
CodeXData: Do Code Generating Language Models Understand Data?

Anonymous ACL submission

Abstract

Large language models (LLMs) are effec-001
tive at code generation. Some code tasks,002
such as data wrangling or analysis, can be003
data-dependent. We introduce two novel tax-004
onomies to characterize (1) the extent to which005
a code generation task depends on data and (2)006
the effect of data redaction. We curate two new007
datasets for Python code generation from nat-008
ural language for data-centric tasks. We eval-009
uate these datasets by varying configurations010
over our taxonomies and find that code gen-011
eration performance varies based on the task012
class, data redaction, and prompting strategy.013
This is the first empirical measurement of the014
impact of data in the NL-to-code setting using015
LLMs for data-centric tasks.016

1 Introduction017

Large language models (LLMs) like OpenAI’s018

Codex model (Chen et al., 2021) have demon-019

strated impressive results on coding tasks, includ-020

ing code snippet generation and competitive cod-021

ing (Li et al., 2022a). Within this space, some022

code generation tasks are dependent on a concrete023

dataset. Data wrangling and tabular data analy-024

sis, often found in computational notebooks and025

in spreadsheets, are two such examples.026

It is difficult to complete a task such as “ex-027

tract the street name from each address” without028

knowing the data the task is targeting–can we ex-029

pect code generating models to work without data?030

To answer this question we study whether aug-031

menting prompts with data can unlock latent ca-032

pabilities within LLMs. “Extract the street name033

from each address” is an under-specified query,034

but when paired with address data, Codex can syn-035

thesise the correct regular expression.036

Although prompting with data has potential to037

improve code generation, there are practical con-038

siderations that limit data availability. Resources039

such as bandwidth, memory, and time all impose040

constraints; a client can be limited to a subset of 041

a large dataset, or the prompt can be limited to a 042

small set of tokens. Privacy concerns can restrict 043

the types of data that can be used, such as per- 044

sonally identifiable information, and where or how 045

the data can be transmitted. The data source it- 046

self may impose constraints, such as data obtained 047

from ever-changing streams where only a snapshot 048

can be provided to a model. 049

Code generation using LLMs is therefore a com- 050

bination of the data required by a given task, and 051

the data available for the task. 052

We introduce two new taxonomies for code gen- 053

eration from natural language to capture the nu- 054

ances of these data requirements. 055

The first concerns the extent to which interpret- 056

ing a task depends on the data presented to the 057

task. A task can be data independent, where the 058

query itself provides sufficient information for the 059

model, such as “return the unique values from 060

column Location”. A task can be data depen- 061

dent, such as extracting the street name from an 062

address (described previously), where the query 063

lacks data-specific information required by the 064

model. Finally, a task can be externally depen- 065

dent, where the query requires knowledge outside 066

the task (and a particular API if a certain API is 067

considered) such as “create a new column that ver- 068

ifies that Year is an election year in the USA”. 069

Second, we define a taxonomy for redacting 070

task data. Given our focus on queries over tabu- 071

lar data, we define our taxonomy in terms of the 072

column headers and data rows of a table. Follow- 073

ing data redaction, a task has access (1) to either 074

the original column headers or simply an anony- 075

mous schema (generated headers such as “Col1”), 076

and (2) to none, some, or all of the table rows. 077

To explore the impact of our taxonomies on 078

code generation, we curate two new datasets. Each 079

datapoint in our datasets consists of a textual 080

query, a data input (column-major-flat table), and 081

1

an expected correct output (extra columns). Our082

first dataset is sourced from questions on Stack-083

Overflow1 requesting help to solve a problem in084

spreadsheets. These tasks are not specific to the085

languages such as Python or SQL that are predom-086

inantly used to train language models. To better087

understand performance on type-specific atomic088

tasks or the impact of noise in the data, we created089

a second synthetic dataset with curated types and090

queries based on questions arising on the Stack-091

Overflow and Mr. Excel2 forums.092

Using these datasets and taxonomies we eval-093

uate CODEXDATA, our algorithm to turn natu-094

ral language into code for querying tabular data.095

CODEXDATA queries Codex with a prompt that096

combines both task description and task data to097

generate Python code that uses the Pandas API as098

shown in Figure 1. We chose Codex because there099

is significant evidence for its performance from100

prior research and from practical usage in Github101

Copilot (Friedman, 2021). We select Pandas be-102

cause Codex was trained on a significant amount103

of Python, and Pandas is likely the most common104

table manipulation library for Python.105

As our study is a first step towards understand-106

ing the relationship of code generation with data in107

LLMs, we scoped our exploration to enable a fo-108

cused analysis, and to mitigate confounders. Ex-109

panding to multi-table inputs or hierarchical tables110

requires further research into how to encode the111

data, and we do not have any guarantees that our112

conclusions will hold in other settings.113

In summary, our central contribution is the first114

empirical study that measures the impact of data115

(single column-major-flat table) in the NL-to-code116

(NL-to-Pandas) setting using LLMs (Codex) for117

data-centric tasks. To support this, we make the118

following additional contributions:119

• We define two novel data-centric task tax-120

onomies. The first characterises the data re-121

quired to complete a task. The second char-122

acterises the data redacted for a given task.123

• We curate two new datasets to explore the124

impact of our taxonomies on code gener-125

ation. The first data set is a collection of126

real spreadsheet problems from StackOver-127

flow. The second dataset is a synthetic bench-128

1https://stackoverflow.com/questions/tagged/excel-
formula

2https://www.mrexcel.com/board/forums/excel-
questions.10/

mark designed to evaluate performance on 129

the different types of data, and the impact of 130

noise. 131

• We study how data redaction affects the per- 132

formance (pass@k) for different task classes. 133

On data-dependent tasks, redaction halves 134

pass@k, whereas it makes little difference 135

to data independent tasks (Figure 2). Over- 136

all, removing the data leads to a drop of 20- 137

45% (depending on the dataset), but it takes 138

just one example row, with our prompting 139

method, to restore performance to within 5% 140

of the full data performance (Figure 3). 141

2 Background and Related work 142

Many systems based on LLMs, such as Codex 143

(Chen et al., 2021) or PaLM (Chowdhery et al., 144

2022), tackle code generation. These pre-trained 145

models can be enhanced with the goal of improv- 146

ing the performance of code generation in spe- 147

cific domains (e.g. for Python or SQL: Jigsaw 148

(Jain et al., 2022), CodeT (Chen et al., 2022), 149

CodexDB (Trummer, 2022), CCTest (Li et al., 150

2022b)). There is a body of work focusing on ex- 151

ploring fundamental questions related to code gen- 152

eration with LLMs, such as the impact of training 153

on a large number of diverse tasks (Chan et al., 154

2022), the length generalization (Anil et al., 2022), 155

and the compositional generalization (Shi et al., 156

2022). It has been shown that LLMs can also ac- 157

complish tasks for which they were not explicitly 158

trained. Narayan et al. (2022) show how to con- 159

vert data tasks to text generation. Additional ex- 160

amples of such tasks that LLMs can do include re- 161

verse engineering (Pearce et al., 2022), API gener- 162

ation (Hadi et al., 2022), and generation of devel- 163

opment tools (Bareiss et al., 2022). 164

We explore the question of: how does the in- 165

clusion of data impact code generation for data- 166

centric tasks? We focus on tasks where we can 167

use the Python Pandas API on column-major-flat 168

tables to produce new additional data columns. 169

This focus differentiates us from prior work 170

related to data-centric code generation. Related 171

prior work has focused on SQL tasks (Rajkumar 172

et al., 2022) from the SPIDER benchmark (Yu 173

et al., 2018) or in-place data transformations that 174

do not yield a new dataframe column (Narayan 175

et al., 2022). Prior datasets for Python genera- 176

tions (e.g. APPS (Hendrycks et al., 2021) or Hu- 177

manEval (Chen et al., 2021)) are not data-centric, 178

2

User Query Q

User Input Table T

Names

Create column with first names

User IDE (e.g., Python notebook)

…

Valid Completions C,O

Output 1

Output 10

… Completion 1

Redacted Data R

Anon Anon

Prompt P

Code executable?

Output type matches?
…

Data Description D

Type + column information

EXEC

Outputs O

VALIDATE

Completions C

…
Completion 1

Output 1 …

REDACT

DESCRIPT

CODEX

PROMPT

Create column with first names
The Column has string elements.

Completion 20

Completion 10

Names

Figure 1: This figure illustrates the components of the CODEXDATA system that transforms the user input table and
query into a list of valid completions. The data is redacted to anonymize private information. A data description
is extracted from the input table. The resulting redacted data, data description and query are used to construct
a prompt which is fed to a code synthesis LLM such as Codex, generating multiple possible completions. The
outputs of these completions are then validated and the first k valid completions (along with the outputs) are
returned to the user.

while the tasks from prior Pandas generations (e.g.179

Jain et al. (2022) or Zan et al. (2022)) do not180

have sufficient and comparable complexity, or the181

amount of data that we have used in our analysis182

(See Section 4.1 for details).183

Furthermore, we also explore the impact of both184

noise and data redaction on data-centric tasks by185

introducing novel datasets. Other related work has186

either left out consideration of these important is-187

sues, or similarly to Narayan et al. (2022), they188

have only briefly explored the role of noisy table189

attributes in LLM performance for entity match-190

ing. Narayan et al. (2022) also identify the chal-191

lenges of data privacy in LLM-based data wran-192

gling as future research, but they do not experi-193

mentally explore the impact of privacy-related de-194

cisions on performance.195

3 CodeXData: Technical Approach196

Algorithm 1 presents our inference algorithm,197

with a high-level overview shown in Figure 1. The198

algorithm takes as input a user query Q as text,199

user input table T as a Pandas dataframe, and the200

target cardinality k of distinct completions to gen-201

erate. To ensure termination within a reasonable202

Algorithm 1 CodeXData Inference Algorithm
Input: Explicit: user query Q, input table T , cardinality k.

Implicit: completion limit kmax (with k ≤ kmax).
Output: Pair of lists (C,O), with |C| = |O| ≤ k, of unique

completions and their corresponding outputs.
1: procedure CODEXDATA(Q,T, k)
2: R← REDACT(T) ▷ redact the input table
3: D ← DESCRIPT(T) ▷ extract data description
4: P ← PROMPT(Q,R,D) ▷ prompt creation
5: B,C,O ← kmax, [], [] ▷ initialize budget, caches
6: while B > 0 ∧ |C| < k do
7: c← CODEX(P) ▷ sample completion
8: B ← B − 1 ▷ decrement budget
9: o← EXEC(c, T) ▷ execute against T

10: if VALIDATE(o) ∧ (c /∈ C) then
11: C ← C + [c] ▷ append completion to C
12: O ← O + [o] ▷ append output to O

13: return (C,O)

time, we set a limit kmax on the number of calls to 203

CODEX (kmax = 8k by default). 204

As shown in Figure 1, the query Q can be 205

“create a new column with the first names” and 206

T can be DataFrame({"Names":["Mary 207

M","Emma G"]}). k can be set to 10. 208

At a high-level the algorithm: redacts the in- 209

put table (line 2) using a REDACT; extracts a data 210

description of the table using a DESCRIPT (line 211

3

3); combines the query Q, redacted data R, and212

data description D to create a prompt P (line 4);213

queries CODEX repeatedly using this prompt until214

the target completions are reached or we exceed215

the budget of calls (lines 6-12). Each completion c216

(line 7) is executed on the input table (line 9) using217

a EXEC procedure, and if the completion is new218

and its output o satisfies a VALIDATE procedure,219

the two are accumulated in C and O. The lists of220

completions and outputs are returned to the user221

(line 13). We now describe the key components in222

detail.223

3.1 Data Redactor Procedure: REDACT224

As discussed in Section 1, the need for and extent225

of data redaction depends on privacy and resource226

constraints. Users can control redaction via pro-227

cedure REDACT, which creates a redacted data R228

from the original input table T .229

We explore variations of R to examine the230

trade-off between data redaction and model per-231

formance. For our running example, the redacted232

data in no data (+ anonymous headers) and233

no data (+ actual headers) case would be234

R = DataFrame({"Anon":[]}) and R =235

DataFrame({"Names":[]}) resp. The user236

can also provide a subset of rows as R =237

DataFrame({"Names":["Mary M"]}) or238

the full dataframe with no redaction.239

3.2 Data Descriptor Procedure: DESCRIPT240

A descriptor procedure DESCRIPT extracts a data241

description D from the input table T . The descrip-242

tion can consist of: number of elements in a col-243

umn, column type, basic predicates satisfied by all244

elements of a column (e.g. all lowercase) or a reg-245

ular expression that captures a pattern of the ele-246

ments in the column (Padhi et al., 2018).247

3.3 Prompt Creation Procedure: PROMPT248

The procedure PROMPT creates a textual prompt249

by combining the user’s query, redacted data, and250

data description. We consider three strategies for251

creating this prompt in addition to the baseline252

prompt. The baseline prompt simply concatenates253

the redacted data R, and the textual query Q.254

Instruction. Instruction prompts (Mishra et al.,255

2021) bias the model by appending instructions to256

the baseline prompt, emphasizing that the comple-257

tion should have a particular property, e.g. “write258

an executable, type correct pandas solution”. (See259

Table 1 in Appendix D.)260

Example-usage. These prompts add concrete pan- 261

das usage examples in a few-shot style. We 262

prepend to the baseline prompt examples that em- 263

phasize a property. (See Table 2 in Appendix D.) 264

Data-description. Data-description prompts aug- 265

ments the baseline prompts with the data descrip- 266

tion D. (See Table 3 in Appendix D.) 267

3.4 Completion Procedure: CODEX 268

The procedure CODEX queries Codex’s Da Vinci 269

engine, passing the prompt P , a temperature de- 270

rived from k, and stop sequences found to allow 271

Codex to generate at least one solution while not 272

usually using the entire token budget. The com- 273

pletion then undergoes clean-up, such as truncat- 274

ing at the first comment after executable code, and 275

removing whitespace and comments. Further de- 276

tails can be found in Appendix E.5. 277

3.5 Execution Procedure: EXEC 278

The procedure EXEC constructs an executable 279

program by (1) rewriting the completion c to ex- 280

pose the likely answer, obtaining c′; and (2) ap- 281

pending c′ to the input table T . It executes the 282

program in a sandbox to obtain the final output o. 283

Further details can be found in Appendix E.6. 284

3.6 Validating Completions: VALIDATE 285

We validate the extracted output (e.g., for expected 286

output type) using an output validator VALIDATE. 287

The completions that pass the validator are called 288

valid completions and are returned to the user. 289

4 Experiments 290

We design our experiments to study how CodeX- 291

Data depends on the data and task class. In par- 292

ticular, we want to understand how the perfor- 293

mance changes with (a) the level of data redac- 294

tion3, (b) the data description present in the query, 295

(c) the noise level of the data, across the three 296

task classes. The task classes are of increasing 297

difficulty: (1) data-independent (IND), (2) data- 298

dependent (DEP), (3) external-dependent (EXT). 299

We also evaluate how different prompting strate- 300

gies can bridge the gap between the data required 301

and the data available. 302

4.1 Our Datasets 303

One of our main contributions is the set of Pan- 304

das datasets we curate to answer our research 305
3Full-data access, no-data access, subset-data access (in

all our experiments we use the first row only as subset).

4

questions. We curate two datasets, SOFSET and306

TYPESET, which consist of real world problems307

across diverse domains. In addition to the three308

task classes mentioned before, we classify our309

dataset tasks based on data types (strings, numbers310

names, dates, units, addresses and mixed types)311

that are popular for data-centric tasks (Table 4 in312

the appendix). Our datasets are larger and likely313

more diverse than either of two existing Pandas314

datasets, JIGSAW (Jain et al., 2022) and CERT315

(Zan et al., 2022). JIGSAW has 79 unique tasks316

with a median of 7 rows in the data and CERT has317

100 unique tasks with a median of 3 rows. On the318

other hand, SOFSET and TYPESET have 200 and319

64 unique tasks, with a median of 10 and 20 rows,320

respectively.321

SOFSET. This is a collection of 200 real world322

tasks from StackOverflow that have the tag "Ex-323

celFormulas" where the user has asked about324

spreadsheets tasks. We either use the data the325

user has added to their query, or if it is ambigu-326

ous, we create new data that matches the query.327

We also add extra data to make the data have at328

least 10 rows. We manually summarise the ver-329

bose ask into a concise query based on the title of330

the post and annotate with the desired output. We331

remove post identifiers for anonymization. Across332

all task classes, SOFSET contains complex real333

world problems with various corner cases, espe-334

cially the ones in DEP and EXT task classes.335

TYPESET. To evaluate performance across the336

three task classes, we curate the TYPESET dataset337

with type-specific tasks. This dataset is a col-338

lection of 64 tasks (queries plus pandas solu-339

tions) mostly of type dates and addresses. These340

type-specific columns are sourced from Sher-341

lock (Hulsebos et al., 2019), AutoType (Yan and342

He, 2018) or Wikidata (Vrandecic and Krötzsch,343

2014). We manually annotate the queries along344

with Pandas solutions and outputs.345

TYPESETNOISY. We create a noisy subset of the346

TYPESET with 131 tasks to evaluate how perfor-347

mance changes in the presence of noise in the348

data. We intentionally altered approximately 20%349

of the values in the input columns to investigate350

the model behaviour in scenarios inspired by real351

world scenarios. We induce the following noise352

scenarios: corruption, by inserting a space, dash,353

or a new line at a random position in the input354

strings; missing, by replacing values in an input355

column with an empty string; and mixformat, by356

changing column formats, specifically we mix ints 357

and floats or combine different date/address for- 358

mats. 359

4.2 Evaluation Metrics 360

We report correctness based on whether the gener- 361

ated code produces the expected output. Consider 362

a single datapoint consisting of a query Q, an in- 363

put table T , and an expected correct output o. The 364

probability that at least one of k inferred outputs is 365

correct is called pass@k (Chen et al., 2021). More 366

formally, pass@k is the probability that o ∈ O if 367

we sample (C,O) from CODEXDATA(Q,T, k). 368

To measure this probability empirically for each 369

datapoint, we compute up to 2k valid programs by 370

sampling (C,O) from CODEXDATA(Q,T, 2k). 371

We count the number s of occurrences of o in 372

O, and hence compute an estimate of pass@k as 373

1−
(
2k−s
k

)
/
(
2k
k

)
(Chen et al., 2021). (By comput- 374

ing 2k completions the estimate has lower vari- 375

ance than by simply computing k completions.) 376

Each pass@k we report on a whole dataset is the 377

average of pass@k over all its datapoints. 378

Additionally, we calculate a partial form of the 379

metric written as pass@k(X%). It is defined on 380

datapoints and datasets in the same way as pass@k 381

except that correctness of an output column is re- 382

laxed from exact to partial matching: at least X% 383

of the inferred output matches the expected output. 384

Hence, pass@k(100%) is the same as pass@k. 385

This partial metric is important in our setting as 386

partially correct output columns may still be valu- 387

able to the user, although we need to be mindful 388

when designing the user interaction. 389

For detailed error analysis, we report a set 390

of evaluation metrics considering code quality 391

and errors. We conduct a sensitivity analysis of 392

pass@k and report observed standard deviations 393

for each task class with and without data redac- 394

tion. Due to space limitations, we report these in 395

the appendix (see Figure 13 in Appendix F). 396

4.3 Empirical Insights 397

We evaluate performance across tasks in the two 398

datasets: SOFSET and TYPESET for different 399

data redactions and prompting strategies. For the 400

data redaction experiments, we use anonymized 401

version of column names for the no-data (anony- 402

mous columns) redaction and proper column 403

names for the other three redactions. The prompt- 404

ing experiments are done with full-data access un- 405

less specified otherwise. All evaluation results are 406

5

(a) full-data, (b) subset-data, (c) no-data prop-col, (d) no-data anon-col

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p
a
s
s
@

k

(IND) data-independent (DEP) data-dependent (EXT) external-dependent

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

1
5
10

K

SOFSET

(a) full-data, (b) subset-data, (c) no-data prop-col, (d) no-data anon-col

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p
a
s
s
@

k

(IND) data-independent (DEP) data-dependent (EXT) external-dependent

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

1
5
10

K

TYPESET

Figure 2: Impact on pass@k with data redaction for SOFSET and TYPESET. The results shown are grouped by
the different task classes: data-independent (IND), data-dependent (DEP) and external-dependent (EXT). In each
group, the different bars represent different levels of redaction: (a) full data, (b) a subset of the data (only one row)
(c) no data and proper column names and (d) no data and anonymous column names. Redaction has negligible
effect on IND tasks, and a large impact on DEP and EXT tasks.

averages of a single CODEXDATA run per data-407

point, computing 2k valid completions to estimate408

pass@k or pass@k(X%). In the appendix, we re-409

port stability across several runs and detailed error410

analyses including invalid completions.411

Performance varies with task complexity. The412

pass@k for tasks in TYPESET is better than for413

SOFSET tasks across all experiments (Figures 2,414

3, and 4). This is expected as SOFSET problems415

are more complex, especially for task classes DEP416

and EXT.417

The level of data redaction has a high impact on418

pass@k. Figure 2 shows how pass@k (for k =419

1, 5, 10) varies with the task and data redaction420

for SOFSET and TYPESET. We observe that for421

both datasets, irrespective of the task class, perfor-422

mance drops when the data redaction is stricter—423

the bars from (a) to (d) are in increasing degree424

of redaction. The performance with no redaction425

is almost always the best, and it degrades consid-426

erably when no data is available. However, the427

performance degradation from no redaction (a) to428

partial redaction (only first row (b)) is relatively429

small in most cases, which implies that sampling430

rows is almost as effective as providing all the431

data. The difference between (c) no data + proper432

column names and (d) no data + anonymous col-433

umn names is also relatively small which indicates434

that having the proper column names is not as ben-435

eficial as having a sample of the data.436

Performance on data-dependent and external- 437

dependent tasks is highly affected by the level 438

of data redaction. The different groups in Fig- 439

ure 2 show data redaction’s high impact on perfor- 440

mance across data-dependent task classes for both 441

the datasets. The tasks under DEP and EXT classes 442

are more complex, data-dependent and multi-step 443

(e.g. doing complex operations after extracting the 444

year from a column). We observe that the differ- 445

ence in performance between no and partial redac- 446

tion (a and b) versus full redaction (c and d) is 447

large for DEP and EXT classes. The performance 448

difference is even more for TYPESET than SOF- 449

SET since the latter has more complex tasks. 450

The impact of varying data redaction on data- 451

independent tasks is negligible. As expected, we 452

do not observe a noticeable change in performance 453

for tasks that are data-independent (IND), but the 454

presence of data does provide extra context that is 455

helpful. The IND tasks in TYPESET perform the 456

best when only a subset of data is available (only 457

first row) which further reinforces that these tasks 458

do not depend on data. 459

Data description prompts counter data redac- 460

tion. Figure 3 shows the interplay of data descrip- 461

tions in the prompt under different data redactions. 462

For each pair of same colored lines, the dashed line 463

represents the result when a data description (in 464

this case type information) is added to the origi- 465

nal prompt. The data description prompt increases 466

6

SOFSET TYPESET

Figure 3: Interplay between the varying amount of data redaction and how data description in the prompt helps
with performance. For each redaction, we evaluate the performance by adding a data description to the prompt
in the form of type information. Type information is especially helpful when we only have access to anonymous
columns and just a subset of the data. The extracted data descriptions do not directly depict private information.

SOFSET TYPESET

Figure 4: Impact of different prompting strategies on SOFSET and TYPESET compared to the baseline. We present
a subset of prompting strategies that perform better than the baseline, detailed results in Figure 11 and Figure 12.
Data description prompts (with type information and regular expression patterns that match the column elements)
outperform the baseline for both the datasets.

performance in all cases but is particularly valu-467

able in the case where all data is removed and468

columns anonymized. Surprisingly, adding a data469

description also has a positive impact in the case470

where a subset of the data is present. Thus we can471

use data description prompts to counter the effect472

of data redaction. The x-axis in Figure 3 repre-473

sents how pass@10 varies with percentage of ex-474

amples passed. Interestingly, we see a sharper de-475

crease in pass@10(X%) in Figure 3 for SOFSET476

compared to TYPESET due to presence of com-477

plex corner case examples in the latter.478

Careful prompt engineering helps. We explore479

different prompting strategies (subsection 3.3) and 480

complete results are given in Appendix (Figure 11, 481

Figure 12). Figure 4 presents the prompting strate- 482

gies that perform better than baseline. We ob- 483

serve that carefully extracting the data descrip- 484

tion (in the form of regular expressions, type in- 485

formation and information about the number of 486

elements in column) helps for both the datasets. 487

Interestingly, instructing the model to be concise, 488

executable and generate iterative solutions also 489

consistently improves performance across the two 490

datasets. The best performing prompting strategy 491

for SOFSET (regular expressions + type informa- 492

7

Figure 5: Impact on pass@10(X%) of the different
noisy scenarios such as corrupt data values, missing
values and mixed formats in TYPESETNOISY com-
pared to the original data in TYPESET (baseline).

tion) has a pass@10 of 0.56 compared to the base-493

line pass@10 of 0.53. TYPESET has a relative per-494

formance improvement of 4%. We see that the per-495

formance gain is not huge. Prompting can also496

sometimes hurt as seen in case of regex(subset)497

in Figure 12c. This prompt adds too much data498

description (one regex per element) which likely499

ends up confusing the model. So prompting strate-500

gies are beneficial but only when curated carefully.501

Performance varies considerably per data-type.502

The performance between data-types differs in503

pass@k, length and number of retrieved comple-504

tions as well as number of executable comple-505

tions. Tasks with string data-type for example506

have an average pass@k of 0.83 compared to 0.48507

for tasks with dates data-type. Overall tasks with508

units data-type are most successful, address data-509

type least successful. (See Table 13)510

Noisy data impacts performance. We evaluate511

the impact on performance with noise additions in512

TYPESETNOISY. Corresponding to the approxi-513

mately 20% noise in the data we see a drop in514

pass@10(75%) and higher (Figure 5). Additional515

difference compared to baseline is attributed to516

runtime errors caused by the noise (e.g., an in-517

crease in IndexErrors seen in Table 12 in the ap-518

pendix).519

Generation efficiency depends on data redac-520

tion and task class. Figure 6 shows the perfor-521

mance of pass@10 versus total number of com-522

pletions from CODEX (including the invalid ones)523

to generate 20 valid completions, for different524

task classes and levels of data redactions across525

datasets. Irrespective of the dataset and task class,526

0 10 20 30 40 50 60 70 80 90

Number of completions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

p
a
ss

@
1

0

(EXT)

(EXT)

(EXT)

(EXT)

(EXT)

(EXT)

(DEP)

(DEP)

(DEP)

(DEP)

(DEP)

(DEP)

(IND)

(IND)

(IND)

(IND)

(IND)

(IND)

full-data

subset-data

no-data

SOFSET

TYPESET

Dataset

Figure 6: Interplay between pass@10 and total number
of retrieved completions from CODEX for the different
datasets (shapes), forms of data redaction (color) and
task categories (labels). Lower right: Low pass@10
and many completions area: most results for runs
with highly redacted data and data-dependent tasks lie
here. Upper left: High pass@10 and few completions:
most results for runs with no redaction and/or data-
independent tasks lie here. Lower left/middle: Low
pass@10 and few completions: most results for runs
for external-dependent tasks lie here.

access to data greatly reduces the number of gen- 527

erations needed; for instance, with full-data we 528

need fewer than 50 completions irrespective of the 529

task class. We need more completions for data- 530

dependent tasks versus data-independent tasks, 531

and in general sampling more completions results 532

in poorer pass@10. 533

5 Conclusion and Future Work 534

Our work highlights the importance of data for 535

code generation on data-centric tasks. We have 536

empirically shown that the presence of data in- 537

fluences both the system’s capability to gener- 538

ate good solutions and its efficiency. We have 539

shown that optimizing prompts can improve per- 540

formance, and several extensions are possible. 541

Handling a broader problem space (e.g., multi- 542

table inputs, hierarchical table inputs, new table 543

outputs) raises interesting challenges in how to 544

best represent the data. We hypothesise that the 545

gap between generations with no-data and full- 546

data cannot be fully eliminated, and thus it would 547

be interesting to investigate how to integrate with 548

approaches to privacy preservation. 549

8

References550

Philip E Agre et al. 1997. Lessons learned in trying551
to reform AI. Social science, technical systems, and552
cooperative work: Beyond the Great Divide, 131.553

Cem Anil, Yuhuai Wu, Anders Johan Andreassen,554
Aitor Lewkowycz, Vedant Misra, Vinay Venkatesh555
Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan556
Dyer, and Behnam Neyshabur. 2022. Explor-557
ing length generalization in large language models.558
ArXiv, abs/2207.04901.559

Patrick Bareiss, Beatriz Souza, Marcelo d’Amorim,560
and Michael Pradel. 2022. Code generation tools561
(almost) for free? a study of few-shot, pre-trained562
language models on code. ArXiv, abs/2206.01335.563

Emily M Bender and Alexander Koller. 2020. Climb-564
ing towards nlu: On meaning, form, and understand-565
ing in the age of data. In Proceedings of the 58th566
annual meeting of the association for computational567
linguistics, pages 5185–5198.568

Jun Shern Chan, Michael Martin Pieler, Jonathan569
Jao, J’er’emy Scheurer, and Ethan Perez. 2022.570
Few-shot adaptation works with unpredictable data.571
ArXiv, abs/2208.01009.572

Bei Chen, Fengji Zhang, A. Nguyen, Daoguang Zan,573
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.574
Codet: Code generation with generated tests. ArXiv,575
abs/2207.10397.576

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming577
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-578
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,579
Greg Brockman, Alex Ray, Raul Puri, Gretchen580
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-581
try, Pamela Mishkin, Brooke Chan, Scott Gray,582
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz583
Kaiser, Mohammad Bavarian, Clemens Winter,584
Philippe Tillet, Felipe Petroski Such, Dave Cum-585
mings, Matthias Plappert, Fotios Chantzis, Eliza-586
beth Barnes, Ariel Herbert-Voss, William Hebgen587
Guss, Alex Nichol, Alex Paino, Nikolas Tezak,588
Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-589
tanu Jain, William Saunders, Christopher Hesse,590
Andrew N. Carr, Jan Leike, Josh Achiam, Vedant591
Misra, Evan Morikawa, Alec Radford, Matthew592
Knight, Miles Brundage, Mira Murati, Katie Mayer,593
Peter Welinder, Bob McGrew, Dario Amodei, Sam594
McCandlish, Ilya Sutskever, and Wojciech Zaremba.595
2021. Evaluating large language models trained on596
code.597

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,598
Maarten Bosma, Gaurav Mishra, Adam Roberts,599
Paul Barham, Hyung Won Chung, Charles Sutton,600
Sebastian Gehrmann, Parker Schuh, Kensen Shi,601
Sasha Tsvyashchenko, Joshua Maynez, Abhishek B602
Rao, Parker Barnes, Yi Tay, Noam M. Shazeer,603
Vinodkumar Prabhakaran, Emily Reif, Nan Du,604
Benton C. Hutchinson, Reiner Pope, James Brad-605
bury, Jacob Austin, Michael Isard, Guy Gur-Ari,606

Pengcheng Yin, Toju Duke, Anselm Levskaya, San- 607
jay Ghemawat, Sunipa Dev, Henryk Michalewski, 608
Xavier García, Vedant Misra, Kevin Robinson, 609
Liam Fedus, Denny Zhou, Daphne Ippolito, David 610
Luan, Hyeontaek Lim, Barret Zoph, Alexander 611
Spiridonov, Ryan Sepassi, David Dohan, Shivani 612
Agrawal, Mark Omernick, Andrew M. Dai, Thanu- 613
malayan Sankaranarayana Pillai, Marie Pellat, Aitor 614
Lewkowycz, Erica Oliveira Moreira, Rewon Child, 615
Oleksandr Polozov, Katherine Lee, Zongwei Zhou, 616
Xuezhi Wang, Brennan Saeta, Mark Díaz, Orhan Fi- 617
rat, Michele Catasta, Jason Wei, Kathleen S. Meier- 618
Hellstern, Douglas Eck, Jeff Dean, Slav Petrov, and 619
Noah Fiedel. 2022. Palm: Scaling language model- 620
ing with pathways. ArXiv, abs/2204.02311. 621

Michael Droettboom, Roman Yurchak, Hood Chatham, 622
Dexter Chua, Gyeongjae Choi, Marc Abramowitz, 623
casatir, Jan Max Meyer, Jason Stafford, Madhur 624
Tandon, Michael Greminger, Grimmer Kang, Chris 625
Trevino, Wei Ouyang, Joe Marshall, Adam Seer- 626
ing, Nicolas Ollinger, Ondřej Staněk, Sergio, Teon L 627
Brooks, Jay Harris, Alexey Ignatiev, Seungmin Kim, 628
Paul m. p. P., jcaesar, Carol Willing, Cyrille Bogaert, 629
Dorian Pula, Frithjof, and Michael Jurasovic. 2022. 630
Pyodide: A Python distribution for WebAssembly 631
(0.19.0). 632

Nat Friedman. 2021. [link]. 633

Mohammad Abdul Hadi, Imam Nur Bani Yusuf, Fer- 634
dian Thung, Kien Gia Luong, Lingxiao Jiang, Fate- 635
meh Hendijani Fard, and David Lo. 2022. On the 636
effectiveness of pretrained models for api learning. 637
2022 IEEE/ACM 30th International Conference on 638
Program Comprehension (ICPC), pages 309–320. 639

Patrick M. Haluptzok, Matthew Bowers, and 640
Adam Tauman Kalai. 2022. Language models 641
can teach themselves to program better. ArXiv, 642
abs/2207.14502. 643

Dan Hendrycks, Steven Basart, Saurav Kadavath, 644
Mantas Mazeika, Akul Arora, Ethan Guo, Collin 645
Burns, Samir Puranik, Horace He, Dawn Xiaodong 646
Song, and Jacob Steinhardt. 2021. Measuring 647
coding challenge competence with apps. ArXiv, 648
abs/2105.09938. 649

Madelon Hulsebos, Kevin Hu, Michiel Bakker, 650
Emanuel Zgraggen, Arvind Satyanarayan, Tim 651
Kraska, Çağatay Demiralp, and César Hidalgo. 652
2019. Sherlock: A deep learning approach to se- 653
mantic data type detection. In Proceedings of the 654
25th ACM SIGKDD International Conference on 655
Knowledge Discovery & Data Mining. ACM. 656

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan 657
Natarajan, Suresh Parthasarathy, Sriram Rajamani, 658
and Rahul Sharma. 2022. Jigsaw: Large language 659
models meet program synthesis. In International 660
Conference on Software Engineering (ICSE). 661

Yujia Li, David Choi, Junyoung Chung, Nate Kush- 662
man, Julian Schrittwieser, Rémi Leblond, Tom Ec- 663
cles, James Keeling, Felix Gimeno, Agustin Dal 664

9

https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.5281/zenodo.5834941
https://doi.org/10.5281/zenodo.5834941
https://doi.org/10.5281/zenodo.5834941
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/
https://www.microsoft.com/en-us/research/publication/jigsaw-large-language-models-meet-program-synthesis/

Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-665
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-666
Sen Huang, Johannes Welbl, Sven Gowal, Alexey667
Cherepanov, James Molloy, Daniel J. Mankowitz,668
Esme Sutherland Robson, Pushmeet Kohli, Nando669
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.670
2022a. Competition-level code generation with al-671
phacode.672

Zongjie Li, Chaozheng Wang, Zhibo Liu, Haoxuan673
Wang, Shuai Wang, and Cuiyun Gao. 2022b. Cctest:674
Testing and repairing code completion systems.675
ArXiv, abs/2208.08289.676

Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin677
Choi, and Hannaneh Hajishirzi. 2021. Reframing678
instructional prompts to gptk’s language. arXiv679
preprint arXiv:2109.07830.680

Avanika Narayan, Ines Chami, Laurel Orr, and Christo-681
pher R’e. 2022. Can foundation models wrangle682
your data? ArXiv, abs/2205.09911.683

Saswat Padhi, Prateek Jain, Daniel Perelman, Olek-684
sandr Polozov, Sumit Gulwani, and Todd Millstein.685
2018. Flashprofile: a framework for synthesizing686
data profiles. Proceedings of the ACM on Program-687
ming Languages, 2(OOPSLA):1–28.688

Hammond A. Pearce, B. Tan, Prashanth Krishna-689
murthy, Farshad Khorrami, Ramesh Karri, and690
Brendan Dolan-Gavitt. 2022. Pop quiz! can a691
large language model help with reverse engineering?692
ArXiv, abs/2202.01142.693

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bah-694
danau. 2022. Evaluating the text-to-sql capabilities695
of large language models. ArXiv, abs/2204.00498.696

Advait Sarkar. 2022. Is explainable AI a race697
against model complexity? arXiv preprint698
arXiv:2205.10119.699

Advait Sarkar, Mateja Jamnik, Alan F Blackwell, and700
Martin Spott. 2015. Interactive visual machine701
learning in spreadsheets. In 2015 IEEE Symposium702
on Visual Languages and Human-Centric Comput-703
ing (VL/HCC), pages 159–163. IEEE.704

Kensen Shi, Joey Hong, Manzil Zaheer, Pengcheng705
Yin, and Charles Sutton. 2022. Compositional gen-706
eralization and decomposition in neural program707
synthesis. ArXiv, abs/2204.03758.708

Immanuel Trummer. 2022. Codexdb: Generating code709
for processing sql queries using gpt-3 codex. ArXiv,710
abs/2204.08941.711

Denny Vrandecic and Markus Krötzsch. 2014. Wiki-712
data: a free collaborative knowledgebase. Commun.713
ACM, 57(10):78–85.714

Albert Webson and Ellie Pavlick. 2022. Do prompt-715
based models really understand the meaning of their716
prompts? In Proceedings of the 2022 Conference of717
the North American Chapter of the Association for718

Computational Linguistics: Human Language Tech- 719
nologies, pages 2300–2344, Seattle, United States. 720
Association for Computational Linguistics. 721

Jack Williams, Carina Negreanu, Andrew D Gordon, 722
and Advait Sarkar. 2020. Understanding and infer- 723
ring units in spreadsheets. In 2020 IEEE Symposium 724
on Visual Languages and Human-Centric Comput- 725
ing (VL/HCC), pages 1–9. IEEE Computer Society. 726

Cong Yan and Yeye He. 2018. Synthesizing type- 727
detection logic for rich semantic data types using 728
open-source code. In Proceedings of the 2018 Inter- 729
national Conference on Management of Data, SIG- 730
MOD ’18, page 35–50, New York, NY, USA. Asso- 731
ciation for Computing Machinery. 732

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 733
Dongxu Wang, Zifan Li, James Ma, Irene Li, 734
Qingning Yao, Shanelle Roman, Zilin Zhang, and 735
Dragomir R. Radev. 2018. Spider: A large- 736
scale human-labeled dataset for complex and cross- 737
domain semantic parsing and text-to-sql task. In 738
Proceedings of the 2018 Conference on Empirical 739
Methods in Natural Language Processing, Brussels, 740
Belgium, October 31 - November 4, 2018, pages 741
3911–3921. Association for Computational Linguis- 742
tics. 743

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, 744
Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen, 745
and Jian-Guang Lou. 2022. Cert: Continual pre- 746
training on sketches for library-oriented code gen- 747
eration. ArXiv, abs/2206.06888. 748

10

https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.1145/2629489
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.1145/3183713.3196888
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425

A Ethics Statement749

There are broad ethical impacts resulting from750

the creation of AI models that attempt to gener-751

ate code solutions from natural language descrip-752

tions and these are discussed in detail in previous753

papers including Codex (Chen et al., 2021), Al-754

phaCode (Li et al., 2022a), and PaLM (Chowdh-755

ery et al., 2022). These impacts include overre-756

liance, misalignment between what the user ex-757

pressed and what they intended, potential for bias758

and under/over representation in the model results,759

economic impacts, the potential for privacy and760

security risks, and even environmental considera-761

tions. All of these considerations also apply to the762

work described here. Our focus is to highlight how763

the presence of data improves the performance of764

these models but it is important to note that the765

quality of the data used in the prompt will impact766

whether the resulting generation exhibits bias, ex-767

poses private data, etc. We explore the overall im-768

pact of providing data as part of the prompt but do769

not conduct a more focused analysis of determin-770

ing how bias in the prompt data might influence771

the resulting code generation, a task we leave for772

future work.773

We are wary of using the word ‘understand’ in774

this paper. It has been correctly argued that lan-775

guage models do not really ‘understand’ language776

in the sense of connecting language’s syntactic777

content with the semantics of the physical world778

(Bender and Koller, 2020; Webson and Pavlick,779

2022). There have long been critics of the use780

of such terms in AI research (Agre et al., 1997).781

Nonetheless, large language models have shown782

themselves in certain situations to be capable of783

the syntactic manipulation of language which in784

humans we take to be commonsense evidence of785

understanding. This is the less contentious man-786

ner in which we use the word. Thus our intention787

in using the word ‘understand’ is not to claim that788

models can connect data with real-world concepts,789

but rather that the model can manipulate language790

about data in a useful manner, where ‘useful’ is791

defined by our quantitative benchmarks. These792

benchmarks aim to be reflective of a qualitative793

notion of utility, but as with all quantitative bench-794

marks the process of operationalising a qualitative795

notion inevitably requires some reductionism.796

This paper does not directly contribute to a tool797

built on the assumed capabilities of language mod-798

els to understand data, but nonetheless, it is moti-799

vated by their potential applications in such tools. 800

These tools may be deployed in many data appli- 801

cations such as databases, spreadsheets, and busi- 802

ness intelligence applications. Depending on the 803

audience of the tool, various interaction design 804

concerns arise. Explainability of the model is a 805

key consideration, and the tool should offer deci- 806

sion support to evaluate mispredictions and poten- 807

tial next steps (Sarkar, 2022). Previous research of 808

non-experts using inference driven tools for data 809

manipulation has shown the importance of tool de- 810

sign in the critical appreciation of the model and 811

its limitations, and in the potential cost of errors 812

(Williams et al., 2020; Sarkar et al., 2015). As an 813

exploratory paper without a concrete application, 814

we do not encounter these issues, but the project 815

has nonetheless been reviewed by our institution’s 816

ethics board, which checks for compatibility with 817

Microsoft’s Responsible AI standard.4 818

There is the question of the sources of data and 819

of consent to use the data in the manner exhib- 820

ited in this paper. We have reviewed each of the 821

datasets we have included in this paper to ensure 822

that our use is compatible with the intent of the au- 823

thors and publishers. Our datasets have also been 824

reviewed by our institution’s ethics board to re- 825

view that this is an ethical use. 826

4https://www.microsoft.com/en-us/ai/
responsible-ai

11

https://www.microsoft.com/en-us/ai/responsible-ai
https://www.microsoft.com/en-us/ai/responsible-ai

B Datasheets for Datasets827

B.1 MOTIVATION828

For what purpose was the dataset created?829

Was there a specific task in mind? Was there a830

specific gap that needed to be filled? Please pro-831

vide a description.832

Answer: We created the new dataset to be able833

to evaluate how well LLMs perform on data-834

centric tasks when they are given various degrees835

of access to data. LLMs have been evaluated on836

Python generations in prior work - on puzzles, e.g.837

(Haluptzok et al., 2022), on programming con-838

tests, e.g. (Li et al., 2022a), on Python problems,839

e.g. (Chen et al., 2021) or (Hendrycks et al., 2021),840

and even Pandas tasks, e.g. (Zan et al., 2022) or841

(Jain et al., 2022). We are contributing this dataset842

as it contains larger dataframes and more diverse843

tasks than prior work, allowing us to draw mean-844

ingful conclusions for our research questions.845

Who created this dataset (e.g., which team,846

research group) and on behalf of which entity847

(e.g., company, institution, organization)?848

Answer: to be added after ARR reviews to not849

break anonymity850

What support was needed to make this851

dataset? (e.g.who funded the creation of the852

dataset? If there is an associated grant, provide853

the name of the grantor and the grant name and854

number, or if it was supported by a company or855

government agency, give those details.)856

Answer: to be added after ARR reviews to not857

break anonymity858

B.2 COMPOSITION859

What do the instances that comprise the860

dataset represent (e.g., documents, photos, peo-861

ple, countries)? Are there multiple types of in-862

stances (e.g., movies, users, and ratings; people863

and interactions between them; nodes and edges)?864

Please provide a description.865

Answer: Queries and data from Stackoverflow or866

synthetic data.867

How many instances are there in total (of868

each type, if appropriate)?869

Answer: We have collected a benchmark of 780870

datapoints.871

Does the dataset contain all possible in-872

stances or is it a sample (not necessarily ran-873

dom) of instances from a larger set? If the874

dataset is a sample, then what is the larger set?875

Is the sample representative of the larger set (e.g.,876

geographic coverage)? If so, please describe how 877

this representativeness was validated/verified. If it 878

is not representative of the larger set, please de- 879

scribe why not (e.g., to cover a more diverse range 880

of instances, because instances were withheld or 881

unavailable). 882

Answer: Part of the dataset (SOFGoldSet) is a 883

sample from all the queries in Stackoverflow un- 884

der #ExcelFormula. The dataset was sampled such 885

that we prioritize highly rated questions/answers, 886

so we believe they are representative for real prob- 887

lems users have. The other dataset (GoldType- 888

Set) was synthetically created with queries that are 889

common for each type (e.g. extracting the year 890

from a date) - as the dataset has fine-grained types 891

(e.g. names and addresses) we have a small set of 892

possible queries available. 893

What data does each instance consist of? 894

“Raw” data (e.g., unprocessed text or images) or 895

features? In either case, please provide a descrip- 896

tion. 897

Answer: Each datapoint comprises of a query (e.g. 898

"count the number of clothing items"), data (e.g. 899

a table of products and sales) and hand-annotated 900

metadata (e.g. column names, type of query, type 901

of data access). 902

Is there a label or target associated with each 903

instance? If so, please provide a description. 904

Answer: We provide the expected output (values 905

in the newly generated column) and for GoldType- 906

Set we also provide a Pandas solution. 907

Is any information missing from individual 908

instances? If so, please provide a description, 909

explaining why this information is missing (e.g., 910

because it was unavailable). This does not include 911

intentionally removed information, but might in- 912

clude, e.g., redacted text. 913

Answer:No 914

Are relationships between individual in- 915

stances made explicit (e.g., users’ movie rat- 916

ings, social network links)? If so, please de- 917

scribe how these relationships are made explicit. 918

Answer:No 919

Are there recommended data splits (e.g., 920

training, development/validation, testing)? If 921

so, please provide a description of these splits, ex- 922

plaining the rationale behind them. 923

Answer: This dataset is hand-curated for evalua- 924

tion only. 925

Are there any errors, sources of noise, or re- 926

dundancies in the dataset? If so, please provide 927

12

a description.928

Answer: Part of the dataset has been augmented929

(the data has been corrupted) to help us explore the930

impact of naturally occuring noise in users’ work.931

We added missing data, corrupted data values, sur-932

plus columns and mixed formats.933

Is the dataset self-contained, or does it link934

to or otherwise rely on external resources (e.g.,935

websites, tweets, other datasets)? If it links to936

or relies on external resources, a) are there guar-937

antees that they will exist, and remain constant,938

over time; b) are there official archival versions of939

the complete dataset (i.e., including the external940

resources as they existed at the time the dataset941

was created); c) are there any restrictions (e.g., li-942

censes, fees) associated with any of the external943

resources that might apply to a future user? Please944

provide descriptions of all external resources and945

any restrictions associated with them, as well as946

links or other access points, as appropriate.947

Answer: Self-contained948

Does the dataset contain data that might be949

considered confidential (e.g., data that is pro-950

tected by legal privilege or by doctor-patient951

confidentiality, data that includes the content of952

individuals’ non-public communications)? If953

so, please provide a description.954

Answer: No955

Does the dataset contain data that, if viewed956

directly, might be offensive, insulting, threaten-957

ing, or might otherwise cause anxiety? If so,958

please describe why.959

Answer: No960

Does the dataset relate to people? If not, you961

may skip the remaining questions in this section.962

Answer: No963

Does the dataset identify any subpopulations964

(e.g., by age, gender)? If so, please describe how965

these subpopulations are identified and provide a966

description of their respective distributions within967

the dataset.968

Answer: No969

Is it possible to identify individuals (i.e., one970

or more natural persons), either directly or in-971

directly (i.e., in combination with other data)972

from the dataset? If so, please describe how.973

Answer: No974

Does the dataset contain data that might be975

considered sensitive in any way (e.g., data that976

reveals racial or ethnic origins, sexual orien-977

tations, religious beliefs, political opinions or978

union memberships, or locations; financial or 979

health data; biometric or genetic data; forms 980

of government identification, such as social se- 981

curity numbers; criminal history)? If so, please 982

provide a description. 983

Answer: No 984

B.3 COLLECTION 985

How was the data associated with each in- 986

stance acquired? Was the data directly ob- 987

servable (e.g., raw text, movie ratings), reported 988

by subjects (e.g., survey responses), or indirectly 989

inferred/derived from other data (e.g., part-of- 990

speech tags, model-based guesses for age or lan- 991

guage)? If data was reported by subjects or in- 992

directly inferred/derived from other data, was the 993

data validated/verified? If so, please describe how. 994

995

Answer: Directly observable 996

Over what timeframe was the data col- 997

lected? Does this timeframe match the creation 998

timeframe of the data associated with the instances 999

(e.g., recent crawl of old news articles)? If not, 1000

please describe the timeframe in which the data 1001

associated with the instances was created. Finally, 1002

list when the dataset was first published. 1003

Answer: The StackOverflow posts date back to 1004

2006 and we curated the dataset throughout 2022. 1005

What mechanisms or procedures were used 1006

to collect the data (e.g., hardware apparatus or 1007

sensor, manual human curation, software pro- 1008

gram, software API)? How were these mecha- 1009

nisms or procedures validated? 1010

Answer: We manually sourced the datapoints and 1011

manually annotated with metadata. 1012

What was the resource cost of collecting the 1013

data? (e.g. what were the required computational 1014

resources, and the associated financial costs, and 1015

energy consumption - estimate the carbon foot- 1016

print. See Strubell et al.(?) for approaches in this 1017

area.) 1018

Answer: The costs were negligible (no computa- 1019

tion cost) and the annotations were sourced among 1020

the research group. 1021

If the dataset is a sample from a larger set, 1022

what was the sampling strategy (e.g., determin- 1023

istic, probabilistic with specific sampling prob- 1024

abilities)? 1025

Answer: Deterministic - we sampled based on 1026

highest rated posts in StackOverflow after filter- 1027

ing to the tag ExcelFormula and checking manu- 1028

13

ally that the posts were genuine tasks (not related1029

to Excel behaviour).1030

Who was involved in the data collection1031

process (e.g., students, crowdworkers, contrac-1032

tors) and how were they compensated (e.g., how1033

much were crowdworkers paid)?1034

Answer: Researchers in the team (no extra com-1035

pensation).1036

Were any ethical review processes conducted1037

(e.g., by an institutional review board)? If so,1038

please provide a description of these review pro-1039

cesses, including the outcomes, as well as a link1040

or other access point to any supporting documen-1041

tation.1042

Answer: Yes, the dataset passed our institution’s1043

on-boarding and publishing reviews1044

Does the dataset relate to people? If not,1045

you may skip the remainder of the questions in this1046

section.1047

Answer: No1048

Did you collect the data from the individuals1049

in question directly, or obtain it via third par-1050

ties or other sources (e.g., websites)?1051

Answer: Third party (StackOverflow)1052

Were the individuals in question notified1053

about the data collection? If so, please describe1054

(or show with screenshots or other information)1055

how notice was provided, and provide a link or1056

other access point to, or otherwise reproduce, the1057

exact language of the notification itself.1058

Answer: No, all data was public and we didn’t in-1059

fringe any licensing1060

Did the individuals in question consent to the1061

collection and use of their data? If so, please1062

describe (or show with screenshots or other infor-1063

mation) how consent was requested and provided,1064

and provide a link or other access point to, or oth-1065

erwise reproduce, the exact language to which the1066

individuals consented.1067

Answer: Not applicable1068

If consent was obtained, were the consent-1069

ing individuals provided with a mechanism to1070

revoke their consent in the future or for certain1071

uses? If so, please provide a description, as well1072

as a link or other access point to the mechanism (if1073

appropriate)1074

Answer: Not applicable1075

Has an analysis of the potential impact of the1076

dataset and its use on data subjects (e.g., a data1077

protection impact analysis)been conducted? If1078

so, please provide a description of this analysis,1079

including the outcomes, as well as a link or other 1080

access point to any supporting documentation. 1081

Answer: No 1082

B.4 PRE-PROCESSING / CLEANING / 1083

LABELING 1084

Was any preprocessing/cleaning/labeling of the 1085

data done(e.g.,discretization or bucketing, tok- 1086

enization, part-of-speech tagging, SIFT feature 1087

extraction, removal of instances, processing of 1088

missing values)? If so, please provide a descrip- 1089

tion. If not, you may skip the remainder of the 1090

questions in this section. 1091

Answer: We manually created the queries (ei- 1092

ther from scratch or based on the original Stack- 1093

Overflow description), we augmented the data (we 1094

added more rows, corner cases, augmentations), 1095

we extracted metadata (e.g. questions type, type 1096

of column referencing). 1097

Was the “raw” data saved in addition to the 1098

preprocessed/cleaned/labeled data (e.g., to sup- 1099

port unanticipated future uses)? If so, please 1100

provide a link or other access point to the “raw” 1101

data. 1102

Answer: No. 1103

Is the software used to preprocess/clean/la- 1104

bel the instances available? If so, please provide 1105

a link or other access point. 1106

Answer: We will provide access to the software 1107

we built for data processing, but the majority of 1108

the work carried involved manual annotations. 1109

B.5 USES 1110

Has the dataset been used for any tasks al- 1111

ready? If so, please provide a description. 1112

Answer: The current work is the first use of the 1113

dataset. 1114

Is there a repository that links to any or all 1115

papers or systems that use the dataset? If so, 1116

please provide a link or other access point. 1117

Answer: Not applicable 1118

What (other) tasks could the dataset be used 1119

for? 1120

Answer: The dataset could be used the evalu- 1121

ate code generation for other languages (e.g. R 1122

or SQL) on data-centric tasks, query generation 1123

(from the code). 1124

Is there anything about the composition of 1125

the dataset or the way it was collected and pre- 1126

processed/cleaned/labeled that might impact 1127

future uses? For example, is there anything that 1128

a future user might need to know to avoid uses 1129

14

that could result in unfair treatment of individu-1130

als or groups (e.g., stereotyping, quality of service1131

issues) or other undesirable harms (e.g., financial1132

harms, legal risks) If so, please provide a descrip-1133

tion. Is there anything a future user could do to1134

mitigate these undesirable harms?1135

Answer: No.1136

Are there tasks for which the dataset should1137

not be used? If so, please provide a description.1138

Answer: No.1139

B.6 DISTRIBUTION1140

Will the dataset be distributed to third parties1141

outside of the entity (e.g., company, institution,1142

organization) on behalf of which the dataset1143

was created? If so, please provide a descrip-1144

tion.1145

Answer: Yes, it will be distributed widely.1146

How will the dataset will be distributed (e.g.,1147

tarball on website, API, GitHub)? Does the1148

dataset have a digital object identifier (DOI)?1149

Answer: Github1150

When will the dataset be distributed?1151

Answer: At the end of the anonymity period.1152

Will the dataset be distributed under a copy-1153

right or other intellectual property (IP) license,1154

and/or under applicable terms of use (ToU)? If1155

so, please describe this license and/or ToU, and1156

provide a link or other access point to, or other-1157

wise reproduce, any relevant licensing terms or1158

ToU, as well as any fees associated with these re-1159

strictions.1160

Answer: Yes, TBC1161

Have any third parties imposed IP-based or1162

other restrictions on the data associated with1163

the instances? If so, please describe these re-1164

strictions, and provide a link or other access point1165

to, or otherwise reproduce, any relevant licensing1166

terms, as well as any fees associated with these re-1167

strictions.1168

Answer: No.1169

Do any export controls or other regulatory1170

restrictions apply to the dataset or to individ-1171

ual instances? If so, please describe these re-1172

strictions, and provide a link or other access point1173

to, or otherwise reproduce, any supporting docu-1174

mentation.1175

Answer: No.1176

B.7 MAINTENANCE1177

Who is supporting/hosting/maintaining the1178

dataset?1179

Answer: The authors, but we will also accept PRs 1180

from the community if they would like to extend 1181

the dataset and they pass our quality checks. 1182

How can the owner/curator/manager of the 1183

dataset be contacted (e.g., email address)? 1184

Answer: via Github 1185

Is there an erratum? If so, please provide a 1186

link or other access point. 1187

Answer: No. 1188

Will the dataset be updated (e.g., to correct 1189

labeling errors, add new instances, delete in- 1190

stances)? If so, please describe how often, by 1191

whom, and how updates will be communicated to 1192

users (e.g., mailing list, GitHub)? 1193

Answer: Yes, we will consider any requests and if 1194

any mistakes are pointed out we will update regu- 1195

larly (monthly to start with). 1196

If the dataset relates to people, are there 1197

applicable limits on the retention of the data 1198

associated with the instances (e.g., were indi- 1199

viduals in question told that their data would 1200

be retained for a fixed period of time and then 1201

deleted)? If so, please describe these limits and 1202

explain how they will be enforced. 1203

Answer: Not applicable. 1204

Will older versions of the dataset continue to 1205

be supported/hosted/maintained? If so, please 1206

describe how. If not, please describe how its obso- 1207

lescence will be communicated to users. 1208

Answer: No. 1209

If others want to extend/augment/build on/- 1210

contribute to the dataset, is there a mechanism 1211

for them to do so? If so, please provide a descrip- 1212

tion. Will these contributions be validated/veri- 1213

fied? If so, please describe how. If not, why not? 1214

Is there a process for communicating/distributing 1215

these contributions to other users? If so, please 1216

provide a description. 1217

Answer: Yes, via PRs. 1218

C Examples of problems for different 1219

scenarios 1220

15

Description Prompt Example

Data-Independent (IND)

import pandas as pd
df = pd.DataFrame()
df["String"] = ["Anna"]
create a new column with the String column capitalized

Data-Dependent (DEP)

import pandas as pd
df = pd.DataFrame()
df["Name"] = ["Anna"]
df["DoB"] = ["20/10/1989"]
extract the year from the date

External knowledge (EXT)

import pandas as pd
df = pd.DataFrame()
df["State"] = ["WA"]
expand the state name.

Anonymous header and no data

import pandas as pd
df = pd.DataFrame()
df["Col1"] = []
Create a column with the first number

Proper header

import pandas as pd
df = pd.DataFrame()
df["Address"] = []
Create a column with the first number from the address

Proper header and data sample

import pandas as pd
df = pd.DataFrame()
df["Address"] = ["6088 184A ST"]
Create a column with the first number

Full data

import pandas as pd
df = pd.DataFrame()
df["Address"] = ["6088 184A ST", "4234 32A ST"]
Create a column with the first number

Figure 7: Prompt examples for the different taxonomies. Top three rows cover task taxonomies. For class IND, the
query contains all information required for the completion: the input column name and the task. For class DEP,
the query does not specify the date format or column. For class EXT, the model needs external world knowledge
about US states. Bottom four rows cover data availability.

16

Description Prompt & Completion Example

Completion for a prompt
with no data in the
dataframe

import pandas as pd
df = pd.DataFrame()
df["Col1"] = []
Create a column with the first number
df["Col2"] = [1]

Completion for a prompt
with only the first row of
the dataframe

import pandas as pd
df = pd.DataFrame()
df["Col1"] = ["6088 184A ST"]
Create a column with the first number
df[’Col2’] = df[’Col1’].str.split().str[0]

Completion for a prompt
with only a direct refer-
ence to the columns

import pandas as pd
df = pd.DataFrame()
df["Address"] = []
Create a column with the first number from the address
df[’Number’] = df[’Address’].str.extract(
’(\d+)’, expand = False)

Figure 8: Prompt examples and completions results for type errors in the TypeGoldSet using different data avail-
ability.

Description Prompt & Completion Example

Completion for a prompt
with no data in the
dataframe

import pandas as pd
df = pd.DataFrame()
df["Col1"] = []
Create a new column with the time stamp
df[’New_Col’] = pd.datetime.now()
print(df)

Completion for a prompt
with only the first row of
the dataframe

import pandas as pd
df = pd.DataFrame()
df["Col1"] = ["Fri, 06 Feb 1987 06:00:37 GMT"]
Create a new column with the time stamp
df[’Col2’] = pd.to_datetime(df.Col1)

Completion for a prompt
with only a direct refer-
ence to the columns

import pandas as pd
df = pd.DataFrame()
df["Date"] = []
Create a new column with the time stamp from the dates
df[’Time Stamp’] = pd.to_datetime(df[’Date’]).apply(
lambda x: x.timestamp())

Figure 9: Prompt examples and completions results for value errors in the TypeGoldSet using different data avail-
ability.

17

Description Prompt & Completion Example

Original

import pandas as pd
df = pd.DataFrame()
df["Col1"] = [41, 163, ...]
df["Col2"] = [83, 60, ...]
Create a new column with the sum of the numeric columns
df[’Col3’] = df[’Col1’] + df[’Col2’]

Mixed types and numeric
delta

import pandas as pd
df = pd.DataFrame()
df["Col1"] = [41, "163", ...]
df["Col2"] = ["83", 59.9, ...]
Create a new column with the sum of the numeric columns
df[’sum’] = df[’Col1’].astype(float) +
df[’Col2’].astype(float)

Empty strings

import pandas as pd
df = pd.DataFrame()
df["Col1"] = [41, "", ...]
df["Col2"] = ["", "", ...]
Create a new column with the sum of the numeric columns
df[’Sum’] = df.apply(pd.to_numeric,
errors=’coerce’).sum(axis=1)

print(df)

Original

import pandas as pd
df = pd.DataFrame()
df["String"] = ["mailto: andrew_wilson@gmx.net",
... "mailto: emily_marie_lopez@gmx.net"]

Create a new column with the email address extracted from the string column
df[’Email’] = df[’String’].str.extract(
’([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+)’,

expand=True)

Text corruption

import pandas as pd
df = pd.DataFrame()
df["String"] = ["andrew_wilson@gmx.net",
... "-mailto: emily_marie_lopez@gmx.net"]

Create a new column with the email address extracted from the string column
df[’Email’] = df[’String’].str.extract(
r’(?<=mailto:) (\\S+)’)

Figure 10: Prompt examples and completions results for corruptions in TypeGoldSet

18

D Prompt Experiments1221

This section includes concrete prompt examples1222

for the different prompting schemes. Refer to ta-1223

bles Table 1 for instruction prompts, Table 2 for1224

example-usage prompts, Table 3 for data descrip-1225

tion prompts.1226

E Implementation details1227

E.1 Statistics about our datasets1228

E.2 Task classes1229

We distinguish three task classes:1230

(IND) data-independent1231

For these tasks there is a solution that can be1232

applied to the data without knowing the content1233

or format. Hence, if there is a Pandas or default1234

Python function that can be applied with default1235

parameters the task is of class (IND). Examples1236

are simple date operations, like to extract days or1237

hours, with default formats that can be inferred by1238

the pandas function "to_date" are of class A.1239

(DEP) data-dependent1240

For these tasks the model needs to know the data1241

content and/or format to find the solutions. For1242

example, if we would need a special parameter,1243

filtering or any kind of parameterization derived1244

from the content and the format of the data the task1245

it is of class (DEP). Examples are data operations1246

on dates with non-default format, mixed formats1247

or corrupted values. In these cases we need either1248

a special parameter (for example errors=coerce) or1249

other transformations derived from the data.1250

(EXT) external-dependent1251

The model can not find a solution of the task1252

only knowing the data content and the format.1253

Its need additional open world knowledge. This1254

knowledge needs to be beyond the knowledge1255

about the pandas and python syntax, APIs and li-1256

braries. Examples are operations in names where1257

we need knowledge about what a surname, middle1258

name or first name is. Or operations on addresses1259

where we might need to know what a zip code or1260

a state is.1261

E.3 Anonymous columns1262

We say a column header (or column name) is1263

anonymous when it does not give any informa-1264

tion about the content or type of the columns. For1265

example the column name "Names" indicates that1266

the column contains names or the column name1267

"Dates" indicates that the column contains date1268

values. On the other hand a column name like 1269

"Data" or "Info" does give no information about 1270

the content or type of the column. 1271

E.4 Adding noise 1272

For our investigations on how much use the mode 1273

is making of the actual data in the dataframes and 1274

to check the quality of the solution on non-perfect 1275

data, we added additional noise. This additional 1276

noise is: 1277

Corrupting values: 1278

With a probability of 20% a value in an input 1279

column will have a corrupted value. For string like 1280

objects this corruptions will be an insertion of a 1281

space, a dash or a new line in a random position in 1282

the corresponding string. 1283

Mixing formats: 1284

For numerical values, we mix integer and float, 1285

for date values we mix different date formats and 1286

for names and addresses with permute the tokens. 1287

Missing values: 1288

With a probability of 20% a value in an input 1289

column will be replaced with a empty string which 1290

represents a missing value in all our settings. 1291

E.5 Obtaining completions 1292

Parallelization. For efficiency, we request multi- 1293

ple completions from Codex per iteration in Alg.1. 1294

To try to minimize both inference time and the 1295

load on OpenAI’s servers, we adapt the batch size 1296

to an estimate of the probability that the next com- 1297

pletion is valid. The batch size used in each itera- 1298

tion is n = min (⌈r/p⌉, B, L), where r = k− |C| 1299

is the number of valid completions still to obtain, 1300

B is the remaining completion budget, and L is a 1301

parallelization limit enforced by the Codex API. 1302

The probability estimate p is updated after each 1303

iteration by counting the number of valid and in- 1304

valid completions in that iteration’s batch. 1305

Since pass@k is calculated only from valid 1306

completions, it is not influenced by either paral- 1307

lelization or batch size adaptation. We addition- 1308

ally report the average "pool" size (valid and in- 1309

valid completions) to measure the cost of retriev- 1310

ing valid completions using the above approach in 1311

all our experiments. 1312

Temperature. We use the same k-dependent tem- 1313

perature t as described in Chen et al. (2021); i.e. 1314

for k = 1, t = 0.2; for 1 < k ≤ 5, t = 0.4, for 1315

5 < k ≤ 50, t = 0.6; otherwise t = 0.8. 1316

19

Prompt Name Prompt Example (Query Q)

instruct-concise write a concise, short and idiomatic pandas solution for the following query:
create a new column with the last names.

instruct-execute write an executable and type correct pandas solution for the following query:
create a new column with the last names.

instruct-function write a pandas function that create a new column with the last names.

instruct-iterative create a new column with the last names. Prioritize the iterative programming style
with use of for loops, while loops and iterative data structures

instruct-lambda create a new column with the last names. Prioritize the functional programming style
with use of lambdas, comprehensions, and generators

instruct-domain create a new column with the last names. Prioritize the use of pandas operators that
deal with string manipulation.

assert-concise create a new column with the last names. The following example demonstrates how
to write a concise, short and idiomatic pandas solution.

assert-execute create a new column with the last names. The following example demonstrates
how to write an executable and type correct pandas solution.

assert-function The following example demonstrates how to write a pandas function that create
a new column with the last names.

assert-iterative
create a new column with the last names. The following example demonstrates how to
prioritize the iterative programming style with use of for loops, while loops and

iterative data structures.

assert-lambda
create a new column with the last names. The following example demonstrates how to
prioritize the functional programming style with use of lambdas, comprehensions,
and generators.

assert-domain create a new column with the last names. The following example prioritizes the use
of pandas operators that deal with string manipulation.

ask-concise how to create a new column with the last names? how to write a concise, short and
idiomatic pandas solution?

ask-execute how to create a new column with the last names? how to write an executable and
type correct pandas solution?

ask-function how to write a pandas function that create a new column with the last names?

ask-iterative how to create a new column with the last names? how to prioritize the iterative
programming style with use of for loops, while loops and iterative data structures?

ask-lambda how to create a new column with the last names? how to prioritize the functional
programming style with use of lambdas, comprehensions, and generators?

ask-domain how to create a new column with the last names? how to prioritize the use of pandas
operators that deal with string manipulation?

Table 1: Instruction prompt experiments include command-style prompts, assert-style prompts and ask-style
prompts illustrated on the query create a new column with the last names. The different prompts vary along
two dimensions: the style in which the model is queried and the property we want the completions to emphasize.
The phrasing style we explore are instruct, assert and ask. Examples of properties include executable, type cor-
rectness and using operators from the problem domain.

Stop sequences. The most effective stop sequence1317

we found that allows Codex to generate at least1318

one solution while not usually using the entire to-1319

ken budget is a blank line followed by a line com-1320

ment; i.e. \n\n#. Further, to keep Codex from1321

generating what appears to be the rest of a forum1322

post after a code snippet, we also use the stop se-1323

quence </code>.1324

Completion cleanup. Having forum posts appar-1325

ently in Codex’s training data means some com-1326

pletions would raise SyntaxError exceptions1327

when executed due to formatting artifacts, and1328

therefore be invalid. Instead, to make the most of1329

the completion budget, we replace formatting arti-1330

facts. In particular, we replace HTML escape se-1331

quences such as < and " with Python1332

operators and delimiters.1333

Cleanup additionally removes unnecessary 1334

whitespace, blank lines and comments, and trun- 1335

cates completions at \n# when it appears after ex- 1336

ecutable code. 1337

E.6 Executing completions 1338

Rewriting. Completions returned by Codex do not 1339

clearly indicate which variables or expressions are 1340

intended to be the answer to a query. This must be 1341

inferred from the shape of the code. We found that 1342

an effective way to identify and expose the likely 1343

answer is to search backwards to find the last unin- 1344

dented (i.e. top-level) statement that has one of a 1345

few forms, and rewrite the completion so that its 1346

last statement is an assignment to a fresh identifier 1347

varout. The statement forms and rewrites are 1348

20

Prompt Name Prompt Example

usage-function

import pandas as pd
def startswith_at(txt):

return txt.startswith(’@’)
df = pd.DataFrame("Names":["Charles Moore", "Anna Green"])
create a new column with the last names.

usage-iterative

import pandas as pd
df = pd.DataFrame("a":[1, 2, 3])
loop over the rows of a df using pd.iloc, create a function to iterate over the df.
for i in df.index:

val = df[col].iloc[i]

df = pd.DataFrame("Names":["Charles Moore", "Anna Green"])
create a new column with the last names.

usage-lambda

import pandas as pd
df = pd.DataFrame("a":[1, 2, 3])
group df on column b and keep half of the elements at random
dfout = df.groupby(’b’).apply(lambda x:x.sample(frac=0.5))

df = pd.DataFrame("Names":["Charles Moore", "Anna Green"])
create a new column with the last names.

Table 2: Example-usage prompt examples illustrated on the query create a new column with the last names.
Example-usage prompts append example code snippets to the query that demonstrate how to solve the pandas
problem in various ways.

• var = expr: append the statement varout1349

= var to the completion1350

• var[expri] = expr: append the statement1351

varout = var to the completion1352

• print(expr, ...): replace this statement1353

and the rest of the completion with varout =1354

expr1355

• expr: replace this statement and the rest of1356

the completion with varout = expr1357

Rewriting also inserts import statements1358

for common libraries (e.g. import numpy as1359

np).1360

The rewritten completion is appended to the1361

code that defines the input dataframe to create a1362

completed program. The completed program and1363

the output variable name varout are sent to a sand-1364

box for execution.1365

Sandboxing. Because of security risks inherent1366

in running LLM-generated code, we run com-1367

pleted programs in a sandbox. Our sandbox is a1368

JavaScript web service that runs Python programs1369

in Pyodide (Droettboom et al., 2022), a Python1370

distribution for WebAssembly. While Python pro-1371

grams running in Pyodide have access to the host’s1372

network resources, they at least are isolated from1373

other host resources including its filesystem, of-1374

fering some level of protection from malicious or1375

accidentally harmful completions.1376

After running the code, the sandbox returns the 1377

value of varout. 1378

E.7 Evaluation 1379

For a completion to be considered a correct solu- 1380

tion in the calculation of pass@k, its actual output 1381

must match the expected output. Matching can- 1382

not be the same as equality and still conform to 1383

a reasonable notion of correctness; for example, 1384

the natural breakdown of a solution might gener- 1385

ate intermediate columns in the actual output that 1386

are not in the expected output. 1387

The actual output is allowed to vary from the ex- 1388

pected output in the following ways and still match 1389

the expected output: 1390

• Extra columns 1391

• Different column order 1392

• Different column headers 1393

• Number expected; actual is a number within 1394

small relative error (default 0.01) 1395

• Number expected; actual is a string that 1396

parses as a number within small relative er- 1397

ror 1398

• Boolean expected; actual is number 0 or 1 1399

• Boolean expected; actual is a string that rep- 1400

resents a truth value 1401

21

Prompt name Prompt template

column-info

df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
There is 1 column in the input data. The column Position has 10 entries, 10 of
which are unique.

type-info

df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
Returns
- - - - - - - - - - - - - - - - - - - -
pd.Dataframe with new columns. Data columns are as follows:
Position integers (as int)
Letter strings (as str)

regex-info (exact)

df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
10 of 10 elements in column Position match the regex format [0-9]+ where
examples of these elements include 8 and 23.

regex-info (partial)

df = pd.DataFrame("Body Fat":["4%", "14%"])
create a new column that writes Body Builder if Body Fat is less than 5%, else if it is
less than 13% writes Athletic, else writes No Data Yet.
9 of 10 (90%) elements in column Body Fat match the regex format [0-9]+%
where an example of these elements is (40%). 1 of 10 (10%) elements in column
Body Fat match the regex format NA where an example of these elements is NA.

regex-type-info

df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
Returns
- - - - - - - - - - - - - - - - - - - -
pd.Dataframe with new columns. Data columns are as follows:
Position integers (as int) that match the regex [0-9]+
Letter strings (as str)

regex-type-col-info

df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
There is 1 column in the input data. The column Position has 10 unique entries.
Returns
- - - - - - - - - - - - - - - - - - - -
pd.Dataframe with new columns. Data columns are as follows:
Position integers (as int) that match the regex [0-9]+
Letter strings (as str)

properties (textual)
df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
The column Position has the following properties: All elements contain digits.

properties (format)
df = pd.DataFrame("Position":[3, 14, 25])
Given position number n, create a new column with the nth letter of the alphabet.
The column Position satisfies ContainsDigits()

Table 3: Data-description prompts illustrated on the queries Given the position number n, create a new column
with the nth letter of the alphabet. Data-description prompts aim to extract task-specific structural information
about the data input provided by the user. We automatically compute information about the number of elements in
the columns, the type of each of the column elements (one of string, integer, boolean) and properties satisfied by
the elements. In addition, we compute a regular expression that captures a pattern of the elements in the column.

• String expected; actual is a string that differs1402

only in case1403

Allowed string truth value representations, al-1404

lowed relative error, and whether string matching1405

is case-sensitive are (optionally) overridden per1406

data point as appropriate.1407

F Detailed evaluation summaries of 1408

different scenarios 1409

F.1 Stability analysis 1410

To estimate the stability of the CODEXDATA al- 1411

gorithm on pass@k we ran each task in TYPESET 1412

and SOFSET 10 times and estimated the pass@5. 1413

In Fig.13 we show the corresponding means and 1414

standard deviations for SOFSET (top) and TYPE- 1415

SET (bottom). Due to the effort to run CODEXfor 1416

each example we were only able to calculate these 1417

numbers for k=5. 1418

22

Data type Example of task TYPESET SOFSET

strings sub-string extracts: df["col1"].str[4:10] 16 116
numbers divisions e.g. df["col1"] / df["col2"] 14 34
names surname in upper-case df["Givenname"].str.upper()[0] 12 13
dates extract month e.g. pd.DatetimeIndex(df[’date’]).month 14 32
units conversions 40 1
addresses extract the state df["col1"].str[:-2] 18 4
mixed types combine columns df["col1"] + df["col2"].astype(str) 14 0

Table 4: Number of tasks per data type in TYPESET and SOFSET with an example.

F.2 Detailed error analyses1419

23

SOFSET Instruction Prompts (Questions) TYPESET Instruction Prompts (Questions)

SOFSET Instruction Prompts (Assertions) TYPESET Instruction Prompts (Assertions)

SOFSET Instruction Prompts (Commands) TYPESET Instruction Prompts (Commands)

Figure 11: This figure presents prompt results for the instruction type prompts for SOFSET and TYPESET datasets.
We evaluate the different ways of phrasing the instruction: as a command, as an assertion and as a question. We
observe that instruction prompts that are phrased as a command perform slightly better than instruction prompts
phrased as an assertion or question. A speculation can be made about the impact of training data: not many natural
language comments are typically phrased as questions.

24

SOFSET Example-Usage Prompts TYPESET Example-Usage Prompts

SOFSET Data Description Prompts TYPESET Data Description Prompts

Figure 12: This figure presents prompt results for the example usage and data description prompting strategy for
SOFSET and TYPESET datasets. We observe that example usage prompts always perform worse or same as the
baseline. Amongst the data description prompts, augmenting type information leads to better performance in both
the datasets.

25

Notation
Metric Description Type
pass@k see metrics unit test
pass@k(%) see metrics unit test
NumUniqueValid Number of unique completions that are valid (have no run-

time errors and have the correct output type).
code

NumSuccess Number of completions that produce the correct output
type and values (pass unit test).

unit test

NumError Number of runtime errors (completions with no valid out-
put produced).

runtime

NumSyntaxErrors Number of syntax errors (completion generated is no valid
python code).

runtime

NumTypeErrors Number of type errors in the generated completions (oper-
ations/function not allowed for type).

runtime

NumValueErrors Number of value errors (value caused error in operation/-
function).

runtime

NumIndexErrors Number of error involving the dataframe index. runtime
NumAttributeErrors Number of attribute errors (referred object attribute does

not exists for example).
runtime

NumNameErrors Number of name errors (function/variable does not exists). runtime
NumKeyErrors Number of key errors (column does not exist). runtime
NumRegexErrors Number of regular expression errors. runtime
NumAssertionErrors Number of assertion errors in the completions. runtime
NumCorrectOutputType Number of completion that produce the correct output type

(a new column).
semantic

NumTypeMismatch Number of mismatches of the output type of the comple-
tion and the ground truth output. Please note that the mis-
match values are only computed for completions that are
valid/execute.

semantic

NumValueMismatch Number of mismatches of the column values from the gen-
erated by the completion and the ground truth.

semantic

DiffColNumber Number of completions with different output column num-
ber than ground truth output.

semantic

InputColumnsError Number of completions that do not use the input columns
from the dataframe.

semantic

ExtraColumnsError Number of completions that use columns that are not rele-
vant for the task.

semantic

NumCompletions Number of completions retrieved. stats
CompletionLenght String length of generated completions. stats

Table 5: Short description of the used metrics. For each experiment we calculate the above metrics and report them
as average over all completions and all examples per evaluation. Please see the Metrics section for further details.

26

Full-data vs no-data experiments SOFSET

full-data no-data prop-col subset-data no-data anon-col
Pass@K 0.673 0.583 0.6016 0.5687
Pass@K75pct 0.8273 0.7533 0.7512 0.7217
Pass@K70pct 0.8519 0.7761 0.7874 0.7709
Pass@K50pct 0.933 0.8584 0.8642 0.8259
Pass@K30pct 0.9524 0.906 0.9069 0.8625
Pass@K25pct 0.9531 0.9123 0.9152 0.8662
NumUniqueValid 0.8086 0.6397 0.7529 0.6604
NumSuccess 0.3135 0.2292 0.2952 0.2242
NumError 0.1833 0.3454 0.2384 0.3274
NumSyntaxErrors 0.0072 0.0159 0.0074 0.0167
NumTypeErrors 0.0214 0.0306 0.0252 0.0327
NumValueErrors 0.0405 0.0655 0.0714 0.0632
NumIndexErrors 0.007 0.0109 0.007 0.0088
NumAttributeErrors 0.0098 0.0146 0.0106 0.0209
NumNameErrors 0.0045 0.0094 0.0062 0.0087
NumKeyErrors 0.0081 0.018 0.0068 0.0715
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0 0.0 0.0
NumCorrectOutputType 0.8086 0.6397 0.7529 0.6604
NumTypeMismatch 0.0081 0.0149 0.0087 0.0122
NumValueMismatch 0.4951 0.4105 0.4577 0.4362
DiffColNumber 0.0264 0.0313 0.0201 0.0301
DiffTableNumber 0.0264 0.0313 0.0201 0.0301
CompletionLenght 9.5091 9.5446 9.5564 9.6114
NumCompletions 28.7045 40.0606 31.25 40.1053

Table 6: Detailed results for SOFSET for task class (IND) and different levels of data redaction. Metrics shown
are average numbers across the sampled completions.

27

Full-data vs no-data experiments SOFSET

full-data no-data prop-col subset-data no-data anon-col
Pass@K 0.302 0.1213 0.1384 0.1354
Pass@K75pct 0.4031 0.1739 0.2294 0.1564
Pass@K70pct 0.4352 0.1859 0.2793 0.1901
Pass@K50pct 0.6094 0.376 0.4767 0.3741
Pass@K30pct 0.7121 0.4835 0.605 0.4546
Pass@K25pct 0.7121 0.4835 0.605 0.4546
NumUniqueValid 0.6071 0.2997 0.5895 0.2926
NumSuccess 0.0828 0.0296 0.0497 0.0243
NumError 0.3761 0.6936 0.398 0.7017
NumSyntaxErrors 0.0112 0.0207 0.0105 0.0209
NumTypeErrors 0.172 0.3263 0.1473 0.259
NumValueErrors 0.0653 0.123 0.1023 0.0928
NumIndexErrors 0.0018 0.0063 0.0049 0.0083
NumAttributeErrors 0.0398 0.0876 0.0333 0.0865
NumNameErrors 0.0029 0.0061 0.0036 0.0034
NumKeyErrors 0.0074 0.0162 0.0052 0.1619
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0003 0.0 0.0
NumCorrectOutputType 0.6071 0.2997 0.5895 0.2926
NumTypeMismatch 0.0168 0.0068 0.0126 0.0057
NumValueMismatch 0.5244 0.2701 0.5398 0.2683
DiffColNumber 0.0328 0.0413 0.0419 0.0261
DiffTableNumber 0.0328 0.0413 0.0419 0.0261
CompletionLenght 9.6305 9.8837 9.6271 9.9495
NumCompletions 41.4474 80.3421 42.3421 88.3243

Table 7: Detailed results for SOFSET for task class (DEP) and different levels of data redaction. Metrics shown
are average numbers across the sampled completions.

28

Full-data vs no-data experiments SOFSET

full-data no-data prop-col subset-data no-data anon-col
Pass@K 0.2078 0.0962 0.1369 0.1124
Pass@K75pct 0.4314 0.2181 0.2546 0.2097
Pass@K70pct 0.4641 0.2835 0.2869 0.2258
Pass@K50pct 0.6079 0.3806 0.5297 0.3277
Pass@K30pct 0.7273 0.5732 0.6814 0.5658
Pass@K25pct 0.7273 0.5732 0.6814 0.5658
NumUniqueValid 0.6669 0.4943 0.6079 0.4372
NumSuccess 0.0559 0.011 0.0314 0.0244
NumError 0.3193 0.4991 0.3826 0.5566
NumSyntaxErrors 0.0118 0.0156 0.0126 0.0174
NumTypeErrors 0.0492 0.1167 0.0433 0.1196
NumValueErrors 0.1019 0.1487 0.1449 0.1448
NumIndexErrors 0.0025 0.013 0.0058 0.0211
NumAttributeErrors 0.0248 0.0834 0.0283 0.0688
NumNameErrors 0.0126 0.0145 0.0114 0.0127
NumKeyErrors 0.0073 0.0106 0.0064 0.0937
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0 0.0 0.0
NumCorrectOutputType 0.6669 0.4943 0.6079 0.4372
NumTypeMismatch 0.0138 0.0066 0.0095 0.0061
NumValueMismatch 0.611 0.4833 0.5765 0.4128
DiffColNumber 0.0487 0.077 0.0621 0.0548
DiffTableNumber 0.0487 0.077 0.0621 0.0548
CompletionLenght 9.5894 9.8389 9.6326 9.8971
NumCompletions 36.4516 55.2581 41.3548 65.2258

Table 8: Detailed results for SOFSET for task class (EXT) and different levels of data redaction. Metrics shown
are average numbers across the sampled completions.

29

Full-data vs no-data experiments TYPESET

full-data no-data prop-col subset-data no-data anon-col
Pass@K 0.55 0.4 0.5881 0.5663
Pass@K75pct 0.7741 0.6263 0.7013 0.6915
Pass@K70pct 0.7741 0.6263 0.7013 0.6915
Pass@K50pct 0.7741 0.6263 0.7013 0.6923
Pass@K30pct 0.7741 0.6263 0.7263 0.6923
Pass@K25pct 0.7741 0.6263 0.7263 0.6923
NumUniqueValid 0.8481 0.6374 0.793 0.6897
NumSuccess 0.4008 0.2669 0.3914 0.3257
NumError 0.1399 0.3498 0.2006 0.2987
NumSyntaxErrors 0.0025 0.0064 0.0083 0.0104
NumTypeErrors 0.0455 0.1061 0.069 0.0583
NumValueErrors 0.0173 0.0277 0.0146 0.1008
NumIndexErrors 0.0 0.0004 0.0 0.0
NumAttributeErrors 0.0 0.0197 0.0006 0.0097
NumNameErrors 0.0 0.0047 0.0 0.0039
NumKeyErrors 0.0042 0.002 0.0 0.0034
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0 0.0 0.0
NumCorrectOutputType 0.8481 0.6374 0.793 0.6897
NumTypeMismatch 0.012 0.0128 0.0063 0.0116
NumValueMismatch 0.4474 0.3705 0.4016 0.364
DiffColNumber 0.0087 0.0169 0.0043 0.0103
DiffTableNumber 0.0087 0.0169 0.0043 0.0103
InputColumnsError 0.0961 0.0539 0.0721 0.0222
ExtraColumnsError 0.0 0.0 0.0 0.0
CompletionLenght 9.5944 9.7442 9.6465 9.6858
CompletionSize 25.15 45.35 28.15 41.8

Table 9: Detailed results for TYPESET for task class (IND) and different levels of data redaction. Metrics shown
are average numbers across the sampled completions.

30

Full-data vs no-data experiments TYPESET

full-data no-data prop-col subset-data no-data anon-col
Pass@K 0.9243 0.3454 0.8071 0.3333
Pass@K75pct 0.9243 0.3454 0.8071 0.4876
Pass@K70pct 0.9243 0.3618 0.8071 0.4876
Pass@K50pct 0.9243 0.3748 0.8071 0.5293
Pass@K30pct 0.9243 0.375 0.8071 0.5293
Pass@K25pct 0.9243 0.375 0.8071 0.5293
NumUniqueValid 0.7122 0.325 0.6844 0.5172
NumSuccess 0.4548 0.1282 0.386 0.1739
NumError 0.2822 0.674 0.3156 0.4828
NumSyntaxErrors 0.0 0.0159 0.0 0.0
NumTypeErrors 0.1031 0.1846 0.0854 0.2164
NumValueErrors 0.0567 0.1867 0.0875 0.0808
NumIndexErrors 0.0 0.0213 0.0 0.0129
NumAttributeErrors 0.0138 0.1038 0.0202 0.0851
NumNameErrors 0.0 0.0 0.0 0.0023
NumKeyErrors 0.0 0.0 0.0 0.0181
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0 0.0 0.0
NumCorrectOutputType 0.7122 0.325 0.6844 0.5172
NumTypeMismatch 0.0056 0.001 0.0 0.0
NumValueMismatch 0.2574 0.1968 0.2984 0.3432
DiffColNumber 0.0054 0.013 0.006 0.006
DiffTableNumber 0.0054 0.013 0.006 0.006
InputColumnsError 0.0889 0.0448 0.0464 0.1982
ExtraColumnsError 0.0 0.0 0.0 0.0
CompletionLenght 9.5041 9.8964 9.7128 9.8413
CompletionSize 30.5 68.75 35.25 47.25

Table 10: Detailed results for TYPESET for task class (DEP) and different levels of data redaction. Metrics shown
are average numbers across the sampled completions.

31

Full-data vs no-data experiments TYPESET

full-data no-data prop-col subset-data no-data anon-col
Pass@K 0.854 0.4407 0.7824 0.2383
Pass@K75pct 0.8947 0.5174 0.8131 0.2677
Pass@K70pct 0.8947 0.5174 0.8131 0.2677
Pass@K50pct 0.8975 0.5174 0.8131 0.2677
Pass@K30pct 0.8976 0.5174 0.8131 0.2677
Pass@K25pct 0.8976 0.5174 0.8131 0.2677
NumUniqueValid 0.7303 0.4097 0.6981 0.292
NumSuccess 0.3118 0.1299 0.2794 0.0728
NumError 0.2639 0.5855 0.2994 0.7016
NumSyntaxErrors 0.0087 0.0186 0.0049 0.0053
NumTypeErrors 0.0807 0.2443 0.1063 0.131
NumValueErrors 0.0677 0.0889 0.0493 0.0846
NumIndexErrors 0.0036 0.0009 0.0004 0.0023
NumAttributeErrors 0.0057 0.0245 0.0063 0.0145
NumNameErrors 0.0521 0.1623 0.0821 0.0083
NumKeyErrors 0.0027 0.0095 0.0042 0.0057
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0002 0.0 0.0
NumCorrectOutputType 0.7303 0.4097 0.6981 0.292
NumTypeMismatch 0.0058 0.0048 0.0025 0.0064
NumValueMismatch 0.4186 0.2798 0.4187 0.2192
DiffColNumber 0.0174 0.0182 0.0089 0.0103
DiffTableNumber 0.0174 0.0182 0.0089 0.0103
InputColumnsError 0.3928 0.1325 0.3077 0.0901
ExtraColumnsError 0.0 0.0 0.0 0.0
CompletionLenght 9.4444 9.8718 9.5836 10.1252
CompletionSize 29.0 72.6111 32.5556 95.3784

Table 11: Detailed results for TYPESET for task class (EXT) and different levels of data redaction. Metrics shown
are average numbers across the sampled completions.

32

Noise level experiment
missing mixformat corruption baseline

Pass@K 0.2189 0.4613 0.2557 0.6423
Pass@K75pct 0.477 0.5435 0.6777 0.7017
Pass@K70pct 0.5868 0.5435 0.6777 0.7017
Pass@K50pct 0.6563 0.5436 0.7044 0.7127
Pass@K30pct 0.724 0.5436 0.7044 0.7189
Pass@K25pct 0.7713 0.5436 0.7044 0.7303
NumUniqueValid 0.7905 0.8084 0.7503 0.8112
NumSuccess 0.0552 0.1788 0.0987 0.3083
NumError 0.2037 0.1864 0.2476 0.1833
NumSyntaxErrors 0.0038 0.0056 0.0081 0.0095
NumTypeErrors 0.0369 0.038 0.0122 0.0358
NumValueErrors 0.0674 0.0467 0.0869 0.0678
NumIndexErrors 0.033 0.0021 0.0034 0.0004
NumAttributeErrors 0.0034 0.0433 0.0049 0.0115
NumNameErrors 0.0023 0.0022 0.0 0.0
NumKeyErrors 0.0021 0.0028 0.0 0.0025
NumRegexErrors 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0 0.0 0.0
NumCorrectOutputType 0.7905 0.8084 0.7503 0.8112
NumTypeMismatch 0.0058 0.0052 0.0021 0.0055
NumValueMismatch 0.9283 0.7826 0.8667 0.6284
DiffColNumber 0.0207 0.0311 0.0289 0.0214
DiffTableNumber 0.0207 0.0311 0.0289 0.0214
InputColumnsError 0.0716 0.0276 0.0864 0.1536
ExtraColumnsError 0.0 0.0 0.0 0.0
CompletionLenght 9.6438 9.5977 9.7633 9.5553
NumCompletions 27.9167 27.1875 37.2143 26.9318

Table 12: Code completions results on TYPESETNOISY for different levels of noise. Metrics shown are average
numbers across the sampled completions.

33

Performance per data-type on TYPESET

units strings numeric names mixed dates address
Pass@K 0.9652 0.8333 0.5461 0.4809 0.5 0.4892 0.3205
Pass@K75pct 0.9798 0.9722 0.7128 0.7181 0.5587 0.5799 0.6193
Pass@K70pct 0.9798 0.9722 0.713 0.7181 0.5587 0.58 0.6646
Pass@K50pct 0.9798 0.9722 0.7938 0.7266 0.5587 0.5877 0.6928
Pass@K30pct 0.9798 0.9722 0.7938 0.7303 0.5587 0.5877 0.7354
Pass@K25pct 0.9798 0.9722 0.7938 0.7303 0.5587 0.62 0.7543
NumUniqueValid 0.7004 0.9084 0.543 0.8675 0.6703 0.6406 0.8546
NumSuccess 0.2792 0.5707 0.246 0.2807 0.2835 0.1515 0.1791
NumError 0.2963 0.0879 0.4507 0.1311 0.3192 0.3559 0.1365
NumSyntaxErrors 0.0032 0.0 0.0017 0.0028 0.0037 0.0035 0.0136
NumTypeErrors 0.1273 0.0 0.209 0.0028 0.1575 0.1229 0.0
NumValueErrors 0.0264 0.0239 0.1493 0.021 0.0276 0.0704 0.0638
NumIndexErrors 0.0018 0.0023 0.0 0.0087 0.0 0.0061 0.0074
NumAttributeErrors 0.0053 0.0051 0.0011 0.0016 0.0048 0.0401 0.0016
NumNameErrors 0.0938 0.0 0.0 0.0 0.003 0.0013 0.0023
NumKeyErrors 0.0 0.0024 0.0 0.0014 0.0 0.0004 0.0036
NumRegexErrors 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NumAssertionErrors 0.0 0.0 0.0 0.0 0.0 0.0 0.0
NumCorrectOutputType 0.7004 0.9084 0.543 0.8675 0.6703 0.6406 0.8546
NumTypeMismatch 0.0033 0.0037 0.0062 0.0014 0.0105 0.0035 0.0088
NumValueMismatch 0.4212 0.3377 0.297 0.5868 0.3868 0.4891 0.6755
DiffColNumber 0.0097 0.0138 0.0043 0.0355 0.0047 0.0071 0.0124
DiffTableNumber 0.0097 0.0138 0.0043 0.0355 0.0047 0.0071 0.0124
InputColumnsError 0.6608 0.0 0.0137 0.0067 0.3417 0.0088 0.0313
ExtraColumnsError 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CompletionLenght 9.3607 9.7139 9.8027 9.6785 9.6382 9.5844 9.6848
NumCompletions 29.25 22.1389 47.25 23.1071 35.0769 40.9032 24.4872

Table 13: Code completions results on TYPESET by data-types. Metrics shown are averaged across the sampled
completions.

34

SOFSET

TYPESET

Figure 13: Mean pass@5 and standard deviation for
data independent tasks full-data; data independent
tasks no-data; data dependent tasks full-data, data de-
pendent tasks no-data; external knowledge tasks full-
data; external knowledge tasks no-data.

35

