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1. Introduction

Word embeddings, which represent words as numerical vectors, can be used to capture statistical rela-

tionships between words. While useful, traditional word embedding methods only provide point esti-

mates for each word, thus, there is no direct indication of uncertainty. In many scientific applications,

quantifying the uncertainty associated with these estimations is essential for reliable interpretations

of the results.

Probabilistic word embeddings extend traditional word embeddings by using priors, and formu-

late word embeddings as a full probabilistic model. However, the high dimensionality poses difficul-

ties for uncertainty estimation using standard Bayesian inferencemethods such as HamiltonianMonte

Carlo (Neal et al., 2011). To illustrate, a typical dataset could easily have 100,000 unique words and a

100-dimensional embedding space, resulting in millions of parameters (Mikolov et al., 2013).

There have been methods for embedding uncertainty estimation using bootstrap (Antoniak and

Mimno, 2018). However, bootstrap estimation of uncertainty is requires orders of magnitude more

computation than obtaining point estimates, which is often not feasible for large datasets. In the

Bayesian realm, Bamler andMandt (2017) proposemean-field variational inference of the embeddings.

While being computationally efficient, it is unclear if the variational approximation is reasonable.

2. Uncertainty Estimation for Word Embeddings

In this article, we develop uncertainty estimation for probabilistic word embeddings (Rudolph et al.,

2016; Bamler and Mandt, 2017; Rudolph and Blei, 2017), which are probabilistic formulations of the

skip-gram with negative samples (SGNS) model first presented by Mikolov et al. (2013). Negative

samples makes the embeddings more computational efficient, which makes the estimation on large

datasets practically feasible (Mikolov et al., 2013).

Let D denote the dataset, a sequence of words (E7)#7=1, where E7 is an element of the vocabulary
, = {E8}+8=1 of all the relevant words of the corpus. For each word E8 in the vocabulary we have a

corresponding target d8 ∈ R3 and context U 8 ∈ R3 representation, where 3 ∈ N is the dimensionality of
the embeddings. We write d = (dE1 , dE2 , . . . , dE+ ), U = (UE1 , UE2 , . . . , UE+ ) and \ = (d, U), which yields

the matrices d ∈ R+× 3 , U ∈ R+× 3 and \ ∈ R2+× 3 .
The SGNS likelihood nicely factors into terms, where each term only has a handful of parameters

log >(D | \) =
#∑
7=1

©­­­­­­­­«
∑
D∈�+

7

log f (d)E7UD)︸               ︷︷               ︸
positive samples

+
∑
D∈�−

7

log(1 − f (d)E7UD))︸                      ︷︷                      ︸
negative samples

ª®®®®®®®®¬
(1)
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where �+
7
is the context window, or the set of positive samples, for word E7. Specifically, the context

window is the set of words within a distance " from the center word, i.e. �+
7
= {E7−" , . . . , E7−1, E7+1,

. . . , E7+"}. The negative samples�−
7
are drawn randomly from the empirical distribution of thewords,

sometimes with slight adjustments (Mikolov et al., 2013).

2.1. Laplace Approximation

Laplace approximation of the posterior around the MAP estimate,
ˆ\, is a way to approach uncertainty

for posteriors where its difficult to sample directly. In Laplace approximation, we approximate the

whole posterior with a large multivariate Gaussian distribution

\ ∼ # ( ˆ\, Σ) (2)

where we get the covariance from the inverse of the Hessian of the posterior,

Σ = H−1( ˆ\). (3)

Unfortunately, we cannot invert the whole matrix in reasonable time due to the large number of pa-

rameters. However, in many practical applications we are only interested in the relations between a

subset of words. Then, we just need to know the inverse of the subset of the Hessian that covers the

interactions between those words.

2.1.1. Efficient Laplace approximation

In order to obtain results with the Laplace approximation, we need to find individual elements of the

inverse of a large matrix. We propose a method that exploits the structure of the posterior. Namely,

we utilize the sparsity of the likelihood and the prior, as well as the low-rank structure of the nonzero

parts of the Hessian due to the likelihood.

In the likelihood, Equation 1, we observe that the positive sample part only appearwhen twowords

co-occur in the data, which is not the case for most word pairs. This means that the contribution from

the positive samples in the Hessian are going to be zero. In the 50 million token Wikipedia sample,

roughly 0.25% of the words co-occur using a window size of 5. The sparsity is illustrated in Figure 1.

Moreover, the Hessian of the positive samples factors into submatrices consisting of outer prod-

ucts. The following are the diagonal and off-diagonal contributions to the Hessian,

m2

m2dC
log f (d)EUD) = −

#∑
9=1

I(C = E9)
∑
D∈�+

9

UDU
)
D f (d)E9UD)f (−d

)
E9
UD) (4)

m2

mdEmUD
log f (d)EUD) = −�(E, D) dEU)D f (d)EUD)f (−d)EUD) (5)

where �(E, D) is the co-occurrency matrix of word E and D. As seen in Figure 1, this is more often

than not 0. The off-diagonal submatrices, described in Eq. 5, are always rank 1 or 0, whichmakes them

hundreds of times computationally cheaper than full-rank submatrices.

Exploiting these properties, we can formulate a substantiallymore efficient algorithm for obtaining

samples from the Laplace approximated posterior.
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(a) Positive samples
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(b) Positive and negative samples

Figure 1: Sparsity of the Hessian matrix for a subset of 20 words. Data from a 50M token Wikipedia

subset, positive samples in blue. On the right, a random set of negative samples is also included.

3. Rotational symmetries of word embeddings

In word embeddings, the likelihood is defined by the dot products. For this reason, the likelihood L
is invariant with respect to orthogonal rotations, i.e.

L(\) = L($) \) (6)

for any orthogonal matrix$,$)$ = � .

Due to the rotational symmetries, it is not possible to use simple subtraction or Euclidean distance

to analyze the difference of two embeddings. This complicates convergence and posterior analysis.

The rotational symmetries also make Laplace approximation ill-defined due to a singular Hessian.

3.1. Eliminating rotational symmetries

There are

3(3 − 1)
2

(7)

degrees of freedom in the set of orthogonal matrices $ ∈ R3×3 , $)$ = � . Due to this reason, a word

embedding of dimensionality 3 is overparametrized by
3 (3−1)

2
parameters.

For this reason, any set of dot products between the columns of \ ∈ R2+×3 can be achieved by

restricting
3 (3−1)

2
of its elements to be zero. Specifically, we formulate \′ so that the lower diagonal is

zero, and other entries are freely variable

\′ =


\1,1 \1,2 \1,3 . . . \1,2+

0 \2,2 \2,3 . . . \2,2+

0 0 \3,3 . . . \3,2+

. . . . . . . . . . . . . . .

0 . . . 0 \3,3−1 . . . \3,2+


(8)

Theoretically, this correction can be applied to any algorithm. We apply this to VI and comparatively

study it with the uncorrected version of the algorithm.
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3.2. Comparing embeddings with rotational symmetries

Rotation invariant features are commonly used to analyze word embeddings. These include Euclidean

distances between the words (column distances) and cosine distances, which are invariant wrt. orthog-

onal rotations \′ = $) \, where$)$ = � . The set of co-occurence probabilities of words E, D

% (E ∧ D | \) = f (U)EdD) (9)

are also invariant to orthogonal rotations. Using that, we define the probability divergence between

embeddings \ and \′ as the root mean squared error between the co-occurence probabilities

32=(\, \′) =
√

1

+ 2

∑
D,E∈,

(% (E ∧ D | \) − % (E ∧ D | \′))2 (10)

This divergence is 0 if and only if the embeddings are the same up to a rotation and a uniform scaling.

We go on to use this as a similaritymetric for two embeddings. This is also the basis of our convergence

analysis, if 32=( ˆ\, \B@C4) = 0 we take that the estimate
ˆ\ has converged to the true parameter \B@C4.

4. Experiments

To compare the estimation methods, we conduct a simulation study with randomly generated word

and context vectors. For each E ∈ , , the word and context vectors are simulated from

dE ∼ N(0, Y2�/3),
UE ∼ N(0, Y2�/3),

(11)

where 3 is the dimensionality of the embedding, and the hyperparameter Y = 1. The embedding is

scaled inverse to the dimensionality so that the dot products remain roughly similar in magnitude

regardless of the dimensionality.

We generate randomword pairs (E, D) by sampling uniformly from the set, . A Bernoulli random

variable - is then sampled

E ∼ Uniform(, )
D ∼ Uniform(, )
- ∼ Bernoulli(f (U)D dE))

(12)

# times for a simulated dataset with # observations. The simulated data uses up to # = 100, 000

data points, dimensionality of 3 = 2, and a vocabulary of size + = 10. This is rather small compared

to common practical values of 100 ≤ 3 ≤ 300, 10
6 ≤ # ≤ 10

9
and 10

4 ≤ + ≤ 10
6
.

4.1. Experimental Results

As a first step we measure convergence of the methods by looking at the probability divergence 32=,

defined in Equation 10. In Figure 2 we look at how 32= evolves as we increase the available number

of simulated data points. For both MAP estimation and VI, more data yields results closer and closer

to the true embedding \B@C4, i.e. both 32=( ˆ\"�% , \B@C4) and 32=( ˆ\`,+ � , \B@C4) decrease. Before 50,000 ob-
servations, MAP is better than VI mean, after which the estimators become very similar, as would be

expected from Wang and Blei (2018).
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Figure 2: Probability divergence forMAP, VI and VI with rotations eliminated viamethod described in

3.1, using incrementally larger data to demonstrate convergence. Metric 32=( ˆ\"�% , \B@C4) for the MAP

estimate
ˆ\"�% , and 32=( ˆ\`,+ � , \B@C4) for the VI mean parameter \`,+ � .

(a) E0, D1 (b) E1, D2

(c) E2, D3 (d) E3, D4

Figure 3: Co-occurence probabilities between twowords in our simulated dataset, for 4 pairs of words,

using mean field variational inference and Laplace Approximation around MAP, for different data

sizes. The blue line represents the estimated mean, the shaded regions around them are the Monte

Carlo simulated 90% credible intervals, and finally the red dashed line represents the true co-occurence

probability.
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In Figure 2, we see that VI with rotational correction yields more inconsistent results. This may be

due to the rotation-corrected algorithm beingmore difficult to optimize, or other numerical problems.

We also study the co-occurence probabilities of specific word pairs. We do this both for a model

without any corrections as well as a model with the correction described in 3.1. The results are pre-

sented in Figure 3, covering four different word-context pairs.

All of the word similarities for VI seem to tend to the true value as the number of observations

increases. However, the CIs for VI do not seem to correspond to the true uncertainty, as they do not

get progressively smaller with more data. They also do not seem to consistently contain the true value,

especially with small datasets. This is in line with Wang and Blei (2018), who find that the VI mean

converges to the true value, while the CIs do not necessarily reflect the true uncertainty.

For MAP/Laplace approximation, the CI bands are wider than with VI, especially with few ob-

servations. Moreover, they progressively shrink as the data increases. The credible intervals seem to

include the true value more often than for VI. In this sense, the Laplace CIs are better than the VI

ones. Some Laplace CIs are missing due to the Hessian not being positive definite, which may be due

to optimization issues.

5. Conclusion and Future Work

Our early results indicate that Laplace Approximation aroundMAP provides better estimates in terms

of convergence, and more reasonable uncertainty estimates than theMFVI method proposed by Bam-

ler and Mandt (2017).

There are three potential lines of future work. First, we want to run experiments on real data. Sec-

ondly, we want to implement a more computationally efficient version of the Laplace approximation,

which utilizes the properties of theHessian that we describe in this article. Finally, wewant to compare

our results to Hamiltonian Monte Carlo and bootstrap of MAP. While these are not computationally

feasible in real life applications, they should give us samples from the true posterior as a benchmark

to compare with in a simulation setting.
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