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Abstract

Real-world datasets are often corrupted with noise. Probabilistic models are developed for
learning in such scenarios, particularly where data samples are noisy and uncertainty needs
to be considered, due to their probabilistic inference framework. Various types of proba-
bilistic models, such as the Bayesian Gaussian Process Latent Variable Model (BGPLVM),
are widely used in learning problems that emphasize uncertainty. However, despite the
promising results from these probabilistic models, an analytic performance analysis with
noise-corrupted uncertain data has not yet been conducted. In this paper, we focus on
the BGPLVM and propose to analyze the performance upper bound of probabilistic mod-
els for clustering tasks quantitatively. We review the BGPLVM and propose an analytic
performance upper bound, defined as the minimum probability of false alarm for cluster-
ing problems with datasets corrupted by Gaussian noise. This upper bound represents the
best performance achievable by any clustering algorithm, regardless of the specific algorithm
used, with BGPLVM serving as the means of dimensionality reduction. The results derived
from Gaussian noise scenarios are then generalized to non-Gaussian scenarios. Numerical
results are provided to validate our proposed performance upper bound of the BGPLVM in
clustering tasks with noise-corrupted data. This framework can be generalized to evaluate
the performance upper bound of a wide class of probabilistic models.

1 Introduction

Probabilistic models are a cornerstone of machine learning, offering a structured approach to dealing with
uncertainty and variability in data. These models use probability distributions to describe the inherent
uncertainties in data and model parameters, allowing for more flexible and robust inferences. By accounting
for noise and uncertainty, probabilistic models can provide more reliable predictions and insights compared
to deterministic models. They are particularly useful in real-world applications where data is often noisy,
incomplete, or ambiguous. Examples of probabilistic models include Bayesian networks (Friedman et al.,
1997; Kitson et al., 2023; Margaritis et al., 2003), hidden Markov models (Rabiner & Juang, 1986; Fine
et al., 1998; Eddy, 2004), and Gaussian processes (Williams & Rasmussen, 1995; McHutchon & Rasmussen,
2011; Damianou & Lawrence, 2013; Liu et al., 2020; Wilson et al., 2020), each of which applies probabilistic
reasoning to different types of data and learning tasks.

Among the prevailing probabilistic models, Gaussian Processes (GPs) are a powerful type of probabilistic
model defined by a mean function and a covariance function, which together describe a distribution over
possible functions that fit the observed data. This allows GPs to provide not just predictions but also uncer-
tainty estimates for those predictions, making them particularly valuable in scenarios where understanding
the confidence in the predictions is important. The Bayesian Gaussian Process Latent Variable Model (BG-
PLVM) (Titsias & Lawrence, 2010; de Souza et al., 2021; Gundersen et al., 2021; Lalchand et al., 2022),
an extension of GP, inherits the advantages of the original GP while introducing additional capabilities.
BGPLVM is a multiple-output GP regression model where only the output data are given, and the inputs
are unobserved latent variables. This model can be applied to clustering and other unsupervised learning
tasks. In BGPLVM, the latent variables are not integrated out but are instead optimized during the learn-
ing process. This approach makes the model more tractable and allows for efficient inference. BGPLVM
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introduces a variational inference framework to train the model, facilitating Bayesian nonlinear dimension-
ality reduction. This framework approximates the posterior distribution of the latent variables and model
parameters, making it possible to handle high-dimensional data and complex probabilistic structures.

In real-world datasets, the obtained data are often corrupted by noise. This can occur due to inaccuracies in
human data annotation, sensor noise during data collection, and other factors. Learning from noise-corrupted
datasets is a significant challenge and an important area of research (Li et al., 2019a; 2021; Niyogi et al.,
2011). Additionally, safe learning, a prominent research topic, focuses on developing algorithms that not only
perform well but also provide guarantees or quantifiable metrics regarding their performance, robustness,
and reliability when dealing with noisy data samples (Li et al., 2019b; Wu et al., 2021; Lütjens et al., 2019).

Several researchers have focused on developing novel Gaussian Process models to enhance the performance
of regression and clustering tasks with noise-corrupted data (Goldberg et al., 1997; Villacampa-Calvo et al.,
2021; Liu et al., 2022). The proposed algorithms have demonstrated promising performance on various noise-
corrupted datasets. However, to our knowledge, an analytic performance analysis of using Gaussian process
models for clustering problems has not been conducted. Quantitative error analyses for learning algorithms
with noise-corrupted datasets are also rare. Although deriving performance bounds for complex machine
learning models is a challenging task (Lui et al., 2018), the probabilistic inference structure of Gaussian
process models makes it feasible to derive performance bounds. However, this has not yet been addressed in
the literature.

The paper is organized as follows. First, we provide a brief review of the Bayesian Gaussian Process Latent
Variable Model (BGPLVM), with a focus on its evidence lower bound. Next, we analyze the effect of additive
noise in the observations on the variational posterior distribution in the latent space. We then formulate
the clustering problem as a multiple hypothesis testing problem and use the Chernoff-Stein Lemma to relate
the KL divergence in the latent space to the probability of false alarm. We derive a performance upper
bound, defined as the minimum probability of false alarm (PF ), for noise-corrupted data clustering using
BGPLVM. This bound is independent of specific clustering algorithms, making it broadly applicable to real-
world scenarios. Finally, we provide simulation results on a Single-Cell qPCR dataset to verify the theoretical
bound.

2 Bayesian Gaussian Process Latent Variable Model

Following the definition of BGPLVM in (McHutchon & Rasmussen, 2011), let Y ∈ RN×D be the observation
data set where N is the number of observations and D is the dimensionality of each data vector. And we
assume the data are associated with latent variables X ∈ RN×Q. And as BGPLVM is used for dimension
reduction, we have Q ≪ D. The BGPLVM defines a generative mapping from the latent space to observation
space which is governed by Gaussian processes. If the GPs are taken to be independent across the features
then the likelihood function is written as

p(Y | X) =
D∏

d=1
p (yd | X) (1)

p (yd | X) = N
(
yd | 0, KNN + β−1IN

)
(2)

where yd represents the dth column of Y . KNN is the N× N covariance matrix defined by the kernel function
k (x, x′). equation 1 gives the likelihood function of a multiple-output GP regression model where the vectors
of different outputs are drawn independently from the same Gaussian process prior which is evaluated at
the inputs X. Since X is a latent variable, a prior density given by the standard normal density is assigned

p(X) =
N∏

n=1
N (xn | 0, IQ)

where each xn is the nth row of X. Now the joint probability model for the BGPLVM model is

p(Y, X) = p(Y | X)p(X).
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The marginal likelihood of the data

p(Y ) =
∫

p(Y | X)p(X)dX.

But the quantity is intractable as X appears non-linearly inside the inverse of the covariance matrix KNN +
β−1IN . Thus we seek to apply an approximate variational inference procedure where an approximate of the
true posterior distribution, i.e. q(X) is introduced to approximate the true posterior distribution p(X | Y )
over the latent variables,

q(X) =
N∏

n=1
N (xn | µn, Sn) (3)

where the variational parameters are {µn, Sn}N
n=1. Here for simplicity, Sn is taken to be a diagonal covariance

matrix. By using this variational distribution we can express an evidence lower bound on the log p(Y ) that
takes the form (Titsias & Lawrence, 2010)

F (q)

=
∫

q(X) log p(Y | X)p(X)
q(X) dX

=
∫

q(X) log p(Y | X)dX −
∫

q(X) log q(X)
p(X)dX

= F̃ (q) − KL(q∥p)

where the second term is the KL divergence between the variational posterior distribution q(X) and the
prior distribution p(X, Y ). And the goal of BGPLVM is to obtain max F (q).

In real-world datasets, the observations are always corrupted with noise. In the following theorem, we first
look into the minimum KL divergence with additive noise for the BGPLVM.
Lemma 1 (Additive Noise (Polyanskiy & Wu, 2014)).

Y = X + Z, Z ⊥ X

⇔ p(Y | X = x) = p(x + Z)
⇔ p(Y = y, X = x) = p(x + Z)p(X = x)

where Z is an independent additive noise.
Theorem 2 (Minimum KLD with additive Gaussian noise). For training data corrupted with additive
Gaussian noise Z, the noise-corrupted observation can be denoted as Y = Y + Z, where Y is the noise-free
data, and Z ∼ N

(
0, σ2)

. Then FN (qN ) is maximized when the variational posterior distribution with noise
qN (X, Z) = q(X)p(Y + Z).

Proof. By Lemma 1, we have
pN (Y, Z | X) = p(Y = Y | X)p(Y + Z),

where the true latent variables X are not affected by the noise Z, making them independent. The evidence
lower bound with noise data can then be written as

FN (qN )

=
∫∫

qN (X, Z) log pN (Y, Z | X)p(X)
qN (X, Z) dXdZ

=
∫∫

qN (X, Z) log p(Y = Y | X)p(Y + Z)p(X)
qN (X, Z) dXdZ
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where qN (X, Z) corresponds to the approximate variational posterior distribution with noise corrupted data.
By (Polyanskiy & Wu, 2014)[Corollary 2.1], we further have

arg max
qN (X,Z)

FN (qN ) = q(X)q(Z).

Then we have
FN (qN (X, Z))

≤F̃N (q(X)) − KL(q(X)∥p(X)) − KL(q(Z)∥p(Y + Z))
with equality achieved if and only if qN (X, Z) = q(X)q(Z).

Because KL(q(Z)∥p(Y + Z)) ≥ 0, then we have

max FN (qN (X, Z)) =
F̃N (q(X)) − KL(q(Z)∥p(Y + Z))
⇐⇒ p(Y + Z) = q(Z).

(4)

By Theorem 2, we can conclude that additive Gaussian noise in the observation space is captured by the
variational posterior distribution in the latent space.

3 Clustering Performance and KL Divergence

In the previous section, we analyzed the relationship between the KL divergences and the noise of the
observation data. As our task is to investigate the performance of clustering using BGPLVM with noise
corrupted data, we first propose a metric to characterize the performance.

3.1 Probability of False Alarm and Clustering

The probability of false alarm is associated with Type I error in hypothesis testing, i.e., the probability of
falsely rejecting the null hypothesis. Meanwhile, clustering problems can be regarded as multiple hypothesis
testing.

Assume a set C which are the true categories of all data samples. Denote the M subsets of the ground-truth
categories as {Ci}M

i=1. Then the clustering problem can be considered as the problem of simultaneously
testing a null hypothesis Hi

0 against the alternative hypothesis Hi
1, for i = 1, . . . , M . The null hypothesis

and alternative hypothesis can be written as:

Hi
0 : observation Y ∗ /∈ Ci Hi

1 : observation Y ∗ ∈ Ci.

If we further assume that each data sample has a unique category, only one alternative hypothesis Hi
1 will

be accepted. In this regard, we could regard the clustering algorithm as a detector. Denoting the clustering
results using BGPLVM and an arbitrary detection algorithm, by the hypothesis testing as Ĉi, the hypothesis
testing problem can then be formulated as

H0 : observation Y ∗ /∈ Ĉi H1 : observation Y ∗ ∈ Ĉi.

Then a false alarm occurs when H0 is rejected but Y ∗ /∈ Ĉi. In the setting of this paper, it is equivalent to
Ĉi ̸= Ci.

For the clustering problems, we are interested in the error (misclustering) rate (Dalmaijer et al., 2022). The
error rate can be written as a sum of probability of false alarm of each category, i.e. PF =

∑M
i=1 P i

F , if each
observed point is classified into a category.

Now the clustering problem has been written in a hypothesis testing manner. In the Chernoff-Stein lemma,
the relationship between KL divergence and the probability of false alarm has been proved. This lemma
enables us to analyze the performance of a clustering (detection) problem, in the sense of the probability of
false alarm, by the KL divergence.
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3.2 Probability of False Alarm and KL Divergence

As to relate the KL divergence to the probability of false alarm, we first review the Chernoff-Stein Lemma.
Lemma 3 (Chernoff-Stein Lemma (Cover, 1999)). Let Y1, Y2, . . . , YN be i.i.d. samples drawn from a distri-
bution Q ∈ P(Y). Consider the hypothesis test with the null hypothesis

H0 : Q = P0

and the alternative hypothesis
H1 : Q = P1.

Assume that the Kullback-Leibler divergence KL(P0∥P1) is finite.

Define AN ⊂ YN as the acceptance region for the null hypothesis H0. The probabilities of error are given
by:

P N
M (AN ) .= P N

0 (Ac
N ) (Type I error)

and
P N

F (AN ) .= P N
1 (AN ) (Type II error).

For a given ϵ ∈ (0, 1), define P N∗
F (ϵ) as:

P N∗
F (ϵ) .= min

{
P N

F (AN ) : P N
M (AN ) ≤ ϵ

}
,

where AN ranges over all subsets of YN .

The Chernoff-Stein lemma states that for every ϵ ∈ (0, 1),

lim
N→∞

− 1
N

log P N∗
F (ϵ) = KL(P0∥P1).

Remark. Lemma 3 reveals the fact that regardless of the constant upper bound on the type-I error, the type-
II error always behaves as P N∗

F (ϵ) = 2−NKL(P0∥P1), with a relatively large N . This provides an operational
meaning of the relative entropy KL (P0∥P1) as the best exponent for discriminating the two distributions
P0 and P1. However, when an arbitrary clustering algorithm is applied to the latent space obtained by the
BGPLVM and the probability of false alarm is denoted as P N

F , we have

lim
N→∞

− 1
N

log P N
F (ϵ) ≤ lim

N→∞
− 1

N
log P N∗

F (ϵ) = KL (P0∥P1) .

In real-world datasets, the dimension of the data sample is always limited, i.e. N < ∞, we have

− 1
N

log P N
F (ϵ) ≤ lim

N→∞
− 1

N
log P N

F (ϵ).

Lemma 3 reveals the relationship between the KL divergence and the probability of false alarm. In the
following part of this section, we apply it to observe the probability of false alarm for the BGPLVM. We
denote the observation data corrupted by a bias as Y̆ = Y + b, where ·̆ denotes the bias. To examine
performance under noise, the observation corrupted with additive noise is denoted as Y̆1 = Y̆ + Z1. The
observation corrupted solely with additive noise Z2 is denoted as Y2 = Y + Z2. The posterior distributions
of the two types of observations approximated by BGPLVM are denoted as q(X | b, Z1) and q(X | 0, Z2).
Then, the probability of false alarm for BGPLVM is derived in the following lemma.
Lemma 4 (Probability of False Alarm of BGPLVM for Clustering). Denote the probability of a false alarm
for clustering using BGPLVM as P̆ N

F (with bias and noise) and P N
F (with noise only) respectively, then

− 1
N

log P̆ N
F = l (KL (q (X | b, Z1) ∥q (X | 0, Z2))) ,

− 1
N

log P N
F = l (KL (q (X | 0, Z1) ∥q (X | 0, Z2))) ,

where 0 ≤ l(x) ≤ x and l(x1)
x1

≤ l(x2)
x2

, given 0 ≤ x1 ≤ x2.
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Proof. By Lemma 3, we have

− 1
N

log P̆ N
F ≤ lim

N→∞
− 1

N
log P̆ N

F ≤ KL (q (X | b, Z1) ∥q (X | 0, Z2)) ,

and
− 1

N
log P N

F ≤ lim
N→∞

− 1
N

log P N
F

≤ KL (q (X | 0, Z1) ∥q (X | 0, Z2)) .

We note that the same detector, represented by l(·), is used in the clustering problem. The condition
l(x1)

x1
≤ l(x2)

x2
holds because, as the KL divergence increases, the detection problem with additive noise

becomes easier and its performance approaches that of the problem without noise. An illustrative example
of l(·) is given in Figure 5 in Appendix A.

3.3 Calculation of PF

In this subsection, we calculate PF to give an analytic solution to the performance upper bound of the
clustering using BGPLVM. By Theorem 2, we can obtain

KL (q (X | b, Z1) ∥q (X | 0, Z2)) = KL(q(X | b, 0)∥q(X | 0, 0)) + KL (q (Z1) ∥q (Z2)) . (5)

equation 5 reveals the fact that the KL divergence term can be segmented into two terms, one is the KL
divergence of difference in the latent space and the other one is the KL divergence of the noises.

So far, we have derived the KL divergences in the BGPLVM with additive Gaussian noise. We will then
proceed to calculate the probability of false alarm, PF , using the derived KL divergences.
Lemma 5 (Probabilities of false alarm without difference).

log P̆ N
F

log P N
F

≤ KL (q (X | b, Z1) ∥q (X | 0, Z2))
KL (q (X | 0, Z1) ∥q (X | 0, Z2)) (6)

Proof. By Theorem 3, we obtain

log P̆ N
F

log P N
F

= l (KL (q (X | b, Z1) ∥q (X | 0, Z2)))
l (KL (q (X | 0, Z1) ∥q (X | 0, Z2))) . (7)

The proof then follows directly from the Law of Sines.

Theorem 6 (Performance Upper Bound PF Corrupted with Additive Noise Z1).

log P̆ N
F

≥
(

1 + KL(q(X | b, 0)∥q(X | 0, 0))
KL (q(Z1)∥q(Z2))

)
· log P N

F

(8)

Proof. By equation 6 and Theorem 2, and due to log PF < 0, we have equation 9, which completes the proof.

We have now obtained the least probability of false alarm, which is the performance upper bound of BGPLVM
for clustering with noise-corrupted data.

By Theorem 3.3, we observe that as the difference between the observation and the trained model increases,
the lower bound of PF decreases. Conversely, as the additive Gaussian noise increases, the lower bound of
PF increases. This reveals how the additive Gaussian noise affects the performance of BGPLVM in clustering
noise-corrupted data.
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log P̆ N
F ≥ KL (q (X | b, Z1) ∥q (X | 0, Z2))

KL (q (X | 0, Z1) ∥q (X | 0, Z2)) log P N
F = KL(q(X | b, 0)∥q(X | 0, 0)) + KL (q(Z1)∥q(Z2))

KL (q(Z1)∥q(Z2)) log P N
F

=
(

1 + KL(q(X | b, 0)∥q(X | 0, 0))
KL (q(Z1)∥q(Z2))

)
log P N

F .

(9)

3.4 A Generalization to Non-Gaussian Noises

For the results in the previous sections, we have mainly focused on the performance upper bound analysis
of the Gaussian noises. However, the analysis in this paper could be generalized to non-Gaussian noises.

Since p(Y +Z1) is not Gaussian, equation 4 is not valid any longer, where q(Z1) is Gaussian in the BGPLVM.
Under this circumstance, the noise learned by the BGPLVM in the latent space is the Gaussian distribution
which is closest to the non-Gaussian distribution, namely

q(Z1) = arg min
q(Z1)∈N

KL(q(Z1)∥p(Y + Z1)). (10)

where N denotes the set of all Gaussian distributions. The performance upper bound equation 8 is then
calculated by q(Z1) in equation 10.

4 Numerical Results

In the previous sections, we have proposed a performance upper bound of the clustering task with noise-
corrupted data samples, when BGPLVM and an arbitrary clustering algorithm in low dimension is used.
To demonstrate the performance upper bound, in the sense of probability of false alarm, when BGPLVM
is utilized for dimension reduction in real clustering tasks, we consider the clustering of cells using the
Single-Cell quantitative polymerase chain reaction (qPCR) Dataset (Guo et al., 2010).

Single-cell qPCR (Isakova et al., 2021) is a powerful technique used to measure gene expression at the level
of individual cells. This method provides a high-resolution view of cellular heterogeneity, which is crucial
for understanding various biological processes, such as development, disease progression, and response to
treatments. However, the noises are prevalent in Single-cell qPCR, due to the following reasons. Firstly,
single cells inherently exhibit biological variability due to differences in gene expression levels, cell cycle
stages, and metabolic states. Moreover, isolating and handling single cells is technically challenging and can
introduce errors, such as incomplete cell lysis or mRNA degradation. The sensitivity and inaccuracies of the
qPCR instrument in detecting fluorescence are not ignorable either, leading to noises in the measurement.

In Theorem 6, an upper bound of performance for clustering using the BGPLVM, in the sense of the
probability of false alarm, is derived. However, in general, it is not feasible to directly obtain KL(q(X |
b, 0)∥q(X | 0, 0)). Indeed, the integral can be approximated by Monte-Carlo approximation. For each
simulation i in I simulations in total, we draw 2M samples from the whole dataset and separate them
into two subsets, each with M samples. Train the two subsets by BGPLVM, and obtain the corresponding
variational posterior distribution as q(X|bM1,i

, 0) and q(X|bM2,i
, 0). Then by equation 3 we have

KL(q(X | b, 0)∥q(X | 0, 0)) =
∫

q(X | b, 0) log q(X | b, 0)
q(X | 0, 0)dX

≈ N

M · I

I∑
i=1

∫
q(X|bM1,i , 0) log

q(X|bM1,i
, 0)

q(X|bM2,i , 0)dX.

(11)

However, calculating KL(q(X | b, 0)∥q(X | 0, 0)) can be complicated, especially when the number of data
samples is large in the dataset. Since our training data is labeled, practically it is more convenient for us
to calculate KL(q(X | b, 0)∥q(X | 0, 0)) by the probabilities of false alarm by simulation with small noises
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added to the training data. σ2
2 in equation 8 could be given prior (e.g. by the specifications of the sensor).

If not available, we can pick a small value of σ2
2 . Then this value could be approximated by

1 + KL(q(X|b,0)∥q(X|0,0))
KL(q(σ̂2

11)∥q(Z2))
1 + KL(q(X|b,0)∥q(X|0,0))

KL(q(σ̂2
12)∥q(Z2))

≈ log P̂F (σ̂11)
log P̂F (σ̂12)

, (12)

where σ̂2
11 and σ̂2

12 are two small positive values of the variances. KL
(
q(σ̂2

11)∥q(Z2)
)

and KL
(
q(σ̂2

12)∥q(Z2)
)

denote the KL (q(Z1)∥q(Z2)) with respect to Z1 ∼ N (0, σ̂2
11) and Z1 ∼ N (0, σ̂2

12) correspondingly. P̂F

here denotes the probability of false alarm by numerical simulations, which is to distinguish it from PF , the
theoretical lower bound of the probability of false alarm. P̂F (σ̂11) and P̂F (σ̂12) correspond to Z1 ∼ N (0, σ̂2

11)
and Z1 ∼ N (0, σ̂2

12) respectively. Details of the approximation is given in Appendix A.

This dataset consists of single-cell qPCR data for 48 genes obtained from mice, which is available at the
Open Data Science repository. The data fall within 10 catogories. We generate the additive Gaussian noise
sequence with σ1 ranging from 0.1 to 0.6, and add it to the raw training data samples. We choose σ̂2

11 = 0.252

and σ̂2
12 = 0.352 in this simulation. The simulation results show that when σ2

2 is small enough, the increase
of lower bound of PF with the decrease of σ2

2 is very small. The number of samples with the label of one
class classified mistakenly to another class (denoted NF ) is obtained with different σ2

1 . Then PF = NF

N is
the probability of false alarm from experiment. Optimal performance lower bound of PF is calculated for
comparison.

Figure 1: Simulation results of clustering the noise-corrupted single-cell qPCR data using a GMM, with
dimension reduction performed by BGPLVM. The upper left, upper right, lower left, lower right subfigures
correspond to the data without noise, and with noise at standard deviations of σ = 0.2, 0.4, 0.6 respectively.

Figure 1 shows the clustering results of the dimension-reduced data samples in the latent space obtained via
BGPLVM, utilizing the Gaussian Mixture Model (GMM) with the standard deviation of the additive noise
being σ1 = 0, 0.2, 0.4, 0.6. Figure 2 provides a comparison between the estimated false alarm probability P̂F

derived from numerical simulations and the theoretical false alarm probability PF calculated based on our

8
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Figure 2: The probability of false alarm obtained from the simulation results and the proposed theoretical
minimum probability of false alarm as a function of the standard deviation of the additive noise.

proposed method. The simulation results validate our performance upper bound as the minimum probability
of false alarm.

In the simulations, we observe that when the additive Gaussian noise is small, the false alarm probability pF

obtained from the simulation is close to the theoretical bound. However, when the noise variance increases,
the clustering results exhibit a larger p̂F compared to the theoretical bound. This discrepancy can be
attributed partly to the relatively small dimensionality of the data (48 dimensions). Additionally, the
theoretical bound is derived under the assumption that the number of data samples approaches infinity,
whereas our simulation is conducted with a finite sample size of 437 data samples.

The proposed theoretical bound provides a quantifiable performance upper bound, representing the first
quantitative safety measure for noise-corrupted data in clustering tasks, to the best of our knowledge. This
bound offers the best analytic performance under certain noise levels, which is highly significant for safe
learning applications where safety and reliability are crucial. Furthermore, the implications of this paper
extend beyond the clustering problem itself, as the results can be generalized to a wide class of probabilistic
models. This work underscores the significant potential of probabilistic models in safe learning tasks.

We have present a comparison of the performance upper bound for clustering the Single-cell qPCR dataset
using the BGPLVM with the simulation results. The simulation results demonstrate that the simulated P̂F

consistently exceeds the theoretical minimum PF across all standard deviations of the additive Gaussian
noise. As discussed in Section 3, we assert that this performance upper bound can also be extended to
non-Gaussian noises, significantly enhancing the practical value of this bound in real engineering scenarios.
In this section, we will put forward simulations on clustering of the Single-cell qPCR dataset using the
BGPLVM and the GMM. Simulation settings follow those in Section 4, except for that the additive noise
Z1 is a Rayleigh distribution

Z1 ∼ R(σ) = x

σ2 e−x2/(2σ2), x ≥ 0,

9
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of which the mean is σ
√

π
2 and the variance is σ2 (

2 − π
2

)
. By equation 10, we have that

q(Z1) = N
(

σ

√
π

2 , σ2
(

2 − π

2

))
.

We could then calculate KL(q(X | b, 0)∥q(X | 0, 0)) by

1 + KL(q(X|b,0)∥q(X|0,0))
KL(q(Z1,1)∥q(Z2))

1 + KL(q(X|b,0)∥q(X|0,0))
KL(q(Z1,2)∥q(Z2))

= log P̂F (Z1,1)
log P̂F (Z1,2)

,

where Z1,1 ∼ N (σ̂11
√

π
2 , σ̂2

11
(
2 − π

2
)
) and Z1,2 ∼ N (σ̂12

√
π
2 , σ̂2

12
(
2 − π

2
)
). σ̂11 and σ̂12 are two small positive

values, namely the scale parameters of the Rayleigh distributions Z1,1 and Z1,2. In this simulation, we take
σ̂11 = 0.25 and σ̂12 = 0.35 respectively.

The simulation results on the additive noise following Rayleigh distribution also validate our proposed
theoretical performance upper bound.

Figure 3: Simulated P̂F and the proposed theoretical minimum PF as a function of the standard deviation
of the additive noise.
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Figure 4: Simulation results of clustering the noise-corrupted single-cell qPCR data using a GMM, with
dimension reduction performed by BGPLVM. The upper left, upper right, lower left, lower right subfigures
correspond to the data with Rayleigh noise at scale parameters of σ = 0.1, 0.2, 0.3, 0.4 respectively.

5 Conclusions

The probabilistic models have been widely used in learning problems where uncertainty is an important issue,
e.g. the data are corrupted with noises. However, in spite of the promising results of these algorithms in
numerous real-world applications, their performance in learning tasks with noise-corrupted dataset has not
yet been quantitatively analyzed in the literature. In this paper, we propose to analyze the upper bound of
performance of BGPLVM for the clustering task, enabled by the transparent probabilistic inference structure
of this probabilistic model. The performance upper bound has merit in the clustering tasks by BGPLVM,
but can also be generalized to a broader class of probabilistic models. The numerical simulation results for
the additive Gaussian noises and Rayleigh noises are given to validate the proposed theoretical performance
bound. The results of this paper reveal the superiority of the probabilistic models in safe learning tasks
where safety and quantifiable error are strongly desired.

Broader Impact Statement

Although the performance upper bound is given for the clustering task using GPLVM, it can be extended to
other probabilistic models for other learning tasks. It provides a quantitative performance deterioration of a
probabilistic model with noise, which is quite significant for learning problems with noises however requiring
a desired performance guarantee.

A Function l(·) and the approximation details

In this appendix, we begin by providing an illustrative example of the function l(·), which meets the conditions
0 ≤ l(x) ≤ x and l(x1)

x1
≤ l(x2)

x2
for 0 ≤ x1 ≤ x2. This illustration is shown in Figure 5. The closer the red

curve is to the blue one, the clustering(detection) algorithm has better performance.
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Figure 5: The function − 1
N · log P N

F for the ideal detector and a practical detector as a function of the
Kullback-Leibler distance, with a large N .

Next, we provide a detailed explanation of the approximation in equation 12. Let us define:

KL⊕(σ) := KL
(
q(σ2)∥q(Z2)

)
+ KL(q(X | b, 0)∥q(X | 0, 0))

Using equation 7, we obtain:

log P̂F (σ̂11)
log P̂F (σ̂12)

= l (KL⊕(σ̂11))
l (KL⊕(σ̂12)) ,

where σ̂2
11 represents the inherent noise in the dataset. This means that P̂F (σ̂11) is calculated without adding

any additional noise to the original dataset. On the other hand, σ̂2
12 = σ̂2

11 + 0.12, where 0.12 is the variance
of the added noise, which is independent of the inherent noise, leading to the direct summation of their
variances.

We observe in Figure 5 that when selecting a relatively small pair of σ̂2
11 and σ̂2

12, the slopes are approximately
equal

l (KL⊕(σ̂11))
KL⊕(σ̂11) ≈ l (KL⊕(σ̂12))

KL⊕(σ̂12) ,

resulting in

log P̂F (σ̂11)
log P̂F (σ̂12)

= l (KL⊕(σ̂11))
l (KL⊕(σ̂12)) ≈ KL⊕(σ̂11)

KL⊕(σ̂12) .

This leads to the approximation given in equation 12.
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