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Abstract

Reinforcement learning (RL) typically assumes repetitive resets to provide an agent
with diverse and unbiased experiences. These resets require significant human in-
tervention and result in poor training efficiency in real-world settings. Autonomous
RL (ARL) addresses this challenge by jointly training forward and reset policies.
While recent ARL algorithms have shown promise in reducing human intervention,
they assume narrow support over the distributions of initial or goal states and rely
on task-specific knowledge to identify irreversible states. In this paper, we propose
a robust and scalable ARL algorithm, called RSA, that enables an agent to handle
diverse initial and goal states and to avoid irreversible states without task-specific
knowledge. RSA generates a curriculum by identifying informative states based
on the learning progress of an agent. We hypothesize that informative states are
neither overly difficult nor trivially easy for the agent being trained. To detect
and avoid irreversible states without task-specific knowledge, RSA encodes the
behaviors exhibited in those states rather than the states themselves. Experimental
results demonstrate that RSA outperforms existing ARL algorithms with fewer
manual resets in both reversible and irreversible environments.

1 Introduction

Reinforcement learning (RL) has demonstrated remarkable achievements in the field of robotics [16,
14, 8, 18]. However, most of these achievements rely on repeated resets between episodes to provide
an agent with multiple attempts and unbiased experiences. While such resets are easily performed in
simulated settings, they require substantial human intervention and lead to poor training efficiency
in the real world [28, 6, 12]. Autonomous RL (ARL), which simultaneously learns how to solve a
task and how to reset an environment, has gained significant attention as a promising alternative to
reducing human intervention. The key idea behind ARL is to generate a curriculum that determines
when to abort episodes and where to return an agent. For example, the curriculum encourages an
agent to explore space near initial or goal states in the early stages of training and gradually move to
more distant space as training progresses.

Recent ARL works have shown that their curricula enable an agent to learn diverse tasks with fewer
manual resets [9, 31, 24, 26, 20]. However, these works require narrow support over the initial or
goal state distributions to generate their curricula. These restricted distributions can lead to less
robust performance. Furthermore, their curricula either do not consider irreversible states or rely
on task-specific knowledge to identify them. Irreversible states are those from which an agent
cannot recover without external intervention, such as when a vehicle is damaged in an accident or a
manipulator pushes an object outside its workspace. Most real-world tasks involve such irreversible
states, and the task-specific knowledge required to identify them is rarely available in practice.
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In this paper, we introduce RSA, a robust and scalable ARL algorithm that enables an agent to
handle diverse initial and goal states and to detect and avoid irreversible states without task-specific
knowledge. RSA generates a curriculum by identifying informative initial and goal states based on
the agent’s learning progress. We hypothesize that informative states are those that are neither overly
difficult nor trivially easy for the agent under training. To detect and avoid irreversible states, RSA
encodes the behaviors exhibited in such states rather than the states themselves. This is based on
our observation that, while irreversible states may vary across tasks, the behaviors tend to follow
common patterns.

The main contribution of this work is a robust and scalable ARL algorithm called RSA. We evaluate
RSA against baselines on diverse navigation and manipulation tasks. Experimental results demon-
strate that RSA generates a curriculum by identifying informative states based on the agent’s learning
progress, achieving better performance with fewer manual resets than the baselines in both reversible
and irreversible environments.

2 Related Work

RL agents trained in simulation often struggle to perform well in the real world due to the fidelity
gap between simulated and real-world environments. A straightforward approach to avoid this gap is
to train agents directly in the real world. Chebotar et al. [6] combine model-based and model-free
updates to learn manipulation tasks on a PR2 robot. Kendall et al. [12] demonstrate the first RL agent
capable of driving a real-world vehicle along country roads. However, these works rely on manual
resets after every episode, which require substantial human intervention. While several previous
works employ additional instrumentation or scripted reset behaviors to automate environment resets,
their reset strategies are task-specific and limited to particular scenarios [15, 30, 18, 29, 22].

ARL, which aims to learn without manual resets, has been actively studied in recent years [9, 27,
31, 23, 25, 24, 26, 13, 20]. Eysenbach et al. [9] train forward and reset policies simultaneously
and generate a curriculum by early aborting forward episodes based on the reset value function.
While their curriculum encourages agents to explore space they have already learned, Patil et al. [20]
generate a curriculum that guides an agent to explore space they have not yet sufficiently learned.
Both works assume an unimodal initial state distribution with narrow support, which can cause
sub-optimal and non-robust performance. To address this limitation, Zhu et al. [31] introduce a
random perturbation controller that discovers novel initial states, gradually broadening the support
of the training distribution. Sharma et al. [24] encourage the agent to return to states from expert
demonstrations, based on the hypothesis that such demonstrations provide a desired distribution
over initial states. Although these works focus on ensuring diverse initial states, their curricula do
not account for multiple goal settings, which makes their algorithms less scalable. To address this
limitation, our work generates a curriculum that provides an agent with diverse initial and goal states
by identifying informative states based on the agent’s learning progress.

While most previous works assume that environments are reversible, our work aims to reduce manual
resets in both reversible and irreversible environments. Eysenbach et al. [9] and Xie et al. [26] are
most closely related to ours, as they focus on reducing manual resets in irreversible environments.
Eysenbach et al. [9] leverage the state-action value function, which is trained with reset reward
functions, as a metric to determine whether an agent is in irreversible states. Xie et al. [26] propose
a label-efficient binary search algorithm that detects irreversible states using a limited number of
reversibility labels. Experimental results from both works demonstrate that their algorithms can
identify irreversible states and prevent agents from entering them. However, in real-world scenarios,
access to task-specific knowledge, such as reset reward functions or reversibility labels, is often
unavailable. Our work enables an agent to identify and avoid irreversible states without task-specific
knowledge. Table 1 summarizes the key features that distinguish our work from previous works.

3 Preliminaries

3.1 Goal-Conditioned Reinforcement Learning

We consider a goal-conditioned reinforcement learning (GCRL) task represented by the tuple
(S,A,G, T , rg, ρ0, γ, ρg,m). S is the set of states s, A is the set of actions a, G is the set of
goal states g, and T : S ×A× S → [0, 1] is the state transition model. rg : S ×A× S → R is the
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Table 1: Comparison of Autonomous Reinforcement Learning (ARL) algorithms.

Property LNT [9] R3L [31] MEDAL [24] PAINT [26] RSA (Ours)

Diverse Initial States ✗ ✓ ✓ ✓ ✓
Diverse Goal States ✗ ✗ ✗ ✗ ✓
No Extrinsic Reset Rewards ✗ ✓ ✓ ✓ ✓
No Demonstrations ✓ ✓ ✗ ✓ ✓
No Reversability Labels ✓ ✓ ✓ ✗ ✓
Irreversible Environments ✓ ✗ ✗ ✓ ✓

goal-conditioned reward function, ρ0 is the initial state distribution, and γ is the discount factor. ρg
is the goal state distribution, and m : S → G is a mapping function from states to corresponding
goal states. The goal space may either be a subset of the state space or the state space itself. In the
latter case, the mapping function is the identity function. An agent’s behaviors are determined by a
goal-conditioned policy and value function. The goal-conditioned policy π(a | s, g) maps the current
state and the current goal to a probability distribution over actions and the goal-conditioned value
function Qπ(s, a, g) represents the expected return when an agent takes action a in state s and goal g
and follows the policy π. The goal of GCRL is to find the optimal policy that maximizes the expected
return when the state transition model is unknown. Please refer to [11, 21, 1] for further details.

3.2 Successor Features

Assume the reward function is a linear combination of a feature vector ϕ(s, a, s′) ∈ Rd and a weight
vector ω ∈ Rd, such that the reward is given by r(s, a, s′) = ϕ(s, a, s′)⊤ω. Following [2, 17, 10],
the goal-conditioned reward function can be similarly decomposed as rg(s, a, s′) = ϕ(s, a, s′)⊤ωg,
as the weight vector, also referred to as a task vector, encodes preferences over individual feature
components. With this formulation, the goal-conditioned value function can then be written as
follows:

Qπ(s, a, g) = Eπ[

∞∑
i=t

γi−tϕTi+1ωg | St = s,At = a]

= Eπ[

∞∑
i=t

γi−tϕi+1 | St = s,At = a]⊤ωg = ψπ(s, a)⊤ωg.

Barreto et al. [2] call ψπ(s, a) the Successor Features (SFs), which describe the expected discounted
sum of features ϕ(s, a, s′) under a policy π. The SFs ψπ(s, a) represent the expected discounted sum
of features encountered when following policy π and can be regarded as a multi-dimensional value
function, where a feature vector acts as a reward function. This implies that SFs can be trained with
standard reinforcement learning algorithms.

4 Robust and Scalable Autonomous Reinforcement Learning

RSA is designed to enable an agent to achieve robust performance with fewer manual resets in both
reversible and irreversible environments. Similar to previous ARL algorithms [9, 31, 24, 26], RSA
defines a forward policy πf (a | s, g) and a reset policy πr(a | s, g), and alternates between them.
The forward policy is trained to solve tasks and the reset policy is trained to reset the environment.
Note that each policy takes the current goal state as an additional input.

RSA considers two distinctive and challenging settings. First, RSA allows initial and goal states to
be located anywhere in the state space S. This contrasts with previous works that assume unimodal
and narrow supports for the initial or goal state distributions to generate their curricula. Second,
RSA assumes neither reversible environments nor access to task-specific knowledge for identifying
irreversible states. This presents difficulties for previous works that rely on such task-specific
knowledge, including reversibility labels or reset reward functions, to identify irreversible states.

To handle these settings, RSA 1) generates a curriculum by identifying informative initial and goal
states based on the learning progress of an agent, and 2) identifies irreversible states by encoding the
behaviors exhibited in those states without task-specific knowledge. In the remainder of this section,
we describe how RSA generates the curriculum and identifies irreversible states in detail.
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Figure 1: Curriculum generated by RSA. Given the current goal state gk, the reset policy is activated
until the agent reaches the informative initial state set S∗

k corresponding to that goal. Left: At the end
of each iteration, RSA samples the next goal state from the informative goal state set. Right: If the
agent fails to reach the current goal state gk, RSA uses the final state sT of the current iteration as the
next goal state gk+1.

4.1 Identifying Informative Initial and Goal States

Figure 1 illustrates how RSA generates a curriculum by identifying informative initial and goal
states. The curriculum is built on our hypothesis that informative states are neither overly difficult nor
trivially easy for the agent being trained. If the initial or goal states are too difficult, the agent may
take unsafe actions and fail to reach the goal. On the other hand, the agent may struggle to obtain
useful information even with sufficient time if the initial or goal states are too easy. Both cases can
lead to suboptimal performance and poor sample efficiency. To identify informative states based on
the agent’s learning progress, RSA introduces the state information estimator, I(s, g), which takes a
pair of initial and goal states as input and estimates the probability of reaching the goal state from the
initial state when the agent follows the forward policy being trained.

Here we describe how RSA utilizes the state information estimator to identify informative goal and
initial states. RSA determines the informative goal state for the k th iteration, gk, as follows:

gk ∼ Unif(G∗k), where G∗k ≜ {g ∈ G1:k−1 | λ1 ≤ Es∼Br
[I(s, g)] ≤ λ2}. (1)

G∗k is the set of informative goal states for the kth iteration, G1:k−1 is the set of goal states obtained
until the previous iterations, Br is the replay buffer for the reset policy, and λ1 and λ2 are the
lower and upper thresholds of the reachability probability over the pairs of initial and goal states,
respectively. This prevents an agent from being assigned goal states that are either too difficult or too
easy, which allows it to obtain informative transitions. Specifically, a goal state is uniformly sampled
from the set of informative goal states at the beginning of each iteration. If the agent reaches a goal
state and it is still identified as part of the informative goal state set, RSA reuses it as the goal state
for the next iteration rather than sampling a new one.

After the informative goal state gk is determined, RSA attempts to discover the informative initial
state ik by activating the reset policy until the agent reaches the set of informative initial states
S∗k ⊂ S as follows:

S∗k ≜ {s ∈ S | λ1 ≤ I(s, gk) ≤ λ2 for gk ∼ Unif(G∗k)}. (2)
This prevents the agent from resetting with too challenging or too easy initial states. To continuously
discover novel initial states, RSA trains the reset policy with an off-the-shelf exploration algorithm
that guides an agent to under-explored states. While we implement the exploration algorithm
using random network distillation (RND) [5] in our experiments due to its scalability and ease of
implementation, RSA is compatible with any exploration algorithm [3, 19, 4].

Even when our curriculum provides an agent with informative initial and goal states, the agent being
trained may still fail to reach the goal states. Repeated failures can cause the agent to be stuck in
uninformative states. To address this challenge, when the agent fails to reach the goal state, RSA
assigns the final state of the current iteration as the goal state for the next iteration. This idea is
inspired by hindsight experience replay (HER) [1], which enables an agent to learn from undesired
outcomes. The key distinction between RSA and HER is that, whereas HER treats the final state as
the goal state within the same iteration, RSA uses the final state of the current iteration as the goal
state for the next iteration.
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Figure 2: Overview of the training procedure for the state information estimator. State-goal pairs
from successful forward rollouts are treated as positive examples, while those from failed forward
rollouts are treated as negative examples.

The state information estimator, which estimates the probability of reaching goal states from initial
states, is a key component that enables RSA to provide an agent with diverse initial and goal states.
The main challenge in training the state information estimator is the absence of explicit supervisory
signals to estimate reachability based on the agent’s learning progress. To address this, RSA extracts
reachability labels et from forward rollouts and uses them to train the state information estimator in a
self-supervised manner. Specifically, state-goal pairs from the rollouts in which the agent successfully
reaches the goal state are treated as positive examples, while those from failed rollouts are treated as
negative examples. The objective of the state information estimator can be written as follows:

min
I
−E(st,gt,et)∼Bf

[et log(I(st, gt)) + (1− et) log(1− I(st, gt))], (3)

where et is 1 for positive examples and 0 otherwise, and Bf is the replay buffer for the forward
policy. Figure 2 illustrates how RSA extracts supervisory signals from forward rollouts to train the
state information estimator.

4.2 Detecting and Avoiding Irreversible States

RSA enables an agent to identify irreversible states without task-specific knowledge by encoding the
behaviors exhibited in those states, rather than the states themselves. This is based on our observation
that, while irreversible states have task-specific features, the behaviors tend to follow a shared pattern:
an agent in irreversible states loses control over goal-relevant features, regardless of the actions it
takes. To identify this shared pattern, RSA leverages SFs to encode behaviors induced by the reset
policy. The SFs are denoted by ψπr (s, a) = Eπr[

∑∞
k=t γ

k−tϕk+1|St = s,At = a]. Note that the
reset policy continues to generate diverse behaviors and the feature vector is defined as the norm of
difference in goal-relevant features, ϕk = ∥m(sk+1)−m(sk)∥, where m is the mapping function
discussed in Section 3. RSA is agnostic to the form of the mapping function, and learning it with
state-of-the-art representation learning is complementary to our work. However, we leave this for
future work, as it is orthogonal to our main contribution.

We expect the SFs for irreversible state-action pairs to be much lower than those for reversible pairs.
The set of irreversible states, Sirr ⊂ S, can then be identified as follows:

Sirr ≜ {s ∈ S | ψπr (s, a) ≤ λ3, for a ∼ πr(a|s, g)} (4)

where λ3 is the reversibility threshold. RSA leverages two techniques to enable an agent to detect and
avoid the set of irreversible states Sirr. First, RSA employs a surrogate reward function that penalizes
the agent when it enters the identified irreversible states. This is similar to Eysenbach et al. [9] and
Xie et al. [26], in which the agent also receives penalties for visiting irreversible states. However,
unlike both previous works, RSA does not depend on task-specific knowledge to identify such states.
Second, RSA conservatively identifies the irreversible states, by setting the threshold parameter λ3
higher than that for the actual set, and aborts forward episodes when the agent enters any state in the
identified set. We empirically found that this conservative identification helps prevent the agent from
entering irreversible states in our experiments.
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Algorithm 1 Robust and Scalable Autonomous Reinforcement Learning

1: Initialize reset and forward policies πr(a|s, g), πf (a|s, g)
2: Initialize reset and forward replay buffers Br, Bf

3: Initialize state information estimator I(s, g) and successor features ψπr (s, a)
4: for k ← 1 . . .K do
5: Sample goal state gk with get_informative_goal(Br,G1:k−1, I(s, g))
6: for t← 1 . . . Treset do
7: Select reset action at ∼ πr(at|st, gk)
8: if λ1 ≤ I(st, gk) ≤ λ2 then
9: Set st as initial state and switch to forward policy

10: end if
11: Obtain reset transition (st, at, rt, st+1, gk)
12: Compute surrogate reset reward r̂t
13: Add transition to reset buffer Br ← Br ∪ {(st, at, r̂t, st+1, gk)}
14: Update reset policy πr(a|s, g) and successor features ψπr (s, a)
15: end for
16: for t← 1 . . . Tforward do
17: Select forward action at ∼ πf (at|st, gk)
18: if ψπr (st, at) ≤ λ3 then
19: Abort and switch to reset policy
20: end if
21: Obtain forward transition (st, at, rt, st+1, gk)
22: Compute surrogate forward reward r̂t
23: Add transition to forward buffer Bf ← Bf ∪ {(st, at, r̂t, st+1, gk)}
24: Update forward policy πf (a|s) and state information estimator I(s, g)
25: end for
26: end for

4.3 Algorithm Summary

Algorithm 1 outlines the overall training procedure of RSA. At the beginning of each iteration, RSA
utilizes the state information estimator to identify a set of informative goal states from all goal states
encountered in previous forward rollouts. It then samples one informative goal state from this set for
the current episode. Once the goal state is determined, RSA activates the reset policy until the agent
reaches an informative initial state, such that the predicted probability of reaching the goal state lies
between λ1 and λ2. Upon reaching such a state, RSA designates the current state as the initial state
and switches to the forward policy. When the forward policy is activated, RSA aborts the episode
early if the SFs for the reset policy are less than or equal to the reachability threshold λ3. Please refer
to Appendix A for additional details.

5 Experiments

We design our experiments to investigate the following questions: (1) Can RSA achieve more robust
performance with fewer manual resets than previous algorithms in both reversible and irreversible
environments? (2) Can RSA generate a curriculum by identifying informative initial and goal states
based on the learning progress of an agent? (3) How does each main component of RSA contribute
to its performance improvement?

To answer these questions, we evaluate RSA against the following baselines: (1) LNT, (2) LNT-MG,
(3) R3L, and (4) R3L-MG. LNT [9] uses reset reward functions to identify irreversible states and
assumes narrow initial state distributions to generate its curriculum. R3L [31] generates a curriculum
with diverse initial states but cannot handle irreversible states. Since neither algorithm considers
multi-goal settings, we implement LNT-MG and R3L-MG as variants of LNT and R3L that sample
goals randomly and periodically from their buffers. Note that RSA generates a curriculum that
provides an agent with diverse initial and goal states and does not use reset reward functions to detect
irreversible states. While all baselines perform manual resets either when the agent fails to return to
starting states within a fixed number of episodes or enters irreversible states, RSA triggers manual
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Figure 3: Navigation and manipulation tasks used in our experiments. PointIMaze and AntOpen
are reversible, while PointIMaze-Trap and AntOpen-Trap include irreversible states, indicated by
purple boxes. HandReach is reversible, whereas HandManipulate involves irreversible states, such as
dropping the object from the hand.

Figure 4: Learning curves for navigation tasks. The x-axis indicates the number of training steps,
while the y-axis shows the success rate (top row) and the number of manual resets (bottom row).
Darker-colored lines represent the means, and shaded regions denote the standard deviations across 5
random seeds.

resets only when the agent enters irreversible states. Appendix B provides additional details on our
experimental setup and implementation.

5.1 Environments

Figure 3 shows the navigation and manipulation tasks used in our experiments. All tasks are provided
by Gymnasium-Robotics [7]. The common objective across these tasks is to move an agent, such
as a mobile robot, the fingertips of the hand, or an object, to target locations as quickly as possible.
PointIMaze, AntOpen, and HandReach do not involve irreversible states, whereas PointIMaze-Trap,
AntOpen-Trap, and HandManipulate contain such states. For example, when an agent in a navigation
task enters a trap shown as a purple box, it struggles to move and cannot escape without external
intervention. This is analogous to a vehicle damaged in an accident that is unable to move on its own.
In the manipulation tasks, once an object is dropped, an agent can no longer pick it up or control it.
For a fair comparison, we evaluate both the baselines and our algorithm using the same set of episodes
with diverse initial and goal states. Appendix C provides additional details on the environments.

5.2 Experimental Results and Analysis

Figure 4 illustrates the learning curves computed over 5 random seeds for both reversible and ir-
reversible navigation tasks. R3L and LNT achieve low success rates due to their narrow initial or
goal state distributions. While R3L-MG and LNT-MG obtain robust performance in PointIMaze and
PointIMaze-Trap, both suffer performance drops in AntOpen and AntOpen-Trap. We empirically ob-
served that in AntOpen and AntOpen-Trap, agents tend to collect more biased experiences compared
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Figure 5: Changes in informative initial state sets over training. Each column shows how the
informative initial states change as training progresses from left to right. The color of each initial
state indicates its predicted reachability probability for a fixed goal state. Top: The goal state is
located at (0.8, 0.8). Bottom: The goal state is located at (2.8, 1.8).

Figure 6: Changes in informative goal state sets over training. Each column shows how the informative
goal states for a fixed initial state change as training progresses from left to right. The initial state is
fixed at (4.8, 2.8), and the color of each goal state indicates its predicted reachability probability from
that initial state.

to PointIMaze and PointIMaze-Trap. This suggests that randomly sampling initial and goal states
from the buffer fails to provide an agent with informative transitions when it struggles to explore
diverse states. RSA achieves the best performance across all tasks and converges faster and more
stably than the baselines.

LNT and LNT-MG require significantly fewer manual resets than R3L and R3L-MG. This result
is expected, as LNT and LNT-MG assume narrow initial state distributions and leverage privileged
information about irreversible states in the form of reset reward functions. However, constrained initial
states make it difficult for an agent to collect diverse transitions, leading to suboptimal performance.
Moreover, privileged information about irreversible states is rarely available in practice. RSA does
not trigger manual resets in reversible navigation tasks, PointIMaze and AntOpen. This suggests that
RSA can generate a curriculum that enables an agent to collect informative transitions even when it
fails to return to initial states or reach to goal states. In the irreversible tasks, PointIMaze-Trap and
AntOpen-Trap, RSA requires fewer manual resets than RSL and RSL-MG, and triggers a comparable
number of resets to LNT and LNT-MG. These results indicate that, unlike LNT and LNT-MG, RSA
can identify irreversible states without task-specific knowledge.

To investigate whether RSA identifies informative state sets based on the agent’s learning progress,
we visualize how the informative initial and goal state sets evolve during training on PointIMaze.
Note that, in our work, informative initial and goal states are those whose estimated reachability
probabilities fall between the hyperparameters λ1 and λ2. Figure 5 illustrates the changes in the
informative initial state set for two different goal states: (0.8, 0.8) and (2.8, 1.8). In the early stages
of training, the identified initial state sets are close to the respective goal states and gradually move
farther away as training progresses. Figure 6 shows the changes in the informative goal state set for
an initial state (4.8, 2.8). We observed that similar to the informative initial state sets shown in Figure
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5, the informative goal states are identified near the given initial state at the beginning of training and
gradually spread out in diverse directions over time. These results demonstrate that RSA identifies
informative initial and goal states based on the agent’s learning progress. They also suggest that
the curriculum generated by RSA enables an agent to efficiently bootstrap from success on easier
initial and goal states to tackle more challenging ones. Appendix C provides additional results on the
identification of irreversible states.

Figure 7: Ablation results of RSA components. The
darker lines and shaded areas represent the mean and
standard deviation over 5 random seeds. Left: Effect of
identifying informative states on performance in Han-
dReach. Right: Effect of identifying irreversible states
on performance in HandManipulate.

Finally, we conducted an ablation study
to examine the benefits of two key com-
ponents of RSA: (1) the state information
estimator for identifying informative states,
and (2) the successor features (SFs) for
detecting and avoiding irreversible states.
The left plot of Figure 7 shows the perfor-
mance of RSA and its variant, RSA w/o
SIE, which does not identify informative
states, on HandReach. Note that in this
reversible task, neither RSA nor RSA w/o
SIE triggers manual resets, as both algo-
rithms reuse the final state of the current
iteration as the next goal state instead of re-
setting the environment. The performance
gap between RSA and RSA w/o SIE in-
dicates that identifying informative initial
and goal states contributes to better asymp-
totic performance and sample efficiency. The right plot of Figure 7 illustrates the performance of RSA
and another variant, RSA w/o SFs, which does not identify irreversible states, on HandManipulate.
Although both RSA and RSA w/o SFs can identify informative states using the state information
estimator, we observed that RSA achieves better performance with the same number of manual resets.
This result confirms that SFs of RSA play an important role in reducing manual resets.

6 Conclusion

We introduce a robust and scalable autonomous reinforcement learning (ARL) algorithm, referred to
as RSA, that reduces manual resets in both reversible and irreversible environments. RSA identifies
informative states to generate a curriculum that provides an agent with diverse initial and goal states.
Furthermore, RSA enables an agent to detect and avoid irreversible states without task-specific
knowledge. Experimental results demonstrate that RSA allows an agent to identify informative states
based on the agent’s learning progress and to avoid irreversible states, achieving better performance
with fewer manual resets than existing ARL algorithms. RSA has several limitations that should
be addressed in future work. First, RSA uses randomized reset behaviors, which are inefficient
for discovering initial states in complex environments. We plan to investigate whether leveraging
structured and consistent exploration behaviors can mitigate this limitation. Second, RSA uses
predefined features to encode behaviors via successor features. We expect that combining RSA
with state-of-the-art representation learning algorithms will be a promising approach to alleviating
this limitation. Finally, RSA cannot prevent an agent from entering irreversible states before the
associated behaviors have been encoded. We believe that the common-sense reasoning abilities of
foundation models will make them promising for identifying irreversible states across diverse tasks,
even in the early stages of training.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main contribution of this paper is a robust and scalable autonomous
reinforcement learning (ARL) algorithm. We believe that this contribution and its scope are
clearly reflected in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work are discussed in the conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient information to reproduce our experimental
results, as detailed in the experiments and Appendices B and C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The supplementary materials include all of our code as well as a README.md
file with instructions for reproducing the main experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides all training and evaluation details, including hyperparame-
ters and the type of optimizer, in Appendices B and C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The quantitative results in the experiments report the means and standard
deviations computed over five random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provides sufficient information on the computer resources to repro-
duce our experimental results in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and confirm that our work fully
complies with it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both the potential positive and negative societal impacts
in Appendix D.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used Gymnasium, a set of benchmark tasks, to evaluate our work and
properly cited it in the experiments and Appendix C.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: While no new assets are released with this submission, the code and its
instructions in the supplementary materials will be made publicly available if the paper is
accepted.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

18

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Preliminaries
	Goal-Conditioned Reinforcement Learning
	Successor Features

	Robust and Scalable Autonomous Reinforcement Learning
	Identifying Informative Initial and Goal States
	Detecting and Avoiding Irreversible States
	Algorithm Summary

	Experiments
	Environments
	Experimental Results and Analysis

	Conclusion

