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ABSTRACT

Large language models (LLMs) have shown promise in enhancing reinforcement
learning (RL) through task decomposition, yet their generated subgoals often lack
reliability, leading to inefficient exploration and suboptimal policy learning. In
this paper, we propose LLMV-AgE (Verification of LLM-guided planning for
Agentic Exploration), an RL framework that integrates LLM-guided subgoal plan-
ning with a hierarchical verification process to ensure both semantic validity and
environmental feasibility. LLMV-AgE systematically assesses subgoal coherence,
corrects invalid plans through iterative refinement, and aligns policy learning with
reliable, goal-driven objectives. Empirical results on the procedurally generated
Crafter benchmark demonstrate that LLMV-AgE significantly improves exploration
efficiency and policy robustness by mitigating the impact of hallucinated subgoals
and guiding agents toward more achievable goals.

1 INTRODUCTION

While humans effortlessly navigate new environments by leveraging prior knowledge and adapting to
unfamiliar situations, autonomous agents face significant challenges in effective exploration (Sutton
& Barto, 1998). Unlike humans, agents must acquire exploration strategies through trial-and-error
interactions, often in environments lacking predefined guidance. This challenge becomes even more
pronounced in procedurally generated open-world environments, where agents encounter dynamic,
partially observable states, stochastic transitions, and sparse rewards. Unlike static or deterministic
settings, these environments demand adaptive exploration strategies capable of generalizing beyond
fixed patterns or exhaustive state enumeration. The complexity is further heightened in long-horizon
tasks, where agents must seamlessly integrate local decision-making with high-level strategic planning
to achieve diverse, evolving objectives (Cobbe et al., 2020; Mohanty et al., 2021; Hafner, 2022; Moon
et al., 2023; Yuan et al., 2023; Zhou & Garg, 2023; Li et al., 2024; Andres et al., 2025). In such
settings, fostering agentic exploration, where agents autonomously generate, evaluate, and adapt their
exploration strategies, is crucial for robust performance.

To address these challenges, recent advances have explored the integration of large language models
(LLMs) into reinforcement learning (RL) pipelines, introducing a powerful paradigm for high-
level planning (Valmeekam et al., 2023; Huang et al., 2024). By leveraging their vast pretrained
knowledge, LLMs can decompose complex tasks into structured subgoals, providing zero-shot,
task-agnostic reasoning that enhances both exploration and decision-making (Du et al., 2023; Liu
et al., 2024; Zhang & Lu, 2024). This LLM-guided planning approach holds great potential in
environments where traditional, handcrafted heuristics fall short, particularly for long-horizon tasks
that benefit from hierarchical decomposition. For example, in procedurally generated environments
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like Crafter (Hafner, 2022), LLMs can propose high-level subgoals such as “gather wood,” “craft
tools,” or “build shelter,” guiding the agent’s low-level policy towards meaningful objectives.

However, despite their remarkable reasoning capabilities, LLMs frequently generate plans that suffer
from hallucination, e.g., producing subgoals that are semantically incoherent (e.g., “eat stone”),
contextually irrelevant (e.g., “plant tree” without the required resources), or infeasible to execute
within the environment’s constraints (Ahn et al., 2022; Du et al., 2023; Farquhar et al., 2024). This
limitation arises from the inherent gap between the LLM’s abstract, pretrained knowledge and
the grounded, task-specific dynamics of the RL environment. Unlike classical symbolic planners,
which offer explicit guarantees through formal representations, LLMs operate as black-box models,
making it non-trivial to assess the reliability of their outputs. This poses a significant risk for agentic
exploration, as unreliable plans can misguide the agent’s learning trajectory.

To bridge this gap, a key challenge is to systematically verify LLM-generated plans to ensure they are
both meaningful and achievable within the target domain. This raises critical questions:

• How can we verify and correct LLM-generated subgoals to ensure they are grounded in the
RL task domain?

• How does the plan-verify-correct process impact the RL agent’s policy learning perfor-
mance?

Addressing these questions is essential not just for enhancing agent performance but also for fostering
agentic exploration, where agents autonomously generate, evaluate, and adapt their own plans with
minimal human intervention (Durante et al., 2024). In this context, verification serves as a critical self-
assessment mechanism, enabling agents to detect inconsistencies in their plans, reason about potential
errors, and iteratively refine their strategies based on environmental feedback. This capability moves
beyond static plan execution, empowering agents with a degree of autonomy that supports continual
adaptation and robust decision-making in dynamic environments.

In this paper, we propose LLMV-AgE (Verification of LLM-guided Planning for Agentic Exploration),
a verification framework designed to enhance LLM-guided exploration in RL. While LLMs can
generate high-level plans to guide agents, these plans often contain unreliable elements that can
mislead exploration and hinder learning. To address this, LLMV-AgE introduces a hierarchical
verification process that systematically assesses the reliability of LLM-generated plans through
two key dimensions: semantic validity, which ensures that subgoals are contextually coherent
and meaningful within the task domain, and feasibility, which verifies whether these subgoals are
achievable given the agent’s current state and environmental constraints.

Built upon the solid foundation of procedurally generated hierarchical Markov decision processes
(PG-HMDPs), LLMV-AgE exploits the hierarchical dependencies between achievements, subgoals,
and environmental dynamics to enable principled verification. By systematically capturing the
structural relationships embedded in the task hierarchy, our framework formalizes plan validity and
feasibility as measurable properties grounded in the agent’s decision-making process. Through this
approach, LLMV-AgE bridges the gap between LLM-generated plans and reliable, adaptive agent
behavior, paving the way for more trustworthy autonomous systems capable of robust exploration in
complex environments.

2 METHODOLOGY

2.1 PROBLEM DEFINITION

We consider a Procedurally Generated Hierarchical Markov Decision Process (PG-HMDP) defined as
the tuple ⟨Ω,G,O,A, R, P, γ⟩. Ω represents high-level achievements (e.g., craft stone pickaxe, craft
wood sword) that the agent aims to unlock as many as possible within the environment. Unlocking
each achievement is procedurally dependent on preceding achievements and prerequisite lower-level
subgoals g ∈ G (e.g., gather wood and place table for unlocking the achievement craft wood pickaxe).
This procedural achievement-unlocking process is governed by the transition function PΩ(ω

′ | ω, g),
which defines the probability of transitioning from one achievement ω to the next ω′ based on the
completion of subgoals.
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Figure 1: An overview of the LLMV-AgE framework. The LLM receives textual observations
generated by a captioner, decomposes the task, and generates k subgoals g1:kt as the plan. In the
verification phase, subgoals are first evaluated by a semantic verifier, followed by a plan feasibility
verifier. If none of the subgoals pass the validation, the system iteratively proposes new subgoals.

Solving this long-horizon, sparse-reward problem requires progressive planning over achievements
and subgoals. In this work, we leverage pretrained LLMs to guide planning at the subgoal level G,
proposing coherent subgoal sequences g as a high-level, training-free policy to guide the agent’s
learning of a low-level control policy π(a | o, g), where a ∈ A is the agent’s action based on its
partial observation o and active subgoal g. The goal of the policy π is to maximize the expected
cumulative reward: Eπ [

∑∞
t=0 γ

tR(ot, at | gt)], where γ ∈ [0, 1) is the discount factor that balances
immediate and future rewards, and R : O ×A | G → R defines the reward function based on the
agent’s interactions, conditioned on the current planned subgoal gt.

To effectively solve PG-HMDPs, it is crucial for agents to explore with strategically planned subgoals
that align with procedural dependencies and maximize long-term achievements. We propose a
verification framework in Sec 2.2 to assess and constrain LLM-decomposed subgoals, guiding
exploration towards plausibly useful goals that support efficient skill acquisition.

2.2 VERIFICATION OF LLM-GUIDED SUBGOAL PLANNING

Subgoals g, expressed in natural language, directly influence the RL agent’s control policy π(a | o, g)
and reward function R(o, a | g), making their reliability critical. However, LLM-generated subgoals
often suffer from two key issues: (1) semantic validity, which investigates if subgoals are irrelevant or
incoherent, and (2) plan feasibility, which determines if subgoals cannot be achieved given the agent’s
current state. To address these challenges, we introduce a verification framework that systematically
assesses subgoals for both contextual relevance and plan achievability, enhancing their alignment
with the environment’s dynamics and the agent’s capabilities.

Semantic Verification Subgoals generated by LLMs Du et al. (2023) are expressed as action
templates of the form {verb}×{noun}, such as “eat cow” or “eat zombie”, where some combinations
like the latter represent invalid actions in the task environment. To ensure semantic validity, we define
a set of valid actions Avalid derived from the environment’s task schema. Given a candidate subgoal
g = (verb, noun), we introduce a semantic verification function Vs(g) defined as:

Vs(g) =

{
1, if max

g′∈Avalid
S(g, g′) ≥ µ

0, otherwise
(1)

where S(g, g′) measures the semantic similarity between g and valid subgoals g′ ∈ Avalid, and µ is a
predefined similarity threshold. The similarity function S(·, ·) can be instantiated using embedding-
based cosine similarity or other language-based semantic distance metrics. This formulation allows
verification to tolerate minor lexical variations while rejecting subgoals that deviate from task-relevant
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semantics. For example, “plant tree” and “grow tree” may differ lexically but would achieve high
similarity under S, thus passing verification.

Plan Feasibility Verification The procedural structure of achievements Ω is modeled as a directed
acyclic graph (DAG) Ξ = (Θ,Λ), where Θ represents the set of nodes corresponding to achievements
ω ∈ Ω, and Λ denotes the set of edges indicating dependencies between achievements. Specifically,
an edge (ωi, ωj) ∈ Λ signifies that achievement ωj depends on the prior completion of ωi. The
feasibility of achieving ωj is determined by the completion of its prerequisite achievements, denoted
as Pa(ωj), and is formalized as:

Vf (ωj) =
∏

ωi∈Pa(ωj)

fω(ωi), (2)

where fω(ωi) evaluates the feasibility of transitioning from ωi to ωj based on the fulfillment of nec-
essary dependencies. Each achievement ω is associated with a set of subgoals Gω = {g1, g2, . . . , gn}.
The feasibility of each subgoal g depends on the availability of required inventory items. Let
Ig = {i1, i2, . . . , im} denote the set of items required for subgoal g, and It represent the inventory
at time step t. The feasibility of a subgoal is defined as:

Vf (g) =
∏
i∈Ig

I[i ∈ It], (3)

where I[·] is an indicator function that returns 1 if item i is present in the inventory at time t,
and 0 otherwise. The overall verification score for achieving ω integrates both achievement-level
dependencies and subgoal-level constraints:

V (ω) = Vf (ω) ·
∏
g∈Gω

Vs(g) · Vf (g). (4)

This unified formulation ensures that subgoals are both logically consistent within the procedural
achievement structure and practically feasible given the agent’s inventory dynamics. The verification
process leverages hierarchical abstractions of PG-HMDP dynamics, synthesizing dependencies across
achievements, subgoals, and inventory to capture the core complexities of procedural decision-making.
By bridging high-level plans with low-level execution, the framework offers a scalable solution readily
generalizable to other hierarchical MDPs with language-based planning.

2.3 POLICY TRAINING WITH VERIFIED SUBGOALS

When a subgoal is identified as invalid, we apply a correction mechanism to generate meaningful
alternatives. This planning-verification-correction process forms a chain-of-planning, where the
primitives that the previous subgoal failed to satisfy are provided as cues to the LLM for self-
correction. This iterative process prompts the LLM to refine subgoals progressively, enhancing their
relevance and achievability.

The corrected subgoals are then used to guide the agent’s planning by generating intuitive reward
signals. Specifically, the agent’s transitions are captioned and compared with the subgoal gverify to
produce a reward signal defined as:

Rint(o, a, o
′ | gverify) =

{
max

j=1,...,k
∆(Ctransition(o, a, o

′, gverify)) if > λ

0 otherwise

where λ is a similarity threshold, and ∆(Ctransition(o, a, o
′), gverify) represents the cosine similarity

between language representations of transitions and subgoals, calculated as:

∆(Ctransition(o, a, o
′), gverify) =

E(Ctransition(o, a, o
′)) · E(gverify)

∥E(Ctransition(o, a, o′))∥ ∥E(gverify)∥
.

Here, E(·) is a text encoder that maps transitions and subgoals into embeddings. For each planning
step, multiple (k) subgoals are provided, and the agent receives a reward based on the maximum
similarity score among them, encouraging behaviors aligned with any of the refined subgoals.
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(a) Semantic Verification (Vs). (b) Plan Feasibility Verification (Vf ).
Figure 2: Verification Results for Vs and Vf . The baseline ELLM Du et al. (2023) generates a
substantial number of invalid subgoals. In contrast, our method LLMV-AgE not only verifies but
also corrects these subgoals, significantly enhancing the reliability and effectiveness of LLM-guided
planning and fostering agentic exploration behavior.

3 EXPERIMENTS

Experimental Settings We evaluate LLMV-AgE in the challenging Crafter environment, a 2D,
procedurally generated, and partially observable open-world setting. To assess the impact of subgoal
verification, we compare LLMV-AgE with a strong LLM-guided planning baseline, ELLM (Du
et al., 2023). Following the standard practice of ELLM, initial goals are generated using a verb-noun
template, which are then verified and corrected through LLM-guided refinement in LLMV-AgE. For
task decomposition, we employ Codex (Chen et al., 2021) as the LLM, consistent with the ELLM
setup. Each experiment is conducted for 1 million steps to ensure robust evaluation.

Evaluation Results for Verification We evaluate the quality of subgoals generated by ELLM and
LLMV-AgE with respect to semantic validity and plan feasibility. Figure 2 presents the evaluation
curves before and after applying our verification-guided subgoal correction. From the curves, we
observe that ELLM without verification suffers from significant hallucination. ELLM achieves
below 30% for overall semantic validity and plan feasibility for the planning, which hinders the
policy learning performance. LLMV-AgE can verify and correct those infeasible plans. With this
plan-verify-correct pipeline, our method significantly enhance the reliability of the plans. Moreover,
the consistent improvement across both metrics is crucial for the agent to mitigate hallucination errors
and ensuring efficient goal-oriented exploration.
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Figure 3: Learning curve for Crafter episodic
reward. LLMV-AgE achieves significantly
higher performance by unlocking more
achievements compared to ELLM.

Evaluation Results for Policy Training We
present the policy learning results for the pretrain-
ing stage with LLM planning for our method LLMV-
AgE as well as ELLM on Crafter in Figure 3. The
figure shows that training the policy with verification-
guided subgoals significantly improves learning ef-
ficiency and performance. Specifically, LLMV-AgE
achieves an average cumulative score of 7.7, com-
pared to 5.5 for the baseline ELLM, demonstrating
a +2.2 improvement. This gain reflects enhanced ex-
ploration efficiency in the challenging open-world
long-horizon sparse reward exploration problems, as
the agent focuses on semantically meaningful and
practically feasible subgoals, reducing time spent on
unproductive actions. Additionally, we observed that
it is easier for the downstream RL policy π(·) to guide agentic exploration when conditioned on veri-
fied subgoals, as the subgoal g serves as a direct input to the policy network. This direct conditioning
enables the agent to better interpret the planned objectives.
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4 CONCLUSIONS

In this paper, we introduced LLMV-AgE, a verification framework designed to address the challenge
of hallucinated plans in LLM-guided RL. By leveraging structured knowledge from PG-HMDPs
and systematically verifying both semantic validity and plan feasibility, LLMV-AgE enhances the
reliability of LLM-generated strategies, significantly improving exploration efficiency and decision-
making in complex, open-world environments. Our results demonstrate that verification not only
improves goal-directed exploration by aligning high-level plans with environmental constraints but
also fosters agentic behavior, enabling agents to autonomously evaluate and refine their own plans.
This capability strengthens trust in the LLM planner and supports more robust, adaptive decision-
making. Moving forward, we aim to advance LLMV-AgE with an automatic verification pipeline that
derives feasibility logic from agent playing records, further enhancing the agent’s ability to self-assess
and adapt in dynamic environments.
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