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Abstract

The rapid progress and widespread availabil-
ity of text-to-image (T2I) generation models
have heightened concerns about the misuse of
Al-generated visuals, particularly in the con-
text of misinformation campaigns. Existing
Al-generated image detection (AGID) meth-
ods often overfit to known generators and fal-
ter on outputs from newer or unseen models.
To systematically address this generalization
gap, we introduce the Visual Counter Tur-
ing Test (VCT?), a comprehensive benchmark
of 166,000 images, comprising both real and
synthetic prompt-image pairs produced by six
state-of-the-art (SoTA) T2I systems: Stable
Diffusion 2.1, SDXL, SD3 Medium, SD3.5
Large, DALL-E 3, and Midjourney 6. We
curate two distinct subsets: COCOQOy;, featur-
ing structured captions from MS COCO, and
Twitter,;', containing narrative-style tweets
from The New York Times. Under a unified
zero-shot evaluation, we benchmark 17 leading
AGID models and observe alarmingly low de-
tection accuracy, 58% on COCOj,; and 58.34%
on Twittera;. To transcend binary classifica-
tion, we propose the Visual AI Index (Vay), an
interpretable, prompt-agnostic realism metric
based on twelve low-level visual features, en-
abling us to quantify and rank the perceptual
quality of generated outputs with greater nu-
ance. Correlation analysis reveals a moderate
inverse relationship between V41 and detection
accuracy: Pearson p of —0.532 on COCOpy
and p of —0.503 on Twitteray; suggesting that
more visually realistic images tend to be harder
to detect, a trend observed consistently across
generators. We release COCOp,; and Twitteray
to catalyze future advances in robust AGID and
perceptual realism assessment.

1 Introduction

The rapid advancement of text-to-image (T2I) gen-
erative models, such as Stable Diffusion (Rom-

"Midjourney 6 is excluded from Twittera; due to prompt
filtering constraints.

Figure 1: An Al-generated image of Pope Francis wear-
ing a gigantic white puffer jacket went viral on social
media platforms like Reddit and Twitter (X) in March
2023. This image sparked widespread media discus-
sions on the potential misuse of generative Al tech-
nologies, becoming an iconic example of Al-generated
misinformation. For more details, see the Forbes story.

bach et al., 2022; Podell et al., 2023; Esser et al.,
2024), DALL-E (Ramesh et al., 2021, 2022; Betker
et al., 2023), Midjourney (Midjourney, 2024), and
Imagen (Saharia et al., 2022), has revolutionized
visual content creation. These models unlock pow-
erful creative workflows and democratize image
synthesis at scale. However, their widespread ac-
cessibility also raises critical concerns about vi-
sual misinformation and content authenticity. As
illustrated in Figure 1, synthetic images can con-
vincingly mimic journalistic or photographic style,
blurring the boundary between real and generated
content. This growing threat has prompted global
attention. In March 2023, an open letter (Marcus,
2023) warned that generative Al could destabilize
the global information ecosystem. The European
Commission reported a significant decline in online
content moderation accuracy, from 90.4% in 2020
to just 64.4% in 2022 (Commission, 2022). Mean-
while, social platforms process over 3.2 billion im-
ages and 720,000 hours of video daily (T.J. Thom-
son, 2020), with synthetic media projected to ac-
count for 90% of online content by 2026 (Europol,


https://huggingface.co/datasets/anonymous1233/COCO_AI
https://huggingface.co/datasets/anonymous1233/twitter_AI
https://www.forbes.com/sites/mattnovak/2023/03/26/that-viral-image-of-pope-francis-wearing-a-white-puffer-coat-is-totally-fake/

2024).

Despite increasing demand for reliable detec-
tion tools, existing Al-generated image detection
(AGID) methods often fail to generalize to im-
ages from unseen generators or real-world contexts.
Watermark-based approaches remain fragile, easily
circumvented via cropping, filtering, or adversarial
manipulation (Zhao et al., 2025). Meanwhile, prior
AGID benchmarks (Zhu et al., 2023; Sha et al.,
2023) suffer from limited real-image diversity, nar-
row prompt coverage, outdated model inclusion,
and closed access, impeding rigorous evaluation
and progress.

To address these limitations, we introduce the
Visual Counter Turing Test (VCT?), a large-
scale benchmark dataset for zero-shot AGID evalu-
ation. VCT? contains approximately 166,000 im-
ages, including 26,000 real prompt-image pairs
and 140,000 synthetic images produced by six
SoTA T2I models: Stable Diffusion 2.1, SDXL,
SD3 Medium, SD3.5 Large, DALL-E 3, and Mid-
journey 6, spanning both open-source and propri-
etary systems. The prompts in VCT? are drawn
from two semantically distinct sources to capture
both structured and open-ended language. The
COCOA4g subset uses object-centric captions from
MS COCO (Lin et al., 2014), a staple in vision-
language research. The Twittera; subset comprises
narrative-style tweets authored by The New York
Times (@nyt imes), providing real-world, journal-
istic prompts rich in nuance and context. This di-
versity allows us to evaluate AGID methods across
a wide range of generation styles and domains.

To enable more nuanced evaluation beyond bi-
nary classification, we introduce the Visual AI In-
dex (Va1), a model-agnostic, interpretable metric
that quantifies the perceptual realism of an image
based solely on its visual content. V51 produces a
scalar score derived from twelve handcrafted, low-
level image features, including texture complexity,
frequency-domain statistics, Haralick features, and
image sharpness. These features have been selected
based on their empirically observed alignment with
human judgments of realism. Correlation analy-
sis further supports the utility of V1 as a proxy
for detection difficulty: we observe a moderate in-
verse relationship between V1 scores and AGID
detection accuracy across generative models (Pear-
son p = —0.503 on Twitteray and p = —0.532 on
COCOa,)), indicating that more visually realistic
images tend to be harder to detect. Our realism
scores offer a prompt and model-agnostic lens into

the perceptual quality of generated images.

We evaluate 17 AGID methods under a stan-
dardized zero-shot setting, using publicly available
implementations and default model checkpoints.
Our goal is to assess how well these methods gen-
eralize across a variety of text-to-image models,
including open-source systems like Stable Diffu-
sion 2.1, SDXL, SD3 Medium, and SD3.5 Large, as
well as proprietary models such as DALL-E 3 and
Midjourney 6, and across two domains: structured
and high quality MS COCO captions and images
and narrative-style tweets and real world images
from The New York Times. Experimental results
(Section 4) reveal model generalization gaps by no-
ticeable detection performance degradation, with
average detection accuracy of 58% on COCO 1 and
58.34% on Twittera;. We observe lower detection
accuracy on COCOy compared to Twitteray. This
is likely because COCO prompts produce images
that are more photo-realistic and visually similar to
real photos. In contrast, Twittera; generations often
include creative or unusual visual patterns, leading
to more detectable differences. Notably, DALL-E
3 and SD3.5 consistently yield the lowest detection
accuracy across both domains. To summarize, our
main contributions are:

(i) We introduce the Visual Counter Turing
Test (VCT?) benchmark to evaluate the generaliza-
tion capabilities of Al-generated image detection
methods across diverse prompt styles and real im-
age sources, including MS COCO and Twitter, as
well as six state-of-the-art synthetic image genera-
tors.

(i1) We define the VisualAI Index (Vay), a scalar
metric to quantify perceptual realism based on
twelve interpretable low-level visual features.

2 Recent Advances in AI-Generated Im-
age Detection Techniques

Al-generated image detection (AGID) is becoming
increasingly vital as synthetic content continues to
grow in both photorealism and scale. Detection
methods vary widely in their design assumptions,
feature representations, and robustness to distribu-
tion shifts, such as changes in generative models,
prompt styles, or real image characteristics that
diverge from photographic norms.

To facilitate systematic evaluation, we categorize
AGID approaches into three broad groups:

(i) Generation Artifact-Based Methods: These
methods target low-level signals introduced



during the image synthesis process, such as
upsampling artifacts, denoising residuals, or
color inconsistencies. While often computa-
tionally efficient, they tend to be fragile under
post-processing or model variation.

(ii) Feature Representation-Based Methods:
These rely on high-level semantic or per-
ceptual features extracted via CNNs, Vision
Transformers, or CLIP-style encoders. They
typically offer stronger generalization across
domains, though may miss fine-grained gen-
erative artifacts.

(iii)) Hybrid Methods: These approaches inte-
grate both low- and high-level cues, and often
leverage contrastive learning, multi-modal em-
beddings, or text—image alignment to enhance
robustness under distributional shifts.

Figure 2 illustrates this taxonomy. We evaluate 17
publicly available AGID models spanning all three
categories, selected based on their methodological
diversity, recent relevance, and open-source avail-
ability. Each method is tested in a standardized
zero-shot setting using its default checkpoint, with-
out any fine-tuning on the VCT? benchmark. This
taxonomy provides a reference framework for in-
terpreting detection trends discussed in Section 4,
with further implementation details outlined in Ap-
pendix B.

NPR (Tan et al., 2023) |
DM Image Detection (Corvi et al., 2023) |

Fake Image Detection (Doloriel and Cheung, 2024)|
( DRCT (Chen et al.) )

CNNDetection (Wang et al., 2020) )
[ GAN Image Detection (Mandelli et al., 2022) |

— Generation Artifact-Based Detection )-B

DIRE (Wang et al., 2023) )
LASTED (Wu et al., 2023) )

De-Fake (Sha et al., 2023) )

) {_ Deep Fake Detection (Aghasanli et al., 2023) |
SSP (Chen et al., 2024) )

RINE (Koutlis and Papadopoulos, 2024) |
J

J

J

J

J

-  Feature Representation-Based Detection

OCC-CLIP (Liu et al.)
Universal Fake Detect (Ojha et al., 2023)

[ Al Generated Image Detection |

C2P-CLIP (Tan et al., 2024)
AIDE (Yan et al., 2024)
FatFormer (Liu et al., 2024)

L{ Hybrid Techniques

Figure 2: The taxonomy of Al-generated image
detection techniques, categorized into three main
groups: Generation Artifact-Based Detection, Fea-
ture Representation-Based Detection, and Hybrid Tech-
niques.

3 The Visual Counter Turing Test (VCT?)
Benchmark Dataset

We introduce the Visual Counter Turing Test
(VCT?), a large-scale benchmark designed to eval-

uate Al-generated image detection (AGID) tech-
niques. VCT? includes the following:

* Approximately 26,000 real image—prompt
pairs, combining our curated Twitter dataset
and the benchmark MS COCO dataset;

* Approximately 140,000 synthetic images, gen-
erated using six state-of-the-art text-to-image
models; open-source models: Stable Diffu-
sion 2.1, SDXL, SD3 Medium, SD3.5 Large;
and two proprietary models: DALL-E 3, Mid-
journey 6.

* In total, around 166,000 images derived from
26,000 unique prompts.

This scale provides a balance between structured,
caption-based content and naturalistic, real-world
prompts, positioning VCT? among the most com-
prehensive AGID datasets to date.

3.1 Prompt Sources and Coverage

To ensure diversity in both semantic content and
visual generation styles, we curated prompts from
two distinct and complementary sources:

* ~10,000 benchmark prompts from the MS
COCO dataset (Lin et al., 2014), focused on
object-centric and everyday scenes;

* ~16,000 real-world prompts from the
@nytimes Twitter account 2011-2023. To
assess topical diversity, we identified ten
topics and associated keywords, and then
assigned each tweet to its most probable
topic. Table 1 shows the five dominant
clusters. These clusters reflect both editorial
depth and real-world content breadth. Their
presence enhances the semantic realism of
our benchmark and supports rigorous AGID
evaluation across multiple domains.

3.2 Real Twitter Prompt-Image Dataset
Collection and Processing

To construct a diverse and reliable dataset of real
Twitter images, we employed an automated data
collection pipeline using Python and Selenium.
We focused on tweets from @nyt imes (The New
York Times) due to its editorial credibility, rigorous
fact-checking, and diverse topical coverage.

Data Collection. Our pipeline sampled tweets
spanning a 12-year period (2011-2023), retaining



Table 1: Topic Clusters in the NYT Twitter Subset.

Topic Cluster Tweet Count | Top Keywords

Daily Briefings and News Summaries 1129 know, need, day, morning, briefing, evening
New York City and Culture 1961 new, york, city, times, books, critics

Art, Movies, and Obituaries 631 photo, review, obituary, art, movie, critic
Health, COVID-19, and Breaking News 1436 coronavirus, health, opinion, news, breaking, people
Opinion Pieces and Societal Reflections 914 nytopinion, life, young, america, death, ebola
Travel and International Destinations 605 hours, italy, florida, china, japan, park
World Events and Sports 903 world, cup, photos, team, war, country
Lifestyle and City Aesthetics 1164 like, looks, look, city, love, idea

Time, Life Stories, and Incarceration 1200 years, life, ago, prison, time, close

Home, Food, and Leisure 965 make, recipes, summer, home, simple, best
miscellaneous 5001 -

only those with attached media. The goal was to
align real images with captions that could feasibly
be used to generate synthetic counterparts.

Definition of Real Images. We define “real”
images as those not generated by Al This includes
natural photographs as well as editorial media such
as Ul screenshots, infographics, and photojournal-
istic illustrations, provided they are not produced
using generative models. This definition reflects
the ambiguity present in real-world detection sce-
narios, where non-photographic content may still
be authentic.

Data Filtration and Preprocessing. To ensure
quality and consistency, we applied several filtering
steps: (i) removal of duplicate tweets and media;
(i1) exclusion of irrelevant content such as word
games or puzzles; and (iii) filtering of non-English
tweets. Additionally, preprocessing involved re-
moval of hashtags and URLs, and retention of
only alphanumeric characters to facilitate down-
stream analysis and clustering. All real images
and prompts are organized into two structured sub-
sets: COCOyy and Twitters;, which are publicly
released.

3.3 Benchmark Scale and Contributions

VCT? offers several key advantages over existing
benchmarks:

* Scale. VCT? contains 166,000 images gen-
erated from 26,000 unique prompts. While
GenDet (Zhu et al., 2023) includes a larger
total number of images (770,000), it only con-
tains 70,000 real images and is less balanced
across prompt domains. De-Fake (Sha et al.,
2023), in contrast, includes approximately
100,000 images with more limited generator
and prompt coverage.

¢ Model diversity. GenDet and De-Fake focus
primarily on earlier open-source models such

as BigGAN, StyleGAN2, and Stable Diffu-
sion v1.4. VCT? includes six cutting-edge
generative models supporting broader evalua-
tion across current-generation image genera-
tors.

* Prompt realism. VCT? uniquely combines
benchmark-style prompts from MS COCO
with naturalistic, real-world prompts curated
from a 12-year archive of @nytimes tweets,
capturing diverse linguistic styles and topics.

* Mixed-media realism. The real image sub-
set includes ambiguous formats such as info-
graphics, Ul screenshots, and editorial photos,
reflecting the heterogeneous content encoun-
tered in real-world detection scenarios.

* Public accessibility. All prompts, real and
synthetic images, and evaluation scripts for 17
AGID baselines are publicly released to facil-
itate reproducibility and comparative bench-
marking.

To our knowledge, VCT? is the first large-scale
AGID benchmark to pair real-world journalistic
prompts with diverse state-of-the-art text-to-image
models, providing a robust and publicly available
testbed for evaluating both detection performance
and perceptual realism across different prompt do-
mains and generative model types.

4 Evaluation and Results

We evaluate the VCT? benchmark under zero-shot
settings using 17 state-of-the-art Al-generated im-
age detection (AGID) methods. These span artifact-
, feature-, and hybrid-based approaches. In the fol-
lowing, we present detection performance, examine
cross-domain and cross-model generalization, and
analyze detector sensitivity to detector type.



4.1 Evaluation Protocol

To simulate real-world deployment, we assess all
detectors without fine-tuning. Public checkpoints
and default hyperparameters are used. Perfor-
mance is measured!60 separately on COCOxy and
Twittera; subsets, reporting accuracy, precision,
and recall. Results are summarized in Tables 2
and 3.

4.2 Cross-Domain and -Model Trends

Figure 3 presents the average detection accuracies
per generator across the two domains. Overall, de-
tection performance is low, with accuracy dropping
further on COCO41 compared!60 to Twitteray.
Detection performance also varies across gener-
ators. Images from earlier models like SD2.1 and
SDXL remain relatively detectable. In contrast,
newer or proprietary models such as SD3.5 Large
and DALL-E 3 yield significantly lower detection
results, suggesting that existing detectors may be
overfitted to older, synthetic image distributions.

4.3 Comparative Detector Performance

Feature-based detectors (e.g., De-Fake (Sha et al.,
2023)) and hybrid methods (e.g., DRCT (Chen
et al.)) generally outperform artifact-based detec-
tors like CNNDetection (Wang et al., 2020) and
NPR (Tan et al., 2023). The latter collapse on
proprietary models due to reliance on low-level
artifacts often absent in advanced generators.

Conversely, feature-based and contrastive meth-
ods benefit from semantic representations, allowing
stronger generalization to unseen prompt styles and
model outputs. DRCT (ConvB and UnivFD) and
De-Fake show consistent robustness across both
subsets.

5 The Visual Al Index (V1)

We introduce the Visual Al Index (V 1), an inter-
pretable, prompt-agnostic metric that scores the
perceptual realism of images based on low-level
visual features. Va1 provides a continuous score
that reflects where an image lies along a spectrum

Table 2: Overall accuracy (Acc), recall (R), and precision (P) across COCOy; synthetic datasets generated from MS
COCO prompts. All values are in %. Color-coded: Green (> 90%), Yellow-Green (80-89%), Yellow (70-79%),

Orange (60—69%), red!60 (<60%).

Method

SD3 Medium SD3.5 Large DALLE 3 Midjourney 6

Acc R P Acc R P Acc R P Acc R P

CNNDetection (Wang et al., 2020)

NPR (Tan et al., 2023)

DM Image Detection (Corvi et al., 2023)
Fake Image Detection (Doloriel and Cheung, 2024)
DIRE (Wang et al., 2023)

LASTED (Wu et al., 2023)

GAN Image Detection (Mandelli et al., 2022)
AIDE (Yan et al., 2024)

SSP (Chen et al., 2024)

FatFormer (Liu et al., 2024)

DRCT (ConvB) (Chen et al.)

DRCT (UnivFD) (Chen et al.)

RINE (Koutlis and Papadopoulos, 2024)
OCC-CLIP (Liu et al.)

De-Fake (Sha et al., 2023)

Deep Fake Detection (Aghasanli et al., 2023)
Universal Fake Detect (Ojha et al., 2023)
C2P-CLIP (Tan et al., 2024)

87.90
70.56 70.11

87.76 86.22 85.59 86.68
70.66:

Table 3: Overall accuracy (Acc), recall (R), and precision (P) across Twittera; synthetic datasets generated from
Twitter prompts. Midjourney 6 is not included as it blocks image generation for most Twitter prompts. All values
are in %. Color-coded: Green (> 90%), Yellow-Green (80-89%), Yellow (70-79%), Orange (60-69%), red!60
(<60%).

SD3 Medium SD3.5 Large DALLE 3
Acc R P Acc R P Acc R P Acc R P Acc R P

Method

CNNDetection (Wang et al., 2020)

NPR (Tan et al., 2023)

DM Image Detection (Corvi et al., 2023)
Fake Image Detection (Doloriel and Cheung, 2024)
DIRE (Wang et al., 2023)

LASTED (Wau et al., 2023)

GAN Image Detection (Mandelli et al., 2022)
AIDE (Yan et al., 2024)

SSP (Chen et al., 2024)

FatFormer (Liu et al., 2024)

DRCT (ConvB) (Chen et al.)

DRCT (UnivFD) (Chen et al.)

RINE (Koutlis and Papadopoulos, 2024)
OCC-CLIP (Liu et al.)

De-Fake (Sha et al., 2023)

Deep Fake Detection (Aghasanli et al., 2023)
Universal Fake Detect (Ojha et al., 2023)
C2P-CLIP (Tan et al., 2024)

63.56 89.66

83.24
3
89.61

82.71 78.77
80.60;

71.79

89.01 77.87
85.60

74.11
75.78 78.16 85.57 74.53 79.39 88.03 72.06

72.88 74.17 72.31
152210674 88.76
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Figure 3: Average detection accuracy across the
COCOA4; and Twitterar subsets for each generator.

of visual realism. Many real images in web-scale
datasets (e.g., news media, social platforms) are not
pristine photographs; they may include screenshots,
digital graphics, or compressed visuals. These im-
ages often lack sharpness, contrast, or structure.
Var quantifies perceptual quality by learning to
score realism using a combination of handcrafted
visual features, independent of prompts or model-
specific information.

5.1 Feature Design

Va1 uses twelve visual features grouped into three
categories:

(i) Texture and Frequency: Texture Complex-
ity, Haralick Contrast, Haralick Correlation, Haral-
ick Energy, Frequency Mean, Frequency Standard
Deviation.

(ii) Sharpness and Structure: Image Sharpness,
Image Smoothness, Image Contrast.

(iii) Color and Semantics: Color Distribution
Consistency, Object Coherence, Contextual Rele-
vance.

Texture Complexity quantifies the variety and
unpredictability of an image’s texture. It is
determined by computing the entropy of the
normalized Local Binary Pattern (LBP) his-
togram of the grayscale image using the formula

- 5:_01 Hipp(k)logy(Hrpp(k) + €). Here,
Hppp(k) represents the normalized histogram
value for LBP bin k, and P is the total number
of bins in the LBP histogram. The small constant e
(in our case, 1 x 1079) is used to avoid taking the
logarithm of zero.

Haralick features are texture descriptors com-
puted from the gray-level co-occurrence matrix
(GLCM), which encodes the frequency G (3, j) of
pixel intensity pairs (7, j) occurring at a fixed spa-
tial offset. We use three common features:

Haralick Contrast is defined as }, (i —
7)2G(i, §), capturing local intensity variation.

Haralick Correlation is computed as
S (i—pi) (G —p3)G(5.5)

4,7 003

, where p;,p; and o;,0;

are the means and standard deviations of the
marginal GLCM distributions. It measures linear
dependency between pixel pairs.

Haralick Energy (Angular Second Moment)
is given by >, . G(i, 4)2, reflecting texture uni-
formity—higher values imply more homogeneous
regions.

These values are averaged across multiple an-
gles (e.g., 0°, 45°, 90°, 135°) to ensure rotation-
invariant descriptors.

We extract frequency-domain features using the
2D Fast Fourier Transform (FFT) of the grayscale
image I. Let I(u,v) = FFT2(I) denote the
Fourier-transformed image, and let M (u,v) =
|1(u, v)| be the magnitude spectrum.

Frequency Mean is defined as FreqMean =
e S W M(u,v), where H x W is the
image resolution.

Frequency
tion is

Standard Devia-
given by FreqStd =

\/ﬁ Zle ZZL (M (u,v) — FreqMean)?.

These two features capture the spectral energy
and its variation. Higher values indicate detailed or
noisy content, while lower values reflect smoother
textures.

Image Sharpness is quantified as max(|/ —
Toiurred|)- I and Iyjyreq denote the grayscale and
blurred image with Gaussian kernel, respectively.

Image Smoothness evaluates how consistent
the image’s texture is. It is quantified as m,
where AT denotes the Laplacian of the grayscale
image I.

Image Contrast measures the degree of varia-
tion in intensity across an image. It is quantified
by calculating the standard deviation of the pixel
values in the grayscale image, expressed as std(7).

Color Distribution Consistency evaluates the
variability in an image’s color distribution by an-
alyzing the standard deviation of the normalized
color histogram in the HSV color space. It is calcu-
lated as std(Hy sy (h, s,v)), where std(-) denotes
the standard deviation of the normalized histogram
fIHSV(h, s,v) for hue h, saturation s, and value v.

Object Coherence evaluates the extent and clar-
ity of edge detection in an image, providing insight
into the consistency of object boundaries. It is

determined using w, where F(i, j) repre-
2]

sents the value of the Canny edge image at pixel
(4,), and the 3, . 1 represents the total number of
pixels in the image.

Contextual Relevance evaluates the distribution



of edge strengths across the image. It is given by

var(y/ G2 + G,,?), where var(-) denotes the vari-
ance, and G, and G, are the gradients computed
using the Sobel filter in the horizontal and vertical
directions, respectively.

After Z-score normalization, each feature is stan-
dardized as f;(z) = W, where v;(x) is the
raw value of feature i for 1image x, and p;, o; are
the mean and standard deviation of that feature
across the dataset. The V; score is then com-

puted as Var(z) = % where s(z) =

21131 wj - fi(x) is the weighted sum of normalized
features, and the min—max normalization rescales
all scores s(x) to the [0, 1] range over the dataset.

To compute the Visual Al Index (Vap), we
learn a set of weights that quantify the contribu-
tion of each low-level feature to image realism.
We use logistic regression to distinguish between
real (label y = 1) and synthetic (label y = 0)
images. Given a 12-dimensional feature vector
x = [f1, fa, ..., f12], the model estimates the prob-
ability that an image is real using the sigmoid func-
tion: P(y = 1| z) = 1/(1+e '), where w
is the learned weight vector. The final Visual Al
Index is defined as:

1

Var(x) = P

where w™ is the optimized weight vector obtained
after training. The weights are obtained by
minimizing the binary cross-entropy loss: L(w) =
N iy [yilog i — (1= yi) log(1 = §i)).
where §; = 1/(1 4 ¢~ %), After training, we
use the optimized weights w* to compute the Vap
score. We train two models separately, one for
COCOp,g and one for Twittery, each tailored to the
distribution of real images in its respective domain.
Table 4 shows the final weights.

5.2 V1 Analysis

We report the average V a1 scores for real and gen-
erated images across the COCOyy and Twitteray
subsets in Figures 4 and 5. As expected, real im-
ages achieve the highest Vay scores in both do-
mains, reflecting the benchmark’s ability to as-
sign higher realism to naturally occurring images.
Among generative models, DALLE 3 obtains the
highest V41 in both subsets (0.626 for COCO,j,
0.593 for Twitteray), indicating its outputs most
closely align with real images in terms of low-level
features such as texture complexity, edge coher-
ence, and color consistency. A cluster of diffusion-

Table 4: Learned Va1 feature weights for COCO,; and
Twitter,; domains.

Feature COCO,1  Twitteray
Texture Complexity 4.13 1.15
Color Dist. Consistency —0.15 —0.05
Object Coherence —0.87 1.56
Contextual Relevance —1.33 242
Haralick Contrast 1.02 —4.52
Haralick Correlation —0.42 —-0.07
Haralick Energy —1.46 —1.59
Freq. Mean —0.87 —1.36
Freq. Std —1.30 —0.20
Image Smoothness 0.37 —0.06
Image Sharpness 2.08 2.26
Image Contrast 0.50 —0.18

based models, SD2.1, SD3 Medium, and SD3.5
Large, follow DALLE 3 with relatively similar
Va1 scores, suggesting comparable levels of photo-
realism. SDXL ranks lower across both domains,
i.e. 0.496 COCOy1 and 0.573 Twittera;, which
may be attributed to its tendency toward stylistic
exaggeration or generation artifacts that deviate
from natural image statistics. These artifacts can
influence frequency-domain, edge-based, or texture
descriptors negatively, despite the model’s high per-
ceptual fidelity. Midjourney yields the lowest V og
in the COCO,; subset (0.432) and is excluded from
the Twittera; analysis due to the unavailability of
corresponding generated images. We also report
additional texture and semantic analyses in the Ap-
pendix: Local Binary Pattern (LBP) textures F.2,
and PCA-based pairwise comparisons F.3 support-
ing our Visual Al Index (V1) findings on coher-
ence and texture consistency across models.

5.3 Correlation with Detection Accuracy

To assess whether the Visual Al Index aligns with
detection difficulty, we compute the Pearson corre-
lation coefficient between the average Va1 scores
and AGID detection accuracy across different gen-
erative models. The Pearson correlation is defined
as p = iz (@i 2) (yi—) —, where z; and

VI @i=3)? /i (1i—9)?
1; are the Va1 score and AGID accuracy for model

1, and Z and y are their respective means. A higher
value of p indicates stronger alignment between
visual realism and detection performance.

To evaluate whether the Visual Al Index (Var)
aligns with the difficulty of detecting Al-generated
images, we compute the Pearson correlation co-
efficient between average Va1 scores and AGID
detection accuracy across five generative models.
The Pearson correlation coefficient p is defined as:
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where z; and y; represent the Va1 score and
AGID accuracy for model ¢, and T and ¢ are their
respective means. The coefficient p ranges from
—1 to 1: a value near 1 implies a strong positive
correlation, near —1 implies a strong negative cor-
relation, and a value near 0 suggests no linear rela-
tionship. We compute p separately for the Twitteray
and COCO\ datasets. As shown in Table 5, our re-
sults indicate a moderate inverse relationship: mod-
els with higher visual realism tend to be harder to
detect. However, the correlations are not statisti-
cally significant, likely due to the small number
of generative models, i.e. n» = 5, and should be
interpreted cautiously.

P

6 Conclusion

In this paper, we introduced (VCT?), a comprehen-
sive benchmark for evaluating Al-generated image

Table 5: Pearson correlation between V; and AGID
detection accuracy.

Dataset  Pearson p p-value
Twitterar —0.503 0.388
COCOax1 —0.532 0.356

detection (AGID) across diverse generative mod-
els, including cutting-edge proprietary systems like
DALL-E 3 and Midjourney 6. By incorporating
both real-world prompts and standardized captions,
VCT? offers a challenging, realistic dataset for as-
sessing generalization. The VCT? benchmark pro-
vides a critical resource for evaluating AGID tech-
niques under challenging and varied conditions,
highlighting performance gaps and guiding the de-
velopment of more robust detection methods.

To assess the realism of images, we present the
Visual Al Index (V47) that evaluates characteristics
like texture complexity, Haralick correlation, fre-
quency mean, and image sharpness. Our findings
reveal that real images generally achieve higher
Va5 scores than Al-generated images.



Limitations and Future Work

While our work provides a strong foundation for
evaluating AGID methods and realism metrics, fu-
ture directions include expanding to diverse do-
mains (e.g., social platforms, synthetic video), in-
tegrating temporal and multimodal features into
Va1, and adapting it for localization or attribution.
We also plan to explore human alignment and psy-
chometric grounding of these continuous realism
scores. As generative models evolve, updating the
benchmark and exploring hybrid detection tech-
niques will be key to ensuring resilience against
increasingly sophisticated Al imagery.
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Appendix
A Dataset Details

A.1 Comparison with Existing AGID
Benchmarks

We compare VCT? with two prominent AGID
benchmarks:

GenDet (Zhu et al., 2023) introduces a bench-
mark of roughly 140,000 synthetic images, mostly
from COCO and Flickr. It covers several open-
source models but lacks prompt diversity from real-
world data, and omits proprietary model outputs.

De-Fake (Sha et al., 2023) focuses on detec-
tion and attribution using four generative models
(DALL-E 2, GLIDE, Latent Diffusion, Stable Dif-
fusion). While well-curated, it lacks coverage of
more recent models (e.g., DALL-E 3, Midjourney
6), and does not utilize real prompts from user-
facing media.

VCT? provides:

* Over 182,000 images, including 26,000 real
image—prompt pairs

* Prompts from both MS COCO and @nytimes
(2011-2023)

* Synthetic content from six leading models,
including DALL-E 3 and Midjourney 6

* Realistic prompt semantics, verified source
integrity, and public accessibility

This makes VCT? a uniquely practical bench-
mark for evaluating AGID model generalization
and real-world robustness.

Table 6 presents 10 records of real images along-
side synthetic images generated by different mod-
els, based on 10 Twitter prompts for which we had
the corresponding Midjourney 6 image (With this
model, we generated ~10K synthetic images on
MS COCO prompts and only 500 synthetic images
on Twitter prompts, as this model blocks image
generation for most Twitter prompts.). Full dataset
are publically available at Twittera; and COCOp.

B Detection Techniques

This appendix provides detailed descriptions of
the 17 Al-generated image detection (AGID) tech-
niques evaluated in our benchmark. These methods
span three major detection paradigms: generation
artifact-based, feature representation-based, and
hybrid approaches. This taxonomy is designed to
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reflect the breadth of design assumptions across
the literature and serves as the foundation for our
performance analysis in Section 4.

Artifact-based methods exploit low-level visual
artifacts—such as frequency distortions, edge in-
consistencies, or upsampling traces—introduced
during the image generation process. Feature-
based methods, in contrast, analyze semantic-level
inconsistencies by leveraging deep neural represen-
tations from CNNSs, vision transformers, or CLIP
encoders. Hybrid methods combine both low-level
and high-level signals, often incorporating align-
ment objectives or learned fusion strategies to im-
prove robustness.

The detectors described here were selected based
on recency, diversity, and public availability, and
represent both classical and state-of-the-art AGID
strategies. Each technique is evaluated under zero-
shot settings using default public checkpoints, and
grouped by detection paradigm below.

B.1 Generation Artifact-Based Detection

Generation artifact-based detection techniques fo-
cus on identifying visual artifacts produced during
the generation process, analyzing both spatial and
frequency domains.

Tan (Tan et al., 2023) found that the up-sampling
operator introduces artifacts not only in frequency
patterns but also in pixel arrangements within im-
ages. The authors introduce the concept of Neigh-
boring Pixel Relationships to capture and charac-
terize these generalized structural artifacts caused
by up-sampling operations.

Corvi (Corvi et al., 2023) observed that synthetic
images, especially those generated by diffusion
models like GLIDE and Stable Diffusion, exhibit
distinctive differences in mid-to-high frequency
signals compared to real images. However, this
distinction is less pronounced in images produced
by newer models, such as DALL-E and ADM. Al-
though their method accurately distinguishes syn-
thetic and real images in controlled settings, it
struggles in real-world scenarios.

Doloriel (Doloriel and Cheung, 2024) explored
masked image modeling for universal fake image
detection. Their approach involves both spatial and
frequency domain masking, leading to a deepfake
detector based on frequency masking.

Chen (Chen et al.) enhance detector generaliza-
tion diffusion generated images by generating hard
samples through high-quality diffusion reconstruc-
tion. These reconstructed images, which closely


https://huggingface.co/datasets/anonymous1233/twitter_AI
https://huggingface.co/datasets/anonymous1233/COCO_AI

resemble real ones but retain subtle artifacts, train
detectors to differentiate between real and gener-
ated images, including those from unseen diffusion
models.

B.2 Feature Representation-Based Detec-
tion

Feature representation-based detection methods

distinguish real images from synthesized images

by leveraging deep learning models to extract and

analyze complex visual features.

Wang (Wang et al., 2020) proposed a universal
detector using a ResNet-50 classifier (He et al.,
2016) with random blur and JPEG compression
data augmentation. When trained on images gen-
erated by a single CNN generator (ProGAN), their
model demonstrated strong generalization across
unseen architectures, including StyleGAN2 (Kar-
ras et al., 2020) and StyleGAN3 (Karras et al.,
2021).

Mandelli (Mandelli et al., 2022) developed a
GAN-generated image detector based on an ensem-
ble of CNNs. Their method emphasizes general-
ization by ensuring orthogonal results from CNNs
and prioritizing original images during testing.

Wang (Wang et al., 2023) introduced a technique
that measures the error between an input image
and its reconstructed counterpart generated by a
pre-trained diffusion model. They observed that
diffusion-generated images are more accurately re-
constructed than real images, highlighting a key
discrepancy for detection.

Wu (Wu et al., 2023) employed language-guided
contrastive learning to capture inherent differences
in the distributions of real and synthetic images.
Their method augments training images with de-
signed textual labels, enabling joint image-text con-
trastive learning for forensic feature extraction.

Sha (Sha et al., 2023) addressed the challenges
of fake image detection and attribution. Their ap-
proach involves: (i) building a machine learning
classifier to detect fake images generated by var-
ious text-to-image models, including DALL-E 2,
Stable Diffusion, GLIDE, and Latent Diffusion,
and benchmark prompt-image datasets such as MS
COCO and Flickr30k (Young et al., 2014); (ii) at-
tributing fake images to their respective generative
models to enhance accountability; and (iii) examin-
ing how prompts influence detection and attribution
performance.

Aghasanli (Aghasanli et al., 2023) introduced
a deepfake detection method that combines fine-
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tuned Vision Transformers (ViTs) with Support
Vector Machines (SVMs). Their method provides
interpretability by analyzing the SVMs’ support
vectors to distinguish between real and fake images
generated by various diffusion models.

Chen (Chen et al., 2024) proposed a straightfor-
ward method that extracts the simplest patch from
an image and sends its noise pattern to a binary
classifier, demonstrating effectiveness with mini-
mal complexity.

Koutlis (Koutlis and Papadopoulos, 2024) uti-
lized intermediate outputs from CLIP’s image en-
coder for enhanced Al-generated image detection.
They introduced a Trainable Importance Estima-
tor to dynamically assess the contributions of each
Transformer block, boosting generalization across
generative models.

Liu (Liu et al.) presented OCC-CLIP, a CLIP-
based framework for few-shot one-class classifica-
tion. This method is particularly effective when
only a few images generated by a model are avail-
able, and access to the model’s parameters is re-
stricted. OCC-CLIP combines high-level and ad-
versarial data augmentation techniques to attribute
images to specific generative models accurately.

To enhance generalization to unseen generative
models, Ojha (Ojha et al., 2023) propose a novel
approach that avoids explicitly training a classi-
fier to distinguish real from fake images. Instead,
their method leverages the feature space of large
pre-trained vision-language models and employs
techniques such as nearest neighbor classification.

Tan (Tan et al., 2024) enhance the image en-
coder’s ability to detect deepfakes by integrating
category-related prompts into the text encoder of
CLIP.

B.3 Hybrid Techniques

Hybrid techniques combine low-level artifact anal-
ysis with high-level semantic feature extraction to
effectively distinguish Al-generated images from
real ones.

Yan (Yan et al., 2024) propose a hybrid-feature
model that integrates high-level semantic informa-
tion (using CLIP) with low-level artifact analysis
to improve detection robustness.

Liu (Liu et al., 2024) incorporate a forgery-aware
adapter that integrates local forgery traces from
both image and frequency domains. Their method
employs language-guided alignment, using con-
trastive objectives between image features and text
prompts to enhance generalization.



To guide our benchmark evaluation, we selected
17 state-of-the-art AGID methods spanning all
three categories. This categorization enables us
to evaluate model robustness from complementary
perspectives: from low-level artifact exploitation
to high-level semantic inconsistency analysis. This
taxonomy is used to analyze generalization perfor-
mance in Section 5.

C Detection Performance Overview

Tables 2 and 3 provide an overview of the per-
formance of different detection techniques across
synthetic datasets generated from MS COCO and
Twitter prompts, respectively. The metrics mea-
sured are Accuracy (Acc), Recall (R), and Precision
(P), providing insights into each model’s ability to
differentiate real from Al-generated images.

C.1 Performance by Detection Technique

* CNNDetection, NPR and Fake Image De-
tection: These methods showed variable re-
sults, characterized by low recall but higher
precision across several models. This indi-
cates a tendency to correctly identify gener-
ated images when detected, but with many
instances being missed (false negatives).

DM Image Detection and De-Fake: DM Im-
age Detection demonstrated high precision
across all models, particularly excelling with
Stable Diffusion versions and Midjourney 6,
effectively capturing generated images. De-
Fake consistently maintains strong metrics
across SD (2.1, XL and 3), DALL.E 3, and
Midjourney 6 but struggles with SD 3.5 Large
images, exhibiting lower accuracy, precision,
and recall. This drop in performance likely re-
sults from SD 3.5’s refined generation and
post-processing that minimize the artifacts
and noise patterns AGID techniques depend
on.

GAN Image Detection, SSP and DIRE:
These methods had mixed performance, par-
ticularly excelling in precision.

DRCT (ConvB and UnivB): Both versions
of DRCT showed strong accuracy, recall, and
precision across most models but experienced
a slight performance drop with Midjourney 6,
indicating challenges with proprietary models.
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* OCC-CLIP and Deep Fake Detection:
OCC-CLIP had lower recall with SDXL but
balanced performance for DALL.E 3 and Mid-
journey 6; while Deep Fake Detection demon-
strated steady, consistent performance, with
all of its metrics remaining within a similar
range.

Universal Fake Detect: Universal Fake De-
tect performed better on SD (2.1, XL, and 3)
models but its performance dropped when ap-
plied to SD 3.5, DALL.E 3, and Midjourney 6.
Notably, we observed a significant increase in
recall for DALL.E 3-generated images across
both datasets.

C2P CLIP: C2P CLIP consistently performs
poorly with low accuracy and recall, clearly
showing that it often misses Al-generated im-
ages. Although its precision remains high
across both datasets overall, it declines sig-
nificantly for Midjourney 6 images in both
datasets and for SD3 images in the Twitter
dataset.

The results indicate that there is no one-size-fits-
all solution for detecting Al-generated images. Dif-
ferent generative models pose unique challenges,
and the performance of each detection method
varies based on its ability to identify specific ar-
tifacts. De-Fake and DRCT (ConvB and UnivB)
were the most consistent performers, highlight-
ing their robustness across models. Future re-
search should aim to improve detection for pro-
prietary models like SD 3.5 Large, Midjourney 6
and DALL.E 3, where many techniques struggled.

D Visual AI Index Overview

Midjourney 6 achieved the highest Visual Al Index
(Var) score on MS COCO prompts, indicating su-
perior visual coherence and quality compared to
other models. Stable Diffusion 2.1 also showed rel-
atively high performance, suggesting that diffusion-
based methods can achieve strong visual results but
may still be outperformed by proprietary methods
like Midjourney 6.

From the V45 scores on Twitter prompts, Mid-
journey 6 remained the top performer, followed
closely by DALL.E 3. This suggests that propri-
etary models are particularly robust in generating
high-quality images, even with more diverse and
potentially less structured prompts. The accuracy
heat maps in Figure 5 also highlight differences in



how AGID methods perform across models. Meth-
ods like De-Fake and DRCT were particularly ef-
fective at detecting Midjourney-generated images,
whereas detection on DALL.E 3 and SDXL proved
more challenging. This indicates that the tex-
ture and artifact characteristics differ significantly
across these models, affecting detection reliability.
These results underscore the challenges faced by
AGID methods when applied to high-quality propri-
etary models. While some detection methods, like
De-Fake and DRCT, performed consistently well,
the V45 scores reveal that generated image qual-
ity plays a significant role in detection difficulty.
Future work should focus on improving the robust-
ness of detection techniques against models that
prioritize high visual fidelity, such as Midjourney
6 and DALL.E 3.

E Supplementary Figures

The supplementary figures included in this ap-
pendix (Figure 13 and Figure 12) provide addi-
tional insights and visual examples that support
and enhance the concepts and results discussed in
the main paper.

F Visual Al Index (V)
F.1 Texture and Semantic Cues

Feature-space PCA plots and LBP texture visual-
izations (Figures 6) highlight differences in object
coherence, sharpness, and semantic consistency.
Newer generators often produce globally coherent
scenes that are statistically inconsistent with real-
world image distributions, particularly in terms of
texture smoothness and semantic density. These
deviations offer forensic cues that detectors can
exploit.

F.2 LBP Texture Analysis

Local Binary Pattern (LBP) is commonly used for
texture analysis, image recognition, and quality as-
sessment. LBP plots can indirectly assess image
quality, as sharper images generally produce more
distinct patterns in their LBP representations. If the
LBP pattern appears blurred or lacks clear edges,
it may indicate a loss of detail or lower resolution
in the image. Al-generated images sometimes lose
fine-grained texture, which would be visible as less
distinctive LBP features. In Figure 6 we can see
that image generated by Midjourney has specific
facial textures and subtle expression lines whereas
image generated by SD 3 has inconsistencies and
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lack of texture in certain areas. facial features,
facial structures, hair lines, edges in clothing, and
wrinkles are preserved in each segment for the Mid-
journey image but SD 3 image completely lost it.

0 100 200 300 400

LBP of Midjourney 6

800

600 1000

LBP of Stable Diffusion 3

Stable Diffusion 3

Figure 6: Comparative analysis of texture patterns in
images generated by different T2I models using Local
Binary Pattern (LBP) representation.

F.3 Pairwise Scatter Plot Analysis

The pairwise scatter plots in Figure 7, 8, 9, 10,
and 11 reveal clear differences in model distribu-
tions. DALL.E 3 and SDXL maintain higher ob-
ject coherence across varying texture complexities,
indicating stronger object integrity. In contrast,
SD 2.1 and SD 3 show more dispersed patterns,
reflecting lower consistency. These trends under-
score evolutionary gains, with newer models like
SD 3 and SDXL offering improved color distribu-
tion and contextual relevance. Midjourney 6 and
DALL.E 3 form well-separated clusters, suggest-
ing better handling of coherence and complexity.
Stable Diffusion variants display mixed behaviors,
revealing inconsistencies in texture and boundaries;
consistent with their lower V 51 scores. Overall, the
analysis highlights the importance of balancing tex-
ture complexity and object coherence to improve
generative and detection model performance.
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Figure 7: DALL-E 3
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Figure 8: Midjourney 6
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Figure 9: Stable Diffusion 3
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Stable Diffusion XL

Figure 12: Generated images by different AI models
for the prompt: "Have you ever wondered why we name
hurricanes? The New York Times meteorologist Judson
Jones explains.”
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Stable Diffusion XL

Figure 13: Generated images by different Al models
for the prompt: "At least six candidates appear to have
made the cut so far for the second Republican presiden-
tial debate on Sept 27. See which candidates have and
have not qualified so far."



Table 6: Real images and synthetic images generated by different models.

Real Image SDXL
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