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Abstract

We introduce RLang, a domain-specific language
(DSL) for communicating domain knowledge to
an RL agent. Unlike existing RL DSLs that
ground to single elements of a decision-making
formalism (e.g., the reward function or policy),
RLang can specify information about every el-
ement of a Markov decision process. We de-
fine precise syntax and grounding semantics for
RLang, and provide a parser that grounds RLang
programs to an algorithm-agnostic partial world
model and policy that can be exploited by an RL
agent. We provide a series of example RLang
programs demonstrating how different RL meth-
ods can exploit the resulting knowledge, encom-
passing model-free and model-based tabular algo-
rithms, policy gradient and value-based methods,
hierarchical approaches, and deep methods.

1. Introduction
Reinforcement learning tasks are often impractically hard
to solve tabula rasa. Fortunately, even a small amount of
prior knowledge about the world—knowledge that is often
either seemingly obvious or easy for a human to produce—
can dramatically improve learning. For instance, knowing
about the action dynamics of a game (e.g., you can jump to
avoid falling into pits) or properties of its state (e.g., that a
particular state variable indicates a block of lava) can prevent
an agent from making poor decisions. In long-horizon tasks,
especially those with sparse rewards, such knowledge may
even be a prerequisite for finding an acceptable policy.

Languages, both formal and natural, have been used in var-
ious ways to add prior knowledge into decision-making
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(Luketina et al., 2019). Formal languages benefit from un-
ambiguous syntax and semantics, and can therefore be reli-
ably used to represent knowledge. These have proven useful
in specifying advice to agents in the form of hints about ac-
tions (Maclin & Shavlik, 1996) or policy structure (Andreas
et al., 2017; Sun et al., 2020). Communicating using natural
language would be more intuitive, but that requires convert-
ing natural language sentences into grounded knowledge
usable by the agent; most approaches in this area can ground
limited subsets of natural language (e.g., only commands).
For example, for describing task objectives (Artzi & Zettle-
moyer, 2013; Patel et al., 2020), or other individual task
components such as rewards (Goyal et al., 2019; Sumers
et al., 2021) and policies (Branavan et al., 2010). All of the
above approaches provide information about a single com-
ponent of a chosen decision-making formalism; there exists
no unified framework able to express information about all
the components of a task.

We therefore introduce RLang, a domain-specific language
(DSL) that can specify information about every component
of a Markov decision process (MDP), including flat and
hierarchical policies, state factors, state features, transition
functions, and reward functions. RLang is human-readable
and compiles into simple data structures that can be accessed
by any learning algorithm. We explain how to write state-
ments that inform each MDP component, and demonstrate
RLang’s versatility through a series of example programs
expressing different types of domain knowledge. We also
show how to integrate this knowledge into several RL meth-
ods to improve learning performance.1

2. Background
Domain-Specific Languages Domain-specific languages
(DSLs) are formal languages designed to specify informa-
tion relevant to a target domain. Compared to general-
purpose programming languages like Python (Van Rossum
& Drake Jr, 1995) and C (Kernigham & Ritchie, 1973),
DSLs typically contain a smaller set of narrower semantics

1RLang source code, documentation, and examples are avail-
able at rlang.ai.
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 Effect:
   if at_workbench_1 and A == use:

if wood >= 1:
  stick’ -> stick + wood
  wood’ -> 0

Factor inventory := S[250:270]

Feature wood := inventory[0]

minecraft.rlang

Feature gold := inventory[1]

Interpreter

Dynamics & Task
Knowledge

Informed 
RL Agent

Solution Knowledge
RL loop

Figure 1: RLang provides users with a precise language to provide domain knowledge to RL agents. RLang programs are
parsed by the interpreter to create a partial model of the MDP (Dynamics and Task Knowledge) and its solution
(Solution Knowledge). Finally, the knowledge objects inform an RL agent that can leverage the grounded information
during its learning loop.

better suited to a specific application. That is, DSLs sac-
rifice computational expressivity for ease-of-use within a
particular domain. Commonly-used DSLs include the Stan-
dard Query Language (SQL) used for querying relational
databases and the Planning Domain Definition Language
(PDDL; Ghallab et al. 1998) for defining planning tasks.

Decision-Making Formalisms Reinforcement learning
tasks are typically modeled as Markov Decision Processes
(MDPs; Puterman, 1990), defined by a tuple (S,A, R, T, γ),
where S is a set of states, A is a set of actions, T :
S ×A× S → [0, 1] is a transition probability distribution,
R : S × A × S → R is a reward function, and γ ∈ (0, 1]
is a discount factor. A solution to an MDP is a policy
π : S × A → [0, 1] maximizing expected discounted re-
turn E [

∑∞
t=0 γ

trt], where rt is the reward obtained at time
step t. The value function V π : S → R for a policy π
captures the expected return an agent would receive from
executing π starting in a state s. The action-value function
Qπ : S × A → R of a policy is the expected return from
executing an action a in a state s and following policy π
thereafter.

Hierarchical Decision-Making Solving MDPs with high-
dimensional state and action spaces can be difficult, es-
pecially in domains where long sequences of actions are
required to achieve a goal. In these environments, hierar-
chical reinforcement learning (Barto & Mahadevan, 2003)
may be more applicable, as temporally-extended actions can
reduce the complexity of the space of solution policies. The
options framework (Sutton et al., 1999) formalizes this no-
tion by modeling high-level actions as options: closed-loop
policies defined by a tuple (I, π, β), where I ⊆ S is a set
of states in which the option can be executed, π is an option
policy, and β : S → [0, 1] describes the probability that the
option will terminate upon reaching a given state. If O is the
set of options the agent can execute, then the MDP tuple is
extended to (S,A ∪O,R, T, γ) in the hierarchical setting.

3. RLang: Describing Partial World
Knowledge about Tasks

If RL is to become widely used in practice, we must reduce
the infeasible amount of trial-and-error required to learn to
solve a task from scratch. One promising approach is to
avoid tabula rasa learning by including the sort of back-
ground knowledge that humans typically bring to a new
task. Such background knowledge is often easy to obtain—
in many cases, it is simply obvious to anyone: try not to fall
off cliffs!—and need not be perfect or complete to be useful.

Unfortunately, however, there is no standardized approach
to communicating such background knowledge to an RL
agent. In most cases, the same person who implements the
learning algorithm also hand-codes the background knowl-
edge, typically in an ad-hoc fashion in the same general-
purpose programming language in which the algorithm is
implemented. This has two primary drawbacks. First, prior
knowledge is often task-specific, and the lack of a means to
express it hinders the development of learning algorithms
that can exploit varying types and degrees of background
knowledge. Second, it is not accessible to end-users or other
consumers of RL agents, who do not write the algorithms
themselves and cannot be expected to master the relevant
programming languages and mathematical details, but who
might nevertheless wish to accelerate learning.

The alternative is to design a standardized, human-
interpretable DSL for expressing prior knowledge about
reinforcement learning tasks. Such a DSL should have
two important properties not present in existing RL DSLs
(Maclin & Shavlik, 1996; Denil et al., 2017; Sun et al.,
2020). First, it should be agnostic of the learning algorithm
used. Separating the question of how to express prior knowl-
edge from how that knowledge is exploited by a learning
algorithm introduces a standardized interface that can be
used to inform a wide variety of RL agents, even ones based
on algorithms not yet developed. Second, it should be com-
plete: able to express all the information that could possibly
be informative about a particular task. We therefore propose
RLang, a new DSL designed to fulfill these criteria.
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RLang can name state features (using Features and
Propositions), specify goal states (using Goals), de-
fine abstract actions (using Options), describe policies
and hierarchical policy structure (using Policies), re-
strict the action space (using ActionRestrictions),
provide partial world models (using Effects), and shape
reward (also using Effects). Our Python package parses
RLang into an algorithm-agnostic data structure (see Sec-
tion 3.2) that can be integrated into nearly any RL algorithm.

3.1. RLang Elements

An RLang program consists of a set of declarations, where
each one grounds to one or more components of an
(S,A, O,R, T, π) tuple. More specifically, every RLang
Element grounds to a function with a domain in S ×A×S
and a co-domain in S, A, Rn where n ∈ N, or {⊤,⊥}.
We describe the main RLang element types in the rest of
this section and summarize them in Table 1. A full formal
semantics and grammar are in Appendix A.

State Factors In Factored MDPs (Boutilier et al., 2000),
the state space is a collection of conditionally independent
variables: S = X1 × ..×Xn. Some algorithms might find
it useful to reference these variables individually. For exam-
ple, consider a 2-D version of Minecraft, as represented in
Figure 2, where an agent has to collect ingredients to craft
new tools and objects. In this environment the state is the
concatenation of a position vector, a flattened map represen-
tation, and an inventory vector: s = (pos,map, inventory).
Factors can be used to reference these state variables:

Factor position := S[0:2]
Factor map := S[2:250]
Factor inventory := S[250:270]

S is a reserved keyword referring to the current state. A and
S’ are also keywords referring to the current action and the
next state, respectively. Factors can be sliced and indexed:

Factor iron := inventory[0]
Factor wood := inventory[1]

State Features RLang can also be used to define more
complex functions of state. For instance, if the agent’s goal
is to build axes, we can define a Feature capturing the
number of axes that could be built at the current state:

Feature number_of_axes := wood + iron

Propositions Propositions in RLang, which are
functions of the form S → {⊤,⊥}, identify states that
share relevant characteristics:

Constant workbench_locations := [[1,
0], [1, 3]]

Proposition at_workbench := position
in workbench_locations

Proposition have_bridge_material :=
iron >= 1 and wood >= 1

Goals Goals specify goal states via a proposition. For ex-
ample, Goal get_gold := gold >= 1 encodes that
the agent must collect at least one gold unit.

Objects and Classes RLang supports the usage of Object-
Oriented MDPs (Diuk et al., 2008) via Objects and
Classes, with support for sub-classes and various ob-
ject attribute types (including integers, floats, and booleans).
Objects that are in the state space can be accessed, and new
objects and classes can be easily instantiated:

Class Arm:
length: int

Object robot_arm := Arm(S.forearm.
length + S.end_affector.length)

Markov Features Markov functions like the action-value
or transition function take the form S × A × S → R. We
extend the co-domain of this function class to Rn and intro-
duce Markov Features, which allow users to compute
features on an (s, a, s′) experience tuple. The following
Markov Feature represents a change in inventory elements.

Markov Feature inventory_change :=
inventory' - inventory

The prime (’) operator references the value of an RLang
name when evaluated on the next state.

Policies Policy functions can also be specified in RLang
using conditional expressions:

Policy main:
if iron >= 2:
if at_workbench:
Execute Use # This is an action

else:
Execute go_to_workbench # This

is a policy
else:
Execute collect_iron

The Execute keyword executes an action or calls another
policy. The above policy instructs the agent to craft iron
tools at a workbench by first collecting iron and then navi-
gating to the workbench. Policies can also be probabilistic:

Policy random_move:
Execute up with P(0.25)
or Execute down with P(0.25)
or Execute left with P(0.25)
or Execute right with P(0.25)

Users can specify multiple policy functions in an RLang
program and designate a primary policy by naming it main.

Options Abstract actions are specified using Options,
which include initiation and termination propositions:

Option build_bridge:
init have_bridge_material and
at_workbench
Execute craft_bridge

until bridge in inventory

3
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Table 1: RLang declarations for corresponding MDP elements. The first column shows a component of the MDP, the
second shows an RLang expression that can inform it, while the last column contains a description of the expression.

MDP Component RLang Declaration Natural Language Interpretation

State Factor
ϕ : S → Rn Factor inventory := S[250:260] Your inventory is a small factor of the

state space.

State Feature
ϕ : S → Rn

Feature inventory_value :=
5 * gold + 2 * iron

The value of your inventory is 5 for each
gold you have plus 2 for each iron.

Proposition
σ : S → {⊤,⊥}

Proposition at_workbench :=
position in workbench_locations

You are at a workbench if your position
is one of the workbench locations.

Objects and Class Definitions
(C = {C1, ..., Cc},
O = {o1, ..., on})

Class Block:
id: int

Object dirt := Block(1)
Create a Block class and a new dirt Block
object.

Markov Feature
f : S ×A× S → Rn

MarkovFeature inv_change :=
inventory’ - inventory

The change in your inventory in a time
step

Policy
π : S ×A → [0, 1]

Policy build_bridge:
if at_workbench:
Execute use

If you are at a workbench, craft using it.

Option
(σI , π, σβ)

Option build_axe:
init (wood >= 1 and iron >= 1)
Execute build_axe_policy

until (axe >= 1)

When you have at least one wood and one
iron, you can build axes until you have at
least one.

Reward and Transition Function
(Re : S ×A× S → R,
Te : S ×A× S → [0, 1])

Effect resource_consumption:
if wood >= 1 and A == use:
stick’ -> stick + wood
wood’ -> 0

Reward wood

Crafting will convert your wood into
sticks. You will also be rewarded 1 for
every wood you have.

Action Restrictions Restrictions to the set of possible
actions an agent can take in a given circumstance can be
specified using ActionRestrictions:

ActionRestriction dont_get_burned:
if (position + [0, 1]) in
lava_locations:
Restrict up

Effects Effects provide an interface for specifying par-
tial information about the transition and reward functions.
In a factored MDP, RLang can specify factored transition
functions (i.e., transition functions for individual factors):

Effect movement_effect:
if x_position >= 1 and A == left:

x_position' -> x_position - 1
Reward -0.1

The above Effect captures the predicted consequence of
moving left on the x_position factor, stating that the x
position of the agent in the next state will be 1 less than in the
current state. This Effect also specifies a −0.1 step penalty

regardless of the current state or action. In simpler MDPs,
predictions can be made about the whole state vector:

Effect tic_tac_toe:
if three_in_a_row:
S' -> empty_board # Board is reset

Effects can reference previously defined effects similarly:

Effect main:
-> movement_effect
-> crafting_effect

A main Effect designates the primary environment dynam-
ics, and grounds to a partial factored world model (T ,R).
As with policies, Effects can be probabilistic using with.

Finally, it is important to note that RLang, as we have seen
across these examples, does not require the specification
of Effects and Policies to be complete. Therefore,
a user is not required to provide extensive and complex
programs to fully specify the MDP—although this is a pos-
sibility with RLang—to accelerate learning. RL agents must
learn to solve the task by filling in the missing pieces.
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3.2. Accessing Parsed RLang Knowledge

Using our Python package, users can parse RLang programs
into the following queryable knowledge objects, which
can be integrated directly into a learning algorithm:

• The Dynamics and Task Knowledge object contains
a queryable model of the environment and the task (i.e.,
transition dynamics T and reward function R) that are
derived from the Effect main declaration and the
collection of defined goals;

• The Solution Knowledge object that contains informa-
tion about the collection of newly defined options O
and the main policy π.

These knowledge objects are implemented as partial func-
tions; an unknown flag is returned when querying for a
element of the domain where the RLang has no knowledge.

3.3. Selecting a Suitable RLang-informed Agent

Once an RLang program is compiled into partial MDP com-
ponents, the parser must select an informed agent that lever-
ages the given information. We propose the following sim-
ple mechanism to select among a suite of RLang-informed
agents: Let A be a set of RL agents capable of taking RLang
advice. Let cαi be a binary variable that determines whether
the agent α ∈ A is capable of exploiting a type of advice
(e.g., transition dynamics, rewards, etc.). Therefore, for each
agent, we have a characterizing vector Cα = [cα1 , c

α
2 , ..., c

α
n].

Similarly, the RLang parser generates an analogous binary
vector P that represents the RLang information types ex-
pressed in the RLang program. Finally, we can select among
the agents that exploit as much information as possible by
selecting an agent such that P ≈ Cα.

3.4. Specifying Complex Groundings with a Vocabulary

RLang comes built-in with a set of simple arithmetic,
Boolean, and set operations that can be used in RLang object
declarations. However, users may wish to include more com-
plex grounding functions in their RLang programs. For in-
stance, when dealing with problems with high-dimensional
observation spaces (e.g., pixel frames), the user may wish to
use an object classifier as a means to output a propositional
value. Users can therefore import and reference RLang
objects defined using our Python library. By specifying a
vocabulary file (in JSON) and a corresponding grounding
file (a Python file containing RLang objects), users can con-
struct their own RLang objects and reference them directly
in RLang programs. This allows users to provide complex
expert groundings or, more generally, learned groundings
that hold the necessary semantic information to derive new
grounded knowledge easily with RLang programs.

4. Demonstrations
We now provide a few RLang use-cases, focusing on ex-
amples that show how different types of prior information
can be concisely expressed, and effectively exploited, for
varying degrees of environment complexity and different
families of RL methods.

Figure 2: On the left, the Lava-Gap environment. On the
right, 2D Minecraft based on Andreas et al. (2017).

Hierarchical Policy Structure: 2D Minecraft We first
consider a 2D version of Minecraft based on Andreas et al.
(2017), consisting of a gridworld (see Figure 2) that contains
workbenches where the agent can craft new objects, and
raw materials like wood, stone and gold. To build an item,
the agent must have the required ingredients and be in the
correct workbench. The agent has the action use to interact
with elements, and actions to move in the cardinal directions.

To show how providing the sub-policy structure of the task
improves performance, we provide the agent with initia-
tion and termination conditions for a few options (to collect
wood, go to the three different workshops and to build the re-
quired elements). The following program concisely defines
3 options fully and 4 options with uninformed policies.

1 Option go_to_workshop_0:
2 init(any):
3 Execute

go_to_workshop_0_learnable_policy
4 until(at_workshop_0)
5 Option go_to_workshop_1:
6 init(any):
7 Execute

go_to_workshop_1_learnable_policy
8 until(at_workshop_1)
9 Option go_to_workshop_2:

10 init(any):
11 Execute

go_to_workshop_2_learnable_policy
12 until(at_workshop_2)
13 Option get_wood:
14 init(there_is_wood):
15 Execute

get_wood_learnable_policy
16 until delta_wood >= 1
17 Option build_plank:
18 init(wood >= 1 and at_workshop_1):
19 Execute use
20 until (delta_plank >= 1)
21 Option build_stick:
22 init (wood >= 1 and at_workshop_1)
23 Execute use

5



RLang: A Declarative Language for Expressing Partial World Models

24 until (delta_stick >= 1)
25 Option build_ladder:
26 init (stick >= 1 and plank >= 1)
27 Execute use
28 until (delta_ladder >= 1)

To exploit this information, the agent must learn both the
policy over options to maximize reward, and the option
policies that achieve each option’s termination condition.
For both the high-level and low-level agents, we use DDQN
(Van Hasselt et al., 2016) (details are in Appendix B.4).

Figure 3a show the average return of RLang-informed hi-
erarchical DDQN vs. the uninformed (flat) performance of
a DDQN agent. A concise program partially describing a
hierarchical solution was sufficient to successfully learn to
solve the task, in stark contrast with the uninformed agent.

Policy Prior: Lunar Lander Next, we consider programs
that provide prior policy knowledge. Such policy informa-
tion need not be optimal or complete, but it can still im-
prove learning performance. We first consider Lunar Lander
(Brockman et al., 2016), which requires learning an optimal
control policy to gently land a ship on the moon. The en-
vironment has a dense reward encoding both the goal and
cost constraints, a continuous state space, and four discrete
actions that either do nothing, fire the main engine, or fire
the left or right thruster. We provide the agent with an initial
policy using the following RLang program:

1 Policy land:
2 if (left_leg_in_contact == 1.0) or

(right_leg_in_contact == 1.0):
3 if (velocity_y/2 * -1.0) > 0.05:
4 Execute main_engine
5 else:
6 Execute do_nothing
7 elif remaining_hover >

remaining_angle and
remaining_hover > -1 *
remaining_angle and
remaining_hover > 0.05:

8 Execute main_engine
9 elif remaining_angle < -0.05:

10 Execute right_thruster
11 elif remaining_angle > 0.05:
12 Execute left_thruster
13 else:
14 Execute do_nothing

We implemented an RLang-informed agent using PPO
(Schulman et al., 2017), a policy gradient method, as our
base method. We probabilistically mixed the RLang-defined
advice policy with a learnable policy network using mixing
parameter β ∈ [0, 1], following Fernández & Veloso (2006),
which is annealed during learning process. In this way, the
RLang and the learned policies shared control stochastically.
Figure 3b shows the average return curves resulting from
an uninformed PPO agent (Schulman et al., 2017) and the
RLang-informed version. The informed agent exploits the

given policy and learns to improve it further, resulting in a
clear performance improvement.
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(a) Craftworld + hierarchical information
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(b) Lunar Lander + policy prior

Figure 3: RLang-informed algorithms given prior policy
structure. (a) an RLang-informed DDQN agent vs. unin-
formed DDQN on 2-D Minecraft. (b) an RLang-informed
PPO agent exploits policy advice vs. learning from scratch.

We also considered two classic control problems: Cart-
Pole and Mountain Car. For CartPole, we obtain analogous
results using REINFORCE (Williams, 1992) as the base
method (see Appendix B.5). In Mountain Car, a hard explo-
ration problem in RL, a very concise RLang policy results in
near-optimal performance; the simple program below gets
a −119 average return over 100 episodes, where the task is
considered solved with a −110 average return.

1 Policy gain_momentum:
2 if velocity < 0:
3 Execute go_left
4 else:
5 Execute go_right

Dynamics and Rewards: Lava-Gap We now show how
to provide transition and reward information using RLang in
the Lava-Gap environment (Figure 2), a gridworld where an
agent must navigate to a goal position. The agent can move
in the cardinal directions but each action has a probability
of failure of 1/3. Moreover, moving into walls causes the
agent to stay in the same position and falling into a lava pit
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results in a high negative reward. The agent would typically
need to fall into lava pits many times to learn to avoid it.
With RLang, however, we can easily inform agents about
the dynamics and the high cost of lava pits.
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Figure 4: RLang-informed Q-Learning agents given partial
rewards and dynamics information in Lava-Gap

The program below starts by defining an effect
moving_effect that predicts the effect of an action in
most cases—i.e., when walls are not in the way. Next, the
effect dynamics extends this by describing walls. Finally,
the reward function is provided through the effect reward.

1 Effect moving_effect:
2 if A == up:
3 x' -> x + 1
4 y' -> y
5 elif A == down:
6 x' -> x - 1
7 y' -> y
8 elif A == left:
9 x' -> x

10 y' -> y - 1
11 elif A == right:
12 x' -> x
13 y' -> y + 1
14 Effect dynamics:
15 if at_wall:
16 S' -> S
17 else:
18 -> moving_effect
19 Effect reward:
20 if in_lava:
21 Reward -1
22 elif at_goal:
23 Reward 1.
24 else:
25 Reward 0.
26 Effect main:
27 -> dynamics
28 -> reward

Classic tabular Q-Learning is suitable here. We designed
a Q-Learning agent that exploits the transition dynamics
and reward information. The agent first estimates an initial
Q-table using Value Iteration based on the partial transition
and reward models—when information is unknown for

a transition tuple (s, a, s′) the Q-value defaults to 0. See
Appendix B.1 for more details.

Average return curves are shown for an RLang-informed
Q-Learning agent (Watkins & Dayan, 1992) in Figure 4.
The curves show that the informed agent clearly leverages
the information to gain high return early in the training pro-
cess. We obtain analogous results informing an RMax agent
(Brafman & Tennenholtz, 2002), a model-based method.
These results are in Appendix B.1.

Object-Oriented Dynamics and Rewards: Taxi

We now provide dynamics and reward information for an
object-oriented environment using RLang. We use the
object-oriented version of the Taxi environment in Diuk et al.
(2008), a gridworld where the agent must pick up a passen-
ger and drop them off at one of four destinations. DOORmax
(Diuk et al., 2008) is suitable for Object-Oriented MDPs.
We implement an RLang-enabled DOORmax algorithm
which allows for initialization of transition dynamics and
rewards. We show these results in Figure 5.

1 Effect no_movement_effect:
2 if S.taxi.touch_n and A == move_n:
3 S' -> S
4 if S.taxi.touch_s and A == move_s:
5 S' -> S
6 if S.taxi.touch_e and A == move_e:
7 S' -> S
8 if S.taxi.touch_w and A == move_w:
9 S' -> S

10

11 Effect main:
12 if S.taxi.on_passenger and A ==

pick_up:
13 S'.passenger.in_taxi -> True
14 if S.passenger.in_taxi and A ==

drop_off:
15 S'.passenger.in_taxi -> False
16 if S.taxi.on_destination:
17 Reward 20
18 else:
19 Reward -10
20 elif A == pick_up or A == drop_off:
21 Reward -10
22 else:
23 Reward -1
24 -> no_movement_effect

OO-MDPs contain an abstract layer of object-centric infor-
mation about an underlying MDP. RLang provides compact
semantics for referencing these abstractions, which object-
aware agents can exploit for improved performance. Some
predicates given by the Taxi domain describe the taxi’s po-
sition in the underlying MDP (e.g., touch_n(taxi)),
which can be used to specify where the taxi is allowed to
move. Using these predicates, the above RLang program
succinctly explains that the taxi cannot move through walls,
a crucial piece of information that a tabula rasa agent might
learn for each wall it encounters over many timesteps.
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Table 2: Comparison of DSLs proposed for RL agents and the types of MDP information that can be expressed

RL Policy Action Policy State Rewards Transition
Language Hint Structure Constraints Structure Dynamics

ALisp (Andre & Russell, 2002) ✓ ✓
Advice RL (Maclin & Shavlik, 1996) ✓ ✓

Program-guided Agent (Sun et al., 2020) ✓ ✓
Programable Agents (Denil et al., 2017) ✓
Policy sketches (Andreas et al., 2017) ✓

GLTL (Littman et al., 2017) ✓
SPECTRL (Jothimurugan et al., 2019) ✓

RLang ✓ ✓ ✓ ✓ ✓ ✓

Figure 5: An RLang-enabled DOORmax agent in object-
oriented Taxi informed with dynamics information

5. Related Work
There has been a recent surge of interest in language meth-
ods for RL agents (Luketina et al., 2019). These fall under
methods that use natural language to instruct, or to reward,
agents as a form of supervision, and methods that use for-
mal languages to represent goals or other components of an
MDP.

Formal Languages in Reinforcement Learning In clas-
sical planning it is standard to use the Planning Domain
Description Language (PDDL; Ghallab et al. 1998) and
its probabilistic extension PPDDL (probabilistic PDDL;
Younes & Littman, 2004) to specify the complete dynam-
ics of a factored-state environment. RLang is inspired by
these but it is intended for a fundamentally different task:
providing partial knowledge to a learning agent, where the
knowledge might correspond to any component of the un-
derlying MDP. Maclin & Shavlik (1996) propose an RL
paradigm in which the agent may request advice via a DSL
that uses propositional statements to provide policy hints.
Similarly, Sun et al. (2020) propose to learn a policy con-
ditioned on a program from a DSL. Andreas et al. (2017)
use a simple grammar to represent policies as a concate-
nation of primitives (sub-policies) to provide RL agents
with knowledge about the hierarchical structure of the tasks.

Other languages include linear temporal logic (LTL; Littman
et al., 2017; Jothimurugan et al., 2019) which has been used
to describe goals for instruction-following agents. These
methods ground LTL formulae to reward functions. RLang
expands on all of these DSLs to include information beyond
the policy and the reward function, thus enabling a wider
array of information to be provided to the agent.

Table 2 summarizes existing DSLs for RL and shows their
relative expressive power. Besides RLang, no other DSL is
sufficiently powerful to express the wide range of informa-
tion that could be of use to an RL agent.

Natural Language Grounding and Learning Methods
Several works have attempted to learn mappings for the
semantic meaning of natural language to grounded infor-
mation for agents. Some approaches learn to ground the
natural language input to a single grounding function type
(e.g., reward function) directly from data. For instance,
RL agents that learn to play Civilization II by grounding
linguistic information from manuals as features relevant
to estimating the Q-function (Branavan et al., 2012), and
grounding textual specifications of goals and dynamics of
the game to learn a language-conditioned policy (Zhong
et al., 2019). In instruction-following, some approaches
learn to map instructions to reward functions (Misra et al.,
2017; Bahdanau et al., 2018; Goyal et al., 2020).

However, other approaches translate natural language sen-
tences to an intermediate semantic representation language.
In general, these languages are restricted grammars that can
be easily mapped to the desired grounding element. For
example, some methods translate instructions to sequences
of primitive actions (Misra & Artzi, 2017) or to LTL formu-
lae (Williams et al., 2018; Gopalan et al., 2018; Patel et al.,
2020). In future work we plan to use RLang as the semantic
representation language, since it is capable of expressing a
much wider range of information than existing DSLs.

8
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6. Conclusion
RLang is a concise and unambiguous domain-specific lan-
guage designed to make it easy for a human to provide
background knowledge—about any component of a task—
to an RL agent. RLang’s formal semantics also serve as
a unified framework under which to study and compare
RL algorithms capable of exploiting background knowl-
edge to improve learning. The examples in this paper show
that RLang can be used to provide diverse types of domain
knowledge and structure via simple and intuitive RLang
programs describing task knowledge that can effectively
improve performance over tabula rasa methods.
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A. RLang: Grammar and Semantics
In this section, we define the semantics of RLang expres-
sions.

A.1. Grammar

⟨program⟩ ::= import ⟨declarations⟩
⟨declaration⟩ ::= ⟨constant⟩

| ⟨action⟩
| ⟨factor⟩
| ⟨proposition⟩
| ⟨goal⟩
| ⟨feature⟩
| ⟨markov_feature⟩
| ⟨object⟩
| ⟨class_definition⟩
| ⟨option⟩
| ⟨policy⟩
| ⟨effect⟩
| ⟨action_restriction⟩

⟨constant⟩ ::= Constant ⟨identifier⟩ :=
⟨arithmetic_expression⟩

⟨action⟩ ::= Action ⟨identifier⟩ :=
⟨arithmetic_expression⟩

⟨factor⟩ ::= Factor ⟨identifier⟩ :=
⟨special_variable⟩

⟨proposition⟩ ::= Proposition ⟨identifier⟩ :=
⟨boolean_expression⟩

⟨goal⟩ ::= Goal ⟨identifier⟩ :=
⟨boolean_expression⟩

⟨feature⟩ ::= Feature ⟨identifier⟩ :=
⟨arithmetic_expression⟩

⟨markov_feature⟩ ::= MarkovFeature ⟨identifier⟩ :=
⟨arithmetic_expression⟩

⟨object⟩ ::= Object ⟨identifier⟩ :=
⟨object_instantiation⟩

⟨policy⟩ ::= Policy ⟨identifier⟩ :
⟨policy_statement⟩

⟨policy_statement⟩ ::= ⟨execute_statement⟩
| ⟨conditional_policy_statement⟩
| ⟨probabilistic_policy_statement⟩

⟨execute_statement⟩ ::= Execute

⟨arithmetic_expression⟩
⟨option⟩ ::= Option ⟨identifier⟩:

⟨option_init⟩
⟨policy_statement⟩
⟨option_until⟩

⟨option_init⟩ ::= init ⟨boolean_exp⟩
⟨option_until⟩ ::= until ⟨boolean_exp⟩

⟨class_definition⟩ ::= Class ⟨identifier⟩:
⟨attribute_definitions⟩

⟨effect⟩ ::= Effect ⟨identifier⟩:
⟨effect_statements⟩

⟨effect_statement⟩ ::= ⟨reward⟩
| ⟨prediction⟩
| ⟨effect_reference⟩
| ⟨conditional_effect⟩
| ⟨probabilistic_effect⟩

⟨reward⟩ ::= Reward

⟨arithmetic_expression⟩
⟨prediction⟩ ::= ⟨identifier⟩’ ->

⟨arithmetic_expression⟩
⟨effect_reference⟩ ::= -> ⟨identifier⟩
⟨action_restriction⟩ ::= ActionRestriction

⟨identifier⟩:
⟨restrict_statements⟩

A.2. Semantics: Basic Syntactic Elements

RLang allows to express information that grounds to func-
tions defined over the State-Action space of an MDP. More-
over, these functions have to be Markov, in the MDP sense,
allowing to define functions with domain X that can be
S×A×S and, its simplifications, S ,A, S×A, S×S . The
range of these functions can include real vectors Rd (with
d ∈ N), Booleans {⊤,⊥} and sets. The following are the
basic expressions that are used to build the MDP specific
elements of RLang.

• Real Expressions ⟨arithmetic_expression⟩ are func-
tions of the form f : X → Rd for some dimension
d. Syntactically, RLang allows element-wise arith-
metic operations (+,−, ∗, /), numeric literals, and ref-
erences to previously defined real functions to define
new functions. These functions are Markov and de-
fined over the State-Action Space of the MDP, i.e.
X ∈ {S,A,S ×A,S × S,S ×A× S}.

• Constant expressions ⟨constant⟩ allows to bind a
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name (⟨identifier⟩) to literal value or a list of literal
values.

• Boolean Expressions ⟨boolean_expression⟩ Analo-
gous to Real Expressions, these are functions of
the form f : X → {⊤,⊥} with domain X ∈
{S,A,S ×A,S × S,S ×A× S}.

In order to define new Boolean expressions, RLang
allow for logical operators (and, or, not) and
order relations of the real numbers (<, <= , >, >=, =,
!=).

• Relations and Partial Functions A relation of do-
mains X and Y are a subset R ⊆ X × Y . Partial
functions are specifications of functions of the form
f : X → Y . A partial function is, then, a relation such
that

PF :={(x, y) ∈ X × Y and
∀(x, y), (x′, y′) x = x′ =⇒ y = y′}.

Therefore, it is partial because not every element of the
domain is defined by the function. We consider that
undefined domain elements map to the special element
unknown.

A.3. Semantics: RLang Expressions

Core RLang Type Definitions are necessary in order to
derive new information from the base vocabulary.

• State Space Definitions allows to define important
features and set of states for the agent.

1. State Features ⟨feature⟩ These ground to func-
tions of the form ϕ : S → Rd. Hence, given the
base vocabulary and using real expressions, we
can derive new features;

2. State Factors ⟨factor⟩ In the particular case the
state space is S ⊆ Rn (n ∈ N) and factored, we
have specific state features that correspond to the
State Factors whose definition is given by a list
of integers that correspond to the positions in the
state vectors that are part of the factor. A factor-
ization of the state correspond to a set of disjoint
factors whose union is the full state vector;

3. Propositions ⟨proposition⟩ ground to Boolean
functions with domain in S that represents a set
of states Sσ := {s ∈ S and s |= σ};

• Action Definition ⟨action⟩ names a particular action.
Consider that the action space A ⊆ Rd with d ∈ N.
Then, an action definition grounds to a point in A.

• Option Definition ⟨option⟩ allows to define an
temporally-abstracted action based on the options
framework (Sutton et al., 1999). Therefore, the state-
ment directly maps to the triple (I, πo, β), where I
is the initiation proposition defined by the syntactical
element ⟨option_init⟩, β is the termination proposition
defined by ⟨option_until⟩ and πo is the policy function
defined by a policy statement ⟨policy_statement⟩

• Class and Object Definition ⟨class⟩ and ⟨object⟩ al-
low for the definition of new classes and object in-
stances. Classes can have any number of attributes of
any of the types str, int, float, bool, object
and object instances can have attributes that are func-
tions of the (s, a, s′) tuple.

• Markov Feature Definition ⟨markov_feature⟩ allow
for the definition of real-valued features of a transition
tuple (s, a, s′) of the MDP. These expressions ground
to real functions of the form f : S × A × S → Rn

with n ∈ N.

Core MDP Expressions are related to specifications of the
main functions of the MDP:

Transition Dynamics and Rewards represented syntacti-
cally by ⟨effect_statement⟩. Such statements ground to tu-
ples (R, T ) of reward functions and next-state probabilities.
More precisely, grounding functions are R : S×A×S → R
and T : S×A×S → [0, 1]. The following are the semantics
of possible effect expressions.

• Reward ⟨reward⟩ statement allows to specify a re-
ward value using real expressions. A reward statement
grounds to a function R : S ×A× S → R defined by
scalar arithmetic expressions.

• Next State Prediction ⟨prediction⟩ ground to func-
tions T : S×A×S → [0, 1] that gives a probability of
transitioning to the next state s′ after executing action
a at state s. The following are possible groundings:

1. Null Effect: S’ -> S. This grounds to

T (s′, a, s) =

{
1 if s′ = s

0 otherwise
;

2. Singleton Prediction: S’ -> ⟨constant⟩. Let
the constant ground to a valid state vector ŝ ∈ S.
Thus, the expression grounds to

T (s′, a, s) =

{
1 if s′ = ŝ

0 otherwise
;

3. Real Prediction: S’ ->
⟨arithmetic_expression⟩. Let the
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⟨arithmetic_expression⟩ ground to a real
function of the form e : S × A → S. Then, the
prediction expression grounds to

T (s′, a, s) =

{
1 if s′ = e(s, a)

0 otherwise
;

4. Factor Prediction factor_name ->
⟨arithmetic_expression⟩. Let factor_-
name ground to the factor ϕ : S → Rd

where d ∈ N is the dimension of the factor.
Let the ⟨arithmetic_expression⟩ ground to
eϕ : S × A → Rd. Then, a factored prediction
grounds to the function

Tϕ(ϕ(s
′), a, s) =

{
1 if ϕ(s′) = e(s, a)

0 otherwise
;

A collection of factor predictions for a set of dis-
joint factors {ϕi}i that partition the state vector
can ground to a full transition function

T (s′, a, s) =
∏
i

Tϕi(ϕi(s
′), a, s)

5. Probabilistic Effect Statements
⟨probabilistic_effect_statement⟩ allows to
explicitly indicate probabilities for a collection
of predictions. Consider that the probabilistic
statement is a collection of tuples {(Ti, pi)}i
where Ti is the grounding function of the
prediction and pi a probability, subject to the
correctness of the probabilities

∑
i pi ≤ 1 and

for all pi ≥ 0. Thus, it grounds to

T (s′, a, s) =
∑
i

piTi(s
′, a, s).

If
∑

i pi < 1, then the remaining probability is
construed to be assigned to unknown.
In the case of Factor predictions for a given factor,
the grounding function Tϕ is defined analogously.

6. Conditional Effect Statements
⟨conditional_effect_statement⟩ The condi-
tional context allows to define subsets of
the domain D ⊆ S × A × S through a
⟨boolean_expression⟩ that defines when a
particular Execute statement is valid. Hence,
a ⟨conditional_policy_statement⟩ grounds to
partial functions R = {(Di, Ri)}i where each
tuple is the result of a branch from the parsing
of if-elif-else blocks. Analogously, for
the grounding of dynamics information of the
statement T = {(Di, Ti)}i, where the Di are

disjointed subsets of the domain defined by the
Boolean expressions, the order of the conditional
branches and the Ti and Ri are defined by reward
and prediction statements defined above.

7. Effect References ⟨effect_reference⟩ allows to
refer to previously defined effect statements to
compose new ones. Each referred effect is tuple of
(Ri, Ti) of groundings for rewards and transition
dynamics.
A collection of effect references ground to:
Rewards R(s, a, s′) =

∑
i∈I(s,a,s′) Ri(s, a, s

′)

where I(s, a, s′) is the set of referred effects that
have information for rewards in the tuple (s, a, s′).
Hence, rewards are composed additively.
Transition Dynamics Let S′

i(s, a) = {s′ ∈
S : Ti(s

′, a, s) > 0} be the set of next states
from state-action pair (s, a) about which Ti

provide knowledge. Thus, a set of effect ref-
erences are well-defined if

⋂
i S

′
i(s, a) = ∅

and
∑

s′∈
⋃

i S
′
i(s,a)

T (s′, a, s) ≤ 1 for all (s, a).
Hence, the grounding function is

T (s′, a, s) =
∑
i

Ti(s
′, a, s).

Policies ⟨policy⟩ ground to policy functions π : S ×A →
[0, 1]. The simplest expression to specify a policy is an
execute statement ⟨execute_statement⟩. The name after
the Execute keyword represents either an ⟨action⟩ a′ ∈ A
and, hence, the statement grounds to

π(s, a) =

{
1 if a = a′

0 otherwise
,

or it can refer to a previously defined ⟨policy⟩ that grounds
to π̂ and, then, the statement grounds to π = π̂. Therefore,
the ⟨execute_statement⟩ functions analogously to a return
statement in function definitions in imperative program-
ming languages: when an action name is found, it maps the
querying state s to the first action referenced by an execute
statement.

Probabilistic policy expressions
⟨probabilistic_policy_statement⟩: Probability state-
ments allow to extend the execute statement with explicit
probability values. Therefore, a probabilistic policy
statement grounds to a collection of execute statements-
probability pairs {(πi, pi)}i. In this way, probabilistic
policy statements ground to

π(s, a) =
∑
i

piπi(s, a)
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If
∑

i pi < 1, then the remaining probability is construed to
be assigned to unknown.

Conditional Policy Expressions
⟨conditional_policy_statement⟩: The conditional con-
text allows to define subsets of the domain S′ ⊆ S through
a ⟨proposition⟩ that defines when a particular execute state-
ment is valid. Hence, a ⟨conditional_policy_statement⟩
grounds to a partial function π′ : {(Si, πi)}i where each
pair (S′

i, πi) the result of a branch from the parsing of
if-elif-else blocks. The S′

i are disjointed and
they are the result of the ⟨proposition⟩, the order of the
statements and the returning semantics of the execute
statements. The πi are defined by execute statements or
probabilistic policy statements.

Action Restrictions ⟨action_restriction⟩ are defined analo-
gously to conditional policy statements. They reduce the
possible set of actions to consider in a given situation. They
ground to functions of the form A : S → A that defines
then subset of prohibited actions to take in state s—i.e.,
A(s) ⊂ A.

Goals ⟨goal⟩ ground to set of states that are considered goal
states for the MDP, i.e. terminating and highly rewarding.
RLang represents goals through propositions.

B. Experimental Details and Additional
Results

In this section, we extend the discussion on the implemen-
tation details of RLang demonstrations in Section 4. We
provide details about the implementation of the RLang-
informed variations of the RL algorithms, descriptions of
the environments and the hyperparameters used.

For each of the experiments below we report average return
curves over 5 different random seeds and report 95% confi-
dence intervals. Moreover, we use a running average with
window size of 50.

B.1. Lava-Gap

Lava-Gap is a 6 × 6 grid-world with coordinates x, y ∈
{1, 6}. There is a wall in position (3, 1) and 4 lava pits
in locations (3, 2), (1, 4), (2, 4), (2, 5). The goal position
is (5, 1). The agent has 4 discrete actions that allows it
to move in one of the cardinal directions by 1 step. Each
action has a probability of failure of 1/3 that would move
the agent to a random neighboring position (in the cardinal
directions). The state st at time t is represented by the x and
y coordinates of the position at time t. The agent receives
a reward of −1 for falling in a lava pit and the episode
terminates. Similarly, the agent receives a reward of 1 for
reaching the goal and the episode terminates. In any other
case, the reward is 0. At the start of every episode, the agent

begins executing at position (1, 1). We use a discount factor
of γ = 0.95. We use simple_rl’s implementation (Abel,
2019) of this gridworld and of the RMax and Q-Learning
algorithms.

RLang-informed Q-Learning In the RLang-informed
example for Lava-gap, we leverage the transition and reward
information from the RLang program to initialize the Q-
table for Q-Learning and R-Max. We compute the Q-table
by executing value iteration considering in the state pairs
where transition information is available. In Algorithm 1,
we show how the Q-table of a Q-Learning agent is initialized
using the information provided in a RLang program given
as input as the RLangKnowledge objects. The UpdateValue
function computes the new value using the standard TD-
error.

Algorithm 1 Q-Table Initialization

function InitQTable(RLangKnowledge, QAgent)
for (s,a) ∈ S ×A do

if RLangKnowledge.Reward(s,a) is known then
QAgent.Q(s,a)← RLangKnowledge.Reward(s,a)

end if
end for
for N iterations do

for (s,a,s’) ∈ S ×A× S do
if RLangKnowledge.Transition(s,a) is known
then

T (s, a, s′) ←
RLangKnowledge.Transition(s, a)
R(s, a, s′)← RLangKnowledge.Reward(s,a)
QAgent.Q(s,a) ←
UpdateValue(s, a, s′, T (s, a, s′),QAgent)

end if
end for

end for
end function

RLang-informed RMax RMax (Brafman & Tennenholtz,
2002) is a model-based RL algorithm. Hence, we directly
use the RLang-provided information to initialize the model
of the world (i.e., Transition and Reward tables) in addition
to initializing the Q-table. We set the count in the respective
tables to be a hyper-parameter K, less that the threshold
used by RMax to considered a transition known.

Hyperparameters For uninformed Q-Learning we have
the exploration ϵ = 0.1 and the step size α = 0.05 and for
the RLang-informed Q-Learning we use ϵ = 0.01 and the
same α. For RMax and RLang-informed RMax, we use a
threshold of 30 samples to consider the transition learned
and set K = 1.
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Figure 6: Average return curves for Lava-Gap environment. We provide the agent with an RLang program that contains
information about the reward function and the transition dynamics.

RMax Results In Figure 6b, we show the average return
curves for an RMax agent informed with the program below,
in which we see consitent results with the results obtained
for an RLang-informed Q-Learning agent.

B.2. Taxi (Flat)

We use simple_rl’s implementation of the Taxi environ-
ment (Dietterich, 1998) with 2 passengers in a 5 × 5 grid.
The state vector has the position of the agent and a binary
variable that is 0 when the taxi does not carry a passenger
and 1 otherwise. Moreover, it has the current position of
the passengers, the destination of the passenger and a binary
variable that indicates if the passenger is in the taxi. The
agent has 4 movement actions and a special action for pick-
ing up a passenger that is at the same position than the agent
and another for dropping off the passenger currently in the
taxi. The reward function is 1 when all passenger are in
destination and 0 otherwise. The discount factor γ = 0.95.

RLang-informed hierarchical Q-Learning In this exper-
iment, we use a hierarchical RL agent based on the options
framework. In this particular case, we use Q-Learning to
learn both the policy over options and the intra-option poli-
cies. We consider that an RLang-defined option is learnable
if the policy function is not provided, i.e. only initiation
and termination conditions are specified. We use such termi-
nation condition as a goal represented by a pseudo-reward
function that is 1 when the termination condition is achieved
and 0 otherwise that the inner agent uses to learn the intra-
option policy. We initialize the intra-option learning agents
of those learnable options defined in the input RLang pro-
gram with the procedure in Algorithm 2.

Hyperparameters For our Q-Learning baseline, we use
an exploration ϵ = 0.1 and a step size of α = 0.1. For our

Algorithm 2 Hierarchical Agent Initialization

1: function InitializeOptions(RLangKnowledge)
2: for o ∈ RLangKnowledge.Options do
3: if o is learnable then
4: o.agent← InitializeAgent()
5: end if
6: end for
7: end function

hierarchical Q-Learning agents, we have a Q-Learning agent
for each subpolicy to be learnt with ϵ = 0.1 and α = 0.1
and a Q-Learning agent to learn the policy over options with
ϵ = 0.01 and α = 0.5. We implemented our hierarchical
Q-Learning agent as Sutton et al..

Results In Figure 7a, we show the average return curves
for Taxi. The RLang program, shown below, defines the
options given to the agent—a simple variation of this pro-
gram is provided to the agent that needs to learn the intra-
option policies. The plot shows the most-informed agent,
i.e. intra-option policies are provided and it only needs to
learn the policy over options, is represented in blue, the
RLang-informed agent that only knows the initiation and
termination conditions of the options (in red) and an un-
informed Q-Learning agent. We observe that both of the
informed agents are able to exploit the knowledge to gain a
steeper learning curve with respect to the uninformed agent.

1 Option pick_up_passenger0:
2 init(not(passenger_in_taxi) and

not(passenger_0_in_dest))
3 Execute pick_up_passenger0
4 until passenger_0_intaxi
5

6 Option dropoff_passenger0:
7 init(passenger_0_intaxi)
8 Execute dropoff_passenger0
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9 until passenger_0_in_dest and not(
passenger_0_intaxi)

10

11 Option pick_up_passenger1:
12 init(not(passenger_in_taxi) and

not(passenger_1_in_dest))
13 Execute pick_up_passenger1
14 until passenger_1_intaxi
15

16 Option dropoff_passenger1:
17 init(passenger_1_intaxi)
18 Execute dropoff_passenger1
19 until passenger_1_in_dest and not(

passenger_1_intaxi)

B.3. Taxi (Object Oriented)

For object-oriented Taxi we used efficient_rl’s imple-
mentation of the environment presented in Diuk et al. (2008)
with 1 passenger in a 5 × 5 grid. The agent has access to
the same information as the flat Taxi environment with the
addition of a set of seven predicates whose truth values are
available at each state:

touch_north(taxi, wall)
touch_south(taxi, wall)
touch_east(taxi, wall)
touch_west(taxi, wall)
on(taxi, passenger)
on(taxi, destination)
in_taxi(passenger)

The agent’s action space is the same as the flat Taxi environ-
ment: 4 movement actions and a special action for picking
up a passenger. The reward function is different than flat
Taxi, however, and matches one given in Diuk et al. (2008):
a reward of 20 for dropping off a passenger at a depo, a re-
ward of −10 for dropping off a passenger anywhere else or
attempting a pickup when the taxi is not on a passenger, and
a reward of −1 otherwise. The discount factor is likewise
γ = 0.95.

RLang-informed DOORmax In this experiment we use
the DOORmax algorithm implemented by efficient_-
rl that was originally presented in Diuk et al. (2008) as
a baseline and create an RLang-enabled DOORmax agent.
Similar to the RLang-enabled Q-Leaning agent, the RLang-
enabled DOORmax agent starts by initializing its internal
representation of the transition and reward function with the
partial dynamics given by an RLang program.

Hyperparameters Both DOORmax and RLang-
DOORmax use the same hyperparameters. We set
rmax = 20, γ = 0.95, δ = 0.01, and K = 5, the maximum
number of different effects possible for any action.

Results In 7b, we show the cumulative reward curves
for DOORmax agents in object-oriented Taxi. The RLang
program, shown below, describes the full reward function

and partial transition dynamics, specifically what happens
when the agent tries to drive into walls and what happens
when a passenger is picked up and dropped off. The plot
shows a significant speedup for the RLang-enabled agent,
even when partial transition dynamics are described.

1 Effect movement_effect:
2 if S.taxi.touch_n and A == move_n:
3 S' -> S
4 if S.taxi.touch_s and A == move_s:
5 S' -> S
6 if S.taxi.touch_e and A == move_e:
7 S' -> S
8 if S.taxi.touch_w and A == move_w:
9 S' -> S

10

11 Effect main:
12 if S.taxi.on_passenger and A ==

pick_up:
13 S'.passenger.in_taxi -> True
14 if S.passenger.in_taxi and A ==

drop_off:
15 S'.passenger.in_taxi -> False
16 if S.taxi.on_destination:
17 Reward 20
18 else:
19 Reward -10
20 elif A == pick_up or A == drop_off:
21 Reward -10
22 else:
23 Reward -1

B.4. 2D Minecraft

2D Minecraft is a crafting environment based on Andreas
et al. implemented as a 10 × 10 grid. The state vector
include a map of the environment, an inventory vector and
the change on inventory with respect to the previous time
step. The map is represented by 10 × 10 × 22 tensor that
represent with a one-hot vector the element at position (x, y).
The agent has 4 actions to move in the cardinal directions
by one position and a special action use to interact with
the element in front, i.e., given the current position and
orientation of the agent, the position with which the agent
interacts in the one the agent is facing. If such element is a
primitive, the agent adds it to its inventory; if the element
is a workbench and it has any of the primitive elements to
build an object in the workbench, then those objects are
built and added to the inventory (any primitive element used
is removed from the inventory); if the agent is in front of
water and has a bridge, it can use it and cross the water.
If the agent has to interact with stone, it needs an axe in
inventory. This is a goal-oriented environment; when the
agent has the goal object in inventory, it receives a reward
of 1 and the episode terminates. When an episode starts, the
agent is randomly placed in any free cell of the grid. We use
a discount factor γ = 0.99.
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Figure 7: Cumulative reward curves for object-oriented Taxi (middle) when the reward function and partial transition
dynamics is provided using RLang. Average return curves for flat Taxi (left) and Craftworld (right) when information about
the hierarchical structure of the problem is provided using RLang. We provide the agents with a program that specifies the
initiation and termination conditions of the options required to solve the problem and the RLang-informed agent learns the
intra-option policies and policy over options. In the particular case of flat Taxi, we also include the learning curve when we
also provide the intra-option policies.

RLang-informed hierarchical DDQN Agent To solve
this environment, analogously to the Taxi environment, we
use a hierarchical agent based on options. We use DDQN
(Van Hasselt et al., 2016) as the algorithm to learn both the
policy over options and intra-option policies. Algorithm 2
is used to initialized the intra-option policies. To implement
DDQN and its hierarchical variation based on options, we
based it on the Autonomous Learning Library (Nota, 2020).

Neural Network architecture and parameters We use a
CNN with 4 ReLU-activated layers with filter banks of size
32, 32, 32, 64, a kernel size of 3 and stride of 2 (padding
was used to keep the dimension 10×10). The inventory and
inventory change were processed with a ReLU MLP with
hidden layer of size 32 and output 32. These two vectors are
concatenated and passed through a linear layer of size 256
(for the flat DDQN) and 64 for the agents in the hierarchical
DDQN implementation. Finally, this output vector is passed
through a ReLU MLP with a hidden layer of size 64 to get
the value predictions for each action.

Hyperparameters For DDQN, we use a linear schedule
for ϵ−greedy exploration with start with ϵ = 1 and ϵ = 0
and final exploration step 10000. We use a learning rate
0.001 and mini-batch of size 64. We use a Prioritized replay
buffer of size 10000. The target network update frequency
is 100 steps. We set a time of 1000 steps.

For hierarchical DDQN:

• Outer Agent (policy over options): we use a linear
schedule for ϵ−greedy exploration with start with ϵ =
1 and ϵ = 0 and final exploration step 60000. We use
a learning rate 10−5 and mini-batch of size 64. We use
a Prioritized replay buffer of size 10000. The target

network update frequency is 100 steps. This outer
agent had a timeout of 1000 steps;

• Inner Agents (intra-option policies): we use a linear
schedule for ϵ−greedy exploration with start with ϵ =
1 and ϵ = 0.001 and final exploration step 30000. We
use a learning rate 10−4 and mini-batch of size 128.
The target network update frequency is 100 steps. We
use a Prioritized replay buffer of size 10000. Each
subpolicy had a timeout of 100 steps.

B.5. Classic Control

Environments In this section, we consider Cartpole and
Lunar Lander, two classic environments for RL research that
have continuous state-space and discrete action space. For
both environments, we use OpenAI Gym’s implementations
(Brockman et al., 2016), i.e. CartPole-v0 and LunarLander-
v2.

Cartpole (Barto et al., 1983) consists of an underactuated
pole attached to a cart. At the beginning, the pole starts in
a vertical position (0 degrees) and the agent has to learn a
policy to keep it within 15 degrees. The state consists of
the position and the velocity of the cart, and the angle and
angular velocity of the pole. The action space is to apply
momentum to move the cart to the right or to the left. An
episode ends when the pole absolute angle is greater than 15
degrees, the position of the cart is greater than 2.4 units or
after 200 time steps. The agent gets a reward of 1 every time
step. This task is considered solved is the average return is
at least 195 over 100 episodes.

Lunar Lander simulates the task of landing a ship in a land-
ing pad on the moon. The state consists of the ship’s position
and velocity, angle and angular velocity, and Boolean flags
that indicate if the ship’s leg is in contact with the ground.
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Figure 8: Average return curves for classic control tasks with continuous state spaces. We use RLang to provide the agent
with an initial policy (non-optimal) that the agent can leverage to improve learning performance. We compare with the
uninformed counterparts.

The actions are to fire the main engine, the right orientation
engine, the left orientation engine and doing nothing. The
agent gets a reward of −100 if the ship crashed and +100 if
it lands correctly. It receives +10 for each leg that touches
the ground and −0.3 if the main engine is fired. The task is
solved with a return of at least 200.

RLang-informed Policy Gradient Agent To solve these
environments, we provided non-optimal policies through
RLang programs and use policy gradients methods to lever-
age this knowledge while learning. Algorithm 3 is derived
from (Fernández & Veloso, 2006), in which, we probabilis-
tically share control between the learning policy πθ and the
RLang-provided policy π̂. At each time step, we choose
which policy to follow by drawing a sample from a Bernoulli
distribution with parameter β. We use such probabilistic
mixing to collect trajectories and then optimize, θ, using
policy gradient methods. We use REINFORCE (Williams,
1992) for Cartpole and PPO (Schulman et al., 2017) for
Lunar Lander. The mixing parameter β is annealed expo-
nentially using a decay rate α.

Algorithm 3 Hierarchical Agent Initialization

1: function PolicyMixing(RLangKnowledge,decay_rate)
2: Trajectories← Rollout(Env, πθ, π̂, β)
3: θ ←PolicyGradient(Trajectories, πθ)
4: β ← β ∗ decay_rate
5: end function

Neural Network architecture and parameters For Cart-
pole and REINFORCE, we use a policy network using
an MLP with hidden size 64 and Leaky ReLU activations
(Maas et al., 2013) with parameter 0.2

In the case of Lunar Lander and PPO, we use a policy

network based on a MLP with hidden size 64 and Leaky
ReLU activations (Maas et al., 2013) with parameter 0.2.
As a value network, we use an MLP with hidden size 64 and
Tanh activations.

Hyperparameters For Cartpole, we use PFRL’s REIN-
FORCE implementation (Fujita et al., 2021). We use an
initial mixing parameter β = 0.7 and a decay rate α = 0.99.
For REINFORCE, we use a learning rate of 0.001 and a
batch size of 5. In Lunar Lander, we use PFRL’s PPO im-
plementation and use a mixing parameter β = 0.5 and a
decay rate α = 0.9999. For PPO, we used a learning rate of
0.0002.

Cartpole Results For Cartpole, we provide the RLang
program below with a very simple prior policy. In Figure
8a, we show the average return curves for RLang-informed
REINFORCE and its uninformed performance, which show
a jump-start performance gain for the agent then improves
through experience.

1 Policy balance_pole:
2 if pole_angular_velocity > 0:
3 Execute move_right
4 else:
5 Execute move_left
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