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ABSTRACT

Machine learning models are highly vulnerable to label flipping, i.e., the adversar-
ial modification (poisoning) of training labels to compromise performance. Thus,
deriving robustness certificates is important to guarantee that test predictions re-
main unaffected and to understand worst-case robustness behavior. However, for
Graph Neural Networks (GNNs), the problem of certifying label flipping has so
far been unsolved. We change this by introducing an exact certification method,
deriving both sample-wise and collective certificates. Our method leverages the
Neural Tangent Kernel (NTK) to capture the training dynamics of wide networks
enabling us to reformulate the bilevel optimization problem representing label
flipping into a Mixed-Integer Linear Program (MILP). We apply our method to
certify a broad range of GNN architectures in node classification tasks. Thereby,
concerning the worst-case robustness to label flipping: (i) we establish hierarchies
of GNNs on different benchmark graphs; (ii) quantify the effect of architectural
choices such as activations, depth and skip-connections; and surprisingly, (iii) un-
cover a novel phenomenon of the robustness plateauing for intermediate perturba-
tion budgets across all investigated datasets and architectures. While we focus on
GNNs, our certificates are applicable to sufficiently wide NNs in general through
their NTK. Thus, our work presents the first exact certificate to a poisoning attack
ever derived for neural networks, which could be of independent interest.

1 INTRODUCTION

Machine learning models are vulnerable to data poisoning where adversarial perturbations are ap-
plied to the training data to compromise the performance of a model at test time (Goldblum et al.,
2023). In addition, data poisoning has been observed in practice and is recognized as a critical con-
cern for practitioners and enterprises (Kumar et al., 2020; Grosse et al., 2023; Cinà et al., 2024). The
practical feasibility was impressively demonstrated by Carlini et al. (2024), who showed that with
only $60 USD they could have poisoned several commonly used web-scale datasets.

Label flipping is a special type of data poisoning where a fraction of the training labels are corrupted,
leaving the features unaffected. This type of attack has proven widespread effectivity ranging from
classical methods for i.i.d. or graph data (Biggio et al., 2011; Liu et al., 2019), to modern deep
learning systems for images, text, or graph-based learning (Jha et al., 2023; Wan et al., 2023; Lingam
et al., 2024). Exemplary, Lingam et al. (2024) showed that one adversarial label flip could reduce
the accuracy of Graph Convolution Networks (GCNs) (Kipf & Welling, 2017) by over 17% on a
smaller version of Cora-ML (McCallum et al., 2000). Similarly, Fig. 1a demonstrates for the Karate
Club network (Zachary, 1977) that one label-flip can reduce the accuracy of a GCN by 50%.

Although several empirical defenses have been developed to counter label flipping attacks (Zhang
et al., 2020; Paudice et al., 2019), they remain vulnerable to increasingly sophisticated attacks (Koh
et al., 2022). This highlights the need for robustness certificates which offer formal guarantees
that the test predictions remain unaffected under a given perturbation model. However, there are
currently no works on certifying label poisoning for Graph Neural Networks (GNNs) and as a result,
little is known about the worst-case (adversarial) robustness of different architectural choices. That
a difference in behavior can be expected is motivated in Fig. 1a, where exchanging the ReLU in
a GCN with an identity function forming a Simplified Graph Convolutional Network (SGC) (Wu
et al., 2019), results in significantly higher worst-case robustness to label flipping for Karate Club.
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(a) Worst-case robustness to one label flip of two GNNs. (b) Illustration of our label-flipping certificate.

Figure 1: (a) The Karate Club network is visualized with its labeled ( ) and unlabeled ( ) nodes.
The adversarial label flip ( ) calculated by our method outlined in (b) provably leads to most node
predictions being flipped ( ) for two GNNs (GCN & SGC). The certified accuracy refers to the
percentage of correctly classified nodes that remain robust to the attack.
In general, robustness certificates can be divided into being exact (also known as complete), i.e.,
returning the exact adversarial robustness of a model representing its worst-case robustness to a
given perturbation model, or incomplete, representing an underestimation of the exact robustness.
Complete certificates allow us to characterize and compare the effect different architectural choices
have on worst-case robustness as exemplified in Fig. 1a, whereas incomplete certificates suffer from
having variable tightness for different models, making meaningful comparisons difficult (Li et al.,
2023). Currently, even for i.i.d. data there are no exact poisoning certificates for NNs, and ex-
isting approaches to certify label-flipping are limited to randomized smoothing (Rosenfeld et al.,
2020) and partition-based aggregation (Levine & Feizi, 2021), which offer incomplete guarantees
for smoothed or ensembles of classifiers. Thus, adapting these techniques to graphs will not enable
us to understand the effect of specific architectural choices for GNNs on their worst-case robustness.
The lack of exact certificates can be understood due to the inherent complexity of capturing the effect
a change in the training data has on the training dynamics and consequently, is an unsolved problem.
This raises the question: is it even possible to compute exact certificates against label poisoning?

In this work, we resolve this question by first deriving exact sample-wise robustness certificates
for sufficiently wide NNs against label flipping and evaluate them for different GNNs focusing
on semi-supervised node classification. Based on our sample-wise derivation we develop an exact
collective certification strategy that certifies the entire test set simultaneously. This is of particular
importance for poisoning certificates, as a model is usually trained once on a given training set
and then evaluated. Consequently, an attacker can only choose one perturbation to the training set
targeting the performance on all test points. To capture the effect of label flipping on the training
process of a network, our approach takes inspiration from Gosch et al. (2024) and makes use of
the Neural Tangent Kernel (NTK) of different GNNs (Sabanayagam et al., 2023), which precisely
characterizes the training dynamics of sufficiently wide NNs (Arora et al., 2019). Concretely, we
leverage the equivalence of a wide NN trained using the soft-margin loss with a Support Vector
Machine (SVM) that uses the NTK of the network as its kernel (Chen et al., 2021). This allows us
to reformulate the bilevel optimization problem describing label flipping as a Mixed-Integer Linear
Program (MILP) yielding a certificate for wide NNs as illustrated in Fig. 1b. As the MILP scales
with the number of labeled data, our method is a good fit to certify GNNs for semi-supervised node-
classification on graphs, due to the usually encountered sparse labeling. While Gosch et al. (2024)
were the first to use the NTK to derive model-specific poisoning certificates, their work is limited to
feature perturbations and incomplete sample-wise certification. Thus, our contributions are:

(i) We derive the first exact robustness certificates for NNs against label flipping. Next to sample-
wise certificates (Sec. 3.1), we develop exact collective certificates (Sec. 3.2) particularly important
for characterizing the worst-case robustness of different architectures to label poisoning. Concretely,
our certificates apply to infinite-width NNs and hold with high probability for wide finite-width NNs.

(ii) We apply our certificates to a wide-range of GNNs for node-classification on both, real and
synthetic data (Sec. 4). Thereby, we establish that worst-case robustness hierarchies are highly
data-dependent, and quantify the effect of different graph properties and architectural choices (e.g.,
activations, depth, skip-connections) on worst-case robustness.

(iii) Using the collective certificate, we uncover a surprising phenomenon: across all datasets, most
architectures show a worst-case robustness plateaus for intermediate attack budgets so far not ob-
served with adversarial attacks (Lingam et al., 2024).
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(iv) Beyond (wide) NNs, our MILP reformulation is valid for SVMs with arbitrary kernel choices.
Thus, it is the first certificate for kernelized SVMs against label flipping.

Notation. We use bold upper and lowercase letters to denote a matrix A and vector a, respectively.
The i-th entry of a vector a is denoted by ai, and the ij-entry of a matrix A by Aij . We use the floor
operator ⌊n⌋ for the greatest integer ≤ n, and [n] to denote {1, 2, . . . , n}. Further, ⟨., .⟩ for scalar
product, E [·] for the expectation and 1[.] for the indicator function. We use ∥·∥p with p = 2 for
vector Euclidean norm and matrix Frobenius norm, and p = 0 for vector 0-norm.

2 PROBLEM SETUP AND PRELIMINARIES

We consider semi-supervised node classification, where the input graph G = (S,X) contains n
nodes, each associated with a feature vector xi ∈ Rd aggregated in the feature matrix X ∈ Rn×d.
Graph structure is encoded in S ∈ Rn×n

≥0 , typically representing a type of adjacency matrix. Labels
y ∈ {1, . . . ,K}m are provided for a subset of m nodes (m ≤ n). Without loss of generality,
we assume that the first m nodes are labeled. The objective is to predict the labels for the n − m
unlabeled nodes in a transductive setting or to classify newly added nodes in an inductive setting.

GNNs. An L-layer GNN fθ with learnable parameters θ takes the graph G as input and outputs a
prediction for each node with fθ(G) ∈ Rn×K for multiclass and fθ(G) ∈ Rn for binary classifi-
cation; the output for a node i is denoted by fθ(G)i. We consider GNNs with a linear output layer
parameterized using weights W (L+1) and refer to Sec. 4 for details on the used architectures.

Infinite-width GNNs and the Neural Tangent Kernel. When the width of fθ goes to infinity
and the parameters are initialized from a Gaussian N (0, 1/width), the training dynamics of fθ are
exactly described by its NTK (Jacot et al., 2018; Arora et al., 2019). For node classification, the
NTK of a model fθ is defined between two nodes i and j as Qij = Eθ[⟨∇θfθ(G)i,∇θfθ(G)j⟩]
(Sabanayagam et al., 2023), where the expectation is taken over the parameter initialization.

On the Equivalence to Support Vector Machines. In the following, we focus on binary node
classification with yi ∈ {±1} and refer to App. A for the multi-class case. We learn the parameters
θ of a GNN by optimizing the soft-margin loss by gradient descent:

min
θ

L(θ,y) = min
θ

m∑
i=1

max(0, 1− yifθ(G)i) +
1

2C
∥W(L+1)∥22 (1)

where C > 0 is a regularization constant. In the infinite-width limit, the training dynamics for
Eq. (1) are the same as those of an SVM with fθ’s NTK as kernel. Thus, solving Eq. (1) is equivalent
to solving the dual problem of an SVM without bias (Gosch et al., 2024; Chen et al., 2021):

P1(y) : min
α

−
m∑
i=1

αi +
1

2

m∑
i=1

m∑
j=1

yiyjαiαjQij s.t. 0 ≤ αi ≤ C ∀i ∈ [m] (2)

where α ∈ Rm are the SVM dual variables, and Qij the NTK of fθ between nodes i and j. The
solution to Eq. (2) is not guaranteed to be unique; hence, denote by S(y) the set of α vectors solving
P1(y). Given any α, an SVM predicts the label of a node t by computing sign(

∑m
i=1 yiαiQti).

On Finite-width GNN Certification using NTK. Any exact certificate derived for SVM with NTK
as its kernel directly provides exact deterministic guarantees for infinite-width GNNs through their
equivalence. Concerning the finite-width case, where w denotes the smallest layer-width of the
GNN, the output difference to the SVM is bounded by O( lnw√

w
) with probability 1 − exp(−Ω(w))

as shown in Gosch et al. (2024); Liu et al. (2020) (see App. E for more model-specific guarantees).
Thus, for increasing w the output difference approaches 0 while the probability approaches 1. As
a result, a certificate obtained through the SVM equivalence represents an asymptotically exact
certificate as the width w approaches infinity. Note that the certificate becomes incomplete for a
fixed finite but not sufficiently wide network.

Label Poisoning. We assume that before training the adversary A has control over the labels of an
ϵ-fraction of labeled nodes. Formally, A can choose perturbed labels ỹ ∈ A(y) := {ỹ ∈ [K]m |
∥ỹ−y∥0 ≤ ⌊ϵm⌋} with the goal to minimize the correct predictions of test nodes as described by an
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attack objective Latt(θ, ỹ) after training on ỹ. This can be written as a bilevel optimization problem
min
θ,ỹ

Latt(θ, ỹ) s.t. ỹ ∈ A(y) ∧ θ ∈ argmin
θ′

L(θ′, ỹ). (3)

Prior Work on Poisoning and its Bilevel Formulation. Developing poisoning attacks by approx-
imately solving the associated bilevel problem is common for SVMs (Biggio et al., 2012), deep
networks (Muñoz-González et al., 2017; Koh et al., 2022), and GNNs alike (Zügner & Günnemann,
2019). From these, we highlight Mei & Zhu (2015) who focus on SVMs and similar to us, transform
the bilevel problem into a single-level one, but only approximately solve it with a gradient-based ap-
proach and don’t consider label flipping. Regarding label flipping, Biggio et al. (2011) and Xiao
et al. (2012) develop attacks for SVMs solving Eq. (3) with non-gradient based heuristics; Lingam
et al. (2024) create an attack for GNNs by solving Eq. (3) with a regression loss, replacing the GCN
with a surrogate model given by the NTK. Concerning certificates for data poisoning, there are only
few works with none providing exact guarantees. The approaches based on differential privacy (Ma
et al., 2019), randomized smoothing (Rosenfeld et al., 2020; Lai et al., 2024), and majority voting
(Levine & Feizi, 2021) are inherently incomplete. In contrast, similar to us, Gosch et al. (2024)
directly solve the bilevel formulation to obtain sample-wise feature poisoning certificates for wide
(G)NNs. However, their reformulation it not exact or applicable to the label flipping problem, and
they do not provide a collective certificate. We detail the technical differences in App. F.

3 LABELCERT FOR LABEL POISONING

Our derivation of label flipping certificates for GNNs is fundamentally based on the equivalence
with an SVM using the NTK of the corresponding network as its kernel. Concretely, our derivations
follow three high-level steps depicted in Fig. 1b: (i) we instantiate the bilevel problem in Eq. (3) for
(kernelized) SVMs with a loss describing misclassification and using properties of the SVM’s dual
formulation, we transform it into a single-level non-linear optimization problem; (ii) we introduce
linearizations of the non-linear terms, allowing us to further reformulate the non-linear problem into
an equivalent mixed-integer linear program; and (iii) by choosing the NTK of a network as the
kernel, solving the resulting MILP yields a certificate for the corresponding sufficiently-wide NN.
In Sec. 3.1 we present our sample-wise certificate for label flipping and then, derive a collective
certification strategy in Sec. 3.2. We note that the reformulation process requires no approximations
or relaxations; hence, the derived certificates are exact. In what follows, we choose an SVM in its
dual formulation as our model, hence the model parameters θ are the dual variables α. Further, we
present the certificates for binary labels yi ∈ {±1} and discuss the multi-class case in App. A.

3.1 SAMPLE-WISE CERTIFICATION

To obtain a sample-wise certificate, we have to prove that the model prediction for a test node t can’t
be changed by training on any ỹ ∈ A(y). Let α∗ be an optimal solution to the dual problem P1(y)
obtained by training on the original labels y and denote by p̂t =

∑m
i=1 yiα

∗
iQti the corresponding

SVM’s prediction for t. Similary, let α be an optimal solution to P1(ỹ) with perturbed labels ỹ
and the new prediction be pt =

∑m
i=1 ỹiαiQti. As an SVM assigns class based on the sign of its

prediction, the class prediction changes if and only if sign(p̂t) · pt < 0 1. Thus, the bilevel problem

P2(y) : min
α,ỹ

sign(p̂t)

m∑
i=1

ỹiαiQti s.t. ỹ ∈ A(y) ∧ α ∈ S(ỹ) (4)

certifies robustness, if the optimal solution is > 0. However, bilevel problems are notoriously hard
to solve (Schmidt & Beck, 2023), making P2(y) intractable in its current form. Now, notice that
the inner optimization problem α ∈ S(ỹ) consists of the SVM’s dual problem P1(ỹ), which is
convex and fulfills Slater’s condition for every ỹ (see App. B). Thus, we can replace α ∈ S(ỹ) with
P1(ỹ)’s Karush-Kuhn-Tucker (KKT) conditions to obtain a single-level problem P3(y) that shares
the same optimal solutions as P2(y) (Dempe & Dutta, 2012). The KKT conditions define three sets
of constraints. First, stationarity constraints from the derivate of the Lagrangian of P1(ỹ):

∀i ∈ [m] :

m∑
j=1

ỹiỹjαjQij − 1− ui + vi = 0 (5)

1In our implementation, we treat the undefined case of p̂t · pt = 0 as misclassification.
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where u,v ∈ Rm are the Lagrangian dual variables. Secondly, feasibility ranges for all i ∈ [m]:
αi ≥ 0, C − αi ≥ 0, ui ≥ 0, vi ≥ 0, and lastly, the complementary slackness constraints:

∀i ∈ [m] : uiαi = 0, vi(C − αi) = 0. (6)
Thus, the resulting single-level optimization problem P3(y) now optimizes over α, ỹ,u and v.

A Mixed-Integer Linear Reformulation. P3(y) is a difficult to solve non-linear problem as Eq. (5)
defines multilinear constraints and both, the objective and Eq. (6) are bilinear. Thus, to make P3(y)
tractable, we introduce (exact) linearizations of all non-linearities, as well as linearly model the
adversary ỹ ∈ A(y).

(i) Modeling the adversary: First, we have to ensure that the variable ỹ ∈ {−1, 1}m. To do so,
we model ỹ as being continuous and introduce a binary variable y′ ∈ {0, 1}m that enforces ỹ ∈
{−1, 1}m through adding the constraint ỹi = 2y′i−1 for all i ∈ [m]. Then, the bounded perturbation
strength ∥ỹ − y∥0 ≤ ⌊ϵm⌋ can be formulated as:

m∑
i=1

1− yiỹi ≤ 2⌊ϵm⌋. (7)

(ii) Objective and Stationarity constraint: The non-linear product terms in the objective can be lin-
earized by introducing a new variable z ∈ Rm with zi = αiỹi. Since for all i ∈ [m] it holds that
0 ≤ αi ≤ C and ỹi ∈ {±1}, the multiplication zi = αiỹi can be modeled by

∀i ∈ [m] : −αi ≤ zi ≤ αi, αi − C(1− ỹi) ≤ zi ≤ C(1 + ỹi)− αi. (8)
Thus, replacing all product terms αiỹi in P3(y) with zi and adding the linear constraints of Eq. (8)
resolves the non-linearity in the objective. As the product terms also appear in the stationarity
constraints of Eq. (5), they become bilinear reading ∀i ∈ [m],

∑m
j=1 ỹizjQij − 1 − ui + vi = 0.

As the non-linear product terms ỹizj in the stationarity constraints are also the multiplication of a
binary with a continuous variable, we linearize them following a similar strategy. We introduce a
new variable R ∈ Rm×m with Rij representing ỹizj and replace all occurrences of ỹizj with Rij .
Then, as −C ≤ zj ≤ C we model Rij = ỹizj by adding the linear constraints
∀i, j ∈ [m] : −C(1 + ỹi) ≤ Rij + zj ≤ C(1 + ỹi), −C(1− ỹi) ≤ Rij − zj ≤ C(1− ỹi) (9)

resolving the remaining non-linearity in the stationarity constraint.

(iii) Complementary Slackness constraints: The bilinear complementary slackness constraints in
Eq. (6) represent conditionals: if αi > 0 then ui = 0 else ui ≥ 0 and similar for vi. Thus, we
model them using an equivalent big-M formulation:

∀i ∈ [m] : ui ≤ Mui
si, αi ≤ C(1− si), si ∈ {0, 1},

vi ≤ Mviti, C − αi ≤ C(1− ti), ti ∈ {0, 1}. (10)
where we introduce new binary variables s, t ∈ {0, 1}m and large positive constants Mui

and
Mvi for each i ∈ [m]. Usually, defining valid big-M’s for complementary slackness constraints
is prohibitively difficult (Kleinert et al., 2020). However, in App. C we show how to use special
structure in our problem to set valid and small big-M values, not cutting away the relevant optimal
solutions to P3(y).

With all non-linear terms in P3(y) linearized and having modeled ỹ ∈ A(y), we can now state:

Theorem 1 (Sample-wise MILP) Given the adversary A and positive constants Mui
and Mvi set

as in App. C for all i ∈ [m], the prediction for node t is certifiably robust if the optimal solution to
the MILP P(y), given below, is greater than zero and non-robust otherwise.

P(y) : min
α,ỹ,y′,z
u,v,s,t,R

sign(p̂t)

m∑
i=1

ziQti s.t.

m∑
i=1

1− yiỹi ≤ 2⌊ϵm⌋, ∀i ∈ [m] : ỹi = 2y′i − 1

∀i, j ∈ [m] :

m∑
j=1

RijQij − 1− ui + vi = 0, 0 ≤ αi ≤ C, ui ≥ 0, vi ≥ 0, y′i ∈ {0, 1},

− C(1 + ỹi) ≤ Rij + zj ≤ C(1 + ỹi), −C(1− ỹi) ≤ Rij − zj ≤ C(1− ỹi),

− αi ≤ zi ≤ αi, αi − C(1− ỹi) ≤ zi ≤ C(1 + ỹi)− αi,

ui ≤ Mui
si, αi ≤ C(1− si), vi ≤ Mviti, αi ≥ Cti, si ∈ {0, 1}, ti ∈ {0, 1}.
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Computational Complexity. The inputs to MILP P(y) are computed in polynomial time: the NTK
Q in O(m2) and the positive constants Mu and Mv in O(m). While these contribute polynomial
complexity, the overall computation of the certificate is dominated by the MILP solution process,
which is NP-hard with exponential complexity. Thus, the computation is dominated by the MILP
whose runtime strongly correlates with the number of integer variables. P(y) has in total 3m binary
variables and thus, it gets more difficult to solve as the number of labeled training data increases.

3.2 COLLECTIVE CERTIFICATION

For collective certification, the objective is to compute the number of test predictions that are simul-
taneously robust to any ỹ ∈ A(y). This implies that the adversary is restricted to choose only one ỹ
to misclassify a maximum number of nodes. Thus, it is fundamentally different from sample-wise
certification, which certifies each test node independently. Let T be the set of test nodes. Then, the
collective certificate can be formulated using Eq. (3) by choosing to maximize

∑
t∈T 1[p̂t ̸= pt] as:

C1(y) :max
α,ỹ

∑
t∈T

1[p̂t ̸= pt] s.t. ỹ ∈ A(y) ∧ α ∈ S(ỹ). (11)

Following the sample-wise certificate, we transform the bilevel problem C1(y) into a single-level
one, by replacing the inner problem α ∈ S(ỹ) with its KKT conditions. Then, we apply the same
linear modeling techniques for the stationarity and complementary slackness constraints, as well as
for the adversary. To tackle the remaining non-linear objective, we first introduce a new variable
c ∈ {0, 1}|T | where ct = 1[p̂t ̸= pt] ∀t ∈ T and write the single-level problem obtained so far as:

C2(y) : max
c,α,ỹ,y′,z
u,v,s,t,R

∑
t∈T

ct s.t. pt =

m∑
i=1

ziQti, constraints of P(y),

∀t ∈ T : if sign(p̂t) · pt > 0 then ct = 0 else ct = 1.

Now, notice that because −C ≤ zi ≤ C for all i ∈ [m], pt is bounded as −C
∑m

i=1 |Qti| ≤ pt ≤
C
∑m

i=1 |Qti| for all t ∈ T . Let lt and ht be the respective lower and upper bounds to pt. Then, we
can linearize the conditional constraints in C2(y):

∀t ∈ T : ∀p̂t > 0 : pt ≤ ht(1− ct), pt ≥ ltct, ∀p̂t < 0 : pt ≥ lt(1− ct), pt ≤ htct. (12)

As a result, we can state the following theorem (in App. D we formally write out all constraints):

Theorem 2 (Collective MILP) Given the adversary A, positive constants Mui
and Mvi set as in

App. C for all i ∈ [m], and l,h ∈ R|T | with lt = −C
∑m

i=1 |Qti| and ht = C
∑m

i=1 |Qti|, the
maximum number of test nodes that are certifiably non-robust is given by the MILP C(y).

C(y) : max
c,α,ỹ,y′,z
u,v,s,t,R

∑
t∈T

ct s.t. constraints of P(y), ∀t ∈ T : pt =

m∑
i=1

ziQti, ct = {0, 1},

∀t ∈ T : ∀p̂t > 0 : pt ≤ ht(1− ct), pt ≥ ltct, ∀p̂t < 0 : pt ≥ lt(1− ct), pt ≤ htct.

Computational Complexity. C(y) has 3m+ |T | binary variables. Thus, the larger the set to verify,
the more complex to solve the MILP.

4 EXPERIMENTAL RESULTS

In Sec. 4.1 we thoroughly investigate our sample-wise and collective certificates. Sec. 4.2 discusses
in detail the effect of architectural choices and graph structure. Code to reproduce the results can be
found in https://figshare.com/s/49539a4ebfc16ed66ea1.

Datasets. We use the real-world graph datasets Cora-ML (Bojchevski & Günnemann, 2018) and
Citeseer (Giles et al., 1998) for multi-class certification. We evaluate binary class certification using
Polblogs (Adamic & Glance, 2005), and by extracting the subgraphs containing the top two largest
classes from Cora-ML, Citeseer, Wiki-CS (Mernyei & Cangea, 2020), Cora (McCallum et al., 2000)
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Figure 2: Certified accuracies as given by our sample-wise certificate, for multi-class Cora-ML and
Citeseer see App. I and other datasets in App. H.1. A clear and consistent hierarchy emerges across
perturbation budgets concerning the worst-case robustness of different GNNs.

and Chameleon (Rozemberczki et al., 2021) referring to these as Cora-MLb, Citeseerb, Wiki-CSb,
Corab and Chameleonb, respectively. To investigate the influence of graph-specific properties on
the worst-case robustness, we additionally generate synthetic datasets using random graph models,
namely the Contextual Stochastic Block Model (CSBM) (Deshpande et al., 2018) and the Contextual
Barabási–Albert Model (CBA) (Gosch et al., 2023). We sample a graph of size n = 200 from CSBM
and CBA. We refer to App. G for the sampling scheme and dataset statistics. We choose 10 nodes
per class for training for all datasets, except for Citeseer, for which we choose 20. No separate
validation set is needed as we perform 4-fold cross-validation (CV) for hyperparameter tuning. All
results are averaged over 5 seeds (multiclass datasets: 3 seeds) and reported with their standard
deviation.

GNN Architectures. We evaluate a broad range of convolution-based and PageRank-based GNNs:
GCN (Kipf & Welling, 2017), SGC (Wu et al., 2019), GraphSAGE (Hamilton et al., 2017), Graph
Isomorphism Network (GIN) (Xu et al., 2019), APPNP (Gasteiger et al., 2019), and GCN with two
skip-connection variants namely GCN Skip-PC and GCN Skip-α (Sabanayagam et al., 2023). All
results concern the infinite-width limit and are obtained by solving the MILPs in Thm. 1 and 2 using
Gurobi (Gurobi Optimization, LLC, 2023) and the graph NTK of the corresponding GNN as derived
in Gosch et al. (2024) and Sabanayagam et al. (2023). We investigate choosing L = {1, 2, 4} hidden
layers, if not explicitly stated, L = 1 is used. All other hyperparameters are chosen based on 4-fold
CV, given in App. G.2. We define the row and symmetric normalizations of the adjacency matrix as
Srow = D̂−1Â, Ssym = D̂−1/2ÂD̂−1/2 with D̂ and Â as the degree and adjacency matrices of the
given graph G with an added self-loop. We also include an MLP for analyzing the GNN results.

Evaluation. We consider perturbation budgets ϵ = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 1} for the
adversary A, and define A’s strength as ‘weak’ if ϵ ∈ (0, 0.1], ‘intermediate’ if ϵ ∈ (0.1, 0.3] and
‘strong’ if ϵ ∈ (0.3, 1]. The test set for collective certificates consists of all unlabeled nodes on
CSBM and CBA, and random samples of 50 unlabeled nodes for real-world graphs. The sample-
wise certificate is calculated on all unlabeled nodes. We report certified ratios, referring to the
percentage of test-node predictions that are provably robust to A. For sample-wise certificates,
we also report certified accuracy, that is the percentage of correctly classified nodes that are also
provably robust to A. As our results are obtained with exact certificates, they establish a hierarchy
of the investigated models regarding worst-case robustness to label flipping for a given dataset and
ϵ, which we refer to as ‘robustness hierarchy’ or ‘robustness ranking’. Since no prior work on exact
certification for label flipping exists, the only baseline for comparison is an exhaustive enumeration
of all possible perturbations — infeasible for anything beyond one or two label flips.

4.1 CERTIFIABLE ROBUSTNESS OF GNNS TO LABEL POISONING

We start by demonstrating the effectiveness of our sample-wise certificate to certify a large spec-
trum of GNNs against label flipping on different datasets in Fig. 2. Interestingly, our certificate
highlights: (i) a clear and nearly consistent hierarchy emerges across perturbation budgets ϵ. Ex-
emplary, for Cora-MLb (Fig. 2a) and ϵ = 0.05, APPNP is most robust achieving a certified accuracy
of 79.1 ± 10.9%, whereas GraphSAGE achieves only 52.8 ± 5.8%, and an MLP even drops to
22.7± 5%. In addition, the rankings of the GNNs stay nearly consistent across perturbations for all
datasets. (ii) The rankings of GNNs differ for each dataset. Exemplary, in contrast to Cora-MLb,
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Table 1: Certified ratios in [%] calculated with our exact collective certificate on different datasets
for ϵ ∈ {0.05, 0.1, 0.15} (see App. H.2.1 for all ϵ). As a baseline for comparison, the certified ratio
of a GCN is reported. Then, for the other models, we report their absolute change in certified ratio
compared to a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most
robust model for a choice of ϵ is highlighted in bold, the least robust in red.

Cora-MLb Citeseerb CSBM
ϵ 0.05 0.10 0.15 0.05 0.10 0.15 0.05 0.10 0.15

GCN 86.4 ± 6.1 55.6 ± 10.7 46.8 ± 6.0 65.6 ± 12.5 50.0 ± 9.7 41.6 ± 7.1 85.7 ± 6.5 67.0 ± 9.7 48.0 ± 6.0

SGC +2.4 ± 5.2 +7.6 ± 9.2 +2.8 ± 6.1 +3.6 ± 9.9 +0.4 ± 10.8 -0.4 ± 10.5 +7.8 ± 2.8 +21.9 ± 5.0 +34.3 ± 8.3
APPNP +3.2 ± 7.9 +6.8 ± 12.2 -1.2 ± 2.7 +4.0 ± 4.5 +0.8 ± 5.9 -2.4 ± 7.1 -2.1 ± 7.4 -6.2 ± 7.2 -1.7 ± 3.4

GIN -4.8 ± 4.1 +6.0 ± 4.5 -2.0 ± 5.5 +6.8 ± 6.6 +0.8 ± 8.6 +1.2 ± 6.1 -3.4 ± 8.7 -2.8 ± 13.0 +2.6 ± 9.0

GraphSAGE -6.0 ± 6.5 +1.2 ± 5.2 +1.6 ± 6.1 +9.6 ± 5.6 +5.2 ± 5.3 +2.4 ± 5.2 -0.2 ± 4.7 -2.3 ± 8.0 +0.6 ± 4.4

GCN Skip-α -1.2 ± 6.4 +1.6 ± 10.2 +0.8 ± 5.6 +10.0 ± 6.5 +3.2 ± 7.0 +2.0 ± 5.4 -0.1 ± 6.4 -0.9 ± 8.0 +2.1 ± 6.6

GCN Skip-PC -2.0 ± 6.0 +2.4 ± 3.3 +2.4 ± 3.5 +15.6 ± 3.9 +9.2 ± 5.9 +3.6 ± 6.0 +4.9 ± 3.0 +15.0 ± 6.2 +20.1 ± 9.6

MLP -20.4 ± 5.1 -11.6 ± 5.8 -6.8 ± 5.2 -0.4 ± 3.2 -6.8 ± 5.3 -0.4 ± 6.5 -9.6 ± 2.3 -16.3 ± 4.3 -4.2 ± 3.2
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Figure 3: Certified ratios of selected architectures as calculated with our sample-wise and collective
certificate. We refer to App. H.2.2 for collective results on all GNNs. Collective certification pro-
vides significantly higher certified ratios, and uncovers a plateauing phenomenon for intermediate ϵ.

the most robust model for Citeseerb is GCN Skip-PC (Fig. 2b), and for CSBM is SGC (Fig. 2c).
(iii) Our certificate identifies the smallest perturbation beyond which no model prediction is cer-
tifiably robust for each dataset. From Fig. 2, the thresholds for Cora-MLb is (0.15, 0.2], for Cite-
seerb is (0.1, 0.15], and for CSBM is (0.15, 0.2] except for GCN Skip-PC at (0.2, 0.25] and SGC
at (0.25, 0.3]. These findings underscore the capabilities of sample-wise certificates to provide a
detailed analysis of the worst-case robustness of GNNs to label poisoning.

We now move to collective certification which is a more practical setting from the adversary’s
perspective, where the attacker can change the training dataset only once to misclassify the entire
test set. Here, we demonstrate the capabilities of our Thm. 2 in certifying GNNs. In Fig. 3, we
contrast the certified ratios obtained by sample-wise certification with those obtained by our collec-
tive certificate for selected architectures. They highlight a stark contrast between sample-wise and
collective certification, with the collective certificate leading to significantly higher certified ratios,
and the capability to certify even strong adversaries. Exemplary, Fig. 3a shows for the intermediate
perturbation ϵ = 0.2 that the sample-wise certificate cannot certify any GNN. However, the collec-
tive certificate leads to certified ratios of > 40% for all shown GNNs. This substantial difference
is because the adversary is now restricted to creating only a single label perturbation to attack the
entire test data, but the magnitude of the difference in certified ratios is still significant. Further,
the most robust model may not coincide with the sample-wise case as e.g., for Cora-MLb ϵ = 0.1
APPNP achieves the highest sample-wise, but from Tab. 1, SGC the highest collective robustness.
This highlights the importance of collective certification to understand the worst-case robustness for
the more practical scenario. In App. H.2.4, we calculate average robustness rankings for GNNs for
more comprehensive ϵ ranges and show that collective robustness rankings too are data dependent.

Fig. 3a shows another surprising phenomenon uncovered by our collective certificate. The certified
ratio seems to plateau for intermediate budgets ϵ ∈ [0.15, 0.3]. Exemplary, for SGC and APPNP,
the certified ratio from ϵ = 0.2 to ϵ = 0.25 reduces by only 0.8%, whereas the drop between
ϵ = 0.05 to ϵ = 0.01 is 25.6% and 27.2%, respectively. The certified ratio of a GCN for ϵ = 0.2 and
ϵ = 0.25 stays even constant (Tab. 5), as is also observed for GCN Skip-α (Fig. 4b). The plateau for
intermediate ϵ appears for some architectures on Citeseerb, Wiki-CSb and Chameleonb, but is less
pronounced, whereas Polblogsb shows near perfect plateauing (see App. H.2.3). On CSBM, SGC
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(a) Srow vs Ssym in Cora-MLb (left) & Citeseerb (right)
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Figure 4: Selected architectural findings based on our collective certificates. (a) The effect of graph
normalizations Srow and Ssym is data-dependent. (b) For skip-connections, depth does not improve
robustness, shown for GCN Skip-α, see App. H.2.5 for other GNNs and datasets.
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(c) CSBM: Density
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Figure 5: Graph structure findings based on our collective certificates. (a)−(b) The higher amount of
graph information improves certifiable robustness. (c)−(d) Graph density and homophily positively
affect the certifiable robustness, shown for GCN using CSBM, see App. H.2.6 for more results.

and GCN Skip-PC do not exhibit plateauing, while other architectures show a prominent plateau for
intermediate ϵ (Fig. 3c); interestingly, a robustness plateau can be provoked by increasing the density
in the graph (Figs. 5c and 5d). However, graph structure alone cannot explain the phenomenon, as
Fig. 3c also shows near constancy of an MLP from ϵ = 0.15 to ϵ = 0.2.

Another strong observation from the sample-wise and collective certificates is the importance of
graph structure in improving the worst-case robustness of GNNs. From the certified accuracies in
Fig. 2, an MLP is always the least accurate model without any perturbation (ϵ = 0), and also less
robust than its GNN counterparts, as expected. Interestingly, the certified ratio plots in Fig. 3 show
that MLP is consistently the least robust and the most vulnerable model for weak perturbation bud-
gets. Thus, leveraging graph structure consistently improves sample-wise and collective robustness
to label flipping, which is studied in detail in Sec. 4.2.

4.2 FINDINGS ON ARCHITECTURAL CHOICES AND GRAPH STRUCTURE

Leveraging our collective certificate, we investigate the influence of different architectural choices
on certifiable robustness. (I) Linear activations in GNNs are known to generalize well. Exem-
plary, SGC, which replaces the ReLU non-linearity in GCN to a linear activation, achieves better
or similar generalization performance as a GCN, both empirically (Wu et al., 2019) and theoreti-
cally Sabanayagam et al. (2023). Complementing these results, we find that SGC is consistently
better ranked than GCN across all datasets (Tab. 12), suggesting that linear activation is as good
as or better than ReLU for certifiable robustness as well. (II) Additionally, in SGC and GCN,
the graph normalization is a design choice with Srow and Ssym being popular. While previous works
(Wang et al., 2018; Sabanayagam et al., 2023) suggest that Srow leads to better generalization than
Ssym, our findings show that the effectiveness of these normalizations for certifiable robustness is
highly dataset-dependent, as demonstrated in Fig. 4a for Cora-MLb and Citeseerb. (III) Skip-
connections in GNNs are promoted to construct GNNs with large depths as it is shown to mitigate
over-smoothing (Chen et al., 2020). Our findings show that increasing the depth in GNNs with
skip-connections has either little or more pronounced negative effects on certifiable robustness,
as evidenced in Fig. 4b. For other GNNs and a more general study on depth we refer to Fig. 9.

Next, building on the importance of graph information, we conduct a deeper study into the influence
of graph structure and its connectivity on certifiable robustness. (I) We first explore the role of
graph input in the GNNs: in APPNP, the α parameter controls the degree of graph information
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incorporated into the network—lower α implies more graph information. Similarly, in convolution-
based GNNs, the graph structure matrix S in GCN can be computed using weighted adjacency
matrix βA. These experiments clearly confirm that increasing the amount of graph information
improves certifiable robustness up to intermediate attack budgets, as demonstrated for Cora-
MLb in Figs. 5a and 5b. Interestingly, for stronger budgets, the observation changes where more
graph information hurts certifiable robustness, a pattern similarly observed in Gosch et al. (2024)
for feature poisoning using an incomplete sample-wise certificate. (II) We then analyze the effect
of graph density and homophily by taking advantage of the random graph models. To assess graph
density, we proportionally vary the density of connections within (p) and outside (q) the classes,
while for homophily, we vary only p keeping q fixed. The results consistently show that higher
graph density and increased homophily improves certifiable robustness with an inflection point
for stronger budgets as observed in Figs. 5c and 5d. Additionally, our results generalize to changing
the number of labeled nodes (App. H.2.7) and to dynamic graphs that evolve over time (App. H.4).

5 CONCLUSION

By leveraging the NTK that describes the training dynamics of wide neural networks, we introduce
the first exact certificate for label flipping applicable to NNs. In particular, the proposed method
obtains an asymptotically exact certificate as the width approaches infinity. Crucially, we develop
not only sample-wise but also collective certificates, and establish several significant takeaways by
evaluating a broad range of GNNs on different node classification datasets:

Key Takeaways on Certifying GNNs Against Label Poisoning

1. There is no silver bullet: robustness hierarchies of GNNs are strongly data dependent.
2. Collective certificates complement sample-wise, providing a holistic picture of the

worst-case robustness of models.
3. Certifiable robustness plateaus at intermediate perturbation budgets.
4. Linear activation helps, and depth in skip-connections hurts certifiable robustness.
5. Graph structure helps improving robustness against label poisoning.

Among the results, the intriguing plateauing phenomenon of certifiable robustness in collective eval-
uation has so far not been observed. While we conduct a preliminary experimental analysis to in-
vestigate it, the cause of the plateauing is still unclear, and a more rigorous investigation remains an
open avenue for future research.

Generality of our certification framework. Our certification strategy extends beyond GNNs and
applies to general wide NNs through their NTKs and any kernelized SVM. Exemplary, we demon-
strate the applicability to an MLP in Sec. 4 and to a linear kernel XXT where X is the feature
matrix (a non-NN based model) in App. H.3. In addition, since our certificates leverage the NTK of
the NN, they hold with respect to expectation over network initializations. As a result, they provide
guarantees at the population level of the parameters, thus certifying NN for general parameteriza-
tion. This distinguishes our framework from most certification methods, which typically focus on
guarantees for a specific, fixed network parameterization.

Scalability. Exact certification, even for the much simpler case of test-time attacks, where the
model to be certified is fixed, is already NP-hard (Katz et al., 2017). Thus, it is inherently difficult
and a current, unsolved problem to scale exact certificates to large datasets. In fact, state-of-the-art
exact certificates against test-time (evasion) attacks for image classification scale up to CIFAR-10
(Li et al., 2023), and for GNNs to graphs the size of Citeseer (Hojny et al., 2024). Similarly, we
find that the scaling limits of our certificates are graphs the size of Cora-ML or Citeseer, even
though the exact certification of poisoning attacks adds additional complexity with the model being
certified is not fixed and the training dynamics must be included in the certification. As a result,
improving scalability is a valuable direction for future research and we touch upon one strategy to
relax exactness to improve scalability in App. A.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 ETHICS STATEMENT

Our work allows for the first time exact quantification of the worst-case robustness of different
(wide) GNNs to label poisoning. While a potentially malicious user could misuse these insights,
we are convinced that understanding the robustness limitations of neural networks in general and
GNNs, in particular, is crucial to enable a safe deployment of these models in the present and future.
Thus, we believe the potential benefits of robustness research outweigh its risks. Additionally, we
do not see any immediate risk stemming from our work.

7 REPRODUCIBILITY STATEMENT

We undertook great efforts to make our results reproducible. In particular, the experimental de-
tails are outlined in detail in Sec. 4 and App. G. All chosen hyperparameters are listed in App. G.
Randomness in all experiments is controlled through the setting of seeds in involved pseudorandom
number generators. The code to reproduce our results, including all experimental configuration files,
can be found at https://figshare.com/s/49539a4ebfc16ed66ea1 and will be made
public upon acceptance.

REFERENCES

Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided
they blog. In Proceedings of the 3rd international workshop on Link discovery, 2005.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in Neural Information Processing
Systems (NeurIPS), 2019.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Support vector machines under adversarial label
noise. In Proceedings of the Asian Conference on Machine Learning. PMLR, 2011.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector ma-
chines. In International Conference on Machine Learning (ICML), 2012.
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A MULTI-CLASS LABEL CERTIFICATION

To generalize the binary classification setting in Sec. 2 to multi-class classification, we use a one-vs-
all classification approach. This means, given K classes, K binary learning problems are created,
one corresponding to each class c ∈ [K], where the goal is to correctly distinguish instances of class
c from the other classes c′ ∈ [K], c′ ̸= c, which are collected into one ”rest” class. Assume that pc
is the prediction score of a classifier for the learning problem corresponding to class c. Then, the
class prediction c∗ for a node is constructed by c∗ = argmaxc∈[K] pc.

Before we extend Thm. 1 to an exact certificate for multi-class classification, we want to briefly
touch upon the fact that Thm. 1 can be easily extended to an incomplete multi-class certificate by a
strategy similarly proposed in Gosch et al. (2024). Assume that c∗ is the original prediction of our
model without poisoning. Now, we solve an optimization problem very similar to P (y) from Thm. 1
for each learning problem defined by c ∈ [K], but change the objective min sign(p̂t)

∑m
i=1 ziQti

either to min
∑m

i=1 ziQti if c = c∗ or max
∑m

i=1 ziQti if c ̸= c∗. Then, the original prediction
is certifiably robust, if the solution to the minimization problem is still larger than the maximum
solution to any maximization problems. We explore this empirically, next to our below presented
exact certificate in App. I.

Exact Multi-Class Certification. For the following development of an exact certificate for the
multi-class case, we assume an SVM given in its dual formulation (Eq. (2)) as our model. Further,
without loss of generality, assume for a learning problem corresponding to class c that nodes having
class c will get label 1 and nodes corresponding to the other classes c′ ∈ [K], c′ ̸= c have label
−1. We collect the labels for the learning problem associated to c in the vector yc. The original
multi-class labels are collected in the vector y. Thus, one y defines a tuple (y1, . . . ,yK). Thus, any
ỹ ∈ A(y) spawns a perturbed tuple (ỹ1, . . . , ỹK). We denote by ĉ the originally predicted class
with prediction score pĉ.

To know whether the prediction can be changed by a particular ỹ ∈ A(y), we need to know if pĉ−pc
can be forced to be smaller 0 for any ỹ ∈ A(y). Thus, our strategy to derive an exact certificates
follows two steps: (i) We assume a fixed ỹ ∈ A(y) and using a similar strategy as presented to
derive Thm. 1, we formulate calculating pĉ − maxc∈[K]\{ĉ} pc, which consists of K independent
bilevel problems as one MILP. (ii) Then, we show how to incorporate the adversary ỹ ∈ A(y) into
the derived MILP.

Step I: To formulating calculating pĉ − maxc∈[K]\{ĉ} pc using a MILP, we collect the individual
predictions pc in a vector p ∈ RK and note that this problem can be written as follows:

M1(ỹ) : min
p∗,p

pĉ − p∗ (13)

s.t. p∗ = max
c∈[K]\{ĉ}

pc (14)

∀c : pc = max
αc

m∑
i=1

ỹciα
c
iQti s.t. αc ∈ S(ỹc) (15)

This problem consists of two non-linearities. First note that pL = −C
∑m

i=1 |Qti| and pU =
C
∑m

i=1 |Qti| define a lower and upper bound to pc, respectively, valid for all c ∈ [K]. Now,
the maximum constraint (Eq. (18)) can be linearly modeled introducing another binary variable
b ∈ {0, 1}K with

∑
c∈[K]

bc = 1 ∧ ∀c ∈ [K] \ {ĉ} : p∗ ≥ pc, p
∗ ≤ pc + (1− bk)(p

U − pL), bc ∈ {0, 1} (16)

To tackle the non-linear constraints defined in Eq. (15), notice that each pc defines a bilevel optimiza-
tion problem with the same inner problem as for the sample-wise case (Eq. (4)). Thus, we use the
single-level reformulation derived in Sec. 3.1 together with the mixed-integer linear reformulation
of the objective, stationarity constraint, and complementary slackness constraints, to rewrite each
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bilevel problem for each pc as a MILP with the same constraints as P (yc) in Thm. 1, but excluding
the constraint for the adversary, which we denote for brevity P (yc) \ A. Further, note that without
the constraints modeling the adversary, the constraints in P (yc) become independent of the original
labels yc and we thus, further simplify notation to P (c) \ A, keeping the c to indicate to which of
the class-dependent learning problems the constraints are associated to. Therefore, we can rewritten
M1(ỹ) as (where we write for better readability the max constraint still in its non-linearized form):

M2(ỹ) : min
p∗,p,b

pĉ − p∗ (17)

s.t. p∗ = max
c∈[K]\{ĉ}

pc (18)

∀c ∈ [K] : pc = max
αc,zc,uc,vc

sc,tc,Rc

m∑
i=1

zciQti s.t. constraints of P(c) \ A (19)

Here, some notes are in order. Currently, we do not optimize over any labels, thus, we don’t have
any label variables in Eq. (19) and thus, it would not be strictly necessary to e.g. introduce variables
like zci = ỹciα

c
i to reformulate the objective or stationarity constraint. However, the introduction of

the variables including the corresponding constraints is still valid, also for fixed labels and will be
necessary later, when we introduce how to model the adversary.

For brevity, we introduce gc = (αc, zc,uc,vc, sc, tc,Rc) and g consisting of a concatenation of
tuples gc over all c ∈ [K]. Now, notice that the optimization problem of pc is independent of any
outer-level variable. Thus, one would usually in the sense of decomposing optimization problems,
first solving each optimization problem corresponding to one pc in Eq. (19) independently (i.e.,
decouple the optimization problem associated to pc from overall optimization problem) and then,
evaluate the max function in Eq. (18) and lastly, the difference pĉ − p∗. However, we aim for the
exact opposite. As the inner optimization problems are independent problems only coupled by the
max function Eq. (18), we can pull the optimization over the variables with their constraints through
the max in Eq. (18) out into the global problem, writing (including the linearized form of the max
constraint):

M3(ỹ) : min
p∗,p,b,g

pĉ − p∗ s.t.
∑
c∈[K]

bc = 1 (20)

∀c ∈ [K] \ {ĉ} : p∗ ≥ pc, p
∗ ≤ pc + (1− bk)(p

U − pL), bc ∈ {0, 1} (21)

∀c ∈ [K] : pc =

m∑
i=1

zciQti ∧ constraints of P(c) \ A (22)

Thus, we have successfully written calculating pĉ − maxc∈[K]\{ĉ} pc for a given ỹ as the MILP
M3(ỹ).

Step II: Now, we add ỹ ∈ A to M3(ỹ) and show how to linearly model the resulting optimization
problem. First, we want to capture that only ⌊ϵm⌋ perturbations are allowed. Using the new binary
variables b′,b′′ ∈ {0, 1}m, this can be done by the following constraints:

∀i ∈ [m] :−Kb′i ≤ yi − ỹi ∧ yi − ỹi ≤ Kb′i (23)

ϵb′i − (K + ϵ)b′′i ≤ yi − ỹi ∧ yi − ỹi ≤ −ϵb′i + (K + ϵ)(1− b′′) (24)

where ϵ is a small constant. In our implementation, we chose ϵ = 10−3, and instead of using K as a
big-M, use K− 1, as we count classes from 0. Now, we can model the adversarial budget constraint
simply as

m∑
i=1

b′i ≤ ⌊ϵm⌋ (25)
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Additionally, as ỹ is an optimization variable now, we have to linearly model the process of any ỹ ∈
A(y) spawning a perturbed tuple (ỹ1, . . . , ỹK). For this, we introduce the helper binary variables
ỹ′
c, ỹ

′′
c ∈ {0, 1}K for all c ∈ [K]. Now, we can linearly model correctly setting (ỹ1, . . . , ỹK) from

ỹ as follows:

∀c ∈ [K] : ∀i ∈ [m] :−K(1− ỹ′ci ) ≤ ỹi − c ∧ ỹi − c ≤ K(1− ỹ′ci )

ϵ(1− ỹ′ci )− (K + ϵ)ỹ′′ci ≤ ỹ′i − c ∧ −ϵ(1− ỹ′ci ) + (K + ϵ)(1− ỹ′′ci )

ỹci = 2ỹ′ci − 1

This concludes the construction of the exact multiclass certificate and we state the following theo-
rem:

Theorem 3 (Multiclass MILP) Given the adversary A, positive constants M c
ui

and M c
vi set as

in App. C for all i ∈ [m] ∧ c ∈ [K], and pL, pU ∈ R with pL = −C
∑m

i=1 |Qti| and pU =
C
∑m

i=1 |Qti|, the prediction for node t is certifiably robust if the optimal solution to the MILP
M(y), given below, is greater than zero and non-robust otherwise.

M(y) : min
p∗,p,b,g

pĉ − p∗ s.t.
∑
c∈[K]

bc = 1,

m∑
i=1

b′i ≤ ⌊ϵm⌋

∀c ∈ [K] \ {ĉ} : p∗ ≥ pc, p
∗ ≤ pc + (1− bk)(p

U − pL), bc ∈ {0, 1}

∀c ∈ [K] : pc =

m∑
i=1

zciQti ∧ constraints of P(c) \ A

∀i ∈ [m] :−Kb′i ≤ yi − ỹi, yi − ỹi ≤ Kb′i, ỹi ∈ [K], b′i ∈ {0, 1}, b′′i ∈ {0, 1}
ϵb′i − (K + ϵ)b′′i ≤ yi − ỹi, yi − ỹi ≤ −ϵb′i + (K + ϵ)(1− b′′)

∀c ∈ [K] : ∀i ∈ [m] :−K(1− ỹ′ci ) ≤ ỹi − c, ỹi − c ≤ K(1− ỹ′ci )

ϵ(1− ỹ′ci )− (K + ϵ)ỹ′′ci ≤ ỹ′i − c, −ϵ(1− ỹ′ci ) + (K + ϵ)(1− ỹ′′ci )

ỹci = 2ỹ′ci − 1, ỹ′ci ∈ {0, 1}, ỹ′′ci ∈ {0, 1}

Computation Complexity. The MILP has m non-negative integer variables and 4Km+2m+K−1
binary variables.

B SLATER CONDITION

It is generally known that the SVM dual problem is a convex quadratic program. We now show
that the SVM dual problem P1(ỹ) in α ∈ S(ỹ) fulfills (strong) Slater’s condition, which is a
constraint qualification for convex optimization problems, for any choice of ỹ ∈ A(y). This allows
to reformulate the bilevel problem in Sec. 3.1 to be reformulated into a single-level problem with the
same globally optimal solutions (Dempe & Dutta, 2012). Our argumentation is similar to (Gosch
et al., 2024) and adapted to the label-flipping case.

First, we define Slater’s condition for the SVM problem:

Def. 1 (Slater’s condition) A convex optimization problem P1(ỹ) fulfills strong Slater’s Constraint
Qualification, there exists a point α in the feasible set of P1(ỹ) such that no constraint in P1(ỹ) is
active, i.e. 0 < αi < C for all i ∈ [m].

Proposition 1 P1(ỹ) fulfills Slater’s condition for any choice ỹ ∈ A(y).

Proof. It is easy to see that for a given fixed ỹ, Slater’s condition holds: choose αi = C/2 for
all i ∈ [m], this is a feasible (but not optimal) solution with no active constraints. That Slater’s
condition for P1(ỹ) holds for any ỹ ∈ A(y) can again be seen by noting, that the feasible solution
defined by setting αi = C/2 for all i ∈ [m] is independent of a given ỹ and and stays a feasible
solution without active constraints for any choice of ỹ. □
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C BIG-M

Proposition 1 Replacing the complementary slackness constraints Eq. (6) in P3(y) with the big-M
constraints given in Eq. (10) does not cut away solution values of P3(y), if for all i ∈ [m], the big-M
values are set following Eqs. (26) and (27).

Mui =

m∑
j=1

C|Qij | − 1 (26)

Mvi =

m∑
j=1

C|Qij |+ 1 (27)

Furthermore, Eqs. (26) and (27) define the tightest possible big-M values.

Proof. The proof strategy follows Gosch et al. (2024) and is adapted to the label flipping case. First,
we lower and upper bound the term

∑m
j=1 RijQij for any i ∈ [m] in the stationarity constraints.

As Rij = ỹizj and −C ≤ zj ≤ C and ỹi ∈ {−1, 1}, it follows that LB = −∑m
j=1 C|Qij | ≤∑m

j=1 RijQij ≤
∑m

j=1 C|Qij | = UB. It is easy to see, that the bounds are tight.

Now, the dual variable ui and vi are coupled with the other variables in the overall MILP only
through the stationarity constraints

∑m
j=1 RijQij − 1 − ui + vi for all i ∈ [m] and do not feature

in the objective of P3(rvy). Thus, we only have to ensure that any upper bound on ui or vi, cannot
affect any optimal choice for the other optimization variables. This is achieved if no feasible choice
of Rij is cut from the solution space, which in turn is guaranteed, if any bound on ui or vi, still
allow the term

∑m
j=1 RijQij in the stationarity constraint, to take any value between LB and UB.

Using these bounds, we get

UB − ui + vi ≥ 1 (28)
LB − ui + vi ≤ 1 (29)

For the first inequality, assume UB > 1, then by setting vi = 0 and ui ≤ UB − 1 fullfils all
constraints and does not cut away any solution value. Similarly, if UB < 1, set ui = 0 and
vi ≤ 1− UB. For the second inequality, for LB > 1 set vi = 0 and ui ≤ LB − 1 and for LB < 1
set ui = 0 and vi ≤ 1 − LB. By only enforcing the so mentioned least constraining bounds for
ui and vi, we exactly arrive at Eqs. (26) and (27) where tightness follows from the tighness of the
bounds. □

D COLLECTIVE CERTIFICATE

We present the full version of the collective certificate Thm. 2 here.

Theorem 4 (MILP Formulation) Given the adversary A, positive constants Mui
and Mvi set as

in App. C for all i ∈ [m], and l and h ∈ R|T | with lt = −C
∑m

i=1 Qti and ht = C
∑m

i=1 Qti, the
maximum number of test nodes that are certifiably non-robust is given by the MILP C(y).
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C(y) : max
α,ỹ,y′,z,

u,v,s,t,R,c

∑
t∈T

ct s.t. pt =

m∑
i=1

ziQti,

m∑
i=1

1− yiỹi ≤ 2⌊ϵm⌋, ∀i ∈ [m] : ỹi = 2y′i − 1,

∀t ∈ T : ct = {0, 1}, ∀p̂t > 0 : pt ≤ ht(1− ct), pt > ltct,

∀p̂t < 0 : pt ≥ lt(1− ct), pt < htct,

∀i, j ∈ [m] :

m∑
j=1

RijQij − 1− ui + vi = 0, 0 ≤ αi ≤ C, ui ≥ 0, vi ≥ 0, y′i ∈ {0, 1},

− C(1 + ỹi) ≤ Rij + zj ≤ C(1 + ỹi), −C(1− ỹi) ≤ Rij − zj ≤ C(1− ỹi),

− αi ≤ zi ≤ αi, αi − C(1− ỹi) ≤ zi ≤ C(1 + ỹi)− αi,

ui ≤ Mui
si, αi ≤ C(1− si), vi ≤ Mviti, αi ≥ Cti, si ∈ {0, 1}, ti ∈ {0, 1}.

E FINITE-WIDTH MODEL-SPECIFIC GUARANTEES

We derive model-specific guarantees for finite-width setting that includes the depth, width, and ac-
tivation functions used. To obtain this, we follow the derivation in Liu et al. (2020); Chen et al.
(2021) and consider normalized input node features, bounded spectral norm of the graph convolu-
tion, Lipschitz and smooth activation function. Concretely, we consider a graph neural network with
depth L, width w and activation function with Lipschitz constant ρ, and trained using regularized
Hinge loss with C as the regularization constant. Let the network parameters W during training
move within a fixed radius R > 0 to initialization Winit, i.e. {W | ||W −Winit|| ≤ R}. Then, the
output difference between an infinite-width network and a finite-width network is determined by the
deviation of the finite-width NTK at time t from the NTK at initialization, similar to standard neural
networks (Chen et al., 2021, Section F.1). Now, this NTK deviation is determined by the Hessian
spectral norm of the network as shown in Liu et al. (2020). Thus, we bound the Hessian spectral
norm by bounding the parameters, each layer outputs, their gradients and second-order gradients.
Since we consider the node features X are normalized and the spectral norm of graph convolution S

is bounded2, we get the Hessian spectral norm to be bounded as O(R
3L+1 lnw

w ). Consequently, using
this, we get the bound for the output difference between an infinite-width network and a finite-width
network as O(R

3L+1ρ lnw
Cw ) with probability p = 1−L exp(−Ω(w)). This is the same as the bounds

in Liu et al. (2020). Note that this theoretical bound is not directly computable unless constants in
the derivation are preserved and applied to specific inputs. Unfortunately, the literature on the NTK
so far is mainly concerned with providing convergence statements in big-O notation and not with
calculating the individually involved constants. Thus, it is an interesting open question to derive the
explicit constants involved in the bounds.

F COMPARISON TO QPCERT GOSCH ET AL. (2024)

While Gosch et al. (2024) also reformulates the bilevel problem associated to data feature poisoning
using the SVM equivalence, similar to our approach on a high level, the technical challenges and
resulting contributions are fundamentally different, as outlined below: (i) Difference in adversary:
Gosch et al. (2024) addresses the feature poisoning setting, whereas we focus on a different problem
of label poisoning. (ii) Difference in the final outcome: While Gosch et al. (2024) derives an
incomplete sample-wise certificate, we derive exact certificates for both sample-wise and collective
cases. Note that collective certificates are as important as sample-wise certificates as substantially
established in Sec. 4.(iii) Technical differences: In Gosch et al. (2024), the single-level reformu-
lation is a bilinear optimization (product of two continuous variables). As a product between two
continuous variables can’t be modeled exactly in a linear way, Gosch et al. (2024) relax the original
optimization problem resulting in the incompleteness of their certificate. In contrast, our single-level
reformulation is a nonlinear optimization, involving products of a continuous variable with two bi-
nary variables (Eq. (9)), along with bilinear terms (Eqs. (4) and (6)). These distinctions make the

2The spectral norm of S is ≤ 1 for all practically used convolutions.
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techniques in Gosch et al. (2024) not applicable to our problem. However, the techniques we intro-
duce in Sec. 3.1 allow us to model these new non-linearities linearly in an exact fashion, resulting in
an exact certificate.

G EXPERIMENTAL DETAILS

Datasets. We consider multi-class Cora-ML and Citeseer. Using these, we create binary datasets,
Cora-MLb and Citeseerb. In addition we generate synthetic datasets using CSBM and CBA random
graph models. In Tab. 2, we provide the statistics for the datasets.

Dataset # Nodes # Edges # Classes
Cora-ML 2,810 7,981 7
Cora-MLb 1,245 2,500 2
Citeseer 2,110 3,668 6
Citeseerb 1,239 1,849 2
Wiki-CSb 4,660 72,806 2
Polblogs 1,222 16,714 2
Corab 1,200 1,972 2
Chameleonb 294 1,182 2
CSBM 200 367±16 2
CBA 200 389±3 2

Table 2: Dataset statistics

G.1 GENERATING GRAPHS FROM RANDOM GRAPH MODELS

CSBM. A CSBM graph G with n nodes is iteratively sampled as (a) Sample label yi ∼
Bernoulli(1/2) ∀i ∈ [n]; (b) Sample feature vectors Xi|yi ∼ N (yiµ, σ

2Id); (c) Sample adja-
cency Aij ∼ Bernoulli(p) if yi = yj , Aij ∼ Bernoulli(q) otherwise, and Aji = Aij . Following
prior work Gosch et al. (2023), we set p, q through the maximum likelihood fit to Cora (Sen et al.,
2008) (p = 3.17%, q = 0.74%), and µ element-wise to Kσ/2

√
d with d = ⌊n/ ln2(n)⌋, σ = 1, and

K = 1.5, resulting in an interesting classification scheme where both graph structure and features
are necessary for good generalization.

CBA. Similar to CSBM, we sample nodes in a graph G using CBA following Gosch et al. (2023).
The iterative process for each node i ∈ [n] follows: (a) Sample label yi ∼ Bernoulli(1/2); (b)
Sample feature vectors Xi|yi ∼ N (yiµ, σ

2Id); (c) Choose m neighbors based on a multinomial
distribution, where the fixed parameter m is the degree of each added node. The probability of
choosing neighbour j is pj =

(1+degj)wij∑i−1
m=1(1+degm)wim

where degj is the degree of node j and wij is
the fixed affinity between nodes i and j based on their class labels. When a neighbor node j gets
sampled more than once, we set Aij = 1.

G.2 HYPERPARAMETERS

We set the hyperparameters based on 4-fold cross-validation, and regarding the regularization pa-
rameter C, we choose the smallest one within the standard deviation of the best validation accuracy
for simulated datasets and the best one based on the validation accuracy for all real datasets.

For CSBM, we choose S to Srow for GCN, SGC, GCN Skip-α and GCN Skip-PC, Ssym for APPNP
with its α = 0.1. GIN and GraphSAGE are with fixed S. In the case of L = 1, the regularization
parameter C is 0.001 for all GNNs except APPNP where C = 0.5. For L = 2, C = 0.001 for all,
except GCN with C = 0.25 and GCN Skip-α with C = 0.25. For L = 4, again C = 0.001 for all,
except GCN with C = 0.25 and GCN Skip-α with C = 0.5.

For CBA, the best S is Ssym for GCN, SGC, GCN Skip-α, GCN Skip-PC, and APPNP with its
α = 0.3. GIN and GraphSAGE are with fixed S. In the case of L = 1, the regularization parameter
C is 0.001 for all GNNs. For L = 2, C = 0.001 for all, except GCN with C = 0.25 and GCN
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Skip-α with C = 0.25. For L = 4, again C = 0.001 for all, except GCN with C = 0.5 and GCN
Skip-α with C = 0.25.

We outline the hyperparameters for real world datasets. All hyperparameter choices for all architec-
ture and experiments can be found in the experiment files in the linked code.

C-values Cora-MLb Citeseerb Cora-ML Citeseer

GCN (Row Norm.) 0.075 0.75 0.004 0.0001
GCN (Sym. Norm.) 0.075 0.1 - -
SGC (Row Norm.) 0.075 2.5 0.004 0.0001
SGC (Sym Norm.) 0.05 1 - -

APPNP (Sym. Norm.) 0.5, α = 0 0.5, α = 0.2 - -
MLP 0.025 0.025 - -

GCN Skip-α (Row Norm.) 0.1, α = 0.1 0.25, α = 0.3 0.004,α = 0.2 0.0001, α = 0.5
GCN SkipPC (Row Norm.) 0.075 0.075 0.003 0.0001

GIN 0.025 0.005 - -
GraphSAGE 0.0075 0.025 - -

Table 3: Best Hyperparameters Real World.

C-values Wiki-CSb Polblogs Corab Chameleonb

GCN (Row Norm.) 1 10 0.25 10
SGC (Row Norm.) 0.5 10 0.1 0.5

APPNP (Sym. Norm.) 5, α = 0 - 0.25, α = 0.2 0.75, α = 0.3
MLP 0.75 0.001 0.25 0.1

GCN Skip-α (Row Norm.) 1, α = 0.1 10, α = 0.1 0.5,α = 0.1 -
GCN SkipPC (Row Norm.) 1 2.5 0.25 -

GIN 0.175 0.075 0.025 0.01
GraphSAGE - 0.75 0.01 0.75

Table 4: Best Hyperparameters Real World.

For Cora-MLb, further, the following architectures were used with row normalization:

• GCN L=2: C=0.05
• GCN L=4: C=0.1
• GCN Skip-PC L=2: C=0.05
• GCN Skip-PC L=4: C=0.01
• GCN Skip-α L=2: C=0.075, α = 0.1

• GCN Skip-α L=4: C=0.1, α = 0.2

• GCN 0.25A: C=0.05
• GCN 0.5A: C=0.075
• GCN 0.75A: C=0.075

We choose the best C given by 4-fold CV, except for Cora-ML, where we choose the smallest C in
the standard deviation of the best validation parameters in CV.

G.3 HARDWARE

We used Gurobi to solve the MILP problems and all our experiments are run on CPU on an internal
cluster. The memory requirement to compute sample-wise and collective certificates depends on the
length MILP solving process. The sample-wise certificate for Cora-MLb and Citeseerb requires less
than 2 GB of RAM and has a runtime of a few seconds to minutes. For the multi-class case, the exact
certificate took up to 3 GB RAM and had a runtime between 1 minute to 30 minutes. The collective
certificate for Cora-MLb required between 1 to 25 GB of RAM with an average requirement of 2.8
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GB. The solution time took between a few seconds, and for some rare instances up to 3 days, the
average runtime was 4, 2h. The runtime and memory requirements for collective certification on
Citeseerb were similar to Cora-MLb.

H ADDITIONAL RESULTS

H.1 SAMPLE-WISE CERTIFICATE FOR CBA AND POLBLOGS
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Figure 6: Certified accuracy computed with our sample-wise certificates for CBA and Polblogs
datasets.

Fig. 6 shows the certified accuracy computed with our sample-wise certificates for all considered
GNNs. See Fig. 2 for other datasets.

H.2 COLLECTIVE CERTIFICATE

H.2.1 FULL CERTIFIED RATIO TABLES

Certified ratios for all architectures and all ϵ for Cora-MLb (Tab. 5), Citeseerb (Tab. 6), WikiCSb
(Tab. 7), Polblogs (Tab. 8), Corab (Tab. 9), Chamelonb (Tab. 10), and CSBM (Tab. 11). We note that
we do not report ϵ = 1 as the mean certified ratio is 0 for all architectures.

Table 5: Certified ratios in [%] calculated with our exact collective certificate on Cora-MLb for
ϵ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}. As a baseline for comparison, the certified ratio of a GCN
is reported. Then, for the other models, we report their absolute change in certified ratio compared
to a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model
for a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 86.4 ± 6.1 55.6 ± 10.7 46.8 ± 6.0 43.6 ± 2.3 43.6 ± 2.3 41.6 ± 2.0 8.4 ± 3.9

GCN 86.4 ± 6.1 55.6 ± 10.7 46.8 ± 6.0 43.6 ± 2.3 43.6 ± 2.3 41.6 ± 2.0 8.4 ± 3.9

SGC +2.4 ± 5.2 +7.6 ±9.2 +2.8 ±6.1 +2.4 ±4.4 +1.6 ±3.5 +0.4 ±2.8 +0.0 ± 3.4

APPNP +3.2 ±7.9 +6.8 ± 12.2 -1.2 ± 2.7 -0.8 ± 1.6 -1.6 ± 1.8 -2.8 ± 2.7 -8.0 ± 0.8

GIN -4.8 ± 4.1 +6.0 ± 4.5 -2.0 ± 5.5 -5.6 ± 5.2 -6.8 ± 5.7 -8.0 ± 6.4 +4.8 ± 3.0

GraphSAGE -6.0 ± 6.5 +1.2 ± 5.2 +1.6 ± 6.1 +1.6 ± 4.1 -1.2 ± 3.9 -4.0 ± 3.9 +3.6 ± 2.8

GCN Skip-α -1.2 ± 6.4 +1.6 ± 10.2 +0.8 ± 5.6 +0.8 ± 2.9 +0.0 ± 2.3 -0.4 ± 3.2 +0.8 ± 3.9

GCN Skip-PC -2.0 ± 6.0 +2.4 ± 3.3 +2.4 ± 3.5 +1.6 ± 3.0 -0.0 ± 3.4 -2.4 ± 3.7 +2.0 ± 4.1

MLP -20.4 ± 5.1 -11.6 ± 5.8 -6.8 ± 5.2 -4.8 ± 5.3 -6.0 ± 5.9 -7.2 ± 6.4 +8.8 ±5.3
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Table 6: Certified ratios in [%] calculated with our exact collective certificate on Citeseerb for
ϵ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}. As a baseline for comparison, the certified ratio of a GCN
is reported. Then, for the other models, we report their absolute change in certified ratio compared
to a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model
for a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 65.6 ± 12.5 50.0 ± 9.7 41.6 ± 7.1 35.6 ± 5.4 29.2 ± 5.2 21.6 ± 4.1 6.8 ± 3.0

SGC +3.6 ± 9.9 +0.4 ± 10.8 -0.4 ± 10.5 -0.8 ± 10.0 -0.0 ± 9.7 3.6± 7.0 +2.8 ± 3.2

APPNP +4.0 ± 4.5 +0.8 ± 5.9 -2.4 ± 7.1 +1.2 ± 8.1 +1.6 ± 8.0 +4.8 ± 7.9 +2.0 ± 2.7

GIN +6.8 ± 6.6 +0.8 ± 8.6 +1.2 ± 6.1 +6.0 ±6.4 +9.6 ±6.8 +11.6 ±4.5 +4.0 ± 3.2

GraphSAGE +9.6 ± 5.6 +5.2 ± 5.3 +2.4 ± 5.2 +4.4 ± 4.9 +7.6 ± 4.7 +8.8 ± 6.6 +4.8 ± 2.9

GCN Skip-α +10.0 ± 6.5 +3.2 ± 7.0 +2.0 ± 5.4 +3.2 ± 4.7 +5.2 ± 5.1 +6.0 ± 6.6 +3.6 ± 3.2

GCN Skip-PC +15.6 ±3.9 +9.2 ±5.9 +3.6 ±6.0 +4.8 ± 4.5 +4.0 ± 5.5 +7.6 ± 7.7 1.6± 3.2

MLP -0.4 ± 3.2 -6.8 ± 5.3 -0.4 ± 6.5 +3.2 ± 5.5 +6.8 ± 3.6 +11.2 ± 3.7 +11.6 ±2.9

Table 7: Certified ratios in [%] calculated with our exact collective certificate on WikiCSb for
ϵ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}. As a baseline for comparison, the certified ratio of a GCN
is reported. Then, for the other models, we report their absolute change in certified ratio compared
to a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model
for a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 80.0 ± 6.1 71.6 ± 4.8 54.4 ± 5.4 42.0 ± 7.6 36.4 ± 6.9 31.6 ± 9.5 4.0 ± 2.8

SGC +9.2 ±9.1 +2.4 ±15.8 -6.0 ± 11.1 -0.4 ± 5.1 +2.4 ±6.6 +0.0 ± 13.3 -2.8 ± 1.0

APPNP +7.2 ± 6.3 -20.0 ± 5.0 -9.2 ± 4.8 +0.0 ± 5.1 -6.8 ± 13.8 -22.8 ± 9.2 -4.0 ± 0.0

GCN Skip-α +2.8 ± 4.7 -0.0 ± 5.1 -3.6 ± 10.3 +0.0 ± 9.1 -1.2 ± 8.8 -0.8 ± 9.7 -1.2 ± 2.0

GCN Skip-PC +2.4 ± 3.9 +2.0 ± 5.0 +1.2 ±3.9 +4.0 ±5.7 +2.0 ± 7.1 +0.8 ±5.0 +4.8 ± 3.0

MLP -5.6 ± 5.6 -12.0 ± 11.6 -5.2 ± 9.7 -0.8 ± 8.8 -3.2 ± 6.5 -5.6 ± 5.4 +8.4 ±3.7

Table 8: Certified ratios in [%] calculated with our exact collective certificate on Polblogs for ϵ ∈
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}. As a baseline for comparison, the certified ratio of a GCN is
reported. Then, for the other models, we report their absolute change in certified ratio compared to
a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model for
a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 73.2 ± 14.1 42.4 ± 3.9 42.0 ± 3.6 42.0 ± 3.6 42.0 ± 3.6 42.0 ± 3.6 4.4 ± 2.9

SGC +22.4 ±2.0 +47.2 ±3.9 +26.4 ±12.9 +3.2 ±4.5 +0.4 ±5.3 -0.4 ± 4.5 -2.8 ± 1.5

GCN SkipPC +10.8 ± 5.5 +15.2 ± 10.0 +2.0 ± 2.8 +1.2 ± 2.7 -0.4 ± 2.0 -0.8 ± 1.6 +5.2 ± 5.4

GCN Skip-α -1.2 ± 13.4 +0.0 ± 4.8 +0.4 ± 4.8 +0.0 ± 4.2 +0.0 ± 4.2 +0.0 ±4.2 +1.2 ± 3.9

GIN +4.8 ± 4.0 +13.2 ± 5.6 +0.8 ± 3.7 -2.8 ± 2.0 -3.6 ± 1.5 -9.6 ± 3.4 +5.6 ± 4.4

GraphSAGE +2.4 ± 3.2 +10.4 ± 6.3 +0.8 ± 3.7 -1.6 ± 6.0 -3.6 ± 5.6 -5.2 ± 5.7 +6.0 ±1.5
MLP -73.2 ± 0.0 -42.4 ± 0.0 -42.0 ± 0.0 -42.0 ± 0.0 -42.0 ± 0.0 -42.0 ± 0.0 -4.4 ± 0.0
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Table 9: Certified ratios in [%] calculated with our exact collective certificate on Corab for ϵ ∈
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}. As a baseline for comparison, the certified ratio of a GCN is
reported. Then, for the other models, we report their absolute change in certified ratio compared to
a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model for
a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 77.6 ± 6.5 50.4 ± 13.5 33.6 ± 3.9 29.6 ± 4.6 28.8 ± 4.7 25.2 ± 6.0 11.2 ± 2.7

SGC +6.0 ±2.3 +0.8 ± 11.1 +2.8 ± 5.9 +2.4 ±4.6 +1.2 ±5.5 +2.0 ±5.0 -0.4 ± 3.2

APPNP -1.6 ± 7.3 -5.2 ± 8.6 -2.8 ± 5.7 -1.6 ± 7.2 -2.4 ± 8.0 -1.6 ± 6.9 -2.4 ± 3.5

GIN -3.2 ± 5.6 -2.4 ± 12.1 +2.0 ± 9.2 -0.8 ± 6.5 -2.4 ± 6.2 -2.4 ± 5.5 -0.4 ± 4.5

GraphSAGE +0.0 ± 4.6 -3.2 ± 7.3 +0.4 ± 6.7 +0.8 ± 6.7 -0.4 ± 6.6 +1.2 ± 6.7 +1.6 ±3.0
GCN Skip-α -0.4 ± 5.3 -1.6 ± 9.0 +3.6 ±6.8 +1.2 ± 3.2 -1.6 ± 5.2 -1.2 ± 5.2 -0.4 ± 2.0

GCN Skip-PC -3.6 ± 5.8 +1.2 ±7.3 +2.0 ± 5.4 +1.6 ± 5.2 -1.2 ± 5.4 -2.0 ± 5.3 -0.8 ± 1.5

MLP -15.6 ± 3.6 -9.2 ± 8.1 +1.2 ± 10.9 +2.4 ± 9.0 -2.4 ± 7.0 -2.8 ± 5.6 +0.4 ± 3.4

Table 10: Certified ratios in [%] calculated with our exact collective certificate on Chameleonb for
ϵ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5}. As a baseline for comparison, the certified ratio of a GCN
is reported. Then, for the other models, we report their absolute change in certified ratio compared
to a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model
for a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 69.6 ± 5.3 52.4 ± 11.7 41.6 ± 12.8 33.2 ± 10.4 26.8 ± 10.5 22.8 ± 10.9 9.6 ± 6.4

SGC -0.0 ± 6.2 +2.8 ±6.0 +4.4 ±5.8 +5.2 ±4.6 +5.6 ±3.9 +4.8 ±4.6 +1.2 ±1.6
APPNP -2.8 ± 14.6 -3.2 ± 9.2 -8.0 ± 7.7 -7.6 ± 6.4 -6.4 ± 3.9 -8.0 ± 5.3 -4.0 ± 3.4

GIN -26.8 ± 8.6 -28.4 ± 10.0 -23.2 ± 8.9 -18.8 ± 8.9 -16.4 ± 7.1 -13.6 ± 6.6 -5.2 ± 3.2

GraphSAGE -5.2 ± 4.5 -8.4 ± 12.6 -6.4 ± 11.6 -2.4 ± 11.9 -1.2 ± 11.4 -0.4 ± 11.5 +0.0 ± 8.0

MLP -29.6 ± 22.1 -38.8 ± 4.5 -29.2 ± 4.6 -21.2 ± 4.7 -16.0 ± 4.1 -12.4 ± 4.1 -6.0 ± 2.3

Table 11: Certified ratios in [%] calculated with our exact collective certificate on CSBM for ϵ ∈
{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 1}. As a baseline for comparison, the certified ratio of a GCN is
reported. Then, for the other models, we report their absolute change in certified ratio compared to
a GCN, i.e., their certified ratio minus the mean certified ratio of a GCN. The most robust model for
a choice of ϵ is highlighted in bold.

ϵ 0.05 0.10 0.15 0.20 0.25 0.30 0.50

GCN 85.7 ± 6.5 67.0 ± 9.7 48.0 ± 6.0 44.7 ± 4.3 40.8 ± 5.2 34.7 ± 7.0 2.9 ± 1.7

SGC +7.8±2.8 +21.9±5.0 +34.3±8.3 +22.3±16.0 +9.2±20.8 -7.1 ± 19.4 -1.7 ± 0.8
APPNP -2.1 ± 7.4 -6.2 ± 7.2 -1.7 ± 3.4 -0.3 ± 2.4 +1.8 ± 1.8 -0.3 ± 6.7 +1.7 ± 1.6
GIN -3.4 ± 8.7 -2.8 ± 13.0 +2.6 ± 9.0 -5.1 ± 7.3 -9.4 ± 5.8 -10.4 ± 7.4 +2.3 ± 2.7
GraphSAGE -0.2 ± 4.7 -2.3 ± 8.0 +0.6 ± 4.4 -3.0 ± 2.1 -3.0 ± 3.9 -3.4 ± 9.1 +1.4 ± 2.0
GCN Skip-α -0.1 ± 6.4 -0.9 ± 8.0 +2.1 ± 6.6 -0.3 ± 3.7 +0.6 ± 3.9 -2.7 ± 10.0 +0.8 ± 2.2
GCN Skip-PC +4.9 ± 3.0 +15.0 ± 6.2 +20.1 ± 9.6 +7.6 ± 12.0 -2.2 ± 13.2 -5.4 ± 13.1 -0.8 ± 1.0
MLP -9.6 ± 2.3 -16.3 ± 4.3 -4.2 ± 3.2 -1.3 ± 3.2 -4.0 ± 4.5 -5.1 ± 7.9 +6.0±2.6
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H.2.2 COLLECTIVE ROBUSTNESS OF ALL ARCHITECTURES

Fig. 7 shows the certified ratio as computed with our collective certificate for all investigated archi-
tectures on different datasets.
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(a) Cora-MLb
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(b) Citeseerb
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(c) Wiki-CSb
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(d) Polblogs
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(e) Corab
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(f) Chameleonb
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(g) CSBM
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(h) CBA

Figure 7: Certified ratio computed with our collective certificate for all investigated models.

H.2.3 ROBUSTNESS PLATEAUING PHENONMENON

The strength of plateauing appears to depend on both the dataset and the model architecture. The
Polblogs dataset shows the strongest plateauing effect out of all datasets. This indicates, as Polblogs
has no features, that in a graph context, the effect is more strongly pronounced if the features carry
less information compared to the structure. While for Polblogs for all architectures, for Cora-MLb
for all architectures and for CSBM for many architectures, the emergence of a robustness plateau for
intermediate ϵ is strikingly visible (see e.g., Fig. 7), the picture is more subtle for Citeseerb, Wiki-
CSb and Chameleon. Focusing on Citeseerb, while for all architectures, the effect of increasing ϵ
reduces for larger ϵ, it is not immediately visible from Fig. 7b if this effect is particularly pronounced
at intermediate budgets or continuously goes on until ϵ = 1. Indeed, some architectures seem to
show a continuous plateauing to 0 for ϵ = 1. However, if one compares the mean certified ratio
difference from ϵ = 0.1 to ϵ = 0.3 (∆med) to the one from ϵ = 0.3 to ϵ = 0.5 (∆strong), we can
find architectures showing a stronger plateauing phenomenon for intermediate ϵ. Exemplary, for
GIN ∆med = 17.6% compared to ∆strong = 22.4% and for MLP ∆med = 10.4% compared to
∆strong = 14.4% (also see Tab. 6). This closer study suggests that both structural and statistical
properties of the data, as well as architectural design choices, jointly influence this behavior.

H.2.4 ROBUSTNESS RANKINGS BASED ON COLLECTIVE CERTIFICATION

To compare robustness rankings for different perturbation budgets and datasets, Tab. 12 computes
average ranks based on the average certified ratio computed by our collective certificate for ‘weak’
(ϵ ∈ (0, 0.1]), ‘intermediate’ (ϵ ∈ (0.1, 0.3]) and ‘strong’ (ϵ ∈ (0.3, 1)) perturbation strengths (we
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exclude ϵ = 1, as all models have a certified ratio of 0). Tab. 12 shows that robustness rankings
are highly data dependent as already seen in the sample-wise case, and also highly depend on the
strength of the adversary.

Table 12: Average rank based on the average certified ratio computed using our exact collective
certificate for ‘weak’ (ϵ ∈ (0, 0.1]), ‘intermediate’ (ϵ ∈ (0.1, 0.3]) and ‘strong’ (ϵ ∈ (0.3, 1))
perturbation strengths and different datasets. The most robust model is highlighted in bold and the
least robust in red. Total refers to ϵ ∈ (0, 1).

Cora-MLb Citeseerb CSBM
ϵ (0, 0.1] (0.1, 0.3] (0.3, 1) total (0, 0.1] (0.1, 0.3] (0.3, 1) total (0, 0.1] (0.1, 0.3] (0.3, 1) total

GCN 5.0 3.5 6.0 4.29 7.0 6.75 8.0 7.0 3.0 3.5 6.0 3.71
SGC 1.5 1.0 6.0 1.86 6.0 7.5 5.0 6.71 1.0 2.5 8.0 2.86
APPNP 1.5 5.75 8.0 4.86 4.5 6.5 6.0 5.86 6.5 3.75 3.0 4.43
GIN 4.5 7.75 2.0 6.0 4.0 1.75 3.0 2.57 6.5 6.75 2.0 6.0
GraphSAGE 6.5 4.0 3.0 4.57 2.5 2.5 2.0 2.43 5.0 5.5 4.0 5.14
GCN Skip-α 4.5 3.25 5.0 3.86 2.5 4.0 4.0 3.57 4.0 3.5 5.0 3.86
GCN Skip-PC 4.5 3.0 4.0 3.75 1.0 3.0 7.0 3.0 2.0 3.75 7.0 3.71
MLP 8.0 7.25 1.0 6.57 8.0 3.75 1.0 4.57 8.0 6.5 1.0 6.14

H.2.5 EFFECT OF DEPTH

We analyze the influence of depth in detail in this section and present (i) across depths and datasets,
skip-connections, GCN Skip-PC and GCN Skip-α, results in certifiable robustness that is consis-
tently better or as good as the GCN. Fig. 8 demonstrates it for Cora-MLb, CSBM and CBA for
L = {1, 2, 4}. (ii) depth, in general, decreases the certifiable robustness as observed in Fig. 9. In
some cases, it is as good as L = 1 and only in Cora-MLb for GCN, L = 4 is better for small
perturbations while L = 2 is still worse than L = 1.
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(a) CSBM L = 1
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(b) CSBM L = 2
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(c) CSBM L = 4
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(d) CBA L = 1
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(e) CBA L = 2
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(f) CBA L = 4
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(g) Cora-MLb L = 1
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(h) Cora-MLb L = 2
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(i) Cora-MLb L = 4

Figure 8: Effect of skip-connections showing GCN Skip-PC and GCN Skip-α results in certifiable
robustness that is consistently better than GCN across Cora-MLb, CSBM and CBA and depths
L = {1, 2, 4}.
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(a) Cora-MLb
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(b) Cora-MLb
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(c) CSBM
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(d) CSBM
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(e) CSBM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.5 1

Perturbation budget ε

0.0

0.2

0.4

0.6

0.8

1.0

C
er

ti
fie

d
R

at
io

GCN Skip-α L = 1
GCN Skip-α L = 2
GCN Skip-α L = 4

(f) CSBM

Figure 9: Effect of depth for GCN, SGC, and GCN with skip-connections showing the depth in
general affects certifiable robustness negatively.

H.2.6 EFFECT OF GRAPH CONNECTIVITY

Fig. 10 shows the increased connection density and homophily in the graphs increases certifiable
robustness across GNNs such as GCN and SGC, using CSBM and CBA. Sample-wise certificates
for all considered GNNs showing the same observation is demonstrated in Fig. 11. It is interesing
to also note that the hierarchy of GNNs remains consistent across the settings.
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(a) CSBM: Density, SGC
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(b) CSBM: Homophily,
SGC
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(c) CBA: Density, GCN
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(d) CBA: Density, SGC

Figure 10: Effect of graph structure showing increased connection density and homophily in the
graphs increases certifiable robustness.
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(a) Density 2×
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(b) Density 0.5×
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(c) Homophily 2p, q
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(d) Homophily 0.5p, q

Figure 11: Sample-wise certificates for CSBM on the effect of graph structure showing increased
connection density and homophily in the graphs increases certifiable robustness evaluated on CSBM.

H.2.7 EFFECT OF GRAPH SIZE

In this section, we show that the results are consistent when the number of labeled nodes are in-
creased to 20 nodes per class using CSBM. Fig. 12 shows the sample-wise and collective certificates
showing similar behavior as the ones computed using n = 10. It is interesting to note that the hierar-
chy of GNNs observed in sample-wise certificate for n = 20 is the same as n = 10. The plateauing
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phenomenon is also observed. Fig. 16 shows representative results showing the depth analysis and
graph structure analysis also results in the same finding.
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(a) CSBM: sample-wise
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(b) CSBM: collective

Figure 12: The results are consistent when n = 20 per class is considered for CSBM. Figure showing
sample-wise and collective certificates
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(a) CSBM: GCN
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(b) CSBM: SGC
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(c) CSBM: Sparsity, GCN

Figure 13: Consistency of results for a larger number of labeled nodes shown using CSBM.

H.3 GENERALITY OF CERTIFICATES TO OTHER MODELS

In addition to MLP (a non-graph neural network architecture), we demonstrate the applicability of
our certificates to other non-GNN based models such as linear kernel XXT , where X is the feature
matrix. The collective certificate results for Cora-MLb and the random graph models CSBM and
CBA is provided in Fig. 14. Our experiments demonstrate that the certificates are directly applicable
to kernels and standard networks, such as fully connected and convolutional networks. Since our
primary focus is on the graph node classification problem, convolutional networks were not included
in this study, but their inclusion would follow the same methodology.
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(a) Cora-MLb
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(b) CSBM
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(c) CBA

Figure 14: Generality of certificates to other models demonstrated using linear kernel on Cora-MLb,
CSBM and CBA.
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H.4 CERTIFICATES FOR DYNAMIC GRAPHS

Our certification framework is easily adaptable to dynamic graph settings depending on the learning
strategy. To demonstrate it, we consider an inductive setting where the training graph grows during
inference. In Fig. 15, we provide the collective certificate results for Cora-MLb by inductively
adding the test nodes to the training graph. Results are comparable to the static graph analysis.
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Figure 15: Certified accuracy computed with our sample-wise certificates for CBA dataset.

Furthermore, other learning methods such as aggregating temporal structural and/or feature informa-
tion through summing over the temporal information (Kazemi et al., 2020) is also possible without
any modification to the certificate and adapting only the adjacency and/or feature matrices in NTK
computation. While we demonstrate adaptability to certain dynamic graph learning settings, we ac-
knowledge that extending the framework to handle highly dynamic scenarios with frequent structural
changes remains a promising area for future research. Incorporating temporal NTK computation or
online certification methods could further enhance its applicability.

I MULTI-CLASS EXPERIMENTAL RESULTS

We run our exact sample-wise multi-class certificate for Citeseer for selected architectures (Fig. 16a)
and the inexact sample-wise variant for Cora-ML (Fig. 16b). Fig. 16b highlights that the relaxed
multi-class certificate from App. A still provides useful guarantees.
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Figure 16: Sample-wise certificates for multi-class datasets.
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