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ABSTRACT

Robustness in machine learning is a widespread concept and one of the pil-
lars of trustworthiness, ranging from a model’s resistance to noise—benign and
adversarial—to the reliability of benchmarking. In this work, we analyse the
robustness of labelled data which we argue corresponds to the data manifold’s
curvature as perceived by a model during training. This view can explain the
weaker effect of adversarial training in regions of nearby differently labelled data
points where a robust decision boundary exists but is not found. In addition, it
can explain why a focus on a minimal number of points from these regions during
training leads to an increased robust generalisation accuracy beyond the expected
local improvements. Combined with minor adjustments to the learning rate, we
improve several state-of-the-art results in a cost-neutral way.

1 INTRODUCTION

As one of the pillars of trustworthiness in machine learning, robust and reliable decision-making is
fundamental for any real-life application scenario. A prominent problem combining data, training
and evaluation concerns the adversarial robustness of deep neural networks. These models leverage
the knowledge hidden in vast amounts of data, but their vulnerability to adversarial noise (Szegedy
et al., 2014) undermines their trustworthiness in practice. Thus, searching for ways to render these
otherwise powerful machines more robust to adversaries is imperative.

One prominent defence crafts adversarial noise to augment the data during training which signifi-
cantly increases robustness (Madry et al., 2018), especially when combined with large amounts of
generated data (Wang et al., 2023). To improve the dynamics behind this adversarial training, re-
searchers devised several modifications, for example, by adaptively adjusting the attack (Cai et al.,
2018; Ding et al., 2018; Zhang et al., 2020a; Wang et al., 2021) or emphasising and re-weighting
difficult points (Zeng et al., 2021; Liu et al., 2021), often from regions closest to a model’s decision
boundary (Zhang et al., 2020b; Xu et al., 2023). Whereas most authors focus on increasing the mar-
gin (or distance) between the model’s decision boundary and the to-be-classified data points, there
exists an interesting phenomenon which margin variation cannot explain entirely: the much weaker
effect of adversarial training in regions of nearby differently labelled points.

Naturally, the distance between two differently labelled points limits the margins for any robust
decision boundary as exemplified in Fig. 1 (a, top) using examples from the MNIST set (Lecun
et al., 1998). The closer such points are the smaller their natural margin, leaving less space for a
robust decision boundary. In this sense, we can extend the concept of robustness to data points,
where the least robust points enforce the narrowest margins. However, while ”less space” may
explain the weaker effect of adversarial training in such non-robust regions, it fails as an explanation
if ”less space” is ”still more than enough space”. In this work, we provide a new perspective on this
phenomenon which can explain why these non-robust points are ”difficult” for any model and why
adversarial training may not lead to a robust decision boundary, even if we know it exists.

Consider Fig. 1 (b) as an example. Both plots display the (adversarial) training and test accuracy
on CIFAR-10 (Krizhevsky, 2009) using adversarial training over 2400 epochs with 20 million ad-
ditional images from Wang et al. (2023). The training attack uses the TRADES loss (Zhang et al.,
2019) for a 10-step projected gradient descent (PGD-10) with maximum l∞ perturbation radius
8/255 and step size 2/255 (Madry et al., 2018). By fixing either the 1024 most (left) or least robust
images as part of the training set and using a stronger 40-step PGD attack, we establish a learning
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focus on these regions. As shown by the red pentagons, the final adversarial accuracy on these sets
differs by a factor of 2, with the model remaining much more vulnerable in non-robust regions.

However, smaller margins alone cannot explain this behaviour: the minimal l∞ distance between
two non-robust CIFAR-10 images (≈ 0.2118) is more than six times as large as the maximum
perturbation radius (≈ 0.0314) which, geometrically, leaves more than enough space for a robust
decision boundary. Consequently, the distance between differently labelled points cannot explain
the weaker performance of adversarial training alone. As our primary contribution in this work, we
provide an explanation for this phenomenon by establishing a link between data robustness and the
curvature of the data manifold as perceived by a model during training.

(a) (b)

Figure 1: (a): Top: data manifold for digits (black curve) together with distances between points
using the feature space metric (length of the dashed line) and the manifold metric (length of the
dotted+dashed curve). The labels of the triangle, circle and square are ”1”, ”1”, and ”7”, respectively.
The bars M1/M2 indicate margins between differently labelled points. Bottom: an example of the
learned manifold representation (grey spline). (b): Clean/adversarial training/test accuracy of two
models, where the red pentagons display the adversarial accuracy when focusing adversarial training
on the 1024 most (left) and least robust elements in the training set.

Let us illustrate what we mean by the perception of curvature: continuing the example in Fig. 1 (a),
the lengths of the dashed line and the dotted+dashed line visualise the feature space and manifold
distance between points, respectively. While the former measures the ”pixel distance”, the latter
measures the semantic variation of the images. The (discrete) curvature at a data point, e.g. the
circle, can be understood as a ratio between these distances to nearby points, effectively comparing
the semantic change with the change in terms of pixels. Both distances are similar (e.g., between
the circle and square) if and only if the curvature is low. Now, according to Brahma et al. (2016),
a network learns its own representation of the data where it disentangles the manifold’s structure.
However, since classification labels only encode whether points are semantically different (in the
form of classes) and not the degree of these semantic differences, the model may perceive the pixel
distance as much smaller than the manifold distance in non-robust regions. This can result in a dis-
torted representation of curvature which sustains the susceptibility to adversarial noise as indicated
by the bend between the rightmost two images of the learned manifold representation (grey spline)
in Fig. 1 (a). More precisely, by ”forcing” the model to maximise the distances between differently
labelled regions of the data, the training algorithm also forces the model to connect pixel distances
with the class-changing semantic distances. Since the ratio between these distances is distorted for
the least robust points, where the pixel differences need to explain relatively larger semantic dif-
ferences, the model may learn spurious correlations between the primitive features (pixels) and the
labels in these regions. As we will show theoretically and empirically, there exists precisely such
a link between the robustness of the data and the perceived curvature that can explain the weaker
effect of adversarial training in non-robust regions.

To demonstrate that this new geometric understanding is meaningful in practice and can motivate
new adversarial training methods, we slightly modify the pipeline of Wang et al. (2023) who provide
state-of-the-art adversarial robustness for different datasets and norms. In several experiments, we
show that focusing adversarial training on a negligible set of non-robust data points (≈ 0.005% of the
training data) leads to higher robustness for unseen data beyond the expected local improvements.
Combined with minor adjustments to the learning rate, we improve the previous state-of-the-art
while using identical computational resources. To conclude, our contributions are: (i) We provide a
new and rigorous explanation for the weaker effect of adversarial training in regions of non-robust
data by linking the problem to the model’s perception of the data manifold’s curvature. (ii) We
reframe the theoretical concept of the data manifold in terms of metric geometry and provide several
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results as empirical evidence for our proposed view. (iii) We slightly modify the current state-of-
the-art pipeline and train more robust models using identical computational resources.

2 RELATED WORK

Adversarial Robustness and Training: After ten years (Szegedy et al., 2014), the adversarial ro-
bustness of neural networks is still an active field of research (Gowal et al., 2020; Rebuffi et al., 2021;
Wang et al., 2023). By now, there exist leaderboards (Croce et al., 2021) to track advances for se-
lected image datasets, limitations of which are discussed by Lorenz et al. (2022). Meanwhile, several
authors have created adversarial examples in real-world scenarios (Xu et al., 2020; Kurakin et al.,
2017; Eykholt et al., 2018), still questioning the trustworthiness of models in practice. Nonethe-
less, the l∞ robustness on small-scale datasets such as MNIST (Lecun et al., 1998) and CIFAR-10
(Krizhevsky, 2009) has surpassed the 96% (Gowal et al., 2020) and 70% thresholds (Wang et al.,
2023), respectively. Such advances can be attributed to a combination of several factors, including
large and wide models (Zagoruyko & Komodakis, 2016), additional data (Carmon et al., 2019; Ho
et al., 2020; Karras et al., 2022), weight averaging (Izmailov et al., 2018), label smoothing (Szegedy
et al., 2015) and, crucially, adversarial training (Madry et al., 2018) with the TRADES loss func-
tion (Zhang et al., 2019). Adversarial training, in particular, exists in many forms: from adaptively
adjusting attacks (Cai et al., 2018; Ding et al., 2018; Zhang et al., 2020a; Wang et al., 2021) to em-
phasising and re-weighting difficult points (Zeng et al., 2021; Liu et al., 2021), often from regions
closest to a model’s decision boundary (Zhang et al., 2020b; Xu et al., 2023).

Diffusion Models: As cheap data providers, diffusion models have attracted much attention recently
(Ho et al., 2020; Karras et al., 2022; Rombach et al., 2022), especially because of their improvements
over generative adversarial networks (Dhariwal & Nichol, 2021). In essence, diffusion models learn
to reverse the process of turning signal into noise by predicting noise residuals (for example, on
images), enabling them to generate new data points from pure noise (Sohl-Dickstein et al., 2015).
Once trained, they can provide endless semantically-different examples to augment the training
data. On the other hand, diffusion models can also improve the adversarial robustness of models
when included as input ”purifiers”, effectively removing the adversarial noise (Nie et al., 2022).

Data Manifold: Assuming that the data manifold is embedded in Euclidean space, it seems to be of
drastically smaller dimension than the ambient space, especially for image data (Pope et al., 2021;
Brown et al., 2022). Apart from artificial examples (Cayton, 2005; Brahma et al., 2016), proving its
existence is complex (Fefferman et al., 2013). Nonetheless, information about this latent structure
benefits a neural network’s performance via unsupervised pre-training (Erhan et al., 2010), where
the disentangled manifold appears to be flattened in the higher layers (Brahma et al., 2016). In this
work, we use concepts from metric geometry (Rinow, 1961; Gluck, 1966; Gromov, 2007; Bridson
& Häfliger, 2011) to re-frame the data manifold and employ a specific formulation of (arc) curvature
(Kay, 1980; Saucan, 2017), initially introduced by Haantjes (1947).

3 BACKGROUND AND THEORETICAL FRAMEWORK

We begin by regarding the data as decoupled from the assigned labels and the data manifold as
arc-connected as long as the data features are continuously distributed. For images, Brown et al.
(2022) claim that there exist several class-dependent, disconnected manifolds of varying intrinsic
dimensionality, arguing that an image of a ”2” cannot be continuously transformed into an image of
an ”8”. In contrast, we assume that such a transformation exists along a curve tangent to the data
manifold (comp. Fig. 1 (a)) for which well-defined intermediate labels merely do not exist. In other
words, the data manifold exists independent of any labels. To give an intuitive example, one may
imagine shooting a film, starting with an image of a ”2” before exchanging it for an image of an
”8”. Naturally, this provides a continuous stream of images transforming the former into the latter,
implying that the data manifold for such images is arc-connected and, a fortiori, connected.

As is customary, we regard the (image) data as elements in the hypercube [0, 1]n, where n is the
number of features. Because multiple metrics may be interesting (such as the Euclidean (l2) and
infinity (l∞) norm for images), it makes sense to work with a (compact) metric space (X, d), for
example, ([0, 1]n, l2|[0,1]n ). Given C ∈ N classification labels, we assume that the components of
the corresponding one-hot-encoded labels represent the values of C real-valued probability densities.
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More precisely, we define a label map y : X → [0, 1]C as a continuous extension of the one-hot-
encoded labels yi := y(pi) from a finite dataset D := {p1, . . . , pm} ⊂ X .

To construct a suitable notion of the data manifold, a few preliminary steps are necessary (Ri-
now, 1961; Gluck, 1966; Gromov, 2007; Bridson & Häfliger, 2011): first, assume we have some
arc-connected set M ⊂ X such that the arc between any two points is rectifiable, that is, of fi-
nite length. The length of an arc γ : [0, 1] → M connecting two points p1, p2 ∈ M is de-
fined as L(γ) := sup{l(R) : R = {0 = r0 ≤ r1 ≤ · · · ≤ rkR

= 1}, kR ∈ N} with
l(R) :=

∑kR

i=1 d|M (γ(ri−1), γ(ri)). One can show that the length functional in this case induces
a well-defined metric d̃ on M via d̃(p1, p2) := infγ∈Γ(p1,p2) L(γ), where Γ(p1, p2) is the set of
rectifiable arcs in M connecting p1 and p2. It follows that d̃ ≥ d|M×M

as real-valued functions.

Finally, the metric space (M, d̃) is what we regard as the data manifold, where d̃ is the manifold
metric measuring semantic variation along (or constrained to) the manifold (comp. Fig. 1 (a)). Note
that this construction circumvents the problem of assuming a differentiable structure on the manifold
or the latter being of constant intrinsic dimension which would contradict findings by Brown et al.
(2022) building on results from Pope et al. (2021). Note furthermore that the continuity of y on X
w.r.t. d implies the continuity of y on M w.r.t. d̃, see (Gluck, 1966). Fig. 1 (a) illustrates such a data
manifold and the distance in terms of the length of curves connecting two points.

A rectifiable arc γ has Finsler-Haantjes curvature (Haantjes, 1947; Kay, 1980; Saucan, 2017)
κ(p) at p ∈ M if κ(p1, p2) → const. =: κ(p) < ∞ for p1, p2 → p, where κ(p1, p2) :=(
4! d̃(p1,p2)−d(p1,p2)

d(p1,p2)3

) 1
2 . One can show that this generalises the classical curvature for smooth arcs in

Euclidean vector spaces (Kay, 1980). An equivalent (and more convenient) expression is:

κ̃(p1, p2) :=
κ(p1,p2)

2

4! = d̃(p1,p2)−d(p1,p2)
d(p1,p2)3

The more d̃ and d diverge for curve points p1, p2 converging to some p, the larger the curvature
at p. For images, a large curvature in this sense can be visible as a strong semantic change (w.r.t.
d̃) relative to the pixel difference (w.r.t. d). Unfortunately, d̃ is inaccessible, so it will not allow
us to draw any conclusions about the actual curvature. However, as stated in the introduction, we
are interested in the curvature of the data manifold as perceived by a model during training. The
following functional will provide the means to test this in practice:

sy : D → R, pi 7→ maxpi ̸=pj∈D
∥y(pi)−y(pj)∥

d(pi,pj)
(1)

This expression resembles a ”point-wise” Lipschitz constant of the label map y on the finite dataset
D and, thus, we will call sy(pi) the sensitivity of pi. To connect this formulation to the concept of
robustness outlined in the introduction, we can simply define r(xi) := minxj :y(xi )̸=y(xj) d(xi, xj)
as the robustness of a data point. Both concepts are related and provide equivalent information if
y takes only binary values. In this sense, the least and most sensitive elements are the most and
least robust, respectively. If we assume y to be locally constant around each pi ∈ D, we have the
following result revealing the measure’s local character:

Theorem 1. Let (X, d) and (Y, ∥ · ∥) be a metric and Banach space, respectively, and
{p1, . . . , pm} =: D a finite collection of points. Assume that there exists a map y : X → Y
which is locally constant around each pi. Then there exists an open set Ui ⊂ X around any fixed pi
such that the following functional is Lipschitz continuous:

sy : Ui → R, x 7→ maxpi ̸=pj∈D
∥y(pj)−y(x)∥

d(pj ,x)

We present a proof in Appendix A. Since |sy(a)−sy(b)| ≤ Lid(a, b) for some Li := L(Ui) ≥ 0 and
a, b ∈ Ui, Theorem 1 guarantees that sensitivity information is locally consistent (both for (X, d)

and (M, d̃)) as long as the same holds for the label map. In particular, the information provided by
sy is robust under small enough (adversarial) noise, label smoothing (Szegedy et al., 2015) with a
uniform distribution and rescaling of y (see Appendix A, Remark 1).

We now derive our main assumption from empirical evidence. Since the features and labels are all
the information conveyed to a model during training, the manifold distance—as perceived by the
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model—can, at most, incorporate the same information. To make this thought explicit, we express
the perceived manifold distance as d̃perc(y, pi, pj). Now, given sufficient capacity, neural networks
can learn any function on a reasonably well-behaved space (Hornik, 1991), but—in terms of training
optimisation—it seems irrelevant what the signal-to-noise ratio is or whether labels are assigned at
random (Zhang et al., 2016; 2021). Although correct labels allow faster training (Frankle et al.,
2020), training with random labels transfers knowledge to the model (Maennel et al., 2020) which
can not entirely be explained by memorisation (Arpit et al., 2017; Pondenkandath et al., 2018).

Based on these empirical results, it appears that the particular choice of y and, thus, the perceived
manifold distance between differently labelled elements d̃perc(y, pi, pj) for y(pi) ̸= y(pj) do not
have any (substantial) impact on training optimisation. We, therefore, argue that a model perceives
d̃perc(y, pi, pj) = δ(y) for some constant δ(y) > 0 if and only if pi and pj have distinct labels and
0 otherwise (which is exactly the information contained in ∥y(pi)− y(pj)∥ for one-hot encoded y).
Up to rescaling of the norm, we write: ∥y(pi) − y(pj)∥ = d̃perc(y, pi, pj). Since the three sets
∆1 := {d(pi, pj)−1}, ∆2 := {λ − d(pi, pj)} and ∆3 := {d(pi, pj)−3} admit the same order for
any λ ∈ R, where pi, pj ∈ D, y(pi) ̸= y(pj), the same holds for ∆4 := {λ−d(pi,pj)

d(pi,pj)3
}. Exchanging

d̃ for d̃perc to turn κ̃ and κ into κ̃perc and κperc, respectively, we can write ∆4 = {κ̃perc(pi, pj)}
when setting λ := δ(y). Finally, because ∆1 and ∆4 have the same order of elements and κ̃perc

is proportional to κperc, the sets {sy(pi) | pi ∈ D} and {maxpj :y(pi) ̸=y(pj) κperc(pi, pj) | pi ∈ D}
have the same order as well.

If pi ∈ D, let γj be an arc in M connecting pi = γj(0) to pj = γj(1) for y(pj) ̸= y(pi).
Then maxpj :y(pi )̸=y(pj) κperc(pi, pj) = maxγj

κperc(γj(0), γj(1)) approximates the maximum
perceived curvature along curves starting at pi and ending in regions of points with different la-
bels. We now see that, under our assumption that a model perceives differently labelled ele-
ments as having the same manifold distance δ(y), it also perceives the most and least sensitive
elements of the data manifold as the elements with the highest and lowest curvature, respectively.
This may explain why models struggle more with adversarial noise in the most sensitive / least
robust regions, see Fig. 1 (b): as the ratio between d̃ and d is distorted for the least robust
points—where the pixel differences need to explain relatively larger semantic differences—the
model may learn spurious correlations between the primitive features (pixels) and the labels in
these regions. Interestingly, Arpit et al. (2017) have shown that adversarial examples are easier
to generate when training a network with random labels. Since random labels can increase the
sensitivity values of data points, comp. Equation (1), this aligns perfectly with our view. Finally,
from Theorem 1 it follows that any q ∈ M with d(pi, q) small enough will have a similar sensi-
tivity value sy(pi) ≈ sy(q) and, repeating the above arguments, a similar approximate curvature
maxpj :y(pi )̸=y(pj) κperc(pi, pj) ≈ maxpj :y(q)̸=y(pj) κperc(q, pj). In this sense, data sensitivity/ro-
bustness and perceived curvature are local phenomena.

4 EVALUATION

In this section, we will (i) motivate empirically why data sensitivity/robustness and perceived curva-
ture are related as explained in Section 3 (Figure 2 (a, b)); (ii) provide visual evidence for Theorem
1 (Figure 2 (c, d)); (iii) showcase the link between data robustness and a (diffusion) model’s per-
ception of the data manifold’s curvature (Figure 3 & Table 1); (iv) show that stronger adversarial
training on a negligible number of non-robust points (≈ 0.005%) entails robustness benefits beyond
the expected local improvements (Table 2) and (v) improve the state-of-the-art approach from Wang
et al. (2023) using identical computational resources (Tables 3 and 4).

Datasets: For the data analysis, we used the CIFAR-10/100/100s training sets (Krizhevsky, 2009),
together with the 500,000 pseudo-labelled real (”TI500K”) and the 1 million generated (”1m”) 10-
class datasets from Carmon et al. (2019) and Wang et al. (2023), respectively. ”TI500K” and the
CIFAR data are subsets of the 80 Million Tiny Images dataset (Torralba et al., 2008). CIFAR-100s is
CIFAR-100 with labels grouped into 20 more general ”super” classes. For our adversarial robustness
experiments, we use CIFAR-10/100. We focus on the CIFAR data because training pipelines and
diffusion models are available or quickly adopted. For CIFAR-100, we excluded a small set of 40
duplicate images. Appendix C displays results for the EMNIST set (Cohen et al., 2017).
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(a) (b) (c) (d)

Figure 2: (a): Ordered l2 sensitivity values for the original CIFAR data and subsets of ”TI500K” and
”1m”. (b): The differences between sensitivity values of CIFAR-100/10 (”+”) and CIFAR-100/100s
(”o”), ordered by the CIFAR-100 values. Right half: MDS representations of a CIFAR-10 (c) and
CIFAR-100 (d) sample, coloured and resized in proportion to their l2 sensitivity values, where the
most and least robust elements are the small blue and large red points, respectively.

Experimental Setup: All sensitivity values were calculated according to the formula in Equation (1)
w.r.t. the Euclidean (l2) and the infinity (l∞) norm; see Algorithm 1 and the benchmarks in Appendix
B. We used multidimensional scaling (MDS) (Kruskal, 1964) which visualises similarities based on
pair-wise differences of data points to see whether detectable patterns emerged for a robustness-
stratified sample of 1000 elements. The diffusion models are taken from Karras et al. (2022) and
Wang et al. (2023) for CIFAR-10 and CIFAR-100, respectively, where we changed the backward
diffusion process to mimic a data cloning pipeline. Instead of starting with pure noise, we used a
normalised weighted combination of random normal noise (45%) and the original images (55%) to
reduce the signal-to-noise ratio without sacrificing the entire information. To optimise the denoising
process, we ran a small hyperparameter search over three random seeds to find the minimal FID
(Heusel et al., 2017) between the least robust 10,000 CIFAR-10 images (w.r.t. the l∞ norm) and
their clones. The list of parameters is in Appendix B; we refer to the work of Karras et al. (2022)
for their precise definition. The final FIDs were 5.83/5.76/5.78. Because of the high computational
cost, we used the same parameters for CIFAR-100.

Our evaluation setup for the adversarial robustness experiments matches the state-of-the-art ap-
proach by Wang et al. (2023) for the more economical Wide-Res-Net-28-10 architecture (Zagoruyko
& Komodakis, 2016) (more details in Appendix B). We used PGD-10-based adversarial training with
TRADES loss Zhang et al. (2019) on the CIFAR-10/100 sets for different batch sizes (BS), epochs
(E), norms (N) and amounts of additional generated images (GI) from Wang et al. (2023). The ad-
versarial robustness was evaluated on the test sets using AutoAttack (Croce & Hein, 2020). During
our experiments, we uncovered a glitch in the training pipeline of Wang et al. (2023), which we used
to include stronger adversarial noise in the training process. We describe the dynamics in Appendix
D. However, we were able to circumvent the glitch and emulate its effect, as discussed below.

The (Local) Consistency of Sensitivity Values: We show a selection; more results are in Appendix
B. Figure 2 (a) displays the ordered l2 sensitivity values for CIFAR-10/100/100s and two random
samples of 50,000 elements from the ”TI500K” and ”1m” datasets. Figure 2 (b) shows the differ-
ences between sensitivity values of CIFAR-100/10 (”+”) and CIFAR-100/100s (”o”), ordered by the
CIFAR-100 values. Compared to the ”TI500K” data, all other sets have similar sensitivity distribu-
tions. Whereas the slight differences for the ”1m” subsets can be explained by using a classifier’s
predictions as labels (similar as for ”TI500K”), the more noticeable differences for ”TI500K” can
be explained by Carmon et al. (2019) removing near-duplicates of the CIFAR-10 test set. More
precisely, as sensitivity is a local concept (proven in Theorem 1), removing near-duplicates from a
set can decrease the values independent of the reference set. Both graphs indicate that the sensitivity
values for distinct datasets from the same manifold depend primarily on feature information and not
on the granularity of the class distributions. As we have outlined in Section 3, this aligns sensitivity
information with how a model perceives curvature. Figure 2 (c) and (d) display the MDS represen-
tations for CIFAR-10 and CIFAR-100, respectively. Patterns emerge based on the point colours and
sizes, showcasing the statement of Theorem 1: similar points—which will be clustered together by
the algorithm—have similar sensitivity values. We note that MDS does not use label information.

A Model’s Perception of Curvature: Figure 3 displays the original 16=4x4 most and least robust
elements (w.r.t. the l2 norm) from CIFAR-10/100 with their clones, respectively. More detailed
examples are shown in Figures 8-15 in Appendix B. The most robust elements have semantically
similar clones compared to the least robust elements. The differences for the former mainly consist

6



Under review as a conference paper at ICLR 2024

(a) (b)

Figure 3: (a) Square arrangements of the 16=4x4 most robust images for CIFAR-10 (top left) and
CIFAR-100 (bottom left) together with their individual clones on the right and collections of ten
clones for the first image, respectively. (b) The corresponding least robust images and clones.

Table 1: Pixel distances and FID between the 10,000 least/most robust images and their clones (O:C)
and the pixel distances between 10 clones of the 1024 least/most robust images (C:C), respectively.

Set ∥ · ∥-Rob. l∞ (O:C) l2 (O:C) FID (O:C) l∞ (C:C) l2 (C:C)

CIFAR-10 l2-Most 0.63 7.73 5.54 0.72 8.99
CIFAR-10 l2-Least 0.53 6.89 5.59 0.55 6.99
CIFAR-10 l∞-Most 0.63 7.61 5.64 0.70 8.75
CIFAR-10 l∞-Least 0.52 7.15 5.76 0.55 7.44

of colour changes, either of the object or background; conversely, the semantic changes for the
least robust elements are more pronounced and include the object’s general shape and surroundings.
This is (visual) evidence of the diffusion model connecting more significant semantic differences to
regions of the least robust elements.

Table 1 shows the average l2 and l∞ distances, and the FID between the 10,000 least/most robust
CIFAR-10 elements (w.r.t. both norms) and their clones (columns 3,4,5). The last two columns show
the corresponding average distances between 10 clones of the same image for the 1024 most and
least robust elements, respectively (we measured the distance between each clone and its follow-
up clone). The statistics for CIFAR-100 are similar (see Table 5 in Appendix B). Interestingly,
the average ”pixel distances” (w.r.t. the l2 and l∞ norm) are smaller for the least robust elements
than for the most robust when comparing original images with clones (O:C) and when comparing
clones with clones (C:C), respectively. Based on these differences between the pixel distance and
the semantic manifold distance (or d and d̃ as introduced in Section 3), the diffusion models seem
to produce fundamentally different clones for the least (large d̃, small d) and most (small d̃, large d)
robust images. In terms of the Finsler-Haantjes curvature κ, the model connects the least and most
robust elements to regions of high and low curvature, respectively, when generating images.

To provide evidence for our claim that a weaker performance of adversarial training may be related
to a model perceiving higher curvature, we tested how a focus on a small set of non-robust points
can influence the robustness on unseen data. If there is no such connection, we expect no increase in
robust generalisation accuracy beyond the local improvements on the small set, indicating that the
model’s learned representation of the data is largely unchanged. To this end, we slightly modified
the adversarial training on CIFAR-10 with N=l∞/E=2400/BS=2048/GI=20m. Table 2 displays the
results, where v and v′ denote distinct random sets with 1024 elements, while s contains the 1024
least robust elements; the label distributions are displayed in Fig. 4 (a) and (b). The minus sign ”-”
indicates which set was held out from the training data, whereas the set in parentheses was focused
on during training. This focus comes in the form of a stronger PGD-40 attack in every training
epoch. Importantly, if the set in parentheses is not simultaneously held out, it is part of the training
data which allows us to emphasise learning on its elements.
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Table 2: Results for CIFAR-10 with l∞ norm (C10∞). AAb and AAl display the clean (left value)
and adversarial accuracy for the ”best” and ”last” weights in columns 3 and 4, respectively, with
corresponding deltas in columns 5 and 6. Here, the ”best” weights are determined by the epoch Eb

(column 7) where the best PGD-40 accuracy (column 8) on the set in parentheses was achieved.

Description Setup AAb AAl ∆b ∆l Eb (PGD-40)b

Wang et al. (2023) C10∞,−v(v) 92.45 - 67.53 92.40 - 67.57 24.92 24.83 2384 72.66

Validation set C10∞,−v′ (v) 92.62 - 67.54 92.63 - 67.56 25.08 25.07 2393 89.75
(VS) C10∞,−v(·) x 92.47 - 67.52 x 24.95 x x

C10∞,−s(s) 92.44 - 67.57 92.54 - 67.47 24.87 25.07 2340 39.94
C10∞,−v(s) 92.40 - 67.77 92.40 - 67.70 24.63 24.70 2393 50.98

Reproducibility C10∞,−v(2s) 92.59 - 67.72 92.56 - 67.72 24.87 24.84 2390 55.62
C10∞,−v(4s) 92.45 - 67.72 92.42 - 67.71 24.73 24.71 2396 62.65

Learning rate C10∞,−v,a(s) 92.60 - 67.61 92.46 - 67.72 24.99 24.74 2382 52.25
(LR) C10∞,−v,b(s) 92.55 - 67.55 92.59 - 67.55 25.00 25.04 2383 51.46

C10∞,−v,c(s) 92.44 - 67.58 92.47 - 67.83 24.86 24.64 2238 51.17
C10∞,−v,d(s) 92.41 - 67.41 92.41 - 67.47 25.00 24.94 2293 50.88
C10∞,−v,e(s) 92.57 - 67.51 92.51 - 67.45 25.06 25.06 2386 51.86

Training Focus and Robust Generalisation: As expected, we notice a consistent increase in PGD-
40 accuracy (last column) for the sets in focus when simultaneously including them in the training
set: ≈ 17 and ≈ 11% percentage points for v (comp. rows 1&2) and s (comp. rows 4&5), respec-
tively. The first row shows the reproduced performance of Wang et al. (2023) who use v as a hold-out
set; rows 2 and 3 show variations to estimate the effect of including stronger adversarial noise for
randomly selected data (”(·)” indicates that no set was used). The adversarial robustness on the test
set is consistent (columns 3&4). Rows 4&5 show the results when exchanging v for s. We see an
increase in adversarial robustness (columns 3&4) by about 0.2 percentage points when including s
(row 5). This difference appears small but amounts to the same boost gained by extending training
for 800 epochs using identical computational resources (based on results from Wang et al. (2023)).

Even though the stronger adversarial noise concentrates on a negligible number of points compared
to the entire training data (≈ 0.005%), the absolute improvement in adversarial accuracy on s (≈ 112
images) almost doubles for the test data (≈ 200 images) which, in addition, undergo a much stronger
ensemble of attacks (Croce & Hein, 2020). Surprisingly, focusing on a negligible number of points
from non-robust regions leads to an increased robust generalisation accuracy beyond the expected
local improvements. In other words, a better understanding of the pixel distances between points
is paired with a better understanding of semantic distances (hence the improved performance on
unseen data). Together, the focus may have entailed a better understanding of curvature. However,
we also notice that doubling (2s) or quadrupling (4s) the least robust elements does not entail further
benefits, conveying a special significance to the 1024 least robust elements.

To see whether the effect can be improved, we devised minor learning rate adjustments based on
the behaviour of the PGD-40 robustness on s which increases significantly for smaller learning rates
(comp. Fig. 1 (c) and (d)). A connection between adversarial robustness and the later training stages
has also been observed by Wang et al. (2021). We modified the annealing strategy to let learning
rates fall off quicker and extended their tail towards the end, see Figure 4 (c, d). Version a and b
follow a constant value of 2 · 10−4 for the last 240 and 400 epochs, version c and d have exponential
fall-offs after 2000 and 1900 epochs, ending on 5 · 10−5 and 1.5 · 10−5, respectively. Version
e combines the exponential fall-off after 2000 epochs with ending on the higher value 2 · 10−4.
Rows 8-12 in Table 2 show the results (again focusing on s), where version c led to an improved
performance after training and a better adversarial delta overall. The worse performance for the
”best” weights may be explained by the latter being achieved too early (epoch 2238).

After this exploratory phase, we re-evaluated the experiments for different dataset/norm combina-
tions and random seeds to see whether the previous results were generalisable. Table 3 displays
that this is indeed the case. Here, columns 1-2, 3-4 and 5-6 show performances for CIFAR-10 with
N=l∞/E=2400/BS=2048/GI=20m, CIFAR-10 with N=l2/E=1600/BS=2048/GI=50m and CIFAR-
100 with N=l∞/E=1600/BS=2048/GI=50m, respectively (we modified the previous learning rate
version c to match the settings with fewer epochs). We then re-evaluated our experiments once
more, see Table 4, by increasing the number of epochs (2400→3000, 1600→2000; again adjusting
the learning rate version c), the batch size (2048→2080) and doubling the number of images used
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(a) (b) (c) (d)

Figure 4: (a): Label distributions of the least robust (left bars), random (centre bars) and most robust
(right bars) 1024 elements with respect to the l2 norm. (b) Analogous distributions for the l∞ norm.
(c): The original and five modified learning rates over 2400 epochs with the final learning rate values
in the top right. (d): The last 400 epochs in more detail.

Table 3: Benchmarks with new random seeds for CIFAR-10 with l∞ (C10∞, rows 1,2) and l2 norm
(C102, rows 3,4), and CIFAR-100 with l∞ norm (C100∞, rows 5,6). Notation as in Table 2.

Description Setup AAb AAl ∆b ∆l Eb (PGD-40)b

Wang et al. (2023) C10∞,−v(v) 92.60 - 67.61 92.61 - 67.65 24.99 24.96 2377 72.56
VS & LR C10∞,−v,c(s) 92.53 - 67.83 92.54 - 67.78 24.70 24.76 2319 50.98

Wang et al. (2023) C102,−v(v) 95.15 - 83.54 95.19 - 83.59 11.61 11.60 1565 88.18
VS & LR C102,−v,c(s) 95.10 - 83.61 95.11 - 83.69 11.49 11.42 1568 84.08

Wang et al. (2023) C100∞,−v(v) 72.97 - 38.24 72.80 - 38.39 34.73 34.41 1531 46.68
VS & LR C100∞,−v,c(s) 72.78 - 38.54 72.78 - 38.58 34.42 34.20 1568 32.52

Table 4: Extension results. Notation as in Tables 2 and 3, random seeds as in Table 3.

Description Setup AAb AAl ∆b ∆l Eb (PGD-40)b

Wang et al. (2023) & VS & E & BS C10∞(2v) 92.51 - 68.07 92.56 - 68.04 24.44 24.52 2987 91.02
VS & LR & E & BS C10∞,c(2s) 92.55 - 67.72 92.52 - 67.65 24.83 24.87 2999 57.67
VS & LR & E & BS & * C10∞,c(2s) 92.50 - 67.79 92.52 - 67.78 24.71 24.74 2999 88.87

Wang et al. (2023) & VS & E & BS C102(2v) 95.20 - 83.72 95.20 - 83.72 11.48 11.48 2000 98.97
VS & LR & E & BS C102,c(2s) 95.23 - 83.80 95.26 - 83.88 11.43 11.38 1976 89.36
VS & LR & E & BS & * C102,c(2s) 94.99 - 83.80 95.05 - 83.80 11.19 11.25 1994 99.80

Wang et al. (2023) & VS & E & BS C100∞(2v) 73.18 - 38.81 73.11 - 38.86 34.37 34.25 1989 76.12
VS & LR & E & BS C100∞,c(2s) 73.12 - 38.94 73.12 - 38.92 34.18 34.20 1924 36.33
VS & LR & E & BS & * C100∞,c(2s) 72.91 - 38.91 72.93 - 38.91 34.00 34.02 1999 79.35

with the stronger PGD-40 attack (v→2v, s→2s). In addition, no images were held out. We also
mimicked the assumed dynamics of the glitch (see Appendix D) in the runs indicated via ”*” by in-
cluding the stronger adversarial noise batch-wise at a rate of 32=2080-2048. Note that this entirely
circumvented the glitch while explaining the larger PGD-40 robustness (last column). Except for
C10∞, we again notice benefits. The worse performances for C10∞ may indicate overfiting on 2s
(note that the performance is worse than before), displaying the limitations of this approach.

5 CONCLUSION AND FUTURE WORK

In this work, we provide a new and rigorous explanation for the weaker effect of adversarial training
in regions of non-robust data by linking the problem to the model’s perception of the data mani-
fold’s curvature. We reframed the concept of a data manifold and generated elements specifically
from robust and non-robust regions to showcase this curvature perception. We then demonstrated
that emphasising non-robust regions during adversarial training could lead to higher robustness for
unseen data beyond the expected local improvements. Minor adjustments to the training pipeline
improved several state-of-the-art results while using identical computational resources. In the fu-
ture, additional empirical and theoretical evidence may further enlighten the dynamics of a model
perceiving curvature to motivate new methods of adversarial training.
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Wissenschaften in Einzeldarstellungen. Springer, 1961. ISBN 9780387026725. URL https:
//books.google.de/books?id=_6OmAAAAIAAJ.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with
latent diffusion models. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pp. 10674–10685, Los Alamitos, CA, USA, jun 2022. IEEE Computer Society. doi:
10.1109/CVPR52688.2022.01042. URL https://doi.ieeecomputersociety.org/10.
1109/CVPR52688.2022.01042.

Emil Saucan. Metric Curvatures Revisited: A Brief Overview, pp. 63–114. 10 2017. ISBN 978-3-319-
58001-2. doi: 10.1007/978-3-319-58002-9 2.

Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural networks using
large learning rates. In Artificial intelligence and machine learning for multi-domain operations
applications, volume 11006, pp. 369–386. SPIE, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Pro-
ceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings
of Machine Learning Research, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL
https://proceedings.mlr.press/v37/sohl-dickstein15.html.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and Yann LeCun (eds.),
2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.
6199.

12

https://openreview.net/forum?id=aLB3FaqoMBs
https://openreview.net/forum?id=aLB3FaqoMBs
https://openreview.net/forum?id=rJzIBfZAb
https://proceedings.neurips.cc/paper_files/paper/2006/file/d3157f2f0212a80a5d042c127522a2d5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/d3157f2f0212a80a5d042c127522a2d5-Paper.pdf
https://openreview.net/forum?id=XJk19XzGq2J
https://arxiv.org/abs/2103.01946
https://books.google.de/books?id=_6OmAAAAIAAJ
https://books.google.de/books?id=_6OmAAAAIAAJ
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01042
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01042
https://proceedings.mlr.press/v37/sohl-dickstein15.html
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199


Under review as a conference paper at ICLR 2024

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2818–2826, 2015. URL https://api.semanticscholar.
org/CorpusID:206593880.

Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(11):1958–1970, 2008. doi: 10.1109/TPAMI.2008.128.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the conver-
gence and robustness of adversarial training. arXiv preprint arXiv:2112.08304, 2021.

Zekai Wang, Tianyu Pang, Chao Du, Min Lin, Weiwei Liu, and Shuicheng Yan. Better diffusion mod-
els further improve adversarial training. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Bar-
bara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
36246–36263. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
wang23ad.html.

Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen, Pin-Yu Chen, Yanzhi
Wang, and Xue Lin. Adversarial t-shirt! evading person detectors in a physical world. In Andrea
Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), Computer Vision – ECCV
2020, pp. 665–681, Cham, 2020. Springer International Publishing. ISBN 978-3-030-58558-7.

Yuancheng Xu, Yanchao Sun, Micah Goldblum, Tom Goldstein, and Furong Huang. Exploring and
exploiting decision boundary dynamics for adversarial robustness. arXiv preprint arXiv:2302.03015,
2023.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Richard C. Wilson, Edwin R.
Hancock, and William A. P. Smith (eds.), Proceedings of the British Machine Vision Conference
2016, BMVC 2016, York, UK, September 19-22, 2016. BMVA Press, 2016. URL http://www.
bmva.org/bmvc/2016/papers/paper087/index.html.

Huimin Zeng, Chen Zhu, Tom Goldstein, and Furong Huang. Are adversarial examples created equal?
a learnable weighted minimax risk for robustness under non-uniform attacks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pp. 10815–10823, 2021.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. Communications of the ACM, 64, 11 2016. doi:
10.1145/3446776.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Commun. ACM, 64(3):107–115, feb 2021. ISSN
0001-0782. doi: 10.1145/3446776. URL https://doi.org/10.1145/3446776.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I. Jordan.
Theoretically principled trade-off between robustness and accuracy. In International Conference on
Machine Learning, 2019.

Jingfeng Zhang, Xilie Xu, Bo Han, Gang Niu, Lizhen Cui, Masashi Sugiyama, and Mohan Kankan-
halli. Attacks which do not kill training make adversarial learning stronger. In International confer-
ence on machine learning, pp. 11278–11287. PMLR, 2020a.

Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, and Mohan Kankanhalli.
Geometry-aware instance-reweighted adversarial training. arXiv preprint arXiv:2010.01736, 2020b.

APPENDIX A (PROOFS)

The proof of Theorem 1 is straight-forward but requires a few preliminary results (Cobzaş et al.,
2019) which we state first:
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Proposition A. Let (X, d), (X ′, d′) and (X ′′, d′′) be metric spaces. If f : X → X ′ and g : X ′ →
X ′′ are (locally) Lipschitz continuous, then g ◦ f : X → X ′′ is (locally) Lipschitz continuous.
Moreover:

L(g ◦ f) ≤ L(g) · L(f)

Proposition B. Let (X, d) be a metric space, R endowed with the usual Euclidean metric and
f : X → R a Lipschitz function having the property that there exists m > 0 such that |f(x)| ≥ m
for all x ∈ X . Then f−1 is Lipschitz and:

L(
1

f
) ≤ L(f)

m2

Proposition C. Let (X, d) be a metric space. If the functions f, g : M → R are bounded and
Lipschitz, then fg is Lipschitz. Moreover:

L(fg) ≤ supx∈X |f(x)| · L(g) + supx∈X |g(x)| · L(f)

Proposition D. Let (X, d) be a metric space and F a family of real-valued K−Lipschitz functions
defined on X such that φ(x) := sup{f(x) | f ∈ F} is finite for every x ∈ X . Then the function φ
is K−Lipschitz. In particular, for two Lipschitz functions f, g : X → R, their maximum max{f, g}
is Lipschitz with L(max{f, g}) = max{L(f), L(g)}.

Theorem 1. Let (X, d) and (Y, ∥ · ∥) be a metric and Banach space, respectively, and
{p1, . . . , pm} =: D a finite collection of points. Assume that there exists a map y : X → Y
which is locally constant around each pi. Then there exists an open set Ui ⊂ X around any fixed pi
such that the following functional is Lipschitz continuous:

sy : Ui → R, x 7→ maxpi ̸=pj∈D
∥y(pj)−y(x)∥

d(pj ,x)

Proof: There exists an open set Ui ⊂ X around pi on which y is constant with Ui∩{p1, . . . , pm} =
{pi} and pj /∈ ∂Ui ∀ j. Naturally, the maps x 7→ d(x, pj) and x 7→ ∥y(x)− y(pj)∥ are Lipschitz on
Ui for all j (comp. Proposition A). Since pj /∈ ∂Ui ∀ j, we have infx∈Ui

d(x, pj) > 0 ∀ j ̸= i and
so the reciprocal x 7→ d(x, pj)

−1 is Lipschitz and bounded on Ui (comp. Proposition B) as is the
product with x 7→ ∥y(x) − y(pj)∥ (comp. Proposition C) for all j ̸= i. Define the following finite
family of functions on Ui:

F i :=
{
f i
j(x) :=

∥y(x)− y(pj)∥
d(x, pj)

| j = 1, . . . ,m
}

Combining the aforementioned facts, the functions f i
j are Lipschitz on Ui (note that f i

i (x) vanishes
on Ui). Let Li

j := L(f i
j) be the corresponding Lipschitz constants and Ki := maxj L

i
j . Define:

φi(x) := sup{f i
j(x) | f i

j ∈ Fi} = maxj{f i
j(x)}

As f i
j(x) is finite for every x ∈ Ui, so is φi(x). Thus, φi is Lipschitz on Ui with Lipschitz constant

L(φi) = Ki (comp. Proposition D).

Remark 1 Theorem 1 applies to (M, d̃) because it is a metric space and the continuity on X w.r.t. d
implies the continuity of y on M w.r.t. d̃, see (Gluck, 1966).

We quickly verify that the information provided by sy is robust under label smoothing (Szegedy
et al., 2015) with a uniform distribution. Let α ∈ (0, 1) and consider the smoothed labels ŷ :=
(1−α)y+(αC−1)1C , where C is the number of classes and 1C is the vector in RC containing 1s in
each component. Then the distance between labels is proportional to the previous for all i, j, more
precisely, ∥ŷ(pi)− ŷ(pj)∥ = (1− α)∥y(pi)− y(pj)∥ ∀i, j which leads to the equivalent sensitivity
information.
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APPENDIX B (ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS)

CALCULATING SENSITIVITY VALUES

Distributed over 32 processes, the calculations for a dataset of 50,000 elements with 3072 continuous
features (specifications of the CIFAR-10 training set) with the l2 norm take approximately 1 hour on
the 32 cores of an AMD EPYC 7452.

Algorithm 1 Calculating Sensitivity Values

Require: Dataset D := {p1, . . . , pm} with labels yi := y(pi) for pi ∈ D, metric d, empty list
L = []
for i = 1, . . . ,m do
M = −1
for j = 1, . . . ,m do

if yi ̸= yj then
M = max{M, 1

d(pi,pj)
}

else
pass

end if
end for
Append M to L

end for
return L

HYPERPARAMETER GRID

The following hyperparameter grid with 729 possible settings was searched (after a brief manual
exploratory phase to pinpoint sensible ranges); we used 20 diffusion steps. We refer to the paper of
Karras et al. (2022) for a precise definition of these parameters.

• ”sigma min” : [0.003, 0.004, 0.005]

• ”sigma max” : [1.3, 1.4, 1.5]

• ”rho” : [1.5, 1.6, 1.7]

• ”S churn” : [2.4, 2.5, 2.6]

• ”S min” : [0.4, 0.5, 0.6]

• ”S max” : [float(’inf’)]

• ”S noise” : [1.006, 1.012, 1.015]

ADVERSARIAL ROBUSTNESS TRAINING DETAILS

Our evaluation setup for the adversarial robustness experiments matches the one used by Wang et al.
(2023). We reiterate the details: the model architecture was a Wide-Res-Net (WRN) (Zagoruyko
& Komodakis, 2016) with Swish & Silu activation functions (Hendrycks & Gimpel, 2016); due to
resource constraints, we concentrated on the WRN-28-10 version with a batch size (BS) of 2048
(trained over 4 A100 NVIDIA 40GB GPUs). Adversarial training (Madry et al., 2018) was per-
formed with the TRADES loss function (Zhang et al., 2019) either for the l2 or l∞ norm (N),
combined with label smoothing (Szegedy et al., 2015) (factor of 0.1) and weight averaging (Iz-
mailov et al., 2018) with a decay rate of 0.995. We traced the adversarial accuracy on a separate
set of 1024 elements to determine the ”best” weights. The attacks for the training and tracking
process used projected gradient descent (PGD) (Madry et al., 2018) with 10 and 40 steps, respec-
tively, and maximum l2 and l∞ perturbations of 128/255 and 8/255 with step sizes of 32/255 and
2/255, respectively. During training, we used stochastic gradient descent with Nesterov momentum
(Nesterov, 1983) (momentum factor and weight decay were set to 0.9 and 5 · 10−4, respectively)
over a 1-cycle learning rate with warm-up and cosine annealing (Smith & Topin, 2019), where the
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(a) (b)

Figure 5: (a): Ordered l∞ sensitivity values for the original sets and the ”TI500K” and ”1m” data.
(b): Differences (w.r.t. the l∞ norm) between sensitivity values of CIFAR-100/10 (”+”) and CIFAR-
100/100s (”o”), ordered by the CIFAR-100 values.

(maximum) learning rate was set to 0.2. We also used the additional CIFAR-10/100 datasets from
Wang et al. (2023) with 20 (20m) and 50 (50m) million generated images (GI), which were mixed
into each training batch at a rate of 80% (i.e. each batch consisted of 20% original images). The
adversarial robustness was evaluated using the AutoAttack framework (Croce & Hein, 2020) for the
”best” and the last weights after 2400 or 1600 epochs (E) of training, depending on the dataset/norm
combination.

ADDITIONAL RESULTS FOR CIFAR

Here we display similar plots as in Fig. 2 and 3. We also added plots based on totally random trees
(Geurts et al., 2006; Moosmann et al., 2006), also called random trees embeddings (RTE). In con-
trast to MDS, these fit a forest of random trees to the data points, whose representation is determined
by the leaves they end up in (comp. https://scikit-learn.org/stable/modules/
generated/sklearn.ensemble.RandomTreesEmbedding.html). Naturally, nearby
points are more likely to fall into the same leaf.

Table 5: Pixel distances and FID between the 10,000 least/most robust images and their clones (O:C)
and the pixel distances between 10 clones of the 1024 least/most robust images (C:C), respectively.

Set ∥ · ∥-Rob. l∞ (O:C) l2 (O:C) FID (O:C) l∞ (C:C) l2 (C:C)

CIFAR-100 l2-Most 0.64 7.76 6.08 0.69 8.61
CIFAR-100 l2-Least 0.49 6.17 6.14 0.50 6.72
CIFAR-100 l∞-Most 0.64 7.65 5.99 0.65 7.94
CIFAR-100 l∞-Least 0.48 6.29 6.29 0.49 6.81
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Figure 6: Top to bottom: MDS (rows 1,2) and RTE (rows 3,4) representations of the CIFAR-
10/100/100s sets (left to right), coloured and resized in proportion to their l2 (rows 1,3) and l∞
(rows 2,4) robustness values, where the most and least robust elements are the small blue and large
red points, respectively.

Figure 7: Top half: 16=4x4 most (square 1) and least robust elements (square 3) w.r.t. the l∞ norm
from the CIFAR-10 set and their respective clones (squares 2,4). Bottom half: the corresponding
plots for CIFAR-100.

APPENDIX C (ADDITIONAL RESULTS FOR EMNIST)

The EMNIST set (Cohen et al., 2017) combines 28 × 28 greyscale images of digits and letters. It
allows users to extract subsets containing either digits or lower- and upper-case letters with 10 +
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Figure 8: Ten cloned images for each of the 16 most robust elements from CIFAR-10 for the l2
norm.
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Figure 9: Ten cloned images for each of the 16 most robust elements from CIFAR-10 for the l∞
norm.
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Figure 10: Ten cloned images for each of the 16 least robust elements from CIFAR-10 for the l2
norm.
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Figure 11: Ten cloned images for each of the 16 least robust elements from CIFAR-10 for the l∞
norm.
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Figure 12: Ten cloned images for each of the 16 most robust elements from CIFAR-100 for the l2
norm.
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Figure 13: Ten cloned images for each of the 16 most robust elements from CIFAR-100 for the l∞
norm.
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Figure 14: Ten cloned images for each of the 16 least robust elements from CIFAR-100 for the l2
norm.
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Figure 15: Ten cloned images for each of the 16 least robust elements from CIFAR-100 for the l∞
norm.

25



Under review as a conference paper at ICLR 2024

26 + 26 = 62 classes. We use the following definitions (again concentrating on the training sets):
M:=MNIST (a subset of only digits; 10 classes; 60,000 elements), D:=Digits (only digits, but more
elements; 10 classes; 240,000 elements), L:=Letters (merged upper-/lowercase letters; 26 classes;
88,800 elements), B:=Balanced (balanced mix of digits and upper-/lowercase letters, where some
lowercase letters are regarded as uppercase; 47 classes; 112,800 elements), BM:=By-Merge (mix of
all digits and upper-/lowercase letters where some lowercase letters are regarded as uppercase; 47
classes; 697,932 elements), BC:=By-Class (mix of all digits and upper-/lowercase letters; 62 classes;
697,932 elements). We refer to the paper of Cohen et al. (2017) for more details.

Figure 16 displays the ordered absolute (left half) and relative (right half) l2 (plots 1,3) and l∞ (plots
2,4) sensitivity distributions of the six EMNIST (sub)sets. Since the sets have different numbers
of elements, we normalised the plots on the horizontal axis; as for CIFAR-100, we removed a
small amount (40) of the least robust elements to avoid distortion. The distributions for the sets
containing only digits (M, D) are similar, as are those containing both all digits and all lower- and
uppercase letters (BM, BC). Interestingly, the distributions for the sets containing only letters (L)
and a balanced mix of letters and digits (B) are also very similar w.r.t. each other but differ from
the former distributions. As for the CIFAR data, the most significant changes are seen for the least
robust elements (towards the right in plots 1 and 2).

Figure 17 displays the MDS and RTE representations w.r.t. the l2 and l∞ norm, respectively, for
samples of the three EMNIST subsets containing only digits (M), only letters (L) and a balanced
mix of both (B). We again notice patterns emerging, although they are different in shape compared
to the CIFAR representations. In particular, clusters of the least robust (large red) points dominate
the graphs, specifically for the l∞ norm.

Figure 16: Ordered absolute l2 (left) and l∞ sensitivity values of the six EMNIST (sub)sets.
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Figure 17: Top to bottom: MDS (rows 1,2) and RTE (rows 3,4) representations of the three EMNIST
subsets M, L, B (left to right), coloured and resized in proportion to their l2 (rows 1,3) and l∞ (rows
2,4) robustness values, where the most and least robust elements are the small blue and large red
points, respectively.

APPENDIX D (THE GLITCH)

We likely encountered a glitch in the pytorch-based (https://pytorch.org/) train-
ing pipeline, where information from the stronger PGD-40 attack seemed to leak into the
training process whenever the small hold-out set was also included in the training data.
This is peculiar because both were intended to be separate processes (using a context man-
ager, see below). This allowed us to include the information from the stronger attacks
on the focused set in the optimisation process of the following training epoch. The val-
idation call and the code snippet intended to prevent this (as was the original idea) are
shown in Figures 18 and 19 from the gowal21uncovering/utils/watrain.py and
core/utils/context.py scripts, respectively, taken from the codebase at https://
github.com/wzekai99/DM-Improves-AT/tree/main.

If the adversarial argument is true in the eval function (Figure 18, line 1), the model will
be attacked on the samples contained in the dataloader and its adversarial accuracy is returned.
In this case, the ctx noparamgrad and eval context manager is called (Figure 18, line 11)
which combines the functions ctx noparamgrad (Figure 19, line 1) and ctx eval (Figure 19,
line 12). The purpose of these two functions is to

• save the original gradient (Figure 19, line 3) and training states (Figure 19, line 14) of the
parameters and the modules of the model,
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• initialise class-dependent instances of the modules (Figure 19, line 4, 15),
• set the requires grad (Figure 19, lines 5, 48) and the training (Figure 19, line 16,

37) argument of the parameters and modules to False,
• and return the model in its previous state upon exiting after the attack was performed (Fig-

ure 19, lines 8, 19).

However, whereas ctx noparamgrad and eval yields self.module (Figure 19, line 26),
the deactivation calls are applied to module which does not affect self.module (we tested
that these are separate entities). We think that this has the effect of the eval-process accu-
mulating gradient information of the parameters which are not explicitly deleted afterwards but
rather picked up by the automatic differentiation mechanism. Since the latter builds computation
graphs from the inputs to the outputs in the forward pass (see https://pytorch.org/blog/
computational-graphs-constructed-in-pytorch/), the gradient information may
be reused in the following training epoch in the backward pass if the elements appear again in any of
the training batches. However, as mentioned before, we were able to circumvent this assumed glitch
by coding the outlined mechanisms explicitly. More precisely, we excluded the context manager,
crafted the stronger PGD-40 adversarial examples on the focused sets in the beginning of each epoch
and included them in each training batch at a rate of 32 (the delta when increasing the batch size
from 2048 to 2080).

def e v a l ( s e l f , d a t a l o a d e r , a d v e r s a r i a l = F a l s e ) :
”””
E v a l u a t e per fo rmance o f t h e model .
”””
acc = 0 . 0
s e l f . wa model . e v a l ( )

f o r x , y in d a t a l o a d e r :
x , y = x . t o ( d e v i c e ) , y . t o ( d e v i c e )
i f a d v e r s a r i a l :

w i th c t x n o p a r a m g r a d a n d e v a l ( s e l f . wa model ) :
x adv , = s e l f . e v a l a t t a c k . p e r t u r b ( x , y )

o u t = s e l f . wa model ( x adv )
e l s e :

o u t = s e l f . wa model ( x )
acc += a c c u r a c y ( y , o u t )

acc /= l e n ( d a t a l o a d e r )
re turn acc

Figure 18: Evaluation function call.
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c l a s s c t x n o p a r a m g r a d ( o b j e c t ) :
def i n i t ( s e l f , module ) :

s e l f . p r e v g r a d s t a t e = g e t p a r a m g r a d s t a t e ( module )
s e l f . module = module
s e t p a r a m g r a d o f f ( module ) #<−The argument s h o u l d be <s e l f . module>.

def e n t e r ( s e l f ) :
pass

def e x i t ( s e l f , * a r g s ) :
s e t p a r a m g r a d s t a t e ( s e l f . module , s e l f . p r e v g r a d s t a t e )
re turn F a l s e

c l a s s c t x e v a l ( o b j e c t ) :
def i n i t ( s e l f , module ) :

s e l f . p r e v t r a i n i n g s t a t e = g e t m o d u l e t r a i n i n g s t a t e ( module )
s e l f . module = module
s e t m o d u l e t r a i n i n g o f f ( module ) #<−The argument s h o u l d be <s e l f . module>.

def e n t e r ( s e l f ) :
pass

def e x i t ( s e l f , * a r g s ) :
s e t m o d u l e t r a i n i n g s t a t e ( s e l f . module , s e l f . p r e v t r a i n i n g s t a t e )
re turn F a l s e

@contextmanager
def c t x n o p a r a m g r a d a n d e v a l ( module ) :

w i th c t x n o p a r a m g r a d ( module ) a s a , c t x e v a l ( module ) a s b :
y i e l d ( a , b )

def g e t m o d u l e t r a i n i n g s t a t e ( module ) :
re turn {mod : mod . t r a i n i n g f o r mod in module . modules ( )}

def s e t m o d u l e t r a i n i n g s t a t e ( module , t r a i n i n g s t a t e ) :
f o r mod in module . modules ( ) :

mod . t r a i n i n g = t r a i n i n g s t a t e [ mod ]

def s e t m o d u l e t r a i n i n g o f f ( module ) :
f o r mod in module . modules ( ) :

mod . t r a i n i n g = F a l s e

def g e t p a r a m g r a d s t a t e ( module ) :
re turn {param : param . r e q u i r e s g r a d f o r param in module . p a r a m e t e r s ( )}

def s e t p a r a m g r a d s t a t e ( module , g r a d s t a t e ) :
f o r param in module . p a r a m e t e r s ( ) :

param . r e q u i r e s g r a d = g r a d s t a t e [ param ]

def s e t p a r a m g r a d o f f ( module ) :
f o r param in module . p a r a m e t e r s ( ) :

param . r e q u i r e s g r a d = F a l s e

Figure 19: Context manager function calls.
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