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Abstract

Reinforcement learning (RL) algorithms are highly sensitive to their hyperparameter set-
tings. Recently, numerous methods have been proposed to dynamically optimize these
hyperparameters. One prominent approach is Population-Based Bandits (PB2), which uses
time-varying Gaussian processes (GP) to dynamically optimize hyperparameters with a pop-
ulation of parallel agents. Despite its strong overall performance, PB2 experiences slow starts
due to the GP initially lacking sufficient information. To mitigate this issue, we propose four
different methods that utilize meta-data from various environments. These approaches are
novel in that they adapt meta-learning methods to accommodate the time-varying setting.
Among these approaches, MultiTaskPB2, which uses meta-learning for the surrogate model,
stands out as the most promising approach. It outperforms PB2 and other baselines in both
anytime and final performance across two RL environment families. The code to reproduce
our results is publicly available at https://github.com/automl/MetaPB2.

1 Introduction

There have been several breakthroughs in Reinforcement Learning (RL)(Sutton & Barto, 2018) in appli-
cations like games (Silver et al., 2016; Berner et al., 2019; Badia et al., 2020) and robotics (Andrychowicz
et al., 2020; Kalashnikov et al., 2018; Lee et al., 2020). A crucial component of these breakthroughs is
hyperparameter optimization (HPO), as RL algorithms are highly sensitive to the selection of their hyper-
parameters (Eimer et al., 2023; Islam et al., 2017). While it is a standard practice to employ a learning
rate scheduler to dynamically adjust the learning rate in Deep Learning (DL)(Goodfellow et al., 2016), most
other hyperparameters are kept fixed during training. This is not a suitable approach for RL where we have
non-stationary data distributions that necessitate dynamically adjusting all the hyperparameters, not only
the learning rate (Mohan et al., 2023; Parker-Holder et al., 2022). These non-stationary data distributions
arise due to the learning process of the RL agent. As the agent’s policy is updated, its interactions with the
environment change, resulting in the generation of new learning data that differs from previous experiences.
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Figure 1: An overview of the different ways we use meta-data to inform PB2. PB2 initializes a population of
agents with random hyperparameters and model weights. One of our methods warmstarts the hyperparam-
eters using a portfolio. The population is trained for a fixed number of steps, referred to as the perturbation
interval. After this, the weights of well-performing agents are copied over to poorly performing agents (ex-
ploit) and these agents receive new hyperparameters (explore) through Bayesian Optimization (BO). Some
of our methods use meta-data data to inform BO. The training cycle then repeats.

One method that dynamically optimizes hyperparameters is PB2 (Parker-Holder et al., 2020a), which op-
timizes the hyperparameters and trains the agents in parallel, taking only the wall clock time of a single
training run (but running on multiple machines). PB2 creates the dynamic hyperparameter schedule by
changing the model weights and hyperparameters of poorly performing agents at fixed intervals. The new
model weights are copied from a randomly selected well-performing agent, and the hyperparameters are
adjusted using Bayesian Optimization (BO)(Garnett, 2023; Snoek et al., 2012) as visualized in Figure 1. A
shortcoming of PB2 is that the hyperparameter choices are relatively uninformed during the initial train-
ing stages, especially for settings with a small number of examples. We aim to address this by utilizing
information from past runs through meta-learning.

We adopted a comprehensive approach to gain an overview of the performance of various methods for the
novel application of meta-learning for Bayesian Optimization in a time-varying setting. After discussing
background (Section 2) and related work (Section 3), we make the following contributions:

• We propose four different meta-learning methods for the time-varying setting of PB2 (Section 4).
In our first approach, which we call TAFPB2, we apply meta-learning to the acquisition function,
while for the second approach, we apply meta-learning to the surrogate model using a multi-task
GP and call it MultiTaskPB2. In MetaPriorPB2, our third approach, we construct a prior for the
GP based on an ensemble from past optimizations. Our fourth approach involves exploring static
hyperparameter portfolios to warmstart optimization, aiming to accelerate performance.

• We evaluate and compare the performance of our methods with each other and relevant HPO
methods and show that MultiTaskPB2 outperforms the other proposed methods and baselines with
respect to anytime and final performance (Section 5.2).

• We investigate a potential synergy of combining our methods by warmstarting TAFPB2, Mul-
tiTaskPB2, and MetaPriorPB2. TAFPB2 shows significant improvement, while MetaPriorPB2’s
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performance degrades. For MultiTaskPB2, warmstarting has no substantial effect on its final per-
formance, where it remains one of the top models. (Section 5.4).

• We investigate the behavior of our methods and perform ablations. First, we qualitatively confirm
that our models can identify similar tasks (Section 5.3). Furthermore, we compare runtimes (Section
5.6) and find that the overhead introduced by our methods is large for simpler environments but
becomes negligible for larger environments with longer training times. Additionally, we perform an
ablation that shows the significant impact of the amount of training the warmstarting portfolio is
optimized for. The ablation supports our theoretically motivated default value (Section 5.5).

Among our approaches, MultiTaskPB2, which focuses on the surrogate model, stands out as the most robust
and effective among them. It consistently delivers top performance in both anytime and final performance
metrics in our experiments and surpasses our baselines.

2 Background

Our method builds upon PB2 (Parker-Holder et al., 2020a), which extends Population-Based Training (PBT)
(Jaderberg et al., 2017).We provide detailed descriptions of both in this section.

Population Based Training: PBT is an evolutionary algorithm that dynamically optimizes hyperpa-
rameters by training a population of deep neural network models in parallel. PBT randomly initializes the
models and their hyperparameters each of which is independently trained by an asynchronous worker. PBT
periodically performs exploit and explore steps. We dub the period as the perturbation interval. In the exploit
step, the hyperparameters of the top-performing fraction (typically top 20%) of the models are copied over
to the poor-performing fraction. Then in the explore step, the hyperparameters of these newly copied models
are either perturbed or resampled.

Population-based Bandits (PB2): PBT can demand large populations for effective performance, partic-
ularly due to its exploratory nature. To mitigate this, PB2 extends PBT by integrating Bayesian Optimiza-
tion (BO)(Garnett, 2023; Snoek et al., 2012) and Gaussian Processes (GP)(Rasmussen & Williams, 2006)
for exploration. This adaptation enhances performance efficiency with fewer workers and offers convergence
guarantees.

We provide the details on the regular BO and GPs in Appendix A.1 and review the time-varying GP and
the selection mechanism used in PB2 in the following.

Using BO in the parallel and time-dependent setting of PBT requires some adjustment of the standard BO
components described in Appendix A.1. The observations that make up the dataset D now additionally
contain a time component t ∈ N that specifies at what perturbation interval the observation was made, and
the performance γ ∈ R at the start of the last perturbation interval, i.e.,

(
(t, γ, x), y

)
∈ D. Furthermore, the

targets y ∈ R now encode the performance change during the last perturbation interval.1

For the GP surrogate model, PB2 models the similarity between input pairs (t1, γ1, x1), (t2, γ2, x2) with a
separable time-varying kernel (Bogunovic et al., 2016)

kT V

(
(t1, γ1, x1), (t2, γ2, x2)

)
= kT ime(t1, t2)kSE

(
(γ1, x1), (γ2, x2)

)
where kT ime(t1, t2) = (1 − ω)

|t1−t2|
2 is a time kernel with a parameter ω ∈ (0, 1) that controls how related

observations at different points in time are. It results in a posterior distribution given by

µ(t, γ, x) = kTV(t, γ, x)T (KTV + ηI)−1y
σ2(t, γ, x) = kT V

(
(t, γ, x), (t, γ, x)

)
− kTV(t, γ, x)T (KTV + ηI)−1kTV(t, γ, x),

1γ is not part of the original formulation of PB2, but is used in the Ray (Liaw et al., 2018) implementation of PB2, which
we use in our experiments. Adding it allows the surrogate model to capture that models with different initial performances see
a different performance increase even when having the same hyperparameters.
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where kTV(t, γ, x), and KTV are induced from the time-varying kernel following Eq. (2) from Appendix A.1.

During the explore step, PB2 copies the model (including the neural network weights) of a better performing
worker at timestep t̄ with initial performance γ̄. Then, PB2 performs BO and selects a new configuration
x∗ by maximizing GP-UCB (Srinivas et al., 2010)

GP-UCBt̄,γ̄(x,D) = µ(t̄, γ̄, x) +
√

βσ(t̄, γ̄, x),

over x while keeping t̄ and γ̄ fixed. The pseudo-code for the PB2 algorithm is provided in Appendix A.2.

3 Related Work

Our approach builds on population-based approaches and meta-learning approaches. In this section, we
present related work under these two categories.

Population-based approaches draw inspiration from Evolutionary Algorithms (EAs)(Bäck, 1996). PBT
(Jaderberg et al., 2017) has emerged as a prominent method, achieving state-of-the-art results in both su-
pervised and reinforcement learning (RL). However, the dynamic and evolving nature of RL landscapes has
led to the proliferation of PBT variants tailored specifically for RL. PB2 (Parker-Holder et al., 2020a) inte-
grates Bayesian Optimization (BO) into PBT, enhancing its adaptability and performance. BG-PBT (Wan
et al., 2022) extends this concept to include Neural Architecture Search (NAS), enabling simultaneous evo-
lution of architectures and hyperparameters. Other variants like PBT for off-policy RL (Franke et al., 2021)
and backtracking-enabled PBT (Zhang et al., 2021) demonstrate improvements in sample efficiency and
adaptation to performance fluctuations. Recent developments have focused on addressing the limitations of
traditional PBT approaches. Zhang et al. (2021) introduce a PBT variant that allows PBT to backtrack to
previously better performing configurations because the performance of RL agents can fall drastically during
optimization. Bai & Cheng (2024) and Dalibard & Jaderberg (2021) both try to avoid PBT’s greediness by
judging population members’ fitness based on the rate of improvement rather than the absolute performance.
Flajolet et al. (2022) show that PBT can even be implemented on a single machine without the need for
expensive parallel training on multiple machines. Li et al. (2019) and Bai & Cheng (2024) both propose gen-
eralized versions of PBT. Parker-Holder et al. (2020b) optimize all the members of the population at once,
aiming to adapt the diversity of the population to improve the reward-diversity trade-off. HOOF (Paul
et al., 2019) adapts hyperparameters on the fly for a single policy gradient agent based on an improvement
metric for policy gradients to combat PBT’s computational expensiveness. These advancements underscore
the dynamic evolution and broad applicability of population-based methods in enhancing RL performance
across various domains, from algorithmic efficiency to architectural adaptation and beyond. In our approach,
we build on top of PB2 because of its efficiency, and because it uses BO. BO builds a model that can be
employed for meta-learning in a variety of ways. Therefore, PB2 lends itself better to exploring meta-learning
extensions than other model-free population-based approaches.

Meta-learning approaches (Vanschoren, 2019) can be combined with HPO methods to, e.g., transfer
good hyperparameter settings across similar problem instances. One prominent research direction in meta-
learning is to meta-learn the different components of Bayesian Optimization. Wistuba et al. (2018) propose
a transfer acquisition function (TAF) that combines the expected improvement on the target task with
improvement estimates from similar meta-tasks. This similarity is computed based on meta-features. Feurer
et al. (2022b) propose a method called RGPE to determine this similarity implicitly. We adjust the weighting
and acquisition function to our setting and use them in our approaches. Other approaches focus on meta-
learning the surrogate model. Of these approaches, the ones that use freeze-thaw BO (Swersky et al., 2014),
a form of multi-fidelity optimization, are most closely related to our time-varying setting. While freeze-thaw
BO does not dynamically optimize hyperparameters, it builds a surrogate model after partial training to
determine which hyperparameter configurations are promising. Quick-Tune (Arango et al., 2024) meta-learns
a deep kernel GP (Wilson et al., 2016) based on DyHPO (Wistuba et al., 2022). CMBO (Lee et al., 2024), on
the other hand, uses meta-learning to train a Prior Fitted Network (Müller et al., 2022) surrogate model on
real data. Both of these surrogate models need to be pretrained on large amounts of meta-data, which is why
our surrogate model approach uses a more classical Multi-Task GP (Swersky et al., 2013). In contrast to these
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approaches, portfolio-based approaches focus on initializing HPO with a set of configurations that performed
well on similar tasks (Feurer et al., 2015a;b). To avoid the computation of meta-features needed to determine
similarity, Feurer et al. (2022a) propose to construct a single portfolio that works well across all tasks. This
lack of overhead made us build our warmstarting approach on top of Feurer et al. (2022a)’s work. Model-
Agnostic Meta-Learning (MAML) (Finn et al., 2017) is a prominent meta-learning technique that differs
from the previous approaches by not transferring hyperparameter configurations. Instead, it learns model
initializations that can be quickly adapted to new problem instances within a few gradient updates. Banerjee
et al. (2023) apply MAML to model-based RL agents that act as principals and incentivize other agents to
act in preferred ways.

4 Methods

Meta-learning plays a crucial role in enhancing machine learning performance with limited samples. We aim
to improve this line of work in PB2 by presenting four meta-learning extensions.

4.1 TAFPB2: Transferring Acquisition Function and Weighting

In our first approach, we consider meta-learning via weighting the acquisition function across related tasks.
In particular, we incorporate TAF (Wistuba et al., 2018) with a ranking-weighted Gaussian Process ensemble
(RGPE) (Feurer et al., 2022b) as the acquisition function for PB2, which we refer to as TAFPB2. Since the
original formulation of TAF considers the static setting, we extend it to handle the time-varying setting of
PB2 by incorporating the additional inputs given by the interval step t̄ and the initial performance γ̄. Our
formulation treats observations similarly to the static case without introducing additional complexity. This
results in the development of the time-varying TAF function that we present as follows:

TAF(x, t̄,Dτ+1) = wτ+1EI(x, t̄,Dτ+1) +
τ∑

i=1
wi max

(
0, µi(t̄, γ̄, x)− max

(t̂,γ̂,x̂)∈Dτ+1

µi(t̂, γ̂, x̂)
)

,

where wi are normalized weights (defined subsequently) for the meta-tasks i = 1, . . . , τ and the target task
i = τ + 1. We use the EI acquisition function (Močkus, 1974) with the time-varying component, described
in Appendix A.3, as the main component for TAF.

We establish a weighting mechanism between a target task and multiple meta-tasks, which we then combine
with TAF, as demonstrated in Feurer et al. (2022b). These weights are determined by how accurately
surrogate models, derived from the meta-tasks and the target task, characterize the observed configurations.
In particular, weights are modeled as the probability that a model fits the target task best based on their
ranking loss. This probability is estimated using Monte Carlo estimation with S ∈ N bootstrap datasets
Ds that are sampled with replacement from Dτ+1. The loss of each model i = 1, 2, . . . , τ + 1 on each
bootstrapped dataset s = 1, 2, . . . , S is denoted by li,s. This results in a weighting

wi = 1
S

S∑
s=1

(
1 (i ∈ arg mini′ li′,s)∑t

j=1 1 (j ∈ arg mini′ li′,s)

)
. (1)

The full procedure to compute the weights can be seen in Section A.4.

4.2 MultiTaskPB2: Multi-Task Gaussian Process

For our second meta-learning approach, we employ a multi-task Gaussian Process (GP) (Álvarez et al.,
2012). This approach establishes a unified model across multiple meta-tasks, enabling observations from
different tasks to influence predictions on other tasks based on inferred task similarities.

Our time-varying setting includes multiple meta-tasks, only some of which are relevant to the target task.
Therefore, we only select from the top k most similar meta-tasks based on the adjusted RGPE weighting
from Eq. (1). In addition, we collect only observations from the meta-tasks that lie within a window around
the time step of interest t since they are more relevant to the considered time step. Next, we infer a
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task similarity, which determines how strongly different tasks affect each other within the multi-task GP
framework.

Using a multi-task GP, we define the dataset D consisting of entries
(
(m, t, γ, x), y

)
where m ∈ {1, 2, . . . , τ+1}

indicates the task index from which the observation originated. We follow the Linear Model of Coregional-
ization (LMC) (Journel & Huijbregts, 1976; Bonilla et al., 2007) to define the kernel. This means that our
kernel consists of a sum of separable kernels as follows

kLMC([m1, z1], [m2, z2]) =
τ+1∑
i=1

ki
C(m1, m2)ki

T V (z1, z2)

where z := {t, γ, x} for brevity, the ki
T V are independent kernels with possibly different parameters with

coregionalization kernels ki
C(m1, m2) = cm1,m2,i where the coregionalization matrices [cm1,m2,i]τ+1

m1,m2=1 are
symmetric and positive definite. The entries of these coregionalization matrices are parameterized and
estimated with maximum likelihood resulting in the posterior given by

µ(m, z) = kLMC(m, z)T (KLMC + ηI)−1y
σ2(m, z) = kLMC((m, z), (m, z))− kLMC(z)T (KLMC + ηI)−1kLMC(m, z),

where kLMC(t, γ, x), and KLMC are induced from kLMC following Eq. (2). Since we are only interested in
predictions on the target task, we fix m = τ + 1 when using it in the acquisition function.

4.3 MetaPriorPB2: Meta-Prior to the Gaussian Process

Algorithm 1 Portfolio Construction
Input: Datasets D1,D2, . . . ,Dτ , portfolio size s ∈ N
Output: Portfolio P of size s

1: C ← ∅ ▷ Create portfolio candidates
2: for i = 1, . . . , τ do
3: x∗ ← hpo(Di)
4: C ← C ∪ {x∗}
5: end for
6: for i = 1, 2, . . . , τ do ▷ Create and normalize

performance matrix
7: for x ∈ C do
8: px,i ← evaluate(x,Di)
9: end for

10: p:,i ← (p:,i −min p:,i)/(max p:,i −min p:,i)
11: end for
12: P ← ∅ ▷ Greedily add configurations to portfolio
13: while |P| < s do
14: x∗ ← arg maxx∈C\P

1
τ

∑τ
i=1 maxx̄∈P∪{x} px̄,i

15: P ← P ∪ {x∗}
16: end while

We propose another variant of the meta model using
an ensemble of the mean predictions µi of the meta-
GP’s as the prior mean of the target process fτ+1
(instead of using zero mean prior)

fτ+1 ∼ GP(m, kT V ) where m =
τ∑

i=1
wiµi

where the weights wi are given by the RGPE in
Eq. (1) while excluding the target task. In this time-
varying setting, the GP posterior distribution (Bo-
gunovic et al., 2016) is parameterized by

µ(z) = kTV(z)T (KTV + ηI)−1(y−m) + m(z)
σ2(z) = kT V (z, z)− kTV(z)T (KTV + ηI)−1kTV(z),

where z = [t, γ, x] and m = [m(zi)]|Dτ+1|
i=1 .

This meta-prior elegantly integrates previous time-
varying surrogate models, which are estimated from
meta-tasks, according to their relevance for solving
the target task.

4.4 Warm-starting the Population with a
Portfolio

We consider a more classical, but effective, meta-learning technique known as warm-starting. This approach
is inspired by the portfolio construction method used in Auto-sklearn 2.0 (Feurer et al., 2022a).

In Algorithm 1, we create a portfolio of hyperparameter configurations which we use to initialize the training.
First, we construct a candidate set C of possible portfolio members by searching for the optimal hyperparam-
eter configurations on all meta-datasets with a hpo method, such as using random search. Then, we evaluate
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each candidate configuration on all datasets to create a performance matrix [pi,j ]τi,j=1 (line 8). Finally, we
build the portfolio by iteratively adding the configuration of the candidate set that maximizes the average
best performance of the current portfolio if it has been added to it.

Unlike traditional static HPO approaches to portfolio construction, which typically consider final performance
after full training, our method constructs portfolios based on scores at the time step t when configurations
are first anticipated to change under PB2. Taking the percentage λ as the probability that a configuration is
changed after a perturbation interval, the probability that an initial configuration changes for the first time
after interval i is geometrically distributed with P(i) = λ(1 − λ)i−1. Therefore, the expected interval when
a given initial configuration is changed is the expectation of the geometric distribution

EX∼Geometric(λ)[X] = 1
λ

.

In Section 5.5 we perform an ablation to evaluate the impact of λ on algorithm performance.

5 Experiments

This section begins with details on our experimental setup, followed by the presentation of our research
findings that address the following research questions.

RQ1 How do our methods compare in performance to standard baselines and each other?

RQ2 Do the RGPE weights correctly identify similar tasks?

RQ3 How does the warmstarting method influence the performance of other meta-methods?

RQ4 Does the theoretical recommendation for perturbation interval for portfolio construction hold true
empirically?

RQ5 How much runtime overhead is introduced by our methods?

5.1 Experimental Setup

We follow the evaluation scheme of the PB2 paper (Parker-Holder et al., 2020a) for our experiments and
optimize the hyperparameters of Proximal Policy Optimization (PPO)(Schulman et al., 2017). We now
introduce the benchmark environments used for meta-learning and elaborate on our evaluation strategies.
Appendix B.1 provides a more detailed overview of our experimental setup.

Benchmark environments We evaluated our approaches on two sets of RL environments, employing
CARL (Benjamins et al., 2023) to generate several slightly different versions of each. This approach mimics
a blend of comparable and distinct tasks, enabling us to explore the specific tasks our methods effectively
learn from. The first set of environments is classic control (Brockman et al., 2016) specifically mountain_car,
cart_pole, pendulum, acrobot. We used this cheaper environment to set our methods’ hyper-hyperparameters
and conduct more compute-intensive experiments. The second set of environments is Brax (Freeman et al.,
2021) where CARL allowed us to modify 9 environments (see Appendix B.1). In both sets of environments,
we manipulated the gravity across versions to reflect that of five different planets.

Modification to Ray Implementation We made minor modifications to the Ray implementation (Liaw
et al., 2018) of PB2 and empirically found it to perform better than the original version. This altered
version, referred to as PB2*, serves as the foundation for our new approaches. The key modification that
had the most significant impact involves how we manage poorly performing workers after the initial training
perturbation period. During this phase, we have performance data from various workers but lack the
performance differences necessary for meaningful Bayesian Optimization (BO) steps. Ray’s default behavior
in such cases is to just exploit, resulting in duplicate workers with identical weights and hyperparameters.
To address this, we additionally sample entirely new hyperparameter configurations. This approach allows
us to explore a broader section of the search space and provide better guidance for subsequent BO steps.
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Figure 2: Method comparison with baselines where PPO was trained on Brax (top) and classic control
(bottom). Comparing rewards normalized at each iteration (higher is better) on the left and ranking on
the right (lower is better). Out of all of our methods and baselines, MultiTaskPB2 consistently performs
the best. Note that the different values at the first interval for Brax are caused by crashed experiments
(see Appendix B.6). These crashes were caused by divergence and are not fixable without changing the
hyperparameter ranges.

Evaluation We repeat each of our experiments for 10 seeds and ensure that the initial random config-
urations are the same for each method given the same seed. Our population-based algorithms split the
training into 15 equally sized perturbation intervals. At each of the perturbation intervals, we evaluate every
agent for 10 episodes during training. When evaluating a method, we only look at the performance of the
best agent at each timestep and compare these in multiple ways. The first way we compare our methods
is by looking at normalized rewards. For each environment variant, we normalize the mean rewards of the
different methods at each timestep to be between 0 and 1. The second way we compare our methods is
by ranking the mean rewards instead of normalizing them. When visualizing the normalized rewards and
the rankings, we plot their mean and standard error during the training process. We further pair the rank
visualization with a critical difference diagram (Demšar, 2006) using the Autorank (Herbold, 2020) Python
package to summarize the any-time performance. The diagram displays the mean rank over all timesteps for
the methods on a vertical line on the right and vertically connects the lines that indicate the method names
if there is no statistically significant difference (α = 0.05) between their mean ranks.
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5.2 RQ1: Methods Comparison

In this section, we address research question RQ1, examining the performance of the proposed methods in
comparison to each other and standard baseline methods. Specifically, we compare the novel meta-learning
approaches outlined in Sections 4.1 - 4.4 with: PBT (Jaderberg et al., 2017), PB2 (Parker-Holder et al.,
2020a), our improved PB2 variant which we dub PB2*, and random search. We use Ray (Liaw et al., 2018)
implementations of the baselines since our methods are implemented on top of Ray. The results of these
experiments can be seen in Figure 2 while Appendix B.5 shows additional results for different numbers of
workers.

Our experiments show that MultiTaskPB2 overall performs the best over both metrics on both environment
families. Additionally, our meta-methods demonstrate a statistically significant improvement in anytime
performance over PB2. This enhancement in anytime performance appears to primarily stem from the
modifications introduced by PB2*. Still, MultiTaskPB2, in particular, was able to use the meta-data to
further improve its final performance. In contrast, our other meta-methods do not perform as well. No-
tably, TAFPB2 exhibits the lowest final performance in classic control environments. While warmstarting
enhances initial performance in classic control, it does not substantially impact final performance and shows
minimal effect on Brax. Further analysis in Appendix B.5 reveals that a static portfolio fails to provide
robust hyperparameter initialization for a wide array of different environments like the ones present in Brax.
Individual training plots and raw results can be found in Appendix B.8 and Appendix B.7, respectively.

5.3 RQ2: Similarity Weighting

The methods introduced in Sections 4.1 - 4.3, namely TAFPB2, MetaPriorPB2, and MultiTaskPB2, use
RGPE weights. These weights measure the similarity between the meta-tasks and the target task. In this
section, we explore the capability of RGPE to identify similar environments. We know which environments
are similar to each other due to the way they are constructed. Environments with the same base environment
but a different gravity should behave more similarly than environments with completely different base envi-
ronments. For our visualization, we average each meta-task weight for a given target task over all timesteps
and seeds and display the results in matrix form.

Since we identify MultiTaskPB2 as the most promising of our approaches in Section 5.2, we will restrict this
analysis to MultiTaskPB2. The visualizations for TAFPB2 and MetaPriorPB2 on both Brax and classic
control align with the results in this section and can be found in Appendix B.4.

The weight matrix for MultiTaskPB2 on Brax is shown in Figure 3. It has a diagonal block structure with
varying block sizes. The smaller blocks are made up of environments that share the same base environment
but have different gravity. On average, 34 % of the weight is allocated to them. This is more than three
times the 9.5 % of the weight that the average set of environments that uses a different base environment
gets allocated. If we look at the base environments of the bigger blocks, we can see that they are related
like in the case of humanoid and humanoid_standup (17 % of the total weight) or inverted_pendulum and
inverted_double_pendulum (20 % of the total weight). In summary, the weights not only identify similarities
based on the same base environment but also based on related base environments.

5.4 RQ3: Warmstarting the Weighting-based Meta Methods

Our warmstarting approach and other meta-learning methods are orthogonal and can be combined. In
this section, we address RQ3 and analyse how this combination affects performance. For this, we trained
MultiTaskPB2, TAFPB2, and MetaPriorPB2 with warmstarted hyperparameters and visualize both the
normal and warmstarted training in Figure 4.

We can see that warmstarting improves the initial performance in both environment families, though only
marginally on Brax. However, MetaPriorPB2 was negatively affected, with its final performance degrading
compared to the vanilla version. One explanation for this could be that the meta-prior performs poorly
because hyperparameter schedules in the meta-data do not match the schedules we encounter when warm-
starting our meta-prior. In contrast to MetaPriorPB2’s decreased performance, TAFPB2 shows a significant

9



Published in Transactions on Machine Learning Research (03/2025)

ha
lfc

he
et

ah
 e

ar
th

ha
lfc

he
et

ah
 n

ep
tu

ne
ha

lfc
he

et
ah

 sa
tu

rn
ha

lfc
he

et
ah

 u
ra

nu
s

ha
lfc

he
et

ah
 v

en
us

ho
pp

er
 e

ar
th

ho
pp

er
 n

ep
tu

ne
ho

pp
er

 sa
tu

rn
ho

pp
er

 u
ra

nu
s

ho
pp

er
 v

en
us

hu
m

an
oi

d 
ea

rth
hu

m
an

oi
d 

ne
pt

un
e

hu
m

an
oi

d 
sa

tu
rn

hu
m

an
oi

d 
ur

an
us

hu
m

an
oi

d 
ve

nu
s

hu
m

an
oi

d_
st

an
du

p 
ea

rth
hu

m
an

oi
d_

st
an

du
p 

ne
pt

un
e

hu
m

an
oi

d_
st

an
du

p 
sa

tu
rn

hu
m

an
oi

d_
st

an
du

p 
ur

an
us

hu
m

an
oi

d_
st

an
du

p 
ve

nu
s

in
ve

rte
d_

do
ub

le
_p

en
du

lu
m

 e
ar

th
in

ve
rte

d_
do

ub
le

_p
en

du
lu

m
 n

ep
tu

ne
in

ve
rte

d_
do

ub
le

_p
en

du
lu

m
 sa

tu
rn

in
ve

rte
d_

do
ub

le
_p

en
du

lu
m

 u
ra

nu
s

in
ve

rte
d_

do
ub

le
_p

en
du

lu
m

 v
en

us
in

ve
rte

d_
pe

nd
ul

um
 e

ar
th

in
ve

rte
d_

pe
nd

ul
um

 n
ep

tu
ne

in
ve

rte
d_

pe
nd

ul
um

 sa
tu

rn
in

ve
rte

d_
pe

nd
ul

um
 u

ra
nu

s
in

ve
rte

d_
pe

nd
ul

um
 v

en
us

pu
sh

er
 e

ar
th

pu
sh

er
 n

ep
tu

ne
pu

sh
er

 sa
tu

rn
pu

sh
er

 u
ra

nu
s

pu
sh

er
 v

en
us

re
ac

he
r e

ar
th

re
ac

he
r n

ep
tu

ne
re

ac
he

r s
at

ur
n

re
ac

he
r u

ra
nu

s
re

ac
he

r v
en

us
wa

lke
r2

d 
ea

rth
wa

lke
r2

d 
ne

pt
un

e
wa

lke
r2

d 
sa

tu
rn

wa
lke

r2
d 

ur
an

us
wa

lke
r2

d 
ve

nu
s

Meta-task

halfcheetah earth
halfcheetah neptune

halfcheetah saturn
halfcheetah uranus
halfcheetah venus

hopper earth
hopper neptune

hopper saturn
hopper uranus
hopper venus

humanoid earth
humanoid neptune

humanoid saturn
humanoid uranus
humanoid venus

humanoid_standup earth
humanoid_standup neptune

humanoid_standup saturn
humanoid_standup uranus
humanoid_standup venus

inverted_double_pendulum earth
inverted_double_pendulum neptune

inverted_double_pendulum saturn
inverted_double_pendulum uranus
inverted_double_pendulum venus

inverted_pendulum earth
inverted_pendulum neptune

inverted_pendulum saturn
inverted_pendulum uranus
inverted_pendulum venus

pusher earth
pusher neptune

pusher saturn
pusher uranus
pusher venus
reacher earth

reacher neptune
reacher saturn
reacher uranus
reacher venus

walker2d earth
walker2d neptune

walker2d saturn
walker2d uranus
walker2d venus

Ta
rg

et
 ta

sk

10 2

10 1

100

W
ei

gh
tin

g

Figure 3: Average RGPE weights of MultiTaskPB2 for each task and all meta-tasks on BRAX. The weights
form a diagonal block structure. Environments constructed from the same base environments with different
gravity are identified as similar. We also see higher weights between different base environments that are
related, for example, humanoid and humanoid_standup.

performance improvement. On the other hand, warmstarting had no substantial effect on MultiTaskPB2’s
final performance while slightly improving anytime performance in a statistically insignificant way. Overall,
outside of TAFPB2, we did not observe a strong positive impact on the final performance. Given that there
is no notable difference between the warmstarted TAFPB2 and both MultiTaskPB2 versions, we recommend
MultiTaskPB2 to avoid additional complexity.

5.5 RQ4: Portfolio Training Interval

In this section, we investigate the empirical validity of our theoretical recommendation for the number of
perturbation intervals we train configurations for during portfolio construction, as outlined in Section 4.4.
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Figure 4: Warmstarting the meta-methods for PPO training on Brax (top) and classic control (bottom).
Comparing rewards normalized at each iteration (higher is better) on the left and ranks on the right (lower is
better). Warmstarted methods have better initial performance, but this effect is smaller in the more diverse
Brax environments. Warmstarted and normal MultitaskPB2 perform the best overall.

We perform an ablation study comparing the performance of PB2* warmstarted with portfolios that were
constructed using different numbers of perturbation intervals. We maintain the Ray default value for the
fraction of copied workers, λ = 0.25. Following our theoretical argumentation from Section 4.4, we train for
4 perturbation intervals. We compare this training time with the original full training for 15 intervals and
1, 6, and 8 intervals.

Considering the computational demands of the portfolio generation process, we conducted this experiment
on classic control tasks. The warmstarting was repeated over 10 seeds, and the configuration performance
was averaged over 10 seeds during portfolio construction to ensure robustness.

As shown in Figure 5, PB2* warmstarted with the portfolio following our recommendations outperforms
all other variants. From the third perturbation interval onwards, it achieves the best normalized score and
rank, with statistically significant better anytime performance compared to all alternatives.

5.6 RQ5: Runtime Comparison

While our methods improve upon PB2, they also introduce an additional computational overhead. In this
section, we take a closer look at the runtime of the methods we compare in Section 5.2. We ensured efficient
training of the methods by matching the number of used CPU cores to the number of workers. For classic
control experiments, we used machines with Intel Xeon Gold 6242 processors at 2.80 GHz, whereas for Brax,
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results are on classic control. Warmstarting PB2* with the portfolio based on our theoretically motivated
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Figure 6: Runtime for training PPO with different HPO methods on classic control and Brax. The overhead
introduced by our methods becomes negligible for more complex environments with longer training times
such as Brax.

we utilized machines with Intel Xeon E5-2630v4 processors at 2.2 GHz. For every method, we calculate
the average runtime on each environment and visualize them as a boxplot in Figure 6. We can see that
MultiTaskPB2, our best-performing method, introduces the biggest overhead and has the longest runtime.
On classic control, the median runtime difference between MultiTaskPB2 and PB2 was 730 seconds, which
amounts to a relative difference of 21%. On Brax the mean runtime difference is similar with 757 seconds,
but the relative difference only amounts to 2.9%. The overhead of our methods when learning from up to
44 meta tasks where each task consists of the schedules of a combined 40 workers is roughly 12 minutes and
becomes negligible when training in harder environments that might take multiple days to train. However,
it is important to note that smaller organizations with limited computational resources may not benefit from
our methods. Such organizations often cannot afford to run experiments on larger environments where the
overhead becomes negligible. For them, the additional computational cost may outweigh the performance
improvements, making our methods less practical for their specific needs. Thus, while our approach offers
advantages in large-scale settings, it may not be suitable for smaller-scale experiments.
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6 Conclusion

In this paper, we introduce new meta-learning approaches tailored for dynamic hyperparameter optimiza-
tion in reinforcement learning (RL), aimed at enhancing the Population-Based Bandits (PB2) algorithm.
PB2, leveraging time-varying Gaussian processes (GP), demonstrates strong overall performance but faces
challenges when starting the optimization due to its GPs lacking information at the outset. To address this,
we introduced four novel meta-learning methods for PB2 in time-varying environments. Our approaches in-
clude TAFPB2, which applies meta-learning to the acquisition function; MultiTaskPB2, employing multi-task
GPs to enhance the surrogate model; MetaPriorPB2, utilizing a GP prior based on historical ensemble opti-
mizations; and static hyperparameter portfolios for accelerated initialization. Among these, MultiTaskPB2
emerged as particularly promising, surpassing all other methods in both anytime and final performance met-
rics across two distinct RL environment families. Our contributions are notable for adapting meta-learning
strategies to suit the dynamic nature of RL hyperparameter optimization.

While our findings show promise, our methods are constrained by two limitations. They depend on the
availability of pertinent meta-data aligned with the hyperparameter search spaces and currently support
only continuous hyperparameters. Moreover, implementing our methods entails a consistent computational
overhead, which may hinder their suitability for environments with limited training durations. This dis-
proportionally affects smaller organizations with limited computational resources that can not train on
complex environments. Looking forward, future research could extend our methods to accommodate cate-
gorical hyperparameters, leveraging approaches similar to those explored by Parker-Holder et al. (2021) for
PB2. Exploring more data-intensive meta-learning techniques, such as deep kernels (Arango et al., 2024) or
prior-data fitted networks (PFNs) (Lee et al., 2024), might further enhance performance. Additionally, inte-
grating meta-features for configuration selection during warmstarting and adapting our methods to domains
like Deep Learning, where hyperparameters tend to be static, represent promising avenues for exploration.
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A Additional Technical Details

A.1 Bayesian Optimization with GP

Bayesian optimization (BO) (Garnett, 2023; Snoek et al., 2012) is a popular sample-efficient black-box opti-
mization technique that has been shown to outperform manual hyperparameter optimization . BO sequen-
tially optimizes hyperparameters by constructing a probabilistic surrogate model from these observations to
model the expensive target function. The probabilistic model is used to define an acquisition function that
balances between exploration and exploitation for selecting the next hyperparameter configuration.

Gaussian Processes (GP) Rasmussen & Williams (2006) are a popular choice for the surrogate function.
A GP is a stochastic process consisting of a set of random variables where every finite subset is jointly
Gaussian. It is fully defined by its mean function m : X → R and positive definite covariance or kernel
function k : X × X → R. If a function f follows a GP, we write

f ∼ GP(m, k).

Given a input X := {xi ∈ X}N
i=1, with labels y := {yi ∈ R}N

i=1 and a new point x ∈ X , the posterior
distribution f∗ at point x is Gaussian

f∗ | x, X, y ∼ N
(
µ(x), σ2(x)

)
,

with the predictive mean µ(x) and covariance σ2(x), defined in closed form, assuming zero mean for simplicity

µ(x) = k(x)T (K + ηI)−1y
σ2(x) = k(x, x)− k(x)T (K + ηI)−1k(x),

(2)

where k(x) = [k(x, xi)]Ni=1, K = [k(xi, xj)]Ni,j=1, and η ≥ 0 is a noise term accounting for uncertainty in
the data. For a more complete introduction to Gaussian Processes, we recommend the classic textbook by
Rasmussen & Williams (2006).

A.2 Population Based Bandits (PB2) Algorithm

Algorithm 2 PB2
Input: Maximum number of perturbation intervals T ∈ N, number of workers W , fractions of workers that

exploit and explore per iteration λ ∈ [0, 0.5]
1: D ← ∅, R ← ∅
2: Initialize all workers w = 1, 2, . . . , W with model weights and hyperparameters xw and start training for

T perturbation intervals.
3: while there is a worker training do
4: if worker w reaches interval t then
5: D ← D ∪

{(
(t, γw, xw), yw

)}
▷ Update observed data

6: if worker performance in bottom λ fraction then
7: Copy model from random top λ fraction of workers at timestep t with initial performance γ̄
8: Search for new configuration following Eq. (2)
9: end if

10: Update set of running configurations R
11: end if
12: end while

A.3 The expected improvement acquisition function with time-varying component

We consider a time-varying version of Expected Improvement (Močkus, 1974, EI) which takes into account
the time-varying index t as the additional input dimension. This time-varying EI is used with the TAFPB2
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method described in Section 4.1.

EIt̄,γ̄(x,D) =
(
µ(t̄, γ̄, x)− f∗)Φ

(µ(t̄, γ̄, x)− f∗

σ(t̄, γ̄, x)

)
+ σ(t̄, γ̄, x)φ

(µ(t̄, γ̄, x)− f∗

σ(t̄, γ̄, x)

)
,

where f∗ = max((t,γ,x),y)∈D y is the best observed performance improvement at a time step t̄.

A.4 Ranking-Weighted GP Ensemble

In this section, we present the full RGPE weighting procedure from Section 4.1. To calculate the weighting,
no meta-features describing the tasks are needed. The weights are based on how well a surrogate model
f(z) ∼ N (µ(z), σ2(z)) where z = {t, γ, x}, describes the observed configurations Dτ+1 on the target task.
This is measured by a pairwise ranking loss between predicted and real performances

L (f,Dτ+1) =
∑

(zi,yi),
(zj ,yj)∈Dτ+1

1

(
(µ (zi) < µ (zj))⊕ (yi < yj)

)
, (3)

where 1 : {true, false} → {0, 1}, {true 7→ 1, false 7→ 0} and ⊕ is the exclusive OR operator (XOR). This
loss estimates how well the target model fits the target data leads to overfitting since it would predict values
for configurations it used for training. To prevent this, the Feurer et al. (2022b) use leave-one-out models
f−i

τ+1(z) ∼ N (µ−i
τ+1(z), σ−i

τ+1
2(z)) that fit Dτ+1 \ {zi, yi}. Using these models, the pairwise ranking loss for

the target task is calculated as:

L (fτ+1,Dτ+1) =
∑

(zi,yi),
(zj ,yj)∈Dτ+1

1

((
µ−i

τ+1 (zi) < yj

)
⊕ (yi < yj)

)
. (4)

Using a ranking loss over, for example, the mean squared error is preferable, since it better matches the goal
of optimizing the hyperparameters. For optimization, only the ordering of the hyperparameters is relevant.
These ranking losses are used to calculate the weights as seen in Algorithm 3.

Algorithm 3 RGPE weighting
Input: Number of bootstrap samples S, observations on the target task Dτ+1, meta-models fi for i =

1, 2, . . . , τ and the target model fτ+1
Output: Model weighting wi for i = 1, 2, . . . , τ + 1

1: for s = 1, . . . , S do ▷ Calculate losses
2: Ds

τ+1 ← bootstrap(Dτ+1)
3: for i = 1, . . . , τ do
4: li,s ← L

(
fi,Ds

τ+1
)

▷ Using Eq (3)
5: end for
6: lτ+1,s ← L

(
fτ+1,Ds

τ+1
)

▷ Using Eq. (4)
7: end for
8: for i = 1, . . . , τ + 1 do ▷ Calculate weights

9: wi ← 1
S

∑S
s=1

(
1(i∈arg mini′ li′,s)∑t

j=1
1(j∈arg mini′ li′,s)

)
10: end for

B Detailed Results

B.1 Detailed Experimental Setup

Search Space For the experiments, we use the same PPO search space as Parker-Holder et al. (2020a),
the only difference being that we fix the batch size to better control the memory usage. The batch size is
fixed to 20.000 and 25.000 for classic control and Brax, respectively. The search space is shown in Table 1.
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Table 1: Hyperparameter ranges PPO.

Hyperparameter Range
Learning rate (1e-5, 1e-3)
Lambda (0.9, 0.99)
Clip parameter (0.1, 0.5)
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Figure 7: Training all methods on classic control for 1,000,000 steps instead of 600,000 with a perturbation
interval of 60,000 steps. Comparing rewardsnormalized at each iteration (higher is better) on the left and
ranks on the right (lower is better). Using meta-learning later in training when there is enough data to
describe the target task is less beneficial. Still, MultiTaskPB2 and warmstarted PB2* remain the top-
performing methods for training PPO on classic control.

Hyper-hyperparameter settings The methods we propose have multiple hyper-hyperparameters whose
values we set for the experiments. For the RGPE weight computation, we sampled 100 bootstraps, and for
MultiTaskPB2, we used the weights to restrict ourselves to the 4 most similar tasks. From each of these
meta-task we use 100 datapoints to train the multi-task GP. During the portfolio construction, we generated
the portfolio candidates via random search. On classic control, we selected the best 2 out of 30 random
configurations, and on Brax, we selected the best out of 20. The performance is averaged over 10 seeds.

Environments We used CARL (Benjamins et al., 2023) to vary the gravity of the 4 classic control
environments (mountain_car, cart_pole, pendulum, acrobot) and the 9 Brax environments (humanoid,
halfcheetah, hopper, humanoid_standup, inverted_double_pendulum, inverted_pendulum, pusher, reacher,
and walker2d). Since CARL does not allow us to vary the gravity in all of the classic control environments,
we instead altered the mass of the robots in such environments by multiplying with the relative gravity of
the planets with respect to Earth. The different gravity values can be seen in Table 2. For classic control, we
trained the agents on each environment for 600,000 steps with a perturbation interval of 40,000. The agents
on the Brax environments were each trained for 3,000,000 steps with a perturbation interval of 200,000. We
also looked at increasing the number of training steps and trained classic control for 1,000,000 steps in Figure
7. Such an ablation was too expensive for Brax.

Table 2: Gravity variation for the RL environments. Values retrieved from https://nssdc.gsfc.
nasa.gov/planetary/factsheet/index.html

Planet Uranus Venus Saturn Earth Neptune
Gravity 8.7 8.9 9.0 9.81 11.0
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Figure 8: Performance at the end of training PPO on classic control for our meta-methods based on how
many seeds were used to make up the meta-data. On the left is normalized performance (higher is better)
and on the right is rank (lower is better).

B.2 Meta-data Requirements

In our experiments, we combined runs of PB2, using ten different seeds to create the meta-data. In this
section, we aim to determine whether this amount of meta-data is sufficient and if there is any benefit to using
more seeds. To explore this, we examine the performance of TAFPB2, MetaPriorPB2, and MultiTaskPB2
when the meta-data consists of combinations of five, ten, and fifteen runs.

The results, presented in Table 8, reveal no significant trend in the data. Of all the methods, MultiTaskPB2,
using meta-data that combined the runs of 10 seeds, performed the best. However, it is possible that
MultiTaskPB2 might benefit from more meta-data if we adjust its hyper-hyperparameters, especially the
number of points that are input to the multi-task GP from each meta-task.

B.3 General vs Individual Portfolios

When analyzing the warmstarted and vanilla versions of PB2* in Section 5.2, we observe that warmstarting
does not significantly affect performance on Brax, but it did enhance initial performance on classic control.
This difference may be due to the broader range of environments that Brax encompasses, making it harder
for a general portfolio to optimize effectively. Using meta-features to select an individual portfolio for each
task is a way to avoid this limitation. In this section, we compare the performance of individual portfolios
with our general portfolio. We employ the same algorithm outlined in Section 4.4 to construct individual
portfolios, but we limit the performance matrix to environments sharing the same base environment, thereby
avoiding the use of meta-features.

Figure 9 shows the visualizations of the two portfolio types on Brax and classic control. Note that in
our general portfolio approach, we also have different portfolios for each environment; these portfolios are
not optimized for the given environment but are a result of our leave-one-out strategy that excludes the
performance of all configurations on the target environment. In both environment families, we see that
the general portfolios often do not contain the best configurations. Examples include pendulum on classic
control and walker2d, hopper, and inverted_double_pendulum on Brax. In contrast, the individual portfolios
encompass most of the top-performing configurations.

The impact of these differences in portfolios on HPO performance is illustrated in Figure 10. We compare
PB2* warmstarted with our individual portfolio to PB2* warmstarted with our general portfolio, PB2*, and
our overall best approach MultiTaskPB2. On classic control, using the individual portfolio results in an
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(a) General portfolios on Brax
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(b) General portfolios on classic control
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(c) Individual portfolios on Brax
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(d) Individual portfolios on classic control

Figure 9: Portfolio performance matrix for Brax (left) and classic control (right). Red crosses signal that
the marked configuration is part of the portfolio for the environment. We observe that the portfolios do not
contain the best configurations for multiple environments (e.g. pendulum on classic control and walker2d,
inverted_double_pendulum on Brax). This is remedied by constructing portfolios based on the performance
of the configurations on the same base environment (bottom).

even greater initial performance boost compared to the general portfolio, this does not translate into better
final performance. On Brax, warmstarting with the individual portfolio leads to a significant improvement
in initial performance that continues through the optimization process, achieving the best final performance
among all approaches. These findings suggest that future studies should investigate the potential of using
meta-features to warmstart population-based optimization methods.
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Figure 10: Performance comparison between using individual and general portfolios for warmstarting on Brax
(top) and classic control (bottom). Warmstarting with an individual portfolio is statistically significantly
better than all other methods for anytime performance. On Brax individual portfolios are also the best
final performers. On the other hand, on classic control, individual portfolios have worse final performance
compared to a general portfolio.

B.4 Additional Similarity Weighting Results

In Section 5.3, we analyze the behavior of MultiTaskPB2 by examining the distribution of RGPE weights on
Brax. Here, we provide complementary visualizations for classic control environments and for the MetaPri-
orPB2 and TAFPB2 methods. The visualizations for MetaPriorPB2 on Brax are shown in Figure 11, and
those for TAFPB2 are shown in Figure 12. The results for all three methods on classic control environments
are presented in Figure 13.
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Figure 11: Average RGPE weights of MetaPriorPB2 for each task and all meta-tasks on Brax. The results
are in line with MetaPriorPB2.

B.5 Ablation over the Number of Workers

In our other experiments, we consistently used four parallel workers. However, in this section, we expand
our analysis to consider the use of eight and twelve workers. We compare our methods and the baselines for
these different numbers of workers in Figure 14.

Our results show that MultiTaskPB2 performs well overall, maintaining strong performance across different
worker counts. MetaPriorPB2 shows improvement and becomes comparable to MultiTaskPB2 as the number
of workers increases. Notably, when utilizing twelve workers, the warmstarting approach demonstrates the
strongest performance.
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Figure 12: Average RGPE weights of TAFPB2 for each task and all meta-tasks on Brax. The results are in
line with MetaPriorPB2. Note that the diagonal is not filled with nan’s since TAFPB2 computes how well
a GP trained on data from the target task fits the target task.

B.6 Crashed Runs on Brax

During our experiments, some training runs crashed on Brax due to divergence issues. The primary cause
of these crashes is the choice of our hyperparameter ranges, which were designed for classic control by
Parker-Holder et al. (2020a) and are less suitable for Brax.

Table 3 presents a summary of the crashed runs. PB2 was the most affected, with 27 total crashes, while
random search, MultiTaskPB2, and MetaPriorPB2 experienced the fewest crashes, with 3, 3, and 4 crashes,
respectively. The lower crash rate for random search is due to its use of constant hyperparameters. Multi-
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(a) MultiTaskPB2
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(b) MetaPriorPB2
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(c) TAFPB2

Figure 13: Average RGPE weights of TAFPB2, MetaPriorPB2, and MultiTaskPB2 for each task and all
meta-tasks on classic control. Like for Brax, the weights form a diagonal block structure. Bigger blocks can
be seen between acrobot and cart_pole and to a degree between cart_pole and pendulum.

TaskPB2 and MetaPriorPB2’s ability to avoid detrimental hyperparameter regions showcases their robust-
ness, supporting the reliability of our approaches.
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Figure 14: Ablation over the number of workers on classic control. The top shows results for 4 workers, the
middle for 8 and the bottom for 12 workers. MultiTaskPB2 shows strong performance for all numbers of
workers while warmstarting PB2* and MetaPriorPB2 have a relative benefit in performance with increased
number of workers.
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Table 3: Crashed runs algorithms

Algorithm MetaPriorPB2 MultiTaskPB2 PB2 PB2* PB2* warm PBT TAFPB2 random search
Environment
halfcheetah earth 0 0 0 0 0 0 0 0
halfcheetah neptune 0 0 0 0 0 0 0 0
halfcheetah saturn 0 0 0 0 0 0 0 0
halfcheetah uranus 0 0 0 0 0 0 0 0
halfcheetah venus 0 0 0 0 0 0 0 0
hopper earth 0 0 0 0 0 0 0 0
hopper neptune 0 0 0 0 0 0 0 0
hopper saturn 0 0 0 0 0 0 0 0
hopper uranus 0 0 0 0 0 0 0 0
hopper venus 0 0 0 0 0 0 0 0
humanoid earth 0 0 0 0 1 0 0 0
humanoid neptune 0 0 0 0 0 0 0 0
humanoid saturn 0 0 0 0 0 0 0 0
humanoid uranus 0 0 0 0 1 0 0 0
humanoid venus 0 0 0 0 0 0 0 0
humanoid_standup earth 0 0 1 0 0 0 0 0
humanoid_standup neptune 0 0 0 0 0 0 0 0
humanoid_standup saturn 0 0 0 0 0 0 0 0
humanoid_standup uranus 0 0 0 0 0 0 0 0
humanoid_standup venus 0 0 1 0 0 0 0 0
inverted_double_pendulum earth 0 0 3 1 1 0 2 0
inverted_double_pendulum neptune 0 1 3 2 2 1 5 0
inverted_double_pendulum saturn 2 1 7 2 0 4 4 0
inverted_double_pendulum uranus 1 0 2 2 2 1 2 0
inverted_double_pendulum venus 1 0 4 4 1 1 3 0
inverted_pendulum earth 0 1 0 1 1 0 0 1
inverted_pendulum neptune 0 0 1 0 0 0 1 1
inverted_pendulum saturn 0 0 1 0 0 0 2 1
inverted_pendulum uranus 0 0 1 0 0 0 1 0
inverted_pendulum venus 0 0 2 0 0 2 0 0
pusher earth 0 0 0 0 1 0 0 0
pusher neptune 0 0 1 0 1 0 0 0
pusher saturn 0 0 0 0 1 0 0 0
pusher uranus 0 0 0 0 0 0 0 0
pusher venus 0 0 0 0 1 0 0 0
reacher earth 0 0 0 0 0 0 0 0
reacher neptune 0 0 0 0 0 0 0 0
reacher saturn 0 0 0 0 0 0 0 0
reacher uranus 0 0 0 0 0 0 0 0
reacher venus 0 0 0 0 1 0 0 0
walker2d earth 0 0 0 0 0 0 0 0
walker2d neptune 0 0 0 0 0 0 0 0
walker2d saturn 0 0 0 0 0 0 0 0
walker2d uranus 0 0 0 0 0 0 0 0
walker2d venus 0 0 0 0 0 0 0 0
Sum 4 3 27 12 14 9 20 3

B.7 Raw Results

In this section, we display the raw rewards at the end of training for all environments and methods used
in our main method comparison (Section 5.2). The rewards for classic control environments are detailed in
Table 4, and those for Brax environments are listed in Table 5.
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Table 4: Average reward and standard error at the end of training on classic control.

algorithm MetaPriorPB2 MultiTaskPB2 PB2 PB2* PB2* warm PBT TAFPB2 random search
dataset
acrobot earth -79.40±1.28 -79.90±2.27 -80.18±1.61 -78.18±1.04 -79.88±1.27 -76.25±0.55 -80.95±2.48 -83.83±3.13
acrobot neptune -89.46±1.60 -86.83±1.06 -88.19±1.28 -86.56±1.33 -88.07±1.50 -85.21±1.09 -87.17±1.17 -88.29±2.05
acrobot saturn -73.39±1.78 -74.85±1.72 -74.01±1.43 -74.84±2.56 -74.21±1.64 -72.96±1.19 -74.19±0.98 -73.16±1.95
acrobot uranus -76.71±5.55 -71.28±2.66 -68.76±1.90 -71.41±2.25 -68.75±1.50 -69.90±1.72 -70.33±1.45 -71.76±1.56
acrobot venus -73.03±3.22 -72.73±1.93 -74.31±3.29 -77.48±2.87 -76.55±2.88 -72.89±1.65 -75.24±2.11 -71.91±1.65
cart_pole earth 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00
cart_pole neptune 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00
cart_pole saturn 500.00±0.00 500.00±0.00 499.48±0.52 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00
cart_pole uranus 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00
cart_pole venus 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00 500.00±0.00
mountain_car earth -130.26±12.16 -131.18±12.37 -139.77±13.24 -145.05±13.33 -100.48±1.54 -137.77±11.70 -146.69±12.32 -145.50±9.05
mountain_car neptune -144.81±10.10 -144.35±10.16 -144.60±10.44 -149.25±10.44 -114.13±2.11 -149.98±10.50 -146.49±9.64 -152.21±9.73
mountain_car saturn -131.11±12.31 -131.02±12.67 -141.82±10.99 -141.22±11.77 -98.10±1.44 -141.14±10.64 -140.23±12.01 -138.59±13.39
mountain_car uranus -127.83±12.44 -133.72±11.80 -135.94±12.16 -132.93±12.26 -98.51±2.97 -137.08±12.46 -134.23±12.14 -129.13±13.12
mountain_car venus -134.05±12.37 -133.00±12.47 -134.63±12.87 -135.30±12.82 -95.05±1.32 -139.81±11.95 -140.57±12.07 -140.16±12.64
pendulum earth -242.98±18.59 -215.39±23.16 -216.83±13.00 -220.57±19.37 -238.17±28.75 -238.13±21.94 -268.12±52.92 -220.73±26.21
pendulum neptune -256.10±29.46 -217.07±23.73 -218.04±13.21 -220.74±19.43 -211.48±28.79 -252.17±29.85 -295.98±48.61 -220.73±26.21
pendulum saturn -227.04±25.29 -213.02±21.14 -216.83±13.00 -219.51±19.46 -238.04±28.78 -252.21±23.40 -286.01±54.95 -220.73±26.21
pendulum uranus -236.29±20.67 -217.74±20.71 -224.42±14.93 -218.48±19.54 -248.17±34.88 -252.45±24.39 -271.76±45.85 -220.73±26.21
pendulum venus -265.41±18.44 -212.04±21.48 -216.83±13.00 -218.48±19.54 -238.08±28.79 -226.41±9.43 -280.74±49.15 -220.73±26.21

Table 5: Average reward and standard error at the end of training on Brax.

algorithm MetaPriorPB2 MultiTaskPB2 PB2 PB2* PB2* warm PBT TAFPB2 random search
dataset
halfcheetah earth 1298.24±63.37 1417.09±84.69 1369.25±77.61 1369.49±65.47 1266.56±47.40 1381.45±84.78 1286.77±90.79 1198.84±72.21
halfcheetah neptune 1447.59±77.68 1416.99±63.85 1440.36±59.74 1401.98±60.56 1272.20±35.37 1329.84±55.14 1406.62±58.67 1299.20±86.32
halfcheetah saturn 1351.66±106.11 1310.18±123.96 1293.64±99.07 1284.06±99.90 1108.08±26.35 1233.10±73.22 1252.88±139.29 1186.38±87.61
halfcheetah uranus 1211.14±109.14 1212.86±99.51 1229.33±132.43 1199.22±100.00 1181.52±49.39 1262.79±120.31 1198.47±111.37 1075.46±91.92
halfcheetah venus 1326.86±54.05 1312.72±46.91 1225.72±101.66 1294.17±66.66 1159.17±49.81 1241.12±92.76 1332.18±50.05 1110.89±85.70
hopper earth 660.27±23.86 726.93±19.07 685.93±34.00 682.43±27.23 690.67±28.61 752.84±23.22 710.67±22.77 646.35±24.43
hopper neptune 680.18±23.36 689.45±22.92 676.96±27.19 671.33±16.44 653.62±15.62 724.13±19.95 688.95±14.95 683.14±16.82
hopper saturn 745.99±32.34 719.04±25.27 723.02±19.00 718.91±22.67 702.23±29.30 706.41±40.01 697.23±24.30 728.69±20.88
hopper uranus 733.63±35.02 724.93±35.13 762.17±28.50 762.21±34.02 679.63±24.87 745.28±31.43 754.52±28.89 734.31±26.01
hopper venus 728.46±29.73 715.24±28.94 717.75±29.90 721.59±36.88 742.35±29.95 702.59±43.60 757.02±24.57 724.57±22.52
humanoid earth 404.77±9.42 379.64±6.48 385.83±5.88 386.08±8.56 415.66±6.02 393.57±10.86 394.75±9.60 383.76±4.01
humanoid neptune 368.57±7.88 361.79±10.42 369.60±8.40 371.90±10.50 402.83±5.76 369.13±6.17 356.29±9.35 370.82±5.94
humanoid saturn 403.81±9.54 416.16±10.57 403.66±10.70 409.13±13.29 436.46±8.80 420.11±6.56 397.12±7.07 398.29±4.78
humanoid uranus 421.16±13.51 402.81±10.92 406.51±9.29 415.79±8.94 431.10±13.96 412.09±7.16 413.35±12.42 403.54±8.28
humanoid venus 404.27±8.85 422.51±10.70 399.94±9.23 418.17±9.76 441.38±8.28 403.26±6.79 418.94±8.74 409.46±7.36
humanoid_standup earth 15071.09±263.06 15326.95±282.80 15144.32±357.49 15175.28±202.11 15840.15±360.31 15449.14±340.42 15490.03±112.57 14912.97±374.86
humanoid_standup neptune 14750.00±231.55 15508.03±196.31 15286.00±201.82 15241.48±339.27 15460.77±310.30 14995.58±333.92 15362.69±231.12 14781.66±189.12
humanoid_standup saturn 15569.94±424.35 15325.96±220.42 15523.18±326.58 14997.91±201.77 15836.01±320.84 15606.16±331.10 15384.35±301.02 15237.92±273.92
humanoid_standup uranus 15574.27±359.42 15556.93±351.34 15383.40±180.16 15450.26±324.35 15559.72±289.16 15571.07±336.62 15472.19±213.25 15097.92±394.43
humanoid_standup venus 15412.67±338.44 14976.94±179.43 15625.86±432.62 14863.67±218.01 15502.47±308.02 15260.53±282.17 15474.73±230.70 14967.62±241.89
inverted_double_pendulum earth 2317.33±207.61 2288.74±184.06 2041.60±76.59 2406.55±313.44 2914.87±625.12 2269.29±383.63 2018.35±163.15 1790.84±109.45
inverted_double_pendulum neptune 1964.66±131.49 2107.74±113.13 2013.45±124.46 1978.39±142.08 2951.25±818.72 2253.28±351.84 2232.56±266.25 1770.85±134.58
inverted_double_pendulum saturn 2009.62±138.88 2150.17±143.98 1755.09±193.71 2192.51±128.05 4091.42±681.94 2576.91±334.47 2239.90±280.99 1827.31±119.52
inverted_double_pendulum uranus 2662.54±232.24 2390.25±173.41 2341.58±269.46 2168.99±156.42 2205.95±252.96 2117.50±162.89 2257.59±269.15 1597.96±170.20
inverted_double_pendulum venus 2254.82±147.77 2271.42±139.16 2017.03±71.05 2158.85±186.12 2199.43±399.36 1813.53±105.78 2299.24±160.00 1740.61±94.51
inverted_pendulum earth 804.46±36.68 862.76±30.91 780.84±54.07 799.91±46.62 902.24±41.24 830.42±41.66 851.53±39.29 704.78±55.58
inverted_pendulum neptune 809.60±16.01 842.74±51.32 794.41±41.03 731.21±56.04 956.44±18.76 766.27±64.73 837.28±30.11 754.82±48.19
inverted_pendulum saturn 783.85±49.98 798.93±39.52 830.80±40.41 818.36±39.13 949.45±19.76 829.33±45.46 783.08±56.66 707.96±51.99
inverted_pendulum uranus 837.21±30.90 817.38±48.22 789.76±56.29 872.98±17.21 958.56±15.93 807.50±58.58 828.49±67.66 710.02±56.69
inverted_pendulum venus 821.67±40.90 829.06±39.68 868.14±33.14 859.93±44.49 909.80±35.26 825.11±63.73 822.27±42.15 715.38±64.15
pusher earth -1312.38±278.64 -1112.88±222.44 -1072.36±161.52 -1744.33±411.55 -1201.31±273.90 -894.35±133.19 -892.58±121.61 -869.27±178.16
pusher neptune -1080.77±195.92 -1042.90±195.39 -1085.76±195.45 -842.46±119.13 -1443.96±343.86 -775.35±34.41 -958.06±145.01 -884.10±114.19
pusher saturn -1363.24±218.56 -787.08±78.07 -1472.34±252.47 -1053.19±171.18 -1792.26±397.92 -874.96±115.52 -986.72±140.44 -1509.28±302.25
pusher uranus -1024.84±94.57 -1025.57±200.46 -1143.05±209.17 -835.22±65.40 -1276.92±185.30 -964.43±183.80 -983.23±127.32 -1226.61±235.12
pusher venus -1165.77±109.89 -979.44±181.48 -1001.89±113.94 -1786.47±388.82 -989.84±126.28 -969.73±161.02 -1123.15±220.39 -1254.35±175.35
reacher earth -127.13±9.39 -127.08±8.52 -116.19±8.90 -130.28±7.72 -163.53±9.80 -132.18±10.82 -125.36±7.88 -69.09±3.10
reacher neptune -120.52±8.97 -117.74±10.56 -127.49±11.35 -117.46±9.91 -150.79±6.02 -120.91±8.81 -124.09±11.69 -75.92±4.27
reacher saturn -135.61±7.87 -135.54±7.57 -139.13±6.37 -134.98±6.13 -159.89±5.79 -128.39±8.88 -140.82±6.51 -72.24±3.49
reacher uranus -128.50±9.29 -111.66±12.92 -127.80±12.80 -123.17±10.61 -160.32±5.28 -106.69±9.92 -122.99±11.47 -67.55±3.83
reacher venus -128.52±7.52 -135.53±7.59 -133.24±7.10 -129.61±6.66 -162.77±12.27 -127.84±10.51 -125.66±9.49 -73.92±4.40
walker2d earth 533.33±35.11 554.08±36.38 497.08±23.13 560.46±34.99 472.29±21.06 532.12±31.66 564.42±41.73 470.66±9.92
walker2d neptune 477.85±14.71 466.67±17.53 452.49±24.10 468.06±18.19 449.31±30.71 502.02±36.18 495.70±17.19 491.05±14.92
walker2d saturn 544.88±24.64 546.21±19.35 504.69±12.32 513.96±10.34 501.25±11.28 520.55±24.78 578.57±57.13 480.43±8.62
walker2d uranus 603.82±49.26 602.40±57.29 534.52±19.51 579.88±41.28 478.63±22.67 540.96±39.58 580.59±46.77 523.32±21.35
walker2d venus 539.88±27.54 588.04±25.65 518.03±30.71 565.84±23.18 476.70±20.70 544.60±31.30 574.90±29.46 502.04±15.44

B.8 Individual Training Plots

In this section, we display the individual training plots for all base environments with the default earth
gravity. We show the mean reward and standard error. Table 16 contains the training plots for Brax, and
Table 15 contains the plots for classic control.
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Figure 15: Training plots with earth gravity (default value) for all Brax environments. MultiTaskPB2 is
consistently one of the top-performing methods, showing its robustness. It is notable that warmstarted PB2*
is the best-performing method on some environments (e.g. humanoid and inverted_pendulum) while being
the worst performing on others (e.g. reacher and walker2d).
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Figure 16: Training plots with earth gravity (default value) for all classic control environments. Multi-
TaskPB2 is consistently one of the top-performing methods, showing its robustness. Warmstarted PB2*, on
the other hand, performs inconsistently. In mountain_car, it performs exceptionally well, while it performs
poorly on acrobot.
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