In total, around 166,000 images derived from 211

26,000 unique prompts. 212

This scale provides a balance between structured, 213

caption-based content and naturalistic, real-world 214

prompts, positioning VCT2 among the most com- 215

prehensive AGID datasets to date. 216

3.1 Prompt Sources and Coverage 217

To ensure diversity in both semantic content and 218

visual generation styles, we curated prompts from 219

two distinct and complementary sources: 220

• ∼10,000 benchmark prompts from the MS 221

COCO dataset (Lin et al., 2014), focused on 222

object-centric and everyday scenes; 223

• ∼16,000 real-world prompts from the 224

@nytimes Twitter account 2011–2023. To 225

assess topical diversity, we identified ten 226

topics and associated keywords, and then 227

assigned each tweet to its most probable 228

topic. Table 1 shows the five dominant 229

clusters. These clusters reflect both editorial 230

depth and real-world content breadth. Their 231

presence enhances the semantic realism of 232

our benchmark and supports rigorous AGID 233

evaluation across multiple domains. 234

3.2 Real Twitter Prompt-Image Dataset 235

Collection and Processing 236

To construct a diverse and reliable dataset of real 237

Twitter images, we employed an automated data 238

collection pipeline using Python and Selenium. 239

We focused on tweets from @nytimes (The New 240

York Times) due to its editorial credibility, rigorous 241

fact-checking, and diverse topical coverage. 242

Data Collection. Our pipeline sampled tweets 243

spanning a 12-year period (2011-2023), retaining 244
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Table 1: Topic Clusters in the NYT Twitter Subset.

Topic Cluster Tweet Count Top Keywords
Daily Briefings and News Summaries 1129 know, need, day, morning, briefing, evening
New York City and Culture 1961 new, york, city, times, books, critics
Art, Movies, and Obituaries 631 photo, review, obituary, art, movie, critic
Health, COVID-19, and Breaking News 1436 coronavirus, health, opinion, news, breaking, people
Opinion Pieces and Societal Reflections 914 nytopinion, life, young, america, death, ebola
Travel and International Destinations 605 hours, italy, florida, china, japan, park
World Events and Sports 903 world, cup, photos, team, war, country
Lifestyle and City Aesthetics 1164 like, looks, look, city, love, idea
Time, Life Stories, and Incarceration 1200 years, life, ago, prison, time, close
Home, Food, and Leisure 965 make, recipes, summer, home, simple, best
miscellaneous 5001 –

only those with attached media. The goal was to245

align real images with captions that could feasibly246

be used to generate synthetic counterparts.247

Definition of Real Images. We define “real”248

images as those not generated by AI. This includes249

natural photographs as well as editorial media such250

as UI screenshots, infographics, and photojournal-251

istic illustrations, provided they are not produced252

using generative models. This definition reflects253

the ambiguity present in real-world detection sce-254

narios, where non-photographic content may still255

be authentic.256

Data Filtration and Preprocessing. To ensure257

quality and consistency, we applied several filtering258

steps: (i) removal of duplicate tweets and media;259

(ii) exclusion of irrelevant content such as word260

games or puzzles; and (iii) filtering of non-English261

tweets. Additionally, preprocessing involved re-262

moval of hashtags and URLs, and retention of263

only alphanumeric characters to facilitate down-264

stream analysis and clustering. All real images265

and prompts are organized into two structured sub-266

sets: COCOAI and TwitterAI, which are publicly267

released.268

3.3 Benchmark Scale and Contributions269

VCT2 offers several key advantages over existing270

benchmarks:271

• Scale. VCT2 contains 166,000 images gen-272

erated from 26,000 unique prompts. While273

GenDet (Zhu et al., 2023) includes a larger274

total number of images (770,000), it only con-275

tains 70,000 real images and is less balanced276

across prompt domains. De-Fake (Sha et al.,277

2023), in contrast, includes approximately278

100,000 images with more limited generator279

and prompt coverage.280

• Model diversity. GenDet and De-Fake focus281

primarily on earlier open-source models such282

as BigGAN, StyleGAN2, and Stable Diffu- 283

sion v1.4. VCT2 includes six cutting-edge 284

generative models supporting broader evalua- 285

tion across current-generation image genera- 286

tors. 287

• Prompt realism. VCT2 uniquely combines 288

benchmark-style prompts from MS COCO 289

with naturalistic, real-world prompts curated 290

from a 12-year archive of @nytimes tweets, 291

capturing diverse linguistic styles and topics. 292

• Mixed-media realism. The real image sub- 293

set includes ambiguous formats such as info- 294

graphics, UI screenshots, and editorial photos, 295

reflecting the heterogeneous content encoun- 296

tered in real-world detection scenarios. 297

• Public accessibility. All prompts, real and 298

synthetic images, and evaluation scripts for 17 299

AGID baselines are publicly released to facil- 300

itate reproducibility and comparative bench- 301

marking. 302

To our knowledge, VCT2 is the first large-scale 303

AGID benchmark to pair real-world journalistic 304

prompts with diverse state-of-the-art text-to-image 305

models, providing a robust and publicly available 306

testbed for evaluating both detection performance 307

and perceptual realism across different prompt do- 308

mains and generative model types. 309

4 Evaluation and Results 310

We evaluate the VCT2 benchmark under zero-shot 311

settings using 17 state-of-the-art AI-generated im- 312

age detection (AGID) methods. These span artifact- 313

, feature-, and hybrid-based approaches. In the fol- 314

lowing, we present detection performance, examine 315

cross-domain and cross-model generalization, and 316

analyze detector sensitivity to detector type. 317
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4.1 Evaluation Protocol318

To simulate real-world deployment, we assess all319

detectors without fine-tuning. Public checkpoints320

and default hyperparameters are used. Perfor-321

mance is measured!60 separately on COCOAI and322

TwitterAI subsets, reporting accuracy, precision,323

and recall. Results are summarized in Tables 2324

and 3.325

4.2 Cross-Domain and -Model Trends326

Figure 3 presents the average detection accuracies327

per generator across the two domains. Overall, de-328

tection performance is low, with accuracy dropping329

further on COCOAI compared!60 to TwitterAI.330

Detection performance also varies across gener-331

ators. Images from earlier models like SD2.1 and332

SDXL remain relatively detectable. In contrast,333

newer or proprietary models such as SD3.5 Large334

and DALL·E 3 yield significantly lower detection335

results, suggesting that existing detectors may be336

overfitted to older, synthetic image distributions.337

4.3 Comparative Detector Performance 338

Feature-based detectors (e.g., De-Fake (Sha et al., 339

2023)) and hybrid methods (e.g., DRCT (Chen 340

et al.)) generally outperform artifact-based detec- 341

tors like CNNDetection (Wang et al., 2020) and 342

NPR (Tan et al., 2023). The latter collapse on 343

proprietary models due to reliance on low-level 344

artifacts often absent in advanced generators. 345

Conversely, feature-based and contrastive meth- 346

ods benefit from semantic representations, allowing 347

stronger generalization to unseen prompt styles and 348

model outputs. DRCT (ConvB and UnivFD) and 349

De-Fake show consistent robustness across both 350

subsets. 351

5 The Visual AI Index (VAI) 352

We introduce the Visual AI Index (VAI), an inter- 353

pretable, prompt-agnostic metric that scores the 354

perceptual realism of images based on low-level 355

visual features. VAI provides a continuous score 356

that reflects where an image lies along a spectrum 357

Table 2: Overall accuracy (Acc), recall (R), and precision (P) across COCOAI synthetic datasets generated from MS
COCO prompts. All values are in %. Color-coded: Green (≥ 90%), Yellow-Green (80–89%), Yellow (70–79%),
Orange (60–69%), red!60 (<60%).

Method SD2.1 SDXL SD3 Medium SD3.5 Large DALL.E 3 Midjourney 6

Acc R P Acc R P Acc R P Acc R P Acc R P Acc R P
CNNDetection (Wang et al., 2020) 49.94 0.03 65.11 49.96 0.07 77.52 49.93 0.01 81.16 49.99 0.14 33.04 49.93 0.00 35.13 49.95 0.05 63.15
NPR (Tan et al., 2023) 26.76 1.89 34.26 26.68 1.73 33.15 27.96 4.29 34.41 70.32 48.37 79.44 25.81 0.00 41.13 25.81 0.00 48.13
DM Image Detection (Corvi et al., 2023) 83.92 67.92 99.40 69.96 40.00 98.91 63.58 27.23 98.04 38.58 32.06 0.07 49.96 0.00 40.00 51.73 3.52 87.04
Fake Image Detection (Doloriel and Cheung, 2024) 49.84 0.49 63.58 49.83 0.48 66.68 50.02 0.86 66.91 48.24 0.11 62.57 49.59 0.00 34.90 49.79 0.40 62.89
DIRE (Wang et al., 2023) 47.08 93.40 37.66 49.67 98.57 47.07 48.59 96.40 38.88 50.63 99.23 58.68 48.89 97.01 43.25 50.04 99.31 52.74
LASTED (Wu et al., 2023) 54.00 8.67 56.62 61.13 9.86 61.20 51.87 9.61 57.67 55.21 10.11 57.35 66.18 44.85 76.21 68.21 14.37 63.14
GAN Image Detection (Mandelli et al., 2022) 51.87 82.93 51.16 56.35 91.75 53.72 58.26 95.35 54.74 45.61 79.08 47.37 48.10 74.93 48.77 57.15 93.42 54.14
AIDE (Yan et al., 2024) 60.30 20.98 93.77 64.34 28.91 96.75 57.11 14.45 94.28 50.83 5.01 52.31 50.00 0.02 61.23 76.01 52.25 96.92
SSP (Chen et al., 2024) 50.15 99.63 50.07 49.95 99.63 49.97 50.34 99.63 50.17 50.30 99.48 50.29 49.91 99.63 49.95 49.95 99.63 49.97
FatFormer (Liu et al., 2024) 50.00 0.00 0.00 50.00 0.00 0.00 50.00 0.01 100 50.28 0.00 0.00 48.01 0.00 0.00 48.01 0.00 0.00
DRCT (ConvB) (Chen et al.) 98.76 99.61 97.94 96.83 95.75 97.86 80.72 63.54 96.81 78.58 59.05 96.51 49.99 2.08 49.76 67.48 37.06 94.65
DRCT (UnivFD) (Chen et al.) 88.57 96.98 83.02 89.45 98.73 83.27 84.90 89.64 81.88 83.09 84.09 82.29 79.98 79.80 80.09 89.64 99.12 83.32
RINE (Koutlis and Papadopoulos, 2024) 74.43 49.63 98.49 56.47 13.71 94.76 61.99 24.75 97.03 55.34 27.72 95.34 50.05 0.87 53.37 63.13 27.02 97.27
OCC-CLIP (Liu et al.) 51.49 92.28 50.82 47.11 14.95 41.91 50.60 66.03 50.46 49.08 50.67 67.63 78.82 50.28 55.04 75.04 53.60 50.03
De-Fake (Sha et al., 2023) 92.37 97.90 88.15 91.23 95.62 87.90 91.30 95.76 87.92 52.57 86.05 5.11 90.58 94.31 87.76 86.22 85.59 86.68
Deep Fake Detection (Aghasanli et al., 2023) 49.49 49.49 49.03 51.43 51.43 49.65 49.85 49.85 49.97 50.66 50.66 52.19 52.73 52.73 53.02 52.87 52.87 54.09
Universal Fake Detect (Ojha et al., 2023) 74.42 77.15 73.15 69.18 65.84 70.56 70.11 68.79 70.66 57.46 60.10 57.09 50.00 99.99 50.00 53.23 76.28 52.21
C2P-CLIP (Tan et al., 2024) 53.38 7.53 90.73 53.69 8.15 91.30 55.50 11.77 93.87 52.13 4.40 97.01 49.76 0.29 27.36 50.31 1.40 64.52

Table 3: Overall accuracy (Acc), recall (R), and precision (P) across TwitterAI synthetic datasets generated from
Twitter prompts. Midjourney 6 is not included as it blocks image generation for most Twitter prompts. All values
are in %. Color-coded: Green (≥ 90%), Yellow-Green (80–89%), Yellow (70–79%), Orange (60–69%), red!60
(<60%).

Method SD2.1 SDXL SD3 Medium SD3.5 Large DALL.E 3

Acc R P Acc R P Acc R P Acc R P Acc R P
CNNDetection (Wang et al., 2020) 50.00 0.06 52.21 49.98 0.03 59.98 50.19 0.44 74.35 50.34 0.76 76.04 49.97 0.01 34.59
NPR (Tan et al., 2023) 50.23 2.22 50.89 50.46 2.68 60.58 51.45 4.66 68.26 52.12 7.81 67.44 49.12 0.00 42.20
DM Image Detection (Corvi et al., 2023) 88.31 77.57 97.82 73.82 48.58 93.74 65.15 31.24 90.34 63.56 28.19 89.66 49.53 0.00 33.34
Fake Image Detection (Doloriel and Cheung, 2024) 49.86 0.53 56.33 49.88 0.58 60.83 50.35 1.51 66.15 48.57 1.12 62.13 49.59 0.01 33.11
DIRE (Wang et al., 2023) 43.90 86.95 36.20 48.57 96.29 46.29 48.49 96.13 38.48 49.41 98.01 45.11 46.33 91.81 36.19
LASTED (Wu et al., 2023) 77.60 1.93 59.60 83.60 2.75 66.04 83.24 2.75 61.52 82.71 2.59 61.90 78.77 25.57 76.81
GAN Image Detection (Mandelli et al., 2022) 53.26 77.37 52.25 55.84 82.36 53.86 60.01 91.04 56.21 54.78 80.60 53.19 53.99 79.44 52.68
AIDE (Yan et al., 2024) 55.69 11.81 81.98 60.43 21.29 89.61 56.49 13.41 87.40 56.57 6.16 58.42 49.93 0.25 43.61
SSP (Chen et al., 2024) 49.91 99.66 49.95 50.20 99.66 50.10 50.20 99.66 50.10 54.94 99.33 55.04 50.18 99.66 50.10
FatFormer (Liu et al., 2024) 50.04 0.08 100 50.04 0.08 100 50.00 0.00 0.00 55.10 0.02 100 50.02 0.00 0.00
DRCT (ConvB) (Chen et al.) 96.81 99.77 94.20 93.96 94.05 93.87 71.79 49.73 89.01 77.87 59.54 90.35 47.31 0.76 11.02
DRCT (UnivFD) (Chen et al.) 67.47 96.73 61.02 68.32 98.43 61.44 64.81 91.40 59.67 62.94 85.60 55.68 53.76 69.30 52.87
RINE (Koutlis and Papadopoulos, 2024) 77.07 55.40 97.79 57.86 16.97 93.13 62.13 25.50 95.32 66.36 44.37 94.36 49.61 0.48 27.64
OCC-CLIP (Liu et al.) 46.88 74.11 47.98 45.67 51.17 46.10 48.84 67.54 49.16 47.82 66.16 48.03 47.75 45.63 49.72
De-Fake (Sha et al., 2023) 81.13 91.51 75.78 78.16 85.57 74.53 79.39 88.03 72.06 40.80 0.00 0.00 79.95 89.14 75.29
Deep Fake Detection (Aghasanli et al., 2023) 50.80 50.80 51.84 53.64 53.64 56.59 51.44 51.44 51.51 49.19 49.19 56.38 55.30 55.30 60.34
Universal Fake Detect (Ojha et al., 2023) 72.88 74.17 72.31 69.47 73.91 67.89 68.41 72.58 67.00 55.38 45.60 56.69 50.00 99.99 50.00
C2P-CLIP (Tan et al., 2024) 52.21 6.74 88.76 53.28 7.98 91.25 47.92 0.97 26.17 54.16 8.47 98.39 49.73 0.21 53.45
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Figure 3: Average detection accuracy across the
COCOAI and TwitterAI subsets for each generator.

of visual realism. Many real images in web-scale358

datasets (e.g., news media, social platforms) are not359

pristine photographs; they may include screenshots,360

digital graphics, or compressed visuals. These im-361

ages often lack sharpness, contrast, or structure.362

VAI quantifies perceptual quality by learning to363

score realism using a combination of handcrafted364

visual features, independent of prompts or model-365

specific information.366

5.1 Feature Design367

VAI uses twelve visual features grouped into three368

categories:369

(i) Texture and Frequency: Texture Complex-370

ity, Haralick Contrast, Haralick Correlation, Haral-371

ick Energy, Frequency Mean, Frequency Standard372

Deviation.373

(ii) Sharpness and Structure: Image Sharpness,374

Image Smoothness, Image Contrast.375

(iii) Color and Semantics: Color Distribution376

Consistency, Object Coherence, Contextual Rele-377

vance.378

Texture Complexity quantifies the variety and379

unpredictability of an image’s texture. It is380

determined by computing the entropy of the381

normalized Local Binary Pattern (LBP) his-382

togram of the grayscale image using the formula383

−
∑P−1

k=0 H̃LBP (k) log2(H̃LBP (k) + ϵ). Here,384

H̃LBP (k) represents the normalized histogram385

value for LBP bin k, and P is the total number386

of bins in the LBP histogram. The small constant ϵ387

(in our case, 1× 10−6) is used to avoid taking the388

logarithm of zero.389

Haralick features are texture descriptors com-390

puted from the gray-level co-occurrence matrix391

(GLCM), which encodes the frequency G(i, j) of392

pixel intensity pairs (i, j) occurring at a fixed spa-393

tial offset. We use three common features:394

Haralick Contrast is defined as
∑

i,j(i −395

j)2G(i, j), capturing local intensity variation.396

Haralick Correlation is computed as397 ∑
i,j

(i−µi)(j−µj)G(i,j)
σiσj

, where µi, µj and σi, σj398

are the means and standard deviations of the 399

marginal GLCM distributions. It measures linear 400

dependency between pixel pairs. 401

Haralick Energy (Angular Second Moment) 402

is given by
∑

i,j G(i, j)2, reflecting texture uni- 403

formity—higher values imply more homogeneous 404

regions. 405

These values are averaged across multiple an- 406

gles (e.g., 0◦, 45◦, 90◦, 135◦) to ensure rotation- 407

invariant descriptors. 408

We extract frequency-domain features using the 409

2D Fast Fourier Transform (FFT) of the grayscale 410

image I . Let Î(u, v) = FFT2(I) denote the 411

Fourier-transformed image, and let M(u, v) = 412

|Î(u, v)| be the magnitude spectrum. 413

Frequency Mean is defined as FreqMean = 414
1

HW

∑H
u=1

∑W
v=1M(u, v), where H × W is the 415

image resolution. 416

Frequency Standard Devia- 417

tion is given by FreqStd = 418√
1

HW

∑H
u=1

∑W
v=1 (M(u, v)− FreqMean)2. 419

These two features capture the spectral energy 420

and its variation. Higher values indicate detailed or 421

noisy content, while lower values reflect smoother 422

textures. 423

Image Sharpness is quantified as max(|I − 424

Iblurred|). I and Iblurred denote the grayscale and 425

blurred image with Gaussian kernel, respectively. 426

Image Smoothness evaluates how consistent 427

the image’s texture is. It is quantified as 1
1+var(∆I) , 428

where ∆I denotes the Laplacian of the grayscale 429

image I . 430

Image Contrast measures the degree of varia- 431

tion in intensity across an image. It is quantified 432

by calculating the standard deviation of the pixel 433

values in the grayscale image, expressed as std(I). 434

Color Distribution Consistency evaluates the 435

variability in an image’s color distribution by an- 436

alyzing the standard deviation of the normalized 437

color histogram in the HSV color space. It is calcu- 438

lated as std(H̃HSV (h, s, v)), where std(·) denotes 439

the standard deviation of the normalized histogram 440

H̃HSV (h, s, v) for hue h, saturation s, and value v. 441

Object Coherence evaluates the extent and clar- 442

ity of edge detection in an image, providing insight 443

into the consistency of object boundaries. It is 444

determined using
∑

i,j E(i,j)∑
i,j 1

, where E(i, j) repre- 445

sents the value of the Canny edge image at pixel 446

(i, j), and the
∑

i,j 1 represents the total number of 447

pixels in the image. 448

Contextual Relevance evaluates the distribution 449
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of edge strengths across the image. It is given by450

var(
√
Gx

2 +Gy
2), where var(·) denotes the vari-451

ance, and Gx and Gy are the gradients computed452

using the Sobel filter in the horizontal and vertical453

directions, respectively.454

After Z-score normalization, each feature is stan-455

dardized as fi(x) = vi(x)−µi

σi
, where vi(x) is the456

raw value of feature i for image x, and µi, σi are457

the mean and standard deviation of that feature458

across the dataset. The VAI score is then com-459

puted as VAI(x) = s(x)−min(s)
max(s)−min(s) , where s(x) =460 ∑12

i=1wi · fi(x) is the weighted sum of normalized461

features, and the min–max normalization rescales462

all scores s(x) to the [0, 1] range over the dataset.463

To compute the Visual AI Index (VAI), we464

learn a set of weights that quantify the contribu-465

tion of each low-level feature to image realism.466

We use logistic regression to distinguish between467

real (label y = 1) and synthetic (label y = 0)468

images. Given a 12-dimensional feature vector469

x = [f1, f2, . . . , f12], the model estimates the prob-470

ability that an image is real using the sigmoid func-471

tion: P (y = 1 | x) = 1/(1 + e−w⊤x), where w472

is the learned weight vector. The final Visual AI473

Index is defined as:474

VAI(x) =
1

1 + e−w∗⊤x
,475

where w∗ is the optimized weight vector obtained476

after training. The weights are obtained by477

minimizing the binary cross-entropy loss: L(w) =478
1
N

∑N
i=1 [−yi log ŷi − (1− yi) log(1− ŷi)],479

where ŷi = 1/(1 + e−w⊤xi). After training, we480

use the optimized weights w∗ to compute the VAI481

score. We train two models separately, one for482

COCOAI and one for TwitterAI, each tailored to the483

distribution of real images in its respective domain.484

Table 4 shows the final weights.485

5.2 VAI Analysis486

We report the average VAI scores for real and gen-487

erated images across the COCOAI and TwitterAI488

subsets in Figures 4 and 5. As expected, real im-489

ages achieve the highest VAI scores in both do-490

mains, reflecting the benchmark’s ability to as-491

sign higher realism to naturally occurring images.492

Among generative models, DALL·E 3 obtains the493

highest VAI in both subsets (0.626 for COCOAI,494

0.593 for TwitterAI), indicating its outputs most495

closely align with real images in terms of low-level496

features such as texture complexity, edge coher-497

ence, and color consistency. A cluster of diffusion-498

Table 4: Learned VAI feature weights for COCOAI and
TwitterAI domains.

Feature COCOAI TwitterAI

Texture Complexity 4.13 1.15
Color Dist. Consistency −0.15 −0.05
Object Coherence −0.87 1.56
Contextual Relevance −1.33 2.42
Haralick Contrast 1.02 −4.52
Haralick Correlation −0.42 −0.07
Haralick Energy −1.46 −1.59
Freq. Mean −0.87 −1.36
Freq. Std −1.30 −0.20
Image Smoothness 0.37 −0.06
Image Sharpness 2.08 2.26
Image Contrast 0.50 −0.18

based models, SD2.1, SD3 Medium, and SD3.5 499

Large, follow DALL·E 3 with relatively similar 500

VAI scores, suggesting comparable levels of photo- 501

realism. SDXL ranks lower across both domains, 502

i.e. 0.496 COCOAI and 0.573 TwitterAI, which 503

may be attributed to its tendency toward stylistic 504

exaggeration or generation artifacts that deviate 505

from natural image statistics. These artifacts can 506

influence frequency-domain, edge-based, or texture 507

descriptors negatively, despite the model’s high per- 508

ceptual fidelity. Midjourney yields the lowest VAI 509

in the COCOAI subset (0.432) and is excluded from 510

the TwitterAI analysis due to the unavailability of 511

corresponding generated images. We also report 512

additional texture and semantic analyses in the Ap- 513

pendix: Local Binary Pattern (LBP) textures F.2, 514

and PCA-based pairwise comparisons F.3 support- 515

ing our Visual AI Index (VAI) findings on coher- 516

ence and texture consistency across models. 517

5.3 Correlation with Detection Accuracy 518

To assess whether the Visual AI Index aligns with 519

detection difficulty, we compute the Pearson corre- 520

lation coefficient between the average VAI scores 521

and AGID detection accuracy across different gen- 522

erative models. The Pearson correlation is defined 523

as ρ =
∑n

i=1(xi−x̄)(yi−ȳ)√∑n
i=1(xi−x̄)2

√∑n
i=1(yi−ȳ)2

, where xi and 524

yi are the VAI score and AGID accuracy for model 525

i, and x̄ and ȳ are their respective means. A higher 526

value of ρ indicates stronger alignment between 527

visual realism and detection performance. 528

To evaluate whether the Visual AI Index (VAI) 529

aligns with the difficulty of detecting AI-generated 530

images, we compute the Pearson correlation co- 531

efficient between average VAI scores and AGID 532

detection accuracy across five generative models. 533

The Pearson correlation coefficient ρ is defined as: 534
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Text-to-Image Model VAI (0-1)

Real 0.685

DALL.E 3 0.626

SD2.1 0.568

SD3.5 Large 0.552

SD3 Medium 0.536

SDXL 0.496

Midjourney 6 0.432

Figure 4: Right: VAI scores of COCOAI dataset. Left: Accuracy heat maps showing the average accuracy of each
AGID method.
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Figure 5: Right: VAI scores of TwitterAI dataset. Left: Accuracy heat maps showing the average accuracy of each
AGID method.

ρ =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,535

where xi and yi represent the VAI score and536

AGID accuracy for model i, and x̄ and ȳ are their537

respective means. The coefficient ρ ranges from538

−1 to 1: a value near 1 implies a strong positive539

correlation, near −1 implies a strong negative cor-540

relation, and a value near 0 suggests no linear rela-541

tionship. We compute ρ separately for the TwitterAI542

and COCOAI datasets. As shown in Table 5, our re-543

sults indicate a moderate inverse relationship: mod-544

els with higher visual realism tend to be harder to545

detect. However, the correlations are not statisti-546

cally significant, likely due to the small number547

of generative models, i.e. n = 5, and should be548

interpreted cautiously.549

6 Conclusion550

In this paper, we introduced (VCT2), a comprehen-551

sive benchmark for evaluating AI-generated image552

Table 5: Pearson correlation between VAI and AGID
detection accuracy.

Dataset Pearson ρ p-value

TwitterAI −0.503 0.388
COCOAI −0.532 0.356

detection (AGID) across diverse generative mod- 553

els, including cutting-edge proprietary systems like 554

DALL·E 3 and Midjourney 6. By incorporating 555

both real-world prompts and standardized captions, 556

VCT² offers a challenging, realistic dataset for as- 557

sessing generalization. The VCT2 benchmark pro- 558

vides a critical resource for evaluating AGID tech- 559

niques under challenging and varied conditions, 560

highlighting performance gaps and guiding the de- 561

velopment of more robust detection methods. 562

To assess the realism of images, we present the 563

Visual AI Index (VAI ) that evaluates characteristics 564

like texture complexity, Haralick correlation, fre- 565

quency mean, and image sharpness. Our findings 566

reveal that real images generally achieve higher 567

VAI scores than AI-generated images. 568
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Limitations and Future Work569

While our work provides a strong foundation for570

evaluating AGID methods and realism metrics, fu-571

ture directions include expanding to diverse do-572

mains (e.g., social platforms, synthetic video), in-573

tegrating temporal and multimodal features into574

VAI, and adapting it for localization or attribution.575

We also plan to explore human alignment and psy-576

chometric grounding of these continuous realism577

scores. As generative models evolve, updating the578

benchmark and exploring hybrid detection tech-579

niques will be key to ensuring resilience against580

increasingly sophisticated AI imagery.581
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Appendix747

A Dataset Details748

A.1 Comparison with Existing AGID749

Benchmarks750

We compare VCT2 with two prominent AGID751

benchmarks:752

GenDet (Zhu et al., 2023) introduces a bench-753

mark of roughly 140,000 synthetic images, mostly754

from COCO and Flickr. It covers several open-755

source models but lacks prompt diversity from real-756

world data, and omits proprietary model outputs.757

De-Fake (Sha et al., 2023) focuses on detec-758

tion and attribution using four generative models759

(DALL·E 2, GLIDE, Latent Diffusion, Stable Dif-760

fusion). While well-curated, it lacks coverage of761

more recent models (e.g., DALL·E 3, Midjourney762

6), and does not utilize real prompts from user-763

facing media.764

VCT2 provides:765

• Over 182,000 images, including 26,000 real766

image–prompt pairs767

• Prompts from both MS COCO and @nytimes768

(2011–2023)769

• Synthetic content from six leading models,770

including DALL·E 3 and Midjourney 6771

• Realistic prompt semantics, verified source772

integrity, and public accessibility773

This makes VCT2 a uniquely practical bench-774

mark for evaluating AGID model generalization775

and real-world robustness.776

Table 6 presents 10 records of real images along-777

side synthetic images generated by different mod-778

els, based on 10 Twitter prompts for which we had779

the corresponding Midjourney 6 image (With this780

model, we generated ~10K synthetic images on781

MS COCO prompts and only 500 synthetic images782

on Twitter prompts, as this model blocks image783

generation for most Twitter prompts.). Full dataset784

are publically available at TwitterAI and COCOAI.785

B Detection Techniques786

This appendix provides detailed descriptions of787

the 17 AI-generated image detection (AGID) tech-788

niques evaluated in our benchmark. These methods789

span three major detection paradigms: generation790

artifact-based, feature representation-based, and791

hybrid approaches. This taxonomy is designed to792

reflect the breadth of design assumptions across 793

the literature and serves as the foundation for our 794

performance analysis in Section 4. 795

Artifact-based methods exploit low-level visual 796

artifacts—such as frequency distortions, edge in- 797

consistencies, or upsampling traces—introduced 798

during the image generation process. Feature- 799

based methods, in contrast, analyze semantic-level 800

inconsistencies by leveraging deep neural represen- 801

tations from CNNs, vision transformers, or CLIP 802

encoders. Hybrid methods combine both low-level 803

and high-level signals, often incorporating align- 804

ment objectives or learned fusion strategies to im- 805

prove robustness. 806

The detectors described here were selected based 807

on recency, diversity, and public availability, and 808

represent both classical and state-of-the-art AGID 809

strategies. Each technique is evaluated under zero- 810

shot settings using default public checkpoints, and 811

grouped by detection paradigm below. 812

B.1 Generation Artifact-Based Detection 813

Generation artifact-based detection techniques fo- 814

cus on identifying visual artifacts produced during 815

the generation process, analyzing both spatial and 816

frequency domains. 817

Tan (Tan et al., 2023) found that the up-sampling 818

operator introduces artifacts not only in frequency 819

patterns but also in pixel arrangements within im- 820

ages. The authors introduce the concept of Neigh- 821

boring Pixel Relationships to capture and charac- 822

terize these generalized structural artifacts caused 823

by up-sampling operations. 824

Corvi (Corvi et al., 2023) observed that synthetic 825

images, especially those generated by diffusion 826

models like GLIDE and Stable Diffusion, exhibit 827

distinctive differences in mid-to-high frequency 828

signals compared to real images. However, this 829

distinction is less pronounced in images produced 830

by newer models, such as DALL-E and ADM. Al- 831

though their method accurately distinguishes syn- 832

thetic and real images in controlled settings, it 833

struggles in real-world scenarios. 834

Doloriel (Doloriel and Cheung, 2024) explored 835

masked image modeling for universal fake image 836

detection. Their approach involves both spatial and 837

frequency domain masking, leading to a deepfake 838

detector based on frequency masking. 839

Chen (Chen et al.) enhance detector generaliza- 840

tion diffusion generated images by generating hard 841

samples through high-quality diffusion reconstruc- 842

tion. These reconstructed images, which closely 843
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resemble real ones but retain subtle artifacts, train844

detectors to differentiate between real and gener-845

ated images, including those from unseen diffusion846

models.847

B.2 Feature Representation-Based Detec-848

tion849

Feature representation-based detection methods850

distinguish real images from synthesized images851

by leveraging deep learning models to extract and852

analyze complex visual features.853

Wang (Wang et al., 2020) proposed a universal854

detector using a ResNet-50 classifier (He et al.,855

2016) with random blur and JPEG compression856

data augmentation. When trained on images gen-857

erated by a single CNN generator (ProGAN), their858

model demonstrated strong generalization across859

unseen architectures, including StyleGAN2 (Kar-860

ras et al., 2020) and StyleGAN3 (Karras et al.,861

2021).862

Mandelli (Mandelli et al., 2022) developed a863

GAN-generated image detector based on an ensem-864

ble of CNNs. Their method emphasizes general-865

ization by ensuring orthogonal results from CNNs866

and prioritizing original images during testing.867

Wang (Wang et al., 2023) introduced a technique868

that measures the error between an input image869

and its reconstructed counterpart generated by a870

pre-trained diffusion model. They observed that871

diffusion-generated images are more accurately re-872

constructed than real images, highlighting a key873

discrepancy for detection.874

Wu (Wu et al., 2023) employed language-guided875

contrastive learning to capture inherent differences876

in the distributions of real and synthetic images.877

Their method augments training images with de-878

signed textual labels, enabling joint image-text con-879

trastive learning for forensic feature extraction.880

Sha (Sha et al., 2023) addressed the challenges881

of fake image detection and attribution. Their ap-882

proach involves: (i) building a machine learning883

classifier to detect fake images generated by var-884

ious text-to-image models, including DALL-E 2,885

Stable Diffusion, GLIDE, and Latent Diffusion,886

and benchmark prompt-image datasets such as MS887

COCO and Flickr30k (Young et al., 2014); (ii) at-888

tributing fake images to their respective generative889

models to enhance accountability; and (iii) examin-890

ing how prompts influence detection and attribution891

performance.892

Aghasanli (Aghasanli et al., 2023) introduced893

a deepfake detection method that combines fine-894

tuned Vision Transformers (ViTs) with Support 895

Vector Machines (SVMs). Their method provides 896

interpretability by analyzing the SVMs’ support 897

vectors to distinguish between real and fake images 898

generated by various diffusion models. 899

Chen (Chen et al., 2024) proposed a straightfor- 900

ward method that extracts the simplest patch from 901

an image and sends its noise pattern to a binary 902

classifier, demonstrating effectiveness with mini- 903

mal complexity. 904

Koutlis (Koutlis and Papadopoulos, 2024) uti- 905

lized intermediate outputs from CLIP’s image en- 906

coder for enhanced AI-generated image detection. 907

They introduced a Trainable Importance Estima- 908

tor to dynamically assess the contributions of each 909

Transformer block, boosting generalization across 910

generative models. 911

Liu (Liu et al.) presented OCC-CLIP, a CLIP- 912

based framework for few-shot one-class classifica- 913

tion. This method is particularly effective when 914

only a few images generated by a model are avail- 915

able, and access to the model’s parameters is re- 916

stricted. OCC-CLIP combines high-level and ad- 917

versarial data augmentation techniques to attribute 918

images to specific generative models accurately. 919

To enhance generalization to unseen generative 920

models, Ojha (Ojha et al., 2023) propose a novel 921

approach that avoids explicitly training a classi- 922

fier to distinguish real from fake images. Instead, 923

their method leverages the feature space of large 924

pre-trained vision-language models and employs 925

techniques such as nearest neighbor classification. 926

Tan (Tan et al., 2024) enhance the image en- 927

coder’s ability to detect deepfakes by integrating 928

category-related prompts into the text encoder of 929

CLIP. 930

B.3 Hybrid Techniques 931

Hybrid techniques combine low-level artifact anal- 932

ysis with high-level semantic feature extraction to 933

effectively distinguish AI-generated images from 934

real ones. 935

Yan (Yan et al., 2024) propose a hybrid-feature 936

model that integrates high-level semantic informa- 937

tion (using CLIP) with low-level artifact analysis 938

to improve detection robustness. 939

Liu (Liu et al., 2024) incorporate a forgery-aware 940

adapter that integrates local forgery traces from 941

both image and frequency domains. Their method 942

employs language-guided alignment, using con- 943

trastive objectives between image features and text 944

prompts to enhance generalization. 945
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To guide our benchmark evaluation, we selected946

17 state-of-the-art AGID methods spanning all947

three categories. This categorization enables us948

to evaluate model robustness from complementary949

perspectives: from low-level artifact exploitation950

to high-level semantic inconsistency analysis. This951

taxonomy is used to analyze generalization perfor-952

mance in Section 5.953

C Detection Performance Overview954

Tables 2 and 3 provide an overview of the per-955

formance of different detection techniques across956

synthetic datasets generated from MS COCO and957

Twitter prompts, respectively. The metrics mea-958

sured are Accuracy (Acc), Recall (R), and Precision959

(P), providing insights into each model’s ability to960

differentiate real from AI-generated images.961

C.1 Performance by Detection Technique962

• CNNDetection, NPR and Fake Image De-963

tection: These methods showed variable re-964

sults, characterized by low recall but higher965

precision across several models. This indi-966

cates a tendency to correctly identify gener-967

ated images when detected, but with many968

instances being missed (false negatives).969

• DM Image Detection and De-Fake: DM Im-970

age Detection demonstrated high precision971

across all models, particularly excelling with972

Stable Diffusion versions and Midjourney 6,973

effectively capturing generated images. De-974

Fake consistently maintains strong metrics975

across SD (2.1, XL and 3), DALL.E 3, and976

Midjourney 6 but struggles with SD 3.5 Large977

images, exhibiting lower accuracy, precision,978

and recall. This drop in performance likely re-979

sults from SD 3.5’s refined generation and980

post-processing that minimize the artifacts981

and noise patterns AGID techniques depend982

on.983

• GAN Image Detection, SSP and DIRE:984

These methods had mixed performance, par-985

ticularly excelling in precision.986

• DRCT (ConvB and UnivB): Both versions987

of DRCT showed strong accuracy, recall, and988

precision across most models but experienced989

a slight performance drop with Midjourney 6,990

indicating challenges with proprietary models.991

• OCC-CLIP and Deep Fake Detection: 992

OCC-CLIP had lower recall with SDXL but 993

balanced performance for DALL.E 3 and Mid- 994

journey 6; while Deep Fake Detection demon- 995

strated steady, consistent performance, with 996

all of its metrics remaining within a similar 997

range. 998

• Universal Fake Detect: Universal Fake De- 999

tect performed better on SD (2.1, XL, and 3) 1000

models but its performance dropped when ap- 1001

plied to SD 3.5, DALL.E 3, and Midjourney 6. 1002

Notably, we observed a significant increase in 1003

recall for DALL.E 3-generated images across 1004

both datasets. 1005

• C2P CLIP: C2P CLIP consistently performs 1006

poorly with low accuracy and recall, clearly 1007

showing that it often misses AI-generated im- 1008

ages. Although its precision remains high 1009

across both datasets overall, it declines sig- 1010

nificantly for Midjourney 6 images in both 1011

datasets and for SD3 images in the Twitter 1012

dataset. 1013

The results indicate that there is no one-size-fits- 1014

all solution for detecting AI-generated images. Dif- 1015

ferent generative models pose unique challenges, 1016

and the performance of each detection method 1017

varies based on its ability to identify specific ar- 1018

tifacts. De-Fake and DRCT (ConvB and UnivB) 1019

were the most consistent performers, highlight- 1020

ing their robustness across models. Future re- 1021

search should aim to improve detection for pro- 1022

prietary models like SD 3.5 Large, Midjourney 6 1023

and DALL.E 3, where many techniques struggled. 1024

D Visual AI Index Overview 1025

Midjourney 6 achieved the highest Visual AI Index 1026

(VAI ) score on MS COCO prompts, indicating su- 1027

perior visual coherence and quality compared to 1028

other models. Stable Diffusion 2.1 also showed rel- 1029

atively high performance, suggesting that diffusion- 1030

based methods can achieve strong visual results but 1031

may still be outperformed by proprietary methods 1032

like Midjourney 6. 1033

From the VAI scores on Twitter prompts, Mid- 1034

journey 6 remained the top performer, followed 1035

closely by DALL.E 3. This suggests that propri- 1036

etary models are particularly robust in generating 1037

high-quality images, even with more diverse and 1038

potentially less structured prompts. The accuracy 1039

heat maps in Figure 5 also highlight differences in 1040
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how AGID methods perform across models. Meth-1041

ods like De-Fake and DRCT were particularly ef-1042

fective at detecting Midjourney-generated images,1043

whereas detection on DALL.E 3 and SDXL proved1044

more challenging. This indicates that the tex-1045

ture and artifact characteristics differ significantly1046

across these models, affecting detection reliability.1047

These results underscore the challenges faced by1048

AGID methods when applied to high-quality propri-1049

etary models. While some detection methods, like1050

De-Fake and DRCT, performed consistently well,1051

the VAI scores reveal that generated image qual-1052

ity plays a significant role in detection difficulty.1053

Future work should focus on improving the robust-1054

ness of detection techniques against models that1055

prioritize high visual fidelity, such as Midjourney1056

6 and DALL.E 3.1057

E Supplementary Figures1058

The supplementary figures included in this ap-1059

pendix (Figure 13 and Figure 12) provide addi-1060

tional insights and visual examples that support1061

and enhance the concepts and results discussed in1062

the main paper.1063

F Visual AI Index (VAI)1064

F.1 Texture and Semantic Cues1065

Feature-space PCA plots and LBP texture visual-1066

izations (Figures 6) highlight differences in object1067

coherence, sharpness, and semantic consistency.1068

Newer generators often produce globally coherent1069

scenes that are statistically inconsistent with real-1070

world image distributions, particularly in terms of1071

texture smoothness and semantic density. These1072

deviations offer forensic cues that detectors can1073

exploit.1074

F.2 LBP Texture Analysis1075

Local Binary Pattern (LBP) is commonly used for1076

texture analysis, image recognition, and quality as-1077

sessment. LBP plots can indirectly assess image1078

quality, as sharper images generally produce more1079

distinct patterns in their LBP representations. If the1080

LBP pattern appears blurred or lacks clear edges,1081

it may indicate a loss of detail or lower resolution1082

in the image. AI-generated images sometimes lose1083

fine-grained texture, which would be visible as less1084

distinctive LBP features. In Figure 6 we can see1085

that image generated by Midjourney has specific1086

facial textures and subtle expression lines whereas1087

image generated by SD 3 has inconsistencies and1088

lack of texture in certain areas. facial features, 1089

facial structures, hair lines, edges in clothing, and 1090

wrinkles are preserved in each segment for the Mid- 1091

journey image but SD 3 image completely lost it. 1092

Midjourney 6 LBP of Midjourney 6

Stable Diffusion 3
LBP of Stable Diffusion 3

Figure 6: Comparative analysis of texture patterns in
images generated by different T2I models using Local
Binary Pattern (LBP) representation.

F.3 Pairwise Scatter Plot Analysis 1093

The pairwise scatter plots in Figure 7, 8, 9, 10, 1094

and 11 reveal clear differences in model distribu- 1095

tions. DALL.E 3 and SDXL maintain higher ob- 1096

ject coherence across varying texture complexities, 1097

indicating stronger object integrity. In contrast, 1098

SD 2.1 and SD 3 show more dispersed patterns, 1099

reflecting lower consistency. These trends under- 1100

score evolutionary gains, with newer models like 1101

SD 3 and SDXL offering improved color distribu- 1102

tion and contextual relevance. Midjourney 6 and 1103

DALL.E 3 form well-separated clusters, suggest- 1104

ing better handling of coherence and complexity. 1105

Stable Diffusion variants display mixed behaviors, 1106

revealing inconsistencies in texture and boundaries; 1107

consistent with their lower VAI scores. Overall, the 1108

analysis highlights the importance of balancing tex- 1109

ture complexity and object coherence to improve 1110

generative and detection model performance. 1111

11121113
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Figure 7: DALL·E 3

Figure 8: Midjourney 6

Figure 9: Stable Diffusion 3

Figure 10: Stable Diffusion 2.1

Figure 11: Stable Diffusion XL
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DALL·E 3 Midjourney 6

Stable Diffusion 3 Stable Diffusion 2.1

Stable Diffusion XL

Figure 12: Generated images by different AI models
for the prompt: "Have you ever wondered why we name
hurricanes? The New York Times meteorologist Judson
Jones explains."

DALL·E 3 Midjourney 6

Stable Diffusion 3 Stable Diffusion 2.1

Stable Diffusion XL

Figure 13: Generated images by different AI models
for the prompt: "At least six candidates appear to have
made the cut so far for the second Republican presiden-
tial debate on Sept 27. See which candidates have and
have not qualified so far."
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Table 6: Real images and synthetic images generated by different models.

Real Image SD2.1 SDXL SD3 Medium SD3.5 Large DALL.E 3 Midjourney 6
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