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Abstract

We introduce the first large-scale dataset and benchmark for non-categorical an-1

notation and clustering of 3D CAD models. We use the geometric data of the2

ABC dataset, and we develop an interface to allow expert mechanical engineers3

to efficiently annotate pairwise CAD model similarities, which we use to evaluate4

the performance of seven baseline deep clustering methods. Our dataset contains5

a manually annotated subset of 22, 968 shapes, and 252, 648 annotations. Our6

dataset is the first to directly target deep clustering algorithms for geometric shapes,7

and we believe it will be an important building block to analyze and utilize the mas-8

sive 3D shape collections that are starting to appear in deep geometric computing.9

Our results suggest that, differently from the already mature shape classification10

algorithms, deep clustering algorithms for 3D CAD models are in their infancy and11

there is much room for improving their performance.12

1 Introduction13

Figure 1: The overview of Cluster3D via a subset of clustering results from a baseline (DeepCluster),
demonstrating the challenges of classification-based labeling in our task, due to many non-standard
mechanical components (green). Each section shows some random CAD models in the same cluster.
A red section shows a cluster with annotation violations highlighted at the red objects.

Shape classification is a core component in many modern 3D computer vision pipelines, and for14

which many datasets and benchmarks have been introduced in the last decade, usually focusing on a15

small number of object classes.16

∗Equal contributions.
†Equal contributions.
‡The corresponding authors are Chen Feng cfeng@nyu.edu and Daniele Panozzo panozzo@nyu.edu.

Submitted to the 35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets
and Benchmarks. Do not distribute.

https://cluster3d.github.io/


With the advent of large geometric collections of data, it is natural to expect that harder classification17

tasks will be solvable using modern data-driven classification approaches. However, we discovered18

that when the number of categorical classes becomes large and hierarchical, the task becomes very19

challenging. Even annotation of such object classes by human experts may yield varying classification20

labels, particularly because the necessary contextual information about the objects themselves are21

unavailable. We attempted to annotate the ABC dataset [35], which is composed of 1 million 3D22

CAD models, manually modeled by hobbyists and experts alike. The dataset has very complex23

and unbalanced class distributions, i.e., essentially being non-categorical. This makes the problem24

intractable even by our subject matter expert annotators (graduate students in mechanical engineering).25

One may easily see such annotation challenges when trying to name each group of objects in Figure 1.26

Despite the challenges, without an automatic way to classify shapes, the practical utility of large27

geometric collections is hindered, especially considering that manual annotation is economically28

unfeasible at large scale, if not impossible to carry out due to incomplete information on the design29

intent of the original asset creator. Even when design information or engineering specifications are30

available, the content is in text form that cannot be easily related to features of the 3D model. The31

obvious alternative to supervised shape classification is the use of an unsupervised clustering method32

to group shapes, helping in both the annotation process and in the dataset exploration.33

Surprisingly, we could not find any large-scale dataset or benchmark for deep clustering of collections34

of 3D shapes, especially non-categorical ones where clustering is more useful. To fill this gap, we35

propose to construct such a dataset based on the ABC dataset. Because of the non-categorical feature,36

we cannot annotate each object with a class label. Instead, we propose to annotate the pairwise 3D37

shape similarity relationship. Although it might sound even more intractable, we allow experts to38

focus on a small subset of carefully selected pairs (instead of all the pairs) to provide useful and39

scalable annotation. We developed a web-based user interface to implement this annotation workflow40

and to annotate 252, 648 selected pairwise similarities on 22, 968 ABC objects.41

We benchmark seven clustering baseline methods to analyze the properties of our dataset. These42

clustering methods can be classified into two types: 1) two-stage clustering and 2) end-to-end deep43

clustering. For the two-stage clustering approach, we first perform deep representation learning on44

3D mechanical components to extract high dimensional features, using pre-trained neural networks.45

Then we apply classic clustering algorithms, like KMeans [40], to group these learned features into46

different clusters. For end-to-end deep clustering methods, we combine representation learning,47

dimensionality reduction, and clustering in an end-to-end framework. Based on either the ground48

truth annotations or CAD model distance metrics, we respectively apply either external or internal49

cluster validation indexes [53] to evaluate their performances. Particularly, since we are the first50

to use similarity-based annotations, we need to design an external cluster validation index. We51

propose two formulations: one measuring the pairwise similarity accuracy, and the other measuring52

the compactness for the cluster elements.53

We discovered that the performance of existing deep clustering methods is still insufficient for the54

automatic clustering of large datasets, and there is a lot of room for algorithmic improvement. We55

believe that our dataset will help by providing an objective metric on a large dataset specifically56

designed for this task. We plan to continue collecting data and periodically update the dataset. The57

dataset data, the annotation software, the implementation of all baseline methods, and scripts to run58

the evaluations are publicly released as open source using the MIT license.59

In summary, our contributions are the following:60

• To the best of our knowledge, Cluster3D is the first dataset focusing on non-categorical61

annotation for 3D mechanical components, which could stimulate a new direction for deep62

clustering on large-scale mechanical component collections.63

• We propose a scalable and effective pairwise similarity annotation workflow, implemented64

in a graphical user interface, to allow experts to efficiently label a large number of object65

pairs (for a total of 252, 648 annotation pairs per annotator).66

• We design/adapt 7 clustering methods on our dataset and benchmark their performances.67

• We propose 2 external cluster evaluation indexes to evaluate the clustering results, using68

the similarity annotation. Also, we analyze our evaluation metrics, comparing them with69

several internal cluster evaluation indexes.70
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2 Related Work71

We cover the related works more closely related to our main contributions: (1) large datasets of 3D72

models, (2) approaches for annotating 3D datasets, and (3) clustering algorithms and corresponding73

evaluation metrics.74

3D mechanical object datasets. Large-scale 3D object datasets are routinely used for classification,75

instance segmentation, and shape reconstruction tasks [62, 43, 72, 10]. However, these datasets focus76

on a small group of categories, where each object can be uniquely and reliably be classified. Recently,77

large datasets of mechanical components have been introduced, which dramatically increase the78

difficulty in identifying and classifying 3D parts, due to their self-similarity and, generally, larger79

number of categories. Annotation of mechanical components requires more effort since the labeling80

work for such a dataset needs subject matter expertise rather than just common sense [34]. MCB [34]81

contains 58, 696 components and 68 categories. The Fabwave dataset [2] contains 46 classes of82

standardized part categories, with 4000 variations under each of the standard part classes. Smaller83

datasets have been introduced in AAD [6] and ESB [31]. These datasets have been constructed by84

selecting components from a certain number of classes.85

The ABC dataset[35] is different, as it was obtained by scraping all the public data available from86

OnShape. It contains more than one million mechanical components, and a large proportion of these87

components are non-standard, which means that are not belonging to standardized categories. The88

combination of massive scale and non-standard components makes it challenging to build a taxonomy89

on the dataset, even for our expert annotators. The number of classes and objects in each class90

does not fully represent the diversity of standard and non-standard parts seen in the product design91

category. In certain object categories, specific annotation labels do not depend on the shape alone but92

also its dimension and eventual intended application. For example, a fastener such as a washer and a93

gasket may look exactly the same, but the label categories vary based on the material specification94

and dimensions of the part. Annotation based on shape alone can lead to erroneous labeling and can95

often confuse annotators particularly when the true design intent of the user is not known or when the96

product assembly context is unknown.97

Our Cluster3D dataset tackles this challenge directly, recasting the classification problem as an98

unsupervised clustering problem. To the best of our knowledge, our dataset is the first specifically99

designed for training and evaluating deep clustering methods on non-categorical 3D shapes.100

Interfaces for 3D models annotation. Web-based platforms are commonly used for annotation101

acquisition since they require no front-end installation by annotators and the cloud infrastructure can102

support large 3D model datasets. MCB [34] developed a web-based platform with 3D viewers to103

provide enough information of 3D objects for annotation. ShapeNet [10] and PartNet [43] present104

web-based interface allows operating on 3D models and hierarchical 3D part annotation. The focus105

of these interfaces is segmentation and classification. In this work, we introduce a web interface that106

enables efficient large-scale similarity annotation tailored for non-categorical datasets.107

Unsupervised 3D representation learning. Hand-crafted 3D descriptors has been studied as108

geometry-based methods [56], view-based methods[45, 61, 20, 11], or hybrid methods [37]. For109

3D deep representation learning, these methods can be classified into point cloud-based method,110

view-based method, and volume-based method, depending on the different input data formats. Unlike111

supervised 3D deep learning that requires class labels [50, 51, 39, 70, 66], self-supervised methods112

are more suitable in our context. For example, Foldingnet [76], Atlasnet [24], TearingNet [47],113

and [1, 80, 12] are a series of work investigating the autoencoder architecture to learn the latent114

representation of point clouds. Rendered images from different views could also be used to learn115

3D shape representations [54, 22, 26]. VConv-DAE [60] uses an autoencoder to learn the latent116

representation of 3D objects with voxel as input. A 3D shape descriptor network was also proposed117

to model volumetric represented objects[73]. Any of these descriptors, both hand-crafted and learned,118

can be used with the deep clustering methods discussed next.119

Deep clustering methods. Deep clustering adopts deep neural networks to learn clustering-friendly120

representations [42] by integrating representation learning and clustering into an end-to-end model.121

The optimizing objectives are the network parameters and the clustering results. For a deep neural122

network, autoencoder-based models are widely used. DEC [28] is a classic deep clustering method:123

it first pre-trains the autoencoder with network loss for a few epochs, then fine-tunes the encoder124

network by optimizing KL divergence. DBC [38] achieves better clustering results compared to125
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DEC using a convolutional autoencoder instead of a feed-forward autoencoder. For DCN [74], the126

autoencoder network is pre-trained first, then the autoencoder network is jointly optimized with the127

K-means clustering results. Other methods, like DCC [58] and DEPICT [21], differ from DCN in128

that they use different clustering loss functions. Generative model-based deep clustering, such as129

variational autoencoder based method [33] and generative adversarial network based method [13],130

have also been studied. SCAN [67] relies on a two-step process for representation learning and131

clustering respectively. [32] maximizes mutual information for the clustering. DeepCluster uses the132

initial clustering results as pseudo labels for supervised training [8].133

All these methods have been designed for 2D images but are adaptable to work on 3D object dataset134

by changing the features they use. We adapt 7 of these methods [24, 66, 23, 28, 67, 32, 8] to work on135

3D models, and benchmark them on our newly introduced dataset for the first time.136

Clustering evaluation metrics. To evaluate the success of a clustering algorithm and to enable137

objective comparisons between different methods requires an evaluation metric. While the choice is138

more obvious for supervised approaches, the situation is more challenging for clustering, especially139

in our setting where the entities involved are 3D models, which lack a canonical representation.140

An ideal clustering result should maximize the intercluster distance (compactness), and minimize141

the intracluster distance (separability) [53]. The evaluation metrics can be classified into two major142

classes: external validation indexes and internal validation indexes [25].143

External validation indexes use previous knowledge about the data to evaluate the clustering re-144

sults [25]. In the computer vision community, the most common indexes are unsupervised clustering145

accuracy [77], normalized mutual information [69, 71], and adjusted rand index [29, 68]. Unsuper-146

vised clustering accuracy is the equivalent of usual classification accuracy, with the difference that147

it requires a mapping function to find the best mapping between the cluster assignment output and148

ground truth labels. Normalized mutual information measures the mutual dependencies between the149

cluster assignment and ground truth labels. Adjusted rand index is the corrected-for-chance version150

of the rand index [52], which measures the similarity between two clustering by comparing the all151

data pairs in the two clustering dataset. Besides, F-measure [65], entropy [59], purity [57] and other152

metrics [64] can also be applied.153

The annotation matrix in our dataset can serve as the previous knowledge of the data for external154

evaluation. However, most of these indexes are using node labels rather than edge labels. Therefore,155

besides using [3] as one of the evaluation metric in our dataset, we also propose another evaluation156

metric to understand and analyze the baseline results, inspired by the purity index [57].157

Internal validation indexes use the information intrinsic to the data [53], avoiding the need for158

additional external information [79]. Internal criteria can be further divided into two research159

topics [48]: 1) measurement of the fit of the cluster assignment and the inherent structure of the data160

and 2) the stability of the clustering results [48]. To measure the fit between the cluster results and161

structure of the data, compactness and separability is evaluated by computing the distances between162

clustered samples using the Dunn [17], Davies-Bouldin [15], Calinski-Harabasz [7], silhouette163

coefficient [55], and many other indexes in the literature [41]. An in-depth study on the stability of164

the clustering results, we refer to [5, 44, 36].165

In our dataset, by defining the distance as Chamfer distance [4] or Jaccard distance [18], we can use166

these internal evaluation indexes. Particularly, we choose to use silhouette coefficient [55]. This167

index does not require the cluster centroid, which is more appropriate for our clustering results.168

3 Cluster3D Dataset169

We view the Cluster3D dataset as an undirected complete graph G(V, E). The node set V contains170

each 3D CAD model in Cluster3D as a node v. Naturally, an edge ei,j ∈ {+1,−1, 0} in the edge set171

E stores the similarity annotation of two 3D CAD models vi and vj mentioned in the introduction.172

The edge labels +1,−1, and 0 respectively indicate similar, dissimilar, and unknown relationship173

between two nodes. Next, we first explain how we create the Cluster3D dataset, and then discuss174

several important design considerations.175
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Figure 2: Cluster3D creation workflow.

3.1 Dataset creation workflow176

We use the workflow illustrated in Figure 2 with the following major steps to create Cluster3D.177

Step 1: Data Cleaning. We use the first four chunks of the ABC dataset [35]. We filter out all blank178

files and all files containing assemblies instead of single components, obtaining a dataset of 22, 968179

CAD models.180

Step 2: Similarity Annotation. Since 3D CAD models are non-categorical, it is challenging to181

assign object class labels for each node in Cluster3D. Instead, we propose to manually annotate a182

small set of carefully sampled edges storing the pairwise CAD model similarity. This novel scalable183

and efficient edge-based annotation is divided into two steps.184

Step 2.1: Cluster Initialization. Before manual annotation, we first grouped all the CAD models into185

a set of initial clusters {Ck| ∪∀k Ck = V, Ck ∩ Cl = ∅ ∀k 6= l, and |Ck| ≤ T, ∀k}, each containing186

no more than T = 12 CAD models, using a clustering method detailed in section 3.2. We then187

automatically assigned label 0 (meaning unknown) to all the edges across different clusters, i.e.,188

ei,j = 0 ⇐⇒ vi ∈ Ck, vj ∈ Cl, and k 6= l.189

Step 2.2: Human Annotation. We only manually annotate the edges residing inside the same initial190

cluster, i.e., ei,j 6= 0 ⇐⇒ ∃k ∈ [1,KI ], vi ∈ Ck, vj ∈ Ck, thus reducing considerably the191

human annotation cost. A number A = 3 of mechanical engineers served as our experts to provide192

their CAD model similarity annotations independently. For each one of the above initial clusters,193

e.g., Ck, an annotator has to either confirm that CAD models inside Ck are all similar to each194

other, or further divide the cluster into smaller clusters until such confirmations can be made for195

each smaller clusters. The confirmation of a cluster Cl assigns all internal edges with the positive196

label +1, i.e., ei,j = +1 ⇐⇒ vi ∈ Cl, vj ∈ Cl. Dividing a cluster Cl into smaller clusters197

{Clt |t ∈ Z+,∪∀t Clt = Cl} assigns all edges across those small clusters with the negative label −1,198

i.e., ei,j = −1 ⇐⇒ vi ∈ Clt , vj ∈ Cls , s 6= t. We record each annotator independently, i.e., the a-th199

annotator’s annotation forms a complete edge set Ea over the same node set.200

3.2 Design Decisions on the Annotation Workflow201

Why manually annotate similarity? Although it has been widely used in geometry processing and202

machine learning, the concept of similarity can be vague and ambiguous when applied to 3D CAD203

models in Cluster3D. To determine whether two 3D models are similar or not algorithmically, there204

are two main criteria: geometric distribution similarity [63, 27, 19, 46] and visual similarity [11].205

Yet for human beings, the mechanism to determine the similarity between two CAD models is often206

based on unconscious background knowledge [75, 16], which might be different from the similarity207

judgment encoded in existing algorithms [75, 14]. Therefore, even with mathematically defined 3D208

object similarity metrics, acquiring large-scale human annotations for pairwise CAD object similarity209

is still important to capture the underlying background knowledge.210
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Reasons for cluster initialization. We acknowledge that the choice of cluster initialization could211

introduce bias in our data collection, as a different clustering method would lead to a different subset212

of annotated edges. However, we argue that it is unavoidable, due to the sheer size of the dataset: it is213

impossible for human experts to annotate all the similarity relationships between one CAD model214

and all the remaining CAD models, as the quadratic number of edges is intractable. It would take 16215

years of annotation time, assuming a 1 second time to annotate each edge in Cluster3D.216

The most obvious, and unbiased approach, to restrict the manual annotation to a subset of the edges217

would be to do random sampling. This is however not an option for Cluster3D, as the sampling would218

be too unbalanced, as most of the edges indicate dissimilarity between objects. We needed a strategy219

that would give us a more or less even split between similar and dissimilar edges so that we could use220

the annotations to evaluate clustering methods in a balanced way.221

After experimenting with different approaches, we found a method that, in our dataset, leads to a222

reasonable 1 to 1 ratio of similar and dissimilar edges: we use a clustering algorithm to overcluster223

the dataset in small clusters of 12 objects, and then ask users to annotate all edges within each cluster.224

Overall, this approach allowed us to get a good distribution of edge labels while annotating only225

0.5% of the entries in our similarity matrix, making the annotation problem tractable with our budget226

and resources.227

Details for cluster initialization. For cluster initialization, we use the MVCNN [66] based method.228

We opted for this method as it is the only image-based clustering method in our baselines, and in229

this way, we can do a fair comparison of the remaining six methods that are all using a point cloud230

representation.231

Specifically, we first generate 12 images for all 22, 968 CAD models in our dataset, following the232

original settings in [66]. We use all these 12× 22, 968 images to train a convolutional auto-encoder233

network. Then the trained encoder is used to extract features for all these images. For each CAD234

model, we concatenate the twelve latent vectors from its corresponding 12 images to represent235

its features. Finally, 22, 968 features representing all the CAD models are clustered by KMeans236

algorithm. With the K number in KMeans setting to be 2, 000, we have two thousand initial clusters237

for the human annotators. We continue to split the clusters with more than 12 models in the class238

using KMeans, until the contained number of models is not greater than 12. These clustered CAD239

models can be loaded into our database for annotation.240

Annotation interface. We developed a web-based annotation application. The interface shows CAD241

models of one cluster at a time: it shows the 12 CAD models with checkbox, and initially all 12242

checkbox are set to be checked. The annotators manually unmark the models which are considered243

dissimilar from the others, effectively annotating all edges linking the 12 models in the cluster. After244

confirmation, a new set of 12 models is shown.245

Conflicts in annotations. We use one single annotated similarity matrix as the final outcome of our246

annotation procedure. In case of conflicts between different annotators, the majority wins. Note that247

for the final evaluation we also consider the individual similarity matrices of the different annotators.248

Data statistics. Cluster3D has 22, 968 number of CAD models; therefore, totally there will be249

22, 968× 22, 968 number of similar or dissimilar edges between every two CAD models. Among250

them, 275, 616 edges are labeled by three human experts respectively. For the first annotator, 155, 960251

edges are labeled as 1, representing these CAD model pairs are similar, and 119, 656 are labeled252

as −1, meaning these pairs are dissimilar. For the second and third annotator, they have labeled253

130 442, 145 174 similar edges, and 205 582, 70 034 dissimilar edges respectively. We also check254

the consistency of the three annotators’ labeling. Here consistency means the three annotator’s label255

for a specific edge is the same. The total number of consistent label is 172, 554, occupying 62.6%256

of the labeled edges. In the next release, we will double the number A and we expect to see higher257

consistency among the annotations.258

4 Cluster3D Benchmark259

4.1 Baseline methods260

We adapt seven baseline methods to establish a benchmark for clustering algorithms. We divide261

these baseline methods into two types: 1) two-stage clustering, and 2) end-to-end deep clustering.262
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Two-stage clustering methods use a deep neural network to extract features for all CAD models,263

then apply a traditional clustering algorithm, such as KMeans. End-to-end deep clustering baseline264

methods integrate feature extraction and clustering in one framework: during the training process265

both network loss and clustering loss are minimized. Note that all these methods are considered as266

partitional clustering [9], i.e. one CAD model will only fall into one cluster.267

Since some of the baseline methods are designed for 2D images, we adapt them for 3D CAD models.268

We use either point cloud or multi-view images as the representation format, and select suitable deep269

neural networks. A detailed description of all networks can be found in the supplementary.270

Two-stage clustering.271

MVCNN: We describe this algorithm in Section 3.272

AtlasNet: To compute cluster of 3D point clouds using Atlasnet, we follow the original auto-encoder273

architecture to reconstruct 3D point cloud for each input 3D CAD object, and then predict latent274

vectors based on the encoder of the trained model. The CAD objects are clustered by using KMeans275

on the obtained latent features.276

BYOL: BYOL is proposed to compute self-supervised image representation learning. We replace the277

image encoder (ResNet) with a point cloud encoder (PointNet) to learn a representation of a 3D CAD278

shape. We then apply the KMeans algorithm on the learned latent representation to cluster CAD279

objects.280

End-to-end deep clustering.281

DEC: To adapt the DEC algorithm, we initialize DEC with the AtlasNet architecture to auto-encode282

3D point clouds as the input data. The deep auto-encoder is trained to minimize Chamfer loss and283

learns representations of the 3D shapes. We then follow the DEC algorithm by discarding the decoder284

layers and use the encoder layers as the initial mapping between the data and feature space. This285

is followed by joint optimization of the cluster centers and encoder parameters using SGD with286

momentum.287

DeepCluster: We replace the convolution networks trained by the DeepClustering algorithm to use288

PointNet instead for encoding the point cloud data to predict cluster assignments. The algorithm is289

followed by alternating between clustering of the point cloud feature descriptors using K-Means and290

training the PointNet network using the multinomial logistic loss function.291

IIC: Instead of the original IIC method for unsupervised image semantic task, we first randomly292

transform a CAD model to a pair of point clouds, and use PointNet as encoder to maximize mutual293

information between the class assignments of each pair. The trained model directly outputs class294

labels for each 3D CAD model.295

SCAN: We adjust the pretext stage: Instead of using noise contrastive estimation (NCE) to determine296

the nearest neighbors, we use the auto-encoder of AtlasNet we have trained to output the feature297

vectors to generate the nearest neighbors set.298

4.2 Evaluation Metrics299

As discussed in Section 2, external and internal indexes are used for evaluating clustering results.300

External validation indexes. We evaluate the clustering results of the baseline methods using three301

external validation indexes: pair-wise accuracy, intra-cluster purity, and inter-cluster purity.302

Pair-wise accuracy. It is natural to compare the pair-wise clustering results with the annotated simi-303

larity matrix, which is the evaluation metric in correlation clustering [3]. We note that the similarity304

matrix is an undirected graph G(V, E) on N nodes. Let eij denote the label of the edge relationship305

between object i, j, and eij = eji. E = {eij} denote all the edges. G′ = (V ′, E′) is the subgraph of306

of G, which is only composed of the known labels. E′ = {eij |eij = 1 ∨ eij = −1, eij ∈ E}. For307

the clustering results obtained from the baseline methods, êij denote the clustered edge relationship308

between object i, j. If objects i, j are grouped into the same cluster, we assume the two objects309

are similar, therefore êij = 1. Otherwise êij = −1. The pair-wise accuracy is defined as: acc =310 ∑
eij∈E′

|êij−eij |
2n(E′) , where n(E′) is the number of elements in E′. The range of the pair-wise accuracy311

is [0, 1].312
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Intra-cluster purity. The pair-wise accuracy might miss information, since the clustering performance313

can be also evaluated cluster-wise [78]. The concept of purity [57] in node-labeled clustering314

evaluation inspired us, as it is used to evaluate the extent at which one cluster contains one single315

class. Similarly, we propose intra-cluster purity to detect the false positive edges in each cluster.316

Intuitively, the intra-cluster purity metric measures the extent at which each cluster contains similar317

edges. Let K denote the number of cluster, S = {s1, s2, ..., sK} denote the set of the number of318

labeled similar edges in each cluster, T = {t1, t2, ..., tK} denote the set of the number of all known319

edges in each cluster. T ′ = {t′i|ti 6= 0, ti ∈ T} denote the subset of T , where only those clusters320

with at least one labeled edge are considered. Intra-cluster purity is defined as: 1
n(T ′)

∑n(T ′)
i=1

∣∣∣ sit′i ∣∣∣.321

The range of inter-cluster purity is [0, 1]; 0 means the worst clustering result, and 1 means the best322

clustering result.323

Internal validation indexes. It is not meaningful to use cluster centroids in our case, since the324

features of the CAD models are in high dimension. Therefore, we opt for the silhouette coefficient [55]325

method, which is widely used and does not require cluster centroids. Based on its definition, we need326

to determine the distance between every two objects. In our dataset, the objects are 3D CAD models327

which can be represented as point cloud or voxel. Therefore, we choose to use Chamfer distance [4]328

and Jaccard distance [18] as two distances between every two CAD models.329

5 Benchmark Results and Discussions330

Experiment settings. All the baseline methods are implemented using PyTorch [49] and run331

on an NVIDIA GeForce GTX 1080 Ti GPU. For hyperparameter settings, we tune learn-332

ing rate and batch size for each baseline method. The learning rates for MVCNN-based333

method, Atlasnet-based method, BYOL-based method, DEC, DeepCluster, IIC, and SCAN are334

0.0001, 0.001, 0.0003, 0.00001, 0.05, 0.0003, 0.0001 respectively. The batch sizes for these methods335

are 60, 11, 10, 128, 50, 10, 96 respectively.336

Clustering results using external evaluation metrics. Figure 3-(Pair-wise accuracy) shows the337

benchmark results on the Cluster3D dataset, using the pair-wise accuracy and intra-cluster purity338

as external evaluation metrics. Since we do not known a priori the number of clusters in ABC, we339

test our baseline methods on seven different number of K, from 32 to 2, 000, following exponential340

growth.341

All baseline methods perform well with respect to intra-cluster accuracy, but their pair-wise accuracy342

is much lower. Figure 3-(Intra-cluster purity) shows that all baseline methods can achieve intra-cluster343

accuracy higher than 0.8 for all K. Some of the baseline methods can even achieve accuracy higher344

than 0.9 when K is no less than 128. However, for pair-wise accuracy(Figure 3-(pair-wise accuracy))345

results, it reveals that all these deep neural networks do not obtain enough ability to group similar346

CAD models, with their accuracy lower than 0.7.347

Sensitivity to the cluster number K. Figure 3-(Pair-wise accuracy) shows that most of the baseline348

methods’ performances decrease as K increases. We hypothesize that it is due to the imbalance of349

the annotated similarity matrix. There are a total of 431, 576 edges labeled as similar, and 395, 272350

edges labeled as dissimilar for the three annotators. Therefore, we think the annotated similarity351

matrix might be biased towards the clustering results which have more similar pair predictions. For352

each baseline method, if the number of clusters K increases, the CAD models will be more separate,353

causing more dissimilar pair predictions.354

Figure 3-(Intra-cluster purity) shows that larger number of K increase most baseline methods’355

performances. We believe it is because of the definition of intra-cluster accuracy. When K becomes356

larger, the CAD models will be grouped into more clusters, which causes each cluster to be more357

pure. By definition, the more pure the clusters are, the higher the intra-cluster accuracy will be.358

Surprisingly, end-to-end deep clustering methods do not outperform two-stage clustering methods.359

As shown in Figure 3-(Pairwise accracy), there is no obvious evidence showing higher performances360

of end-to-end methods (DeepCluster, DEC, IIC, SCAN), compared to two-stage clustering methods361

(AtlasNet-based method, BYOL-based method). Therefore, we believe it is necessary to study how362

to take the advantage of the clustering loss when we are training a deep neural network.363
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MVCNN-base method is the only image-based method, and it was used during annotation: we364

believe these are the reason why it behaves noticeably differently than the other methods based on365

point clouds. Figure 3-(Intra-cluster purity) shows the performance of MVCNN-based method is366

significantly lower than all other methods. Also, the MVCNN-based method is not as sensitive to the367

K value as other methods.368

It still requires effort to study why some baseline methods perform differently than the overall trend369

with other methods. Although most of the baseline methods show the same trend when the number of370

K increases, SCAN and IIC are different. For SCAN, the input K is used as the maximum number371

of clusters. Indeed, the actual number of cluster is often smaller than K, and it might be the reason372

that SCAN performances differently.373

Figure 3: Cluster3D benchmark results.

Clustering results using internal evaluation metric. Figure 3-(Chamfer distance) shows the bench-374

mark results using the silhouette score as internal evaluation metric. Using Chamfer distance and375

Jaccard distance lead to similar performances.376

For all methods, we find that the clusters are not obvious different or even wrongly assigned,377

since most of the silhouette score is below 0. Second, the AtlasNet-based method, DEC, SCAN378

methods perform better when the number of cluster K increases, while other baseline methods show379

the opposite trend. Future investigation should be conducted to further understand this peculiar380

phenomenon.381

5.1 Limitations and discussion382

The major challenge in our study is the very high cost of annotating a similarity matrix which has a383

quadratic number of entries with respect to the number of objects in the dataset. We introduced a384

technique to reduce the annotation cost, but it is possible that the filtering introduced a bias in the385

annotations. This bias could be reduced by picking multiple initial clustering methods, which we386

plan to explore in the future.387

The different evaluation metrics lead to different ranking for these baseline methods, suggesting that388

they evaluate different criteria. Identifying which metric is best for specific applications would be389

crucial to guide the development of clustering algorithms, and we believe it is an interesting venue390

for future work in deep clustering of 3D CAD models.391

6 Conclusion392

Cluster3D is a manually annotated dataset for the development and evaluation of clustering393

algorithms on 3D CAD models. We introduce the dataset, two external evaluation metrics394

based on the matrix, and benchmarked seven state-of-the-art clustering methods. Our conclu-395

sion is that the gap between human annotators and state-of-the-art methods is large: we be-396

lieve our dataset will be an important resource to improve clustering methods for 3D geome-397

try.398
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