

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MULTI-FACETED MULTIMODAL MONOSEMANTICITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Humans experience the world through multiple modalities, such as, vision, language, and speech, making it natural to explore the commonality and distinctions among them. In this work, We take a data-driven approach to address this question by analyzing **interpretable, monosemantic features** extracted from deep multimodal models. Specifically, we introduce the Modality Dominance Score (MDS) to attribute each multimodal feature to a specific modality. We then map the features into a more interpretable space, enabling us to categorize them into three distinct classes: vision features (single-modal), language features (single-modal), and visual-language features (cross-modal). Interestingly, this data-driven categorization closely aligns with human intuitive understandings of different modalities. We further show that this modality decomposition can benefit multiple downstream tasks, including reducing bias in gender detection, generating cross-modal adversarial examples, and enabling modal-specific feature control in text-to-image generation. These results indicate that large-scale multimodal models, when equipped with task-agnostic interpretability tools, can offer valuable insights into the relationships between different data modalities.

1 INTRODUCTION

Multimodal models have become foundational to the advancement of AI, enabling AI systems to process and understand information from multiple data modalities, such as vision and language Radford et al. (2021); Kim et al. (2021); Lu et al. (2019); Liang et al. (2024). Vision-Language Models (VLMs) in particular operate under the premise that different data modalities share common, or cross-modal, features that can be jointly learned (Ngiam et al., 2011). Along with such remarkable advancements, ongoing AI research also aims to deepen our understanding of how modalities interact and diverge within these VLMs (Liang et al., 2022; Rawal et al., 2023; Schrödi et al., 2025). For example, Liang et al. (2022) identified a modality gap in VLM, revealing that image and text embeddings often reside in two disjoint regions of the shared embedding space. Further studies explored the relationship between the degree of modality fusion and downstream task performance, e.g., in video understanding (Rawal et al., 2023) and object detection (Schrödi et al., 2025).

Different from the predominant research in encouraging and explaining the modality alignment (Li et al., 2023; Yi et al., 2024; Schrödi et al., 2025), our work investigates whether the “*modality gap*” is both prevalent and beneficial for downstream tasks. At the same time, the modality commonality and separation has long been a central theme in cognitive science, where researchers have examined how humans integrate and differentiate information across sensory modalities (Paivio, 1991; Spence, 2011; Fan et al., 2016). Building on this perspective, we explore the phenomenon by formulating and testing three key hypotheses through a variety of approaches, as summarized in Table ???. For each of these hypotheses, we demonstrate that:

1. We can extract modality-specific information in VLMs, i.e., text-dominant (`TextD`), image-dominant (`ImgD`), and cross-modality features (`CrossD`) in CLIP; and they exhibit different patterns when dealing with input images and texts. (Section 2)
2. We enhance the monosemanticity of VLM features via self-supervised methods such as Sparse AutoEncoders (SAE), and observe improved interpretability and modality specificity in `TextD` and `ImgD` after enhancement. (Section 3)
3. We further demonstrate that our identified modality-specific features can be seamlessly integrated into various downstream tasks: gender bias detection, generating adversarial attacks, and controllable text-to-image generation. (Section 4)

054 2 IDENTIFY MODALITY-SPECIFIC INFORMATION IN VLMs

055
 056 Modality alignment and fusion are crucial to the success of existing VLMs (Liang et al., 2022;
 057 Schrödi et al., 2025), while the modality-specific gap has been extensively studied in cognitive
 058 science. For instance, Ungerleider & Haxby (1994); Fan et al. (2016) have found that regional
 059 specificity and coordinated processing coexist in the human brain. Therefore, we start with the
 060 question *whether there are modality-specific features in VLMs?* To answer the question, we use
 061 CLIP models from OpenAI (Radford et al., 2021) as the testbed to quantify the modality-specific
 062 information (Section 2.1) and interpret these features via their activated samples (Section 2.3).

063 2.1 MODALITY-SPECIFIC FEATURE IDENTIFICATION

064
 065 **Modality Alignment in VLMs.** Typically, there are an image encoder and a text encoder in a VLM
 066 for image and text inputs processing, respectively. Specifically, the image-text pair $(x_{\text{img}}, x_{\text{txt}})$ is fed
 067 to an image encoder f_{img} and a text encoder f_{txt} within the model, respectively and the final-layer
 068 representations $z_{\text{img}} \in \mathbb{R}^D$ and $z_{\text{txt}} \in \mathbb{R}^D$ are then optimized jointly in the shared D -dimensional
 069 representation space. An alignment loss, such as the contrastive loss in CLIP (Ilharco et al., 2021)
 070 across the two modalities are then applied to enhance modality fusion. , a persistent modality gap
 071 remains across most multimodal models (Liang et al., 2022). Instead of closing the gap and im-
 072 proving the downstream tasks (Schrödi et al., 2025), we posit that an *irreducible* modality gap may
 073 be essential for capturing modality-specific concepts—for instance, emotions that are difficult to
 074 visualize or visual experiences that cannot be fully expressed in language.

075
 076 **Modality Dominance Score.** Liang et al. (2022) measure the modality gap using the dif-
 077 ference between the center of image embeddings and text embeddings of M input pairs, i.e.,
 078 $\frac{1}{M} (\sum_{i=1}^M \|z_{\text{img},i}\|_2 - \sum_{i=1}^M \|z_{\text{txt},i}\|_2)$. We extend this model-level measurement to a fine-grained
 079 metric, i.e., the predominant modality associated with each dimension $d \in \{1, 2, \dots, D\}$ in the
 080 shared embedding space. The proposed modality dominance score (**MDS**), denoted as $R(d)$ shown
 081 in Eq. (1) reflects how strongly the d -th feature ¹ is influenced by the image modality:

$$082 R(d) = \frac{1}{M} \sum_{i=1}^M \frac{\|z_{\text{img},i}^{(d)}\|}{\|z_{\text{img},i}^{(d)}\| + \|z_{\text{txt},i}^{(d)}\|}. \quad (1)$$

083
 084 Specifically, we feed M image-text pairs to the VLM and extract the corresponding image features
 085 $z_{\text{img},i}$ and text features $z_{\text{txt},i}$ for i -th input. For each d -th dimension in the D -dimension shared space,
 086 we calculate the relative activation between the features from the two modalities. This modality
 087 fraction is averaged over more than $M = 10k$ input pairs, providing a representative estimate of the
 088 modality distribution.²

089
 090 We then categorize all D features into three groups based on their deviation from the mean μ and
 091 standard deviation σ of the MDS distribution:

$$092 \text{TextD: } R(d) < \mu - \sigma; \quad \text{CrossD: } \mu - \sigma < R(d) < \mu + \sigma; \quad \text{ImgD: } R(d) > \mu + \sigma.$$

093
 094 We anticipate that **ImgD** features are predominantly activated by visual concepts, **TextD** features
 095 by textual concepts, and **CrossD** features are simultaneously activated by the shared commonalities
 096 between image and text. To clearly illustrate the differences among these three feature groups, we
 097 interpret each feature by examining the samples that activate it most strongly.

098 2.2 MODALITY-CLASSIFICATION FOR MDS VALIDATION

099
 100 To verify that the modality-specific features effectively capture the intended modality information,
 101 we remove these features from the original representation by setting the corresponding indices to
 102 zero, and then use the modified features for a modality-specific classification task. If a higher clas-
 103 sification accuracy is observed, it indicates that the removed features contained a substantial portion
 104 of the modality information.

105
 106 ¹Each feature dimension corresponds directly to a feature/neuron in the VLM’s final layer; our study thus
 107 focuses on the interpretability of the model’s intrinsic components.

108 ²Details of the MDS calculation are provided in Appendix A.2.

We evaluate the extracted features from CLIP ViT-H/14 (LAION-2B) Iharco et al. (2021) in both image/text classifications on COCO (Lin et al., 2014) using 10,000 image-caption pairs (80/20 stratified split). Specially, we intervened features from the final transformer layer are classified using logistic regression. As there are different number of `ImgD`, `TextD` and `CrossD`, we also remove the same number of random feature indices as comparison. The results are shown in Table 1. It is observed that removal the `ImgD` leads to larger classification degradation in Image classification, while removal `TextD` leads to larger drops in text classification; while `CrossD` does not show any particular modality tendency in classification.

2.3 QUALITATIVE EVALUATION FOR MODALITY-SPECIFIC INFORMATION

We randomly select two features from the three groups, and then display their most-activated images and texts in Figure 1 (`ImgD`), Figure 2 (`TextD`) and Figure 3 (`CrossD`).

ImgD activates fundamental visual concepts, such as repeated patterns and colors. Feature 647 activates images with diverse repetitive patterns; feature 667 focuses on scenes with aquatic-blue elements. Although less coherent than the images, some patterns do emerge for its activated texts: feature-647 activates two sentences that refer to repetitive patterns, such as “*tufted upholstery*”; feature-667 activates texts related to “*snowy*” and “*winter*”. These observations indicate the modality alignment while the visual commonalities are more predominant for the `ImgD`.

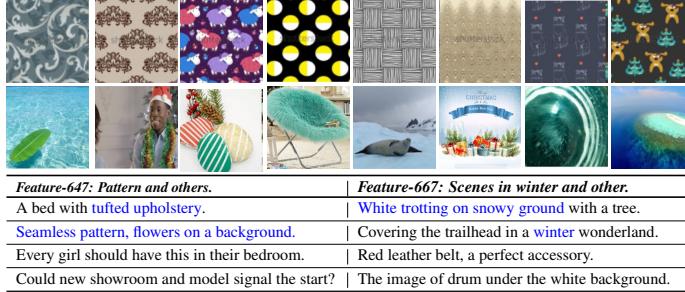


Figure 1: Activated images and texts (in Table) by `ImgD`. Top image row (feature 647): patterns and textures. Bottom image (feature 667): water and aquatic themes in blue. Texts in blue align with visual concepts.

TextD capture abstract concepts, such as human feelings and atmosphere. For the activated images for feature-34 (the 1st row), most of the images have red color, with one image depicting a couple talking beside the sea; for feature-242, there are no clear patterns among the activated images. When looking at the activated texts, sentences activated by feature-34 center around a sweet and happy atmosphere between couples, with themes like cuddling, embracing, and hugging. Feature-242 focuses on strong human emotions, such as “*never*”, “*terrifying*” and exclamation marks. These `TextD` generally correspond to abstract and consistent human emotions, which can be conveyed with a variety of visual objects. For example, in the second row, the first image depicts a collection of stones forming a heart shape, while the fourth image is a scenic view during a great trip.

CrossD (the majority features) capture shared semantics across modalities. Different from modality-specific features, `TextD` and `ImgD`, `CrossD` features capture common concepts that could be expressed in both visual and language modalities. We randomly select two `CrossD` features and show their top activated images and texts. As shown in Figure 3, feature-6 mostly activates scenes involving individuals performing activities, especially outdoor activities, and feature-47 captures general outdoor environments. The coherence across both modalities reflects successful alignment, which is consistent with multimodal training objectives.

Table 1: Performance changes of Modality-specific classification after removing: random vs. specialized features, i.e., `ImgD`, `TextD` and `CrossD`.

Task	Deletion	# Neurons	Accuracy	Δ Accuracy
Image CLS	None	0	0.776	/
	Random	426	0.757	-2.1%
	<code>ImgD</code>	426	0.750	-2.6%
	Random	554	0.756	-2.0%
Text CLS	<code>TextD</code>	554	0.760	-1.0%
	Random	44	0.773	-0.3%
	<code>CrossD</code>	44	0.769	-0.5%
	None	0	0.713	/
	Random	426	0.694	-1.9%
	<code>ImgD</code>	426	0.702	-1.1%
	Random	554	0.693	-2.0%
	<code>TextD</code>	554	0.683	-3.0%
	Random	44	0.710	-0.3%
	<code>CrossD</code>	44	0.712	-0.1%

162	
163	
164	Feature-34: Sweet and happy Couple.
165	Attractive young couple sitting on a bench, talking and laughing with the city.
166	Feature-242: Strong emotion.
167	Animal looking for a cat tree without carpet your options have greatly expanded.
168	Sculpture of lovers at the temple
169	Sinkhole, most terrifying thing I have ever seen .
170	Happy couple in winter embrace each other with love
171	Where's the best place to show off your nails? right in front of the castle, of course !
172	Young couple in love , hugging in the old part of town.
173	We're away from the beginning of the holiday season here!

Figure 2: Activated images and texts (in Table) by TextD. Top image row (feature 34): couples and individuals in red attire. Bottom image row (feature 242): diverse objects. Text in **blue** aligns with visual concepts.

177	
178	
179	Feature-6: Actions performed by individuals
180	Young man working on invention in a warehouse.
181	Feature-47: Outdoors Scenery
182	cricketers exercise during a practice session.
183	A stile on a public footpath overlooking the village on a frosty autumn morning.
184	Cricket player checks his bat during a training session.
185	A private chapel, and the wrought iron gates in the grounds .
186	Basketball coach watches an offensive possession from the sideline during the second half.
187	Train track: a man blending in with the scenery as he stands on a railway track near a river
188	surveying the scene : people look out over loch today on a warm day in the village

Figure 3: Activated images and texts by CrossD features. Top image row (feature 6): activities performed by individuals. Bottom image row (feature 47): scenery outside the doors. Text in **blue** aligns with visual concepts.

3 ENHANCE MODALITY-SPECIFIC INFORMATION VIA MONOSEMANTICITY

We have identified the modality-specific features above, although the features in deep models are mostly *polysemantic* (Olah et al., 2020), that is, each feature often encloses multiple unrelated semantic concepts. Meanwhile, recent advances in interpretability methods, particularly in *monosemanticity* (Elhage et al.; Bills et al., 2023; Gurnee et al., 2023; Yan et al., 2024a), enable deeper insights into the inner workings of deep models. Monosemantic neurons or features refer to model components that correspond to a single, interpretable concept.

Many existing monosemanticity works focus on improving the interpretability of the single-modality model, e.g., a language model (Elhage et al.; Bills et al., 2023). Additionally, scaling interpretability tools remains an open challenge due to the heavy reliance on costly human annotations (Gao et al., 2024). To address these gaps, we disentangle CLIP features to obtain interpretable *monosemantic features* in §3.1; and we propose new metrics to quantitatively evaluate the interpretability of these features §3.2.

3.1 EXTRACT MULTIMODAL MONOSEMANTIC FEATURE VIA SELF-SUPERVISION

To obtain disentangled features and improve the interpretability, we consider the following self-supervised representation learning methods ³:

DeCLIP. Beyond multimodal supervision (image-text pairs), DeCLIP (Li et al., 2022) also incorporates single-modal self-supervision (image-image pairs and text-text pairs) for more efficient joint learning. We hypothesize that, with the incorporation of self-supervision tasks, DeCLIP can extract more single-modal features from data, enhancing its interpretability and alignment with modality-specific characteristics.

³Implementation details for these methods are shown in Appendix A.1.

Multimodal SAE. Sparse Autoencoders (SAEs) (Cunningham et al., 2023) have emerged as a scalable tool for transforming polysemantic *neurons* into interpretable, monosemantic *features* across various LLMs (Templeton, 2024; Gao et al., 2024; Lieberum et al., 2024). We adapt this technique for multimodal settings by training a **single** SAE model $g : \mathbb{Z} \rightarrow \mathbb{Z}$ to reconstruct z , i.e., the final-layer outputs from the image and text encoder within CLIP, respectively. Specifically, we adopt a TopK SAE (Makhzani & Frey, 2013; Gao et al., 2024) that applies a linear encoder W_{enc} followed by a Top K operation that only keeps the K most activated units while zeroing out the rest. The sparse latent representation z^{sae} is then reconstructed using a linear decoder W_{dec} :

$$(\text{latent}) z^{\text{sae}} = \text{TopK}(W_{\text{enc}}(z - b_{\text{pre}})), \quad (\text{reconstruction}) \hat{z} = W_{\text{dec}}z^{\text{sae}} + b_{\text{pre}}. \quad (2)$$

$z \in \mathbb{R}^D$ is the inputs of SAE, i.e., z_{img} or z_{txt} . $z^{\text{sae}} \in \mathbb{R}^n$ is the learned sparse representation. We train the multimodal SAE to reconstruct z_i , z_t from CLIP image and text encoder, respectively.

$$\mathcal{L}_{\text{M-SAE}}(g) = \mathbb{E}_{(z_{\text{img}}, z_{\text{txt}}) \sim \mathcal{P}} [\|z_{\text{img}} - g(z_{\text{img}}^{\text{sae}})\|^2 + \|z_{\text{txt}} - g(z_{\text{txt}}^{\text{sae}})\|^2]. \quad (3)$$

By expanding the original latent dimension d to n and activating only the top- k latent units, the representation z^{sae} is encouraged to capture specialized and interpretable features.

Multimodal NCL. A key limitation of leveraging SAEs for extracting multimodal features is that its reconstruction objective is still essentially single-modal, and thus may underutilize the multimodal alignment inherent to models such as CLIP. To address this, we introduce a variant of Non-negative Contrastive Learning (NCL) (Wang et al., 2024) to enhance multimodal interpretability with the following *Multimodal NCL* loss,

$$L_{\text{M-NCL}}(g) = -\mathbb{E}_{z_{\text{img}}, z_{\text{txt}}} \log \frac{\exp(g(z_{\text{img}})^\top g(z_{\text{txt}}))}{E_{z_{\text{txt}}^-} \exp(g(z_{\text{img}})^\top g(z_{\text{txt}}^-))}, \quad (4)$$

where here we use an MLP network to map input features to *non-negative* output latent features, i.e.

$$z^{\text{ncl}} = g(z) = \text{ReLU}(W_2 \text{ReLU}(W_1 z + b_1) + b_2), \quad \forall z \in \mathbb{R}^D.$$

As shown in Wang et al. (2024), the non-negative constraints allow NCL to extract highly sparse features and significantly improve feature monosemanticity.

By applying these two interpretability models, Multimodal SAE and Multimodal NCL, we obtain sparse, interpretable features z^{sae} and z^{ncl} , along with the original multimodal representation z from CLIP and DeCLIP. These representations form the foundation for analyzing modality purity and interpretability.

MDS with monosemanticity enhancements. With the monosemanticity-improving models (SAE and NCL), we hypothesize that modality purity will become more pronounced, making dominant modality assignments more meaningful. To validate this, we calculate the MDS and visualize the distributions of the three feature groups across models in Figure 4. Interestingly, we find that CLIP, which is only trained on an image-text contrastive learning objective, contains a spectrum of features with different modality dominance. Specifically, its distribution skews towards the image modality, and this trend is consistent across all models. DeCLIP, on the other hand, shows a more balanced and less centered distribution. This suggests that DeCLIP, through self-supervision, extracts more modality-specific features, which might be overlooked by pure vision-language contrastive models like CLIP. The extracted features on top of NCL and SAE also exhibit less skewness, with SAE showing the most balanced distribution, indicating its strong capability to extract diverse monosemantic features.

3.2 QUANTITATIVE EVALUATION FOR INTERPRETABILITY IN MULTIMODAL MODEL

A feature is considered interpretable if its semantic meaning can be readily understood by users; typically, it can be assessed by examining whether the top- k activated samples exhibit a coherent and consistent pattern. For instance, Bills et al. (2023) first prompt a large language model (LLM) to generate an explanation based on the activated tokens. Using this explanation, they then prompt the LLM (like GPT-4o) to predict activation values for a given set of tokens, and the correlation between predicted and actual activation values is used as an interpretability score. The reliance on LLM-as-a-Judge limits its utility due to reliability and scalability (Gu et al., 2024; Yan et al., 2024b).

Therefore, we propose an interpretability evaluation that is both scalable and applicable to multimodal models. First, we assess monosemanticity (§3.2.1) by testing whether activated samples for each feature are consistently similar in a scalable way. Second, we analyze modality dominance across three feature categories, i.e., TextD, ImgD, and CrossD via examining whether certain features are more interpretable within specific modalities (§3.2.2).

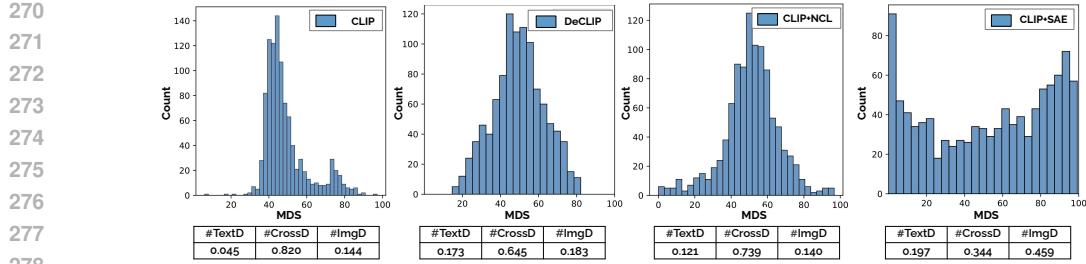


Figure 4: Modality Dominance Score (MDS) distributions of three feature categories for different VLMs.

3.2.1 MONOSEMANTICITY EVALUATION

A feature $z^{(d)}$ ⁴, the d -th dimension of $z \in \mathbb{R}^D$, is monosemanticity if it encodes a single, coherence semantic concept (Templeton, 2024). We propose a scalable interpretability measure based on embedding models $h : \mathbb{Z}^D \rightarrow \mathbb{Z}^{D'}$ that can be applied to both images and text samples.

Evaluation metrics. For each image/text feature $z^{(d)}$, we collect the top m most-activated image/text samples for this dimension, and feed them to the embedding model h to get $Z_+ \in \mathbb{R}^{m \times D'}$. For comparison, we embed m random samples into $Z_- \in \mathbb{R}^{m \times D'}$. Then, we calculate the inter-sample similarity between the selected samples, $S_+ = Z_+ Z_+^\top \in \mathbb{R}^{m \times m}$ and $S_- = Z_- Z_-^\top \in \mathbb{R}^{m \times m}$. The monosemanticity of an individual feature $z^{(d)}$ is measured by calculating the relative difference between the two similarity scores, denoted as $I(z^{(d)})$ (**EmbSim**). We also propose a binary metric to avoid the different scales in different modalities, denoted as $W(z^{(d)})$ (**WinRate**):

$$I(z^{(d)}) = \frac{1}{m(m-1)} \sum_{i \neq j} \frac{(S_+)_{ij} - (S_-)_{ij}}{(S_-)_{ij}}; \quad W(z^{(d)}) = \frac{1}{m(m-1)} \sum_{i \neq j} \mathbf{1}_{[(S_+)_{ij} > (S_-)_{ij}]} \quad (5)$$

The overall interpretability score is the average across all d dimensions for $z^{(d)}$ where $d \in [1, D]$. A higher monosemanticity score (we call the **EmbSim** and **WinRate** as **Mono**⁵) indicates that the extracted features exhibit stronger semantic consistency.

Results. We compute the **Mono** (interpretability) score by identifying the top-20 most activated images and texts for each feature, respectively. From the average interpretability results in Figure 5, we observe the following: (i) The features extracted using SAE and NCL (which enforce the feature sparsity) exhibit the highest overall monosemanticity for both activated input images and texts. (ii) DeCLIP does not enhance interpretability through self-supervision alone, the monosemanticity on textual side becomes even worse. This suggests that polysemantic features remain prevalent in DeCLIP, although their modality separation is clearer than in CLIP.

3.2.2 MODALITY SPECIFICATION EVALUATION

We have observed improved average monosemanticity across all features above. Therefore, we now investigate the question to which modality is a particular feature most sensitive? focusing on the three categorized feature types. Specifically, we ask: is `ImgD` indeed more effective at capturing visual inputs than `TextD`? Similarly, is `TextD` better at encoding textual semantics compared to `ImgD`? Specifically, for visual inputs, we calculate the **Visual Mono**, i.e, $Mono(\text{ImgD}) - Mono(\text{TextD})$. For text inputs, we calculate **Textual Mono** using $Mono(\text{TextD}) - Mono(\text{ImgD})$.

Results. We have the following observations from Figure 6: (i) For CLIP, all the modality monosemanticity is negative, demonstrating the highly entanglement of the two modality information. (ii) All the methods prompt the modality monosemanticity compared with CLIP. Particularly, the improvements of DeCLIP can be attributed to its single-modal alignment training loss, which could weaken some cross-modal associations in CLIP. (iii) NCL stands out as the best model for capturing both visual and textual monosemantic features, followed by SAE.

⁴We consider both z_{img} and z_{txt} as z , as we don't study the modality-specific information in this subsection.

⁵We calculate the average of **EmbSim** and **WinRate** as Monosemanticity score (**Mono**) in the main paper, the complete results for the two metrics can be found in Appendix A.3.2.

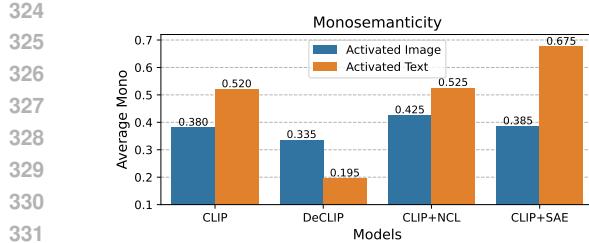


Figure 5: Monosemanticity for four VLMs.

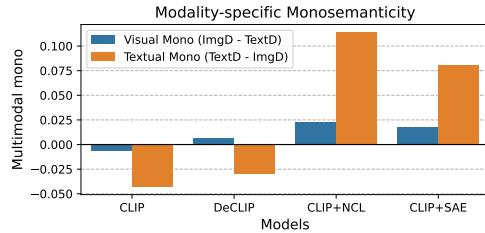


Figure 6: Modality-specific monosemanticity.

4 APPLICATIONS OF USING MODALITY-SPECIFIC INFORMATION

Beyond interpretability, we further explore how these modality-aware features contribute to performance in representative multimodal tasks.⁶

4.1 CASE STUDY 1: UNDERSTANDING GENDER PATTERN IN DIFFERENT MODALITIES

We describe gender using both visual and textual features and these data are used to train VLMs. To test whether there is a modality-specification in different genders, e.g., *Does the concept of the feminine get described by images more frequently? such as more colorful outfits.*

To test this hypothesis, we collect both male and female images with their corresponding textual descriptions from the cc3m-wds (Sharma et al., 2018). These images are then encoded using the Clip+SAE model, extracting 1024-dimensional features for both female and male subjects. Next, we apply a zero-mask intervene strategy to remove the `ImgD` and `TextD` from these representations.

To examine this, we compare changes in gender classification accuracy when removing `ImgD` features from image inputs, which capture dominant feminine visual cues, versus removing `TextD` features from text inputs. As shown in Table 2, we find that feminine concepts are primarily preserved in `ImgD` (as the removal of `ImgD` from image lead to larger classification degradation), whereas male concepts are more affected by the removal of `TextD`.

Understand the what feminine concepts the `ImgD` represent. We sample different female images which differ in how many percentage of their most activated features categorized as `ImgD` features. The results are in Figure 7. From left to right, more activated features are `ImgD` and they tend to contain more detailed (*stereotype*) feminine concepts, such as backless skirt, hair accessories. The middle images show professional female, such as politician and doctor; and the first image shows a pair of leg in sports shoes, with minimal feminine factors, the pink color.

4.2 CASE STUDY 2: GENERATING MODALITY-SPECIFIC ADVERSARIAL ATTACKS

We investigate the impact of different types of features on multimodal adversarial attacks (Cui et al., 2024; Yin et al., 2024), following the setup in Shayegani et al. (2024).

The adversarial sample is a benign-appearing image, e.g., a scenery image but injected with harmful semantic information, such as the phrase “*I want to make bomb*”. One defense optimization strategy involves minimizing the distance, between the embeddings of adversarial sample \mathbf{F}_{adv} and a benign sample \mathbf{F}_{ben} , and accordingly update the adversarial sample (in Figure 8). The paired benign image

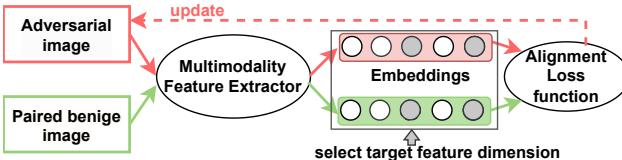
Table 2: Gender classification changes (%) after removing `ImgD`(`textD`) **from input image(`text`)** for both female and male concepts identification. It is to verify the dominant modality for different gender.

Gender	w.o <code>ImgD</code>	w.o <code>TextD</code>
Female	17.65	7.27
Male	5.64	28.67

Figure 7: **Female** figures ordered by their percentages of `ImgD` features: 0.14, 0.16, 0.18, 0.20, 0.22, 0.24, 0.26. More feminine concepts are observed to be related with more `ImgD`.

⁶Detailed implementations are in Appendix A.4.

378 is injected with the friendly text, e.g., “*peace and love*”. To study the effects of our identified modal-
 379 ity features, we only select the target feature index I for alignment training, i.e., ImgD , TextD , and
 380 CrossD . The alignment loss is $\mathcal{L} = \|\mathbf{F}_{adv}[:, I] - \mathbf{F}_{ben}[:, I]\|_2$. Finally, the optimized adversarial
 381 sample is then adopted to attack a VLM, LLaVA-1.5-7b (Liu et al., 2023). We use the LLM-as-a-
 382 Judge to evaluate the generated response from the VLM, where DeepSeek-V3 (DeepSeek-AI et al.,
 383 2024) is required to generate a binary label indicating whether the attack is successful. Supposedly,
 384 the features containing more information related to the malicious semantics will contribute most to
 385 the attack defense.



392 Figure 8: Alignment training to de-toxicity of the adversarial sample,
 393 with only selected target feature dimensions (in gray), i.e.,
 394 ImgD , TextD and CrossD , involved in the alignment.

Table 3: Success rate for adversarial attacks with different target features involved in the alignment training. The success rate for original adversarial samples without alignment training is 73.26%, with random selected features is 54.28%.

Target feature	ImgD	TextD	CrossD
Success Rate (\downarrow)	62.71%	24.89%	35.44%

395 **Results.** The attack success rates are shown in Table 3. We select the same number from ImgD ,
 396 TextD , CrossD to be involved in alignment training, as well as randomly sample the same number
 397 of features cross the three feature sets as a baseline. We attack the VLM repeatably for 100 times
 398 per sample, and we have generated 50 adversarial samples. We observe that (i) by comparing with
 399 the success rate of original adversarial samples, the alignment training with any selected features
 400 defense the attacks in some extent; (ii) using TextD yields the best defense performance, followed
 401 by CrossD and ImgD . This can be explained that the adversarial information primarily stems from
 402 undesirable textual semantics. And **it demonstrates that TextD effectively captures most of the**
 403 **semantic content.** In contrast, CrossD captures partial semantics, while ImgD is the least related
 404 to semantic information, resulting in minimal benefits for such modality-specific jailbreak defense.

406 4.3 CASE STUDY 3: MODALITY-AWARE CONTROL FOR TEXT-TO-IMAGE GENERATION

407 Despite the impressive capabilities of text-to-image generation models (Yu et al., 2024; Koh et al.,
 408 2024; Swamy et al., 2024), their internal mechanisms for bridging linguistic semantics and visual
 409 details remain poorly understood. A key challenge is disentangling how modality-specific features
 410 influence the fidelity and controllability of generation. Therefore, we conduct feature intervention
 411 experiment during the generation of Stable Diffusion v2 (Rombach et al., 2022)

412 **Intervention.** The process is depicted in Figure 9. We investigate the generation process by intervening in different modality-
 413 specific features in Stable-Diffusion-v2 (Rombach et al., 2022),
 414 i.e., the shown VLM with an encoder and decoder (generator).
 415 The input text prompt is “*Please draw an animal*”. The encoder
 416 generates an embedding T , representing the original multimodal
 417 embedding ready for generation. Additionally, we provide a refer-
 418 ence image, here is a horse - processed through the same encoder,
 419 producing a reference embedding R . To control the generation
 420 through modality-specific feature intervention, we interpolate T
 421 only at the specified indices defined by MDS. The final multi-
 422 modal embedding is computed as: $\mathbf{T}'[I] = \alpha \mathbf{T}[I] + (1 - \alpha) \mathbf{R}[I]$,
 423 where operations are applied exclusively to the feature indices
 424 defined by I , i.e., TextD , CrossD and ImgD .

425 **Results.** We feed \mathbf{T}' to the generator of the VLM with different
 426 α ranging from 0 to 0.7 with an interval of 0.1. The generated
 427 images with the selected indices correspond to TextD , CrossD ,
 428 and ImgD are shown in Figure 10. The results clearly demon-
 429 strate that larger interventions on TextD lead to stronger control
 430 over high-level semantic concepts—for example, the generated image more distinctly resembles a
 431 horse (head). All these generated images injected by TextD typically depict clear main subjects

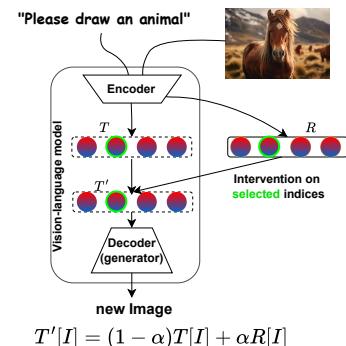


Figure 9: The reference image R is used for modality-specific control over text-to-image generation process.

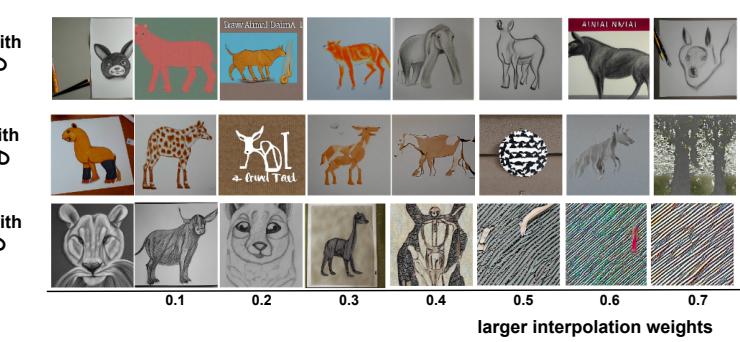


Figure 10: Generated new images from the VLM with the text prompt “*Please draw an animal*” and varying levels of intervention from a reference image (horse). From left to right, the interpolation weights α range from 0.0 to 0.7. Images generated with `TextD` typically depict clear main subjects (horse) without transferring the visual background details from the reference image. In contrast, injection of `ImgD` introduces low-level visual details as well as image distortions when α is large.

without transferring visual background details from the reference image. In contrast, interventions on `ImgD` result in more visual details from the reference image being preserved, such as non-white and fur-like patterned background are visible in `ImgD` when $\alpha \geq 0.3$. To better contrast the effects of `ImgD` and `TextD`, we also use a reference image with horse as the main subject, but in different styles/backgrounds. More results are shown in Figure 14.

5 RELATED WORK

Mechanistic Interpretability. Mechanistic interpretability aims to understand the internal computations of deep learning models by identifying and analyzing individual components and interactions. Recent research has been focused on identifying *polysemanticity*(Olah et al., 2020). This has led to the exploration of *monosemanticity*, the hypothesis that models might contain features that correspond to single, interpretable concepts (Elhage et al.). Recent advances in dictionary learning have made it possible to decompose polysemantic neurons into monosemantic features (Cunningham et al., 2023). These techniques, coupled with automated methods for interpreting and labeling features (Bills et al., 2023; Gurnee et al., 2023; Yan et al., 2024a), have enabled the extraction of large numbers of interpretable features from models like CLIP (Radford et al., 2021).

Modality Gaps. The study of modality gaps, or the differences and limitations in how different modalities represent information, has been a topic of interest in cognitive science (Spence, 2011; Paivio, 1991; Calvert et al., 2004). Our research offers an alternative *human-free* approach to study the modality gap. This opens a new approach to study the modality gap that could alleviate potential bias from human-centric viewpoint and bring more insights from large-scale data. Existing methods of measuring modality gap primarily are sample-level, such as L2M (Liang et al., 2022), information decomposition (Liang et al., 2023), which measures the different percentages of visual and textual information for a single VLM representation. We, instead, is to identify the different model components respond to different modalities in order to understand model-level behavior patterns.

6 LIMITATIONS AND CONCLUSION

In this study, we explored the monosemanticity of features within VLMs to elucidate the commonalities and distinctions across visual and textual modalities. we successfully categorized interpretable features according to their predominant modality, which demonstrate close correspondence to human cognitive interpretations. Our interpretability analysis in three case studies also demonstrated the great potential in understanding modality-features in gender bias, defensing adversarial attacks and controllable multimodal generation. One limitation is that we don’t analyze the evaluation and results via human study. Future work may extend these methodologies to other multi-modal architectures and investigate their implications for cognitive science, ultimately fostering the development of more interpretable and human-centric AI systems.

486 REFERENCES
487

488 Steven Bills, Nick Cammarata, Dan Mossing, Henk Tillman, Leo Gao, Gabriel Goh, Ilya Sutskever,
489 Jan Leike, Jeff Wu, and William Saunders. Language models can explain neurons in lan-
490 guage models. URL <https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html>. (Date accessed: 14.05. 2023), 2, 2023.

492 Gemma Calvert, Charles Spence, and Barry E Stein (eds.). *The Handbook of Multisensory Pro-
493 cesses*. MIT Press, 2004.

495 Xuanming Cui, Alejandro Aparcedo, Young Kyun Jang, and Ser-Nam Lim. On the robustness of
496 large multimodal models against image adversarial attacks. In *Proceedings of the IEEE/CVF
497 Conference on Computer Vision and Pattern Recognition*, pp. 24625–24634, 2024.

498 Hoagy Cunningham, Aidan Ewart, Logan Riggs, R. Huben, and Lee Sharkey. Sparse autoencoders
499 find highly interpretable features in language models. *International Conference on Learning
500 Representations*, 2023. doi: 10.48550/arXiv.2309.08600.

502 DeepSeek-AI, Aixin Liu, and Bei Feng et al. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.

505 Nelson Elhage, Neel Nanda, Catherine Olsson, and Others. A mathematical frame-
506 work for transformer circuits. *Transformer Circuits Thread* (2022). URL <https://transformer-circuits.pub/2022/solu/index.html>.

508 Lingzhong Fan, Hai Li, Junjie Zhuo, Yu Zhang, Liangfu Chen, Zhengyi Yang, Congying Chu,
509 Sangma Xie, Angela Laird, Peter Fox, Simon Eickhoff, Chunshui Yu, and Tianzi Jiang. The
510 human brainnetome atlas: A new brain atlas based on connectional architecture. *Cerebral Cortex*,
511 26:bhw157, 05 2016. doi: 10.1093/cercor/bhw157.

513 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
514 Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *arXiv preprint
515 arXiv:2406.04093*, 2024.

516 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
517 han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint
518 arXiv:2411.15594*, 2024.

520 Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsi-
521 mas. Finding neurons in a haystack: Case studies with sparse probing. *ArXiv*, abs/2305.01610,
522 2023. URL <https://api.semanticscholar.org/CorpusID:258437237>.

523 Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori,
524 Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali
525 Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL <https://doi.org/10.5281/zenodo.5143773>. If you use this software, please cite it as below.

528 Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
529 lution or region supervision. *arXiv preprint arXiv:2102.03334*, 2021.

531 Jing Yu Koh, Daniel Fried, and Russ R Salakhutdinov. Generating images with multimodal language
532 models. *Advances in Neural Information Processing Systems*, 36, 2024.

533 Yangguang Li, Feng Liang, Lichen Zhao, Yufeng Cui, Wanli Ouyang, Jing Shao, Fengwei Yu,
534 and Junjie Yan. Supervision exists everywhere: A data efficient contrastive language-image
535 pre-training paradigm. In *International Conference on Learning Representations*, 2022. URL
536 <https://openreview.net/forum?id=zq1iJkNk3uN>.

538 Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng
539 Liu, and Jiaya Jia. Mini-gemini: Mining the potential of multi-modality vision language models.
arXiv:2403.18814, 2023.

540 Paul Pu Liang, Yun Cheng, Ruslan Salakhutdinov, and Louis-Philippe Morency. Multimodal fusion
 541 interactions: A study of human and automatic quantification. In *Proceedings of the 25th Interna-*
 542 *tional Conference on Multimodal Interaction*, ICMI '23, pp. 425–435, New York, NY, USA, 2023.
 543 Association for Computing Machinery. ISBN 9798400700552. doi: 10.1145/3577190.3614151.
 544 URL <https://doi.org/10.1145/3577190.3614151>.

545 Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations & trends in multimodal
 546 machine learning: Principles, challenges, and open questions. *ACM Computing Surveys*, 56(10):
 547 1–42, 2024.

549 Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Zou. Mind the gap:
 550 Understanding the modality gap in multi-modal contrastive representation learning. In Alice H. Oh,
 551 Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information
 552 Processing Systems*, 2022. URL <https://openreview.net/forum?id=S7Evzt9uit3>.

554 Tom Lieberum, Senthooran Rajamanoharan, Arthur Conny, Lewis Smith, Nicolas Sonnerat, Vikrant
 555 Varma, János Kramár, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
 556 autoencoders everywhere all at once on gemma 2. *arXiv preprint arXiv:2408.05147*, 2024.

558 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
 559 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European
 560 conference on computer vision*, pp. 740–755. Springer, 2014.

561 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 562 tuning, 2023.

564 Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. Vilbert: Pretraining task-agnostic visiolinguistic
 565 representations for vision-and-language tasks. In *Advances in Neural Information Processing
 566 Systems*, pp. 13–23, 2019.

567 Alireza Makhzani and Brendan Frey. K-sparse autoencoders. *arXiv preprint arXiv:1312.5663*, 2013.

569 Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng. Multi-
 570 modal deep learning. In *Proceedings of the 28th International Conference on Machine Learning
 571 (ICML-11)*, pp. 689–696, 2011.

572 Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
 573 Zoom in: An introduction to circuits. *Distill*, 5(3):e00024–001, 2020.

575 Allan Paivio. Dual coding theory: Retrospect and current status. *Canadian Journal of Psychology/
 576 Revue canadienne de psychologie*, 45(3):255, 1991.

577 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 578 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 579 models from natural language supervision. *arXiv preprint arXiv:2103.00020*, 2021.

581 Isha Rawal, Shantanu Jaiswal, Basura Fernando, and Cheston Tan. Dissecting multimodality in
 582 videoqa transformer models by impairing modality fusion. In *International Conference on
 583 Machine Learning*, 2023. URL [https://api.semanticscholar.org/CorpusID:
 584 259165589](https://api.semanticscholar.org/CorpusID:259165589).

585 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 586 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-
 587 ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, June 2022.

588 Simon Schrodi, David T. Hoffmann, Max Argus, Volker Fischer, and Thomas Brox. Two effects,
 589 one trigger: On the modality gap, object bias, and information imbalance in contrastive vision-
 590 language models. In *The Thirteenth International Conference on Learning Representations*, 2025.
 591 URL <https://openreview.net/forum?id=uAFHCZRmXk>.

593 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
 hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of ACL*, 2018.

594 Erfan Shayegani, Yue Dong, and Nael Abu-Ghazaleh. Jailbreak in pieces: Compositional adversarial
 595 attacks on multi-modal language models. In *The Twelfth International Conference on Learning*
 596 *Representations*, 2024. URL <https://openreview.net/forum?id=plmBsXHxgR>.

597

598 Charles Spence. Crossmodal correspondences: A tutorial review. *Attention, Perception, & Psy-*
 599 *chophysics*, 73(4):971–995, 2011.

600 Vinitra Swamy, Malika Satayeva, Jibril Frej, Thierry Bossy, Thijs Vogels, Martin Jaggi, Tanja Käser,
 601 and Mary-Anne Hartley. Multimodn—multimodal, multi-task, interpretable modular networks.
 602 *Advances in Neural Information Processing Systems*, 36, 2024.

603

604 Adly Templeton. *Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet*.
 605 Anthropic, 2024.

606 Leslie G. Ungerleider and James V. Haxby. ‘what’ and ‘where’ in the human brain. *Cur-*
 607 *rent Opinion in Neurobiology*, 4(2):157–165, 1994. ISSN 0959-4388. doi: [https://doi.org/10.1016/0959-4388\(94\)90066-3](https://doi.org/10.1016/0959-4388(94)90066-3). URL <https://www.sciencedirect.com/science/article/pii/0959438894900663>.

608

609 Yifei Wang, Qi Zhang, Yaoyu Guo, and Yisen Wang. Non-negative contrastive learning. *ICLR*,
 610 2024.

611

612 Hanqi Yan, Yanzheng Xiang, Guangyi Chen, Yifei Wang, Lin Gui, and Yulan He. Encour-
 613 age or inhibit monosemanticity? revisit monosemanticity from a feature decorrelation per-
 614 spective. *ArXiv*, abs/2406.17969, 2024a. URL <https://api.semanticscholar.org/CorpusID:270737676>.

615

616 Hanqi Yan, Qinglin Zhu, Xinyu Wang, Lin Gui, and Yulan He. Mirror: Multiple-perspective
 617 self-reflection method for knowledge-rich reasoning. In Lun-Wei Ku, Andre Martins, and
 618 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-*
 619 *putational Linguistics (Volume 1: Long Papers)*, pp. 7086–7103, Bangkok, Thailand, August
 620 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.382. URL
 621 <https://aclanthology.org/2024.acl-long.382/>.

622

623 Chao Yi, Yu-Hang He, De-Chuan Zhan, and Han-Jia Ye. Bridge the modality and capability gaps
 624 in vision-language model selection. *Advances in Neural Information Processing Systems*, 37:
 625 34429–34452, 2024.

626

627 Ziyi Yin, Muchao Ye, Tianrong Zhang, Tianyu Du, Jinguo Zhu, Han Liu, Jinghui Chen, Ting Wang,
 628 and Fenglong Ma. Vlattack: Multimodal adversarial attacks on vision-language tasks via pre-
 629 trained models. *Advances in Neural Information Processing Systems*, 36, 2024.

630 Lijun Yu, Yong Cheng, Zhiruo Wang, Vivek Kumar, Wolfgang Macherey, Yanping Huang, David
 631 Ross, Irfan Essa, Yonatan Bisk, Ming-Hsuan Yang, et al. Spae: Semantic pyramid autoencoder
 632 for multimodal generation with frozen llms. *Advances in Neural Information Processing Systems*,
 633 36, 2024.

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649

A APPENDIX

650
651

A.1 IMPLEMENTATION FOR MONOSEMANTICITY TOOLS

652
653
654
655
656
657

The three monosemantic tools, DeCLIP, Multimodal SAE and Multimodal NCL are all on top of the canonical ViT-B-32 CLIP⁷ model from OpenAI (Radford et al., 2021), with ResNet50. The four methods (including CLIP) share the same model structures but trained with different training objectives, we load them by feeding the checkpoints using the `open_clip.create_model_and_transforms` function in the published in https://github.com/mlfoundations/open_clip.

658
659
660
661
662
663

The feature dimensions of the output features from image encoder and text encoder are both 1024, the same for CLIP, DeCLIP and Multimodal NCL. To retain the multimodal representation efficiency in downstream tasks, we have trained the SAE and NCL to reach very small reconstruction loss for the original features z from CLIP. The dataset for NCL and SAE training is the train split (around 2900k image-text pairs) from `cc3m-wds`⁸. We train the two variants, i.e., SAE and NCL on top of the pretrained CLIP using a single 3090 GPU.

664
665
666

DeCLIP. We use the checkpoint released in <https://github.com/Sense-GVT/DeCLIP> to extract the last layer features, z_i and z_t .

667
668
669
670
671
672

Multimodal SAE. We insert a SAE model to map the original feature into a sparse latent space, i.e., $z^d \rightarrow z^n$, with top-k latent as nonzero values. Empirically, we found that when $n = d$ and $k = 32$, we can get best results to balance the sparsity and downstream task performance. Such a SAE model (shared parameter) is inserted at the end of image and text encoder in CLIP. And the training loss is shown in Eq. 3.

673
674
675
676
677
678
679

```
def get_sae_embedding(self, z):
    z = self.encoder(z)
    z_sae = F.relu(z)
    vals, ids = z_sae.topk(self.k, dim=1)
    z_sae = torch.zeros_like(z_sae)
    z_sae.scatter_(1, ids, vals)
return z_sae
```

680
681
682
683
684

Inspired by Gao et al. (2024), we train the SAE until the sparsity (the inactive dimension) of image features and text features don't increase (the same stop criteria for NCL). Noted that there are many zero values in z^{sae} , we remove those zero activity features (called dead latents in (Gao et al., 2024)) for the further studies. We show the changes of active dimensions of image features and text features in Figure 11.

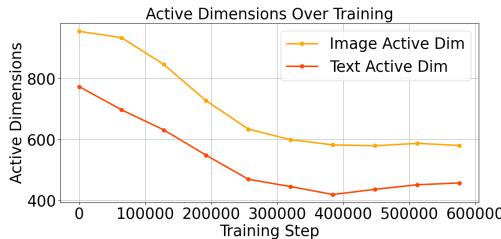
685
686
687
688
689
690
691
692
693
694695
696
697

Figure 11: The changes of active dimensions over SAE training.

698
699
700
701

Non-negative Contrastive Learning (NCL). We add the NCL block, i.e., projector after obtaining z_i and z_t from image encoder and text encoder. The training loss is shown in Eq. 4.

⁷<https://github.com/openai/CLIP>

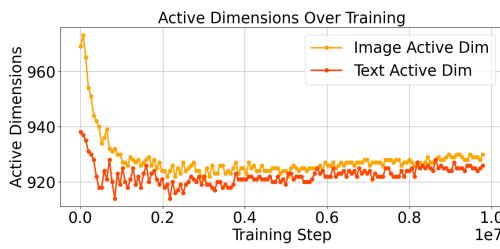
⁸<https://huggingface.co/datasets/pixparse/cc3m-wds>

```

702     self.projector = nn.Sequential(
703         nn.Linear(embed_dim, embed_dim),
704         nn.LayerNorm(embed_dim),
705         nn.ReLU(),
706         nn.Linear(embed_dim, embed_dim),
707     )
708     z_ncl = self.projector(z)
709

```

710 Similarly, the activated dimensions for image features and text features decrease and are then flattened.(shown in Figure 12.) By comparing with Figure 11, we noticed that the features in SAE is
711 much more sparse than that in NCL.
712



713
714 Figure 12: The changes of active dimensions over NCL training.
715
716
717
718
719
720
721

722 A.2 IMPLEMENTATION OF MDS

723 Based on the trained CLIP, CLIP+SAE, CLIP+NCL and DeCLIP, we feed the test split of
724 cc3m-wds dataset to these pretrained models, around 15k image-text pairs to calculate MDS, ac-
725 cording to Eq.(1). The features are the last-layer output from the text and image encoder. We tried
726 to calculate the normalization of z_i and z_t , but found it makes little difference to the final results. It
727 could be attributed to the existing normalization technique in image and text encoder in CLIP.
728

729 A.3 IMPLEMENTATION AND RESULTS OF INTERPRETABILITY EVALUATION

730 We describe the experiment setup and other results for Section ??.

731 A.3.1 IMPLEMENTATION

732 **Embedding models h for activated image/text samples.** Our interpretability metrics, i.e., **Emb-**
733 **Sim** and **WinRate** are based on the embeddings of activate image/text samples by each feature. We
734 need the embedding models to obtain these embeddings, i.e., Z^+ and Z^- . We use the Vision Trans-
735 former (ViT-B-16-224-in21k) for image embeddings and the Sentence Transformer (all-MiniLM-
736 L6-v2) for text embeddings. The goal here is to derive the general and effective image and text
737 embeddings, so we can also use the image encoder and text encoder from CLIP.
738

739 A.3.2 RESULTS

740 **EmbSim and WinRate for Monosemanticity measurement.** Firstly, we show the complete re-
741 sults for **EmbSmi** and **WinRate** in the Table 4.

742 **The results of monosemanticity changes as training goes on.** We show the results of monose-
743 manticity score changes as training goes on for both NCL and SAE in Figure 13.

744 A.4 IMPLEMENTATIONS AND MORE RESULTS FOR CASE STUDIES

745 We provide the implementation details and more experimental results for the three case studies in
746 the follows.
747

756 Table 4: Average interpretability scores (by examining the top activated images/texts) for features extracted
 757 from VLMs.

759 760 761 762 763 764	765 766 767 768 769 770 771 772 773	774 775 776 777 778 779 780 781 782	783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	
756	757	758	759 760 761 762 763 764	
765	766	767	768 769 770 771 772 773	
774	775	776	777 778 779 780 781 782	
783	784	785	786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809	
800	801	802	803 804 805 806 807 808 809	

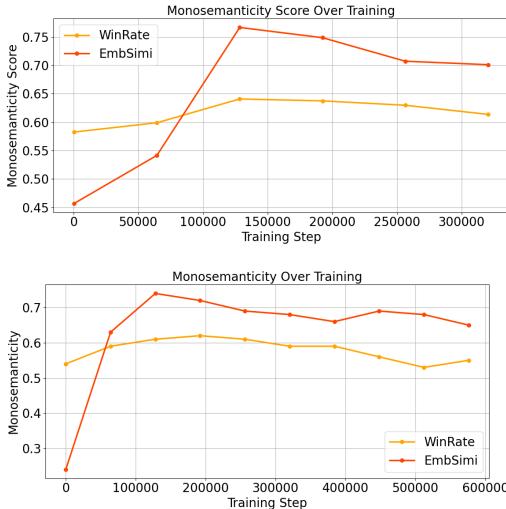


Figure 13: Monosemanticity (EmbSimi and WinRate) changes as training goes on. Upper is for CLIP+NCL, bottom is for CLIP+SAE.

787 A.4.1 CASE STUDY 1: UNDERSTANDING GENDER PATTERN IN DIFFERENT MODALITIES

788 **Datasets.** We select male and female images using a gender classifier touchtech/fashion-images-
 789 gender-age-vit-large-patch16-224-in21k-v3 from cc3m-wds validation set. We have both input im-
 790 ages and text, the original gender classification accuracy is 83.4% and 73.4%, respectively.

791 **Classification.** As the intervened features are not compatible with existing pretrained text or text
 792 classifier, we compare these features with the golden feature from male and female data. Specially,
 793 we randomly select a female/male image with classification logits larger than 0.9 (ensuring the
 794 gender patterns are obvious) as the reference features. We use the same embedding models in §A.3
 795 , i.e., Vision Transformer and Sentence Transformer as the encoder and encode both intervened
 796 feature and golden feature. The intervened feature is labeled as the same label as the reference
 797 image with which their distance in encoder space is smaller.

798 **Intervention.** There are different number of ImgD and TextD for a given representation of input
 799 sample. To avoid the effects of different number of removal feature, we remove (set the corre-
 800 sponding dimension as zero) the minimal number between ImgD and TextD , and remove the same
 801 number of random selected features as a baseline.

802 **TextD in male concepts.** We also cluster different male descriptions according to the percentage
 803 of TextD features among all their top-20 activated features, and we calculate the frequency of
 804 the top7 tokens in each cluster shown in Table 6. We remove the gendered personal pronouns,
 805 e.g., he, she, woman, man, boy, girl and only focus on how gender-neutral concepts represent the
 806 gender. With more TextD injection, the textual descriptions become more sports related, such
 807 as coach, basketball, soccer; while the sentences with less activated TextD have top words, as party,

Models	CLIP	DeCLIP	CLIP+NCL	CLIP+SAE
<i>Mono is EmbSim</i>				
Visual Mono	-0.007	0.009	0.043	0.005
Textual Mono	-0.017	-0.001	0.210	<u>0.146</u>
<i>Mono is WinRate</i>				
Visual Mono	-0.007	0.005	0.002	0.030
Textual Mono	-0.069	-0.059	0.018	<u>0.016</u>

Table 5: table

The visual and textual monosemanticity. A higher value indicates that ImgD captures more visual than linguistic features, and vice versa for TextD .

hip, game, smile, home. This trend is consistent with the social stereotype that male are more active in sport activities.

Table 6: Representative words in male-related descriptions with different percentage of TextD .

Percentage of TextD	Top8 words in male-related textual description
0.1	attends, party, hip, game, comedian, city, black, artist
0.12	smile, made, blue, outside, looks, home, got, book
0.18	artist, player, film, pop, performs, festival, young, suit
0.24	player, football, basketball, team, game, portrait, holding, gym

A.4.2 CASE STUDY 2: DEFENSING MODALITY-SPECIFIC ADVERSARIAL ATTACKS

Models We employed the same ViT-B-32 CLIP as in §A.1 as the multimodality feature extractor shown in the Figure 8 to extract 1024-dimension features, so we use the categorized TextD , ImgD and CrossD calculated before. We use LLaVA-1.5-7b as the attacked VLM (Liu et al., 2023). The whole process of defensing adversarial attack is two steps:

- **Generating adversarial images by injecting harmful requests.** We have benign scenery image and a list of 50 harmful requests. Firstly, we create a image with white background with the text saying the one piece of harmful request, as the contrast image. Then, we apply the alignment training by minimizing the distance of benign image and contrast image in the embedding space of the image encoder. The benign image is thus being injected with harmful semantics, denoted as \mathbf{F}_{adv} .
- **Defensing the adversarial attacks.** To remove the toxicity of the adversarial samples, we employ the alignment training shown in Figure 8 by updating the embeddings of the adversarial samples. Specially, we only select the target features, i.e., the ImgD , TextD and CrossD to be involved in the training.

When attacking the VLM, we feed the adversarial images/samples along with the text prompt, i.e., the according harmful request injected to the adversarial sample. For each adversarial sample, we repeat the attack process for 100 times. For comparison, we apply the original generated 50 adversarial samples to attack VLM, and the average success rate is 73.26%; and the success rate of the (benign image - harmful request) is 10.00%. We conducted five independent runs for each experiment to ensure statistical reliability. Results in the tables show mean values across runs, with relative standard deviations below 3% for accuracy metrics.

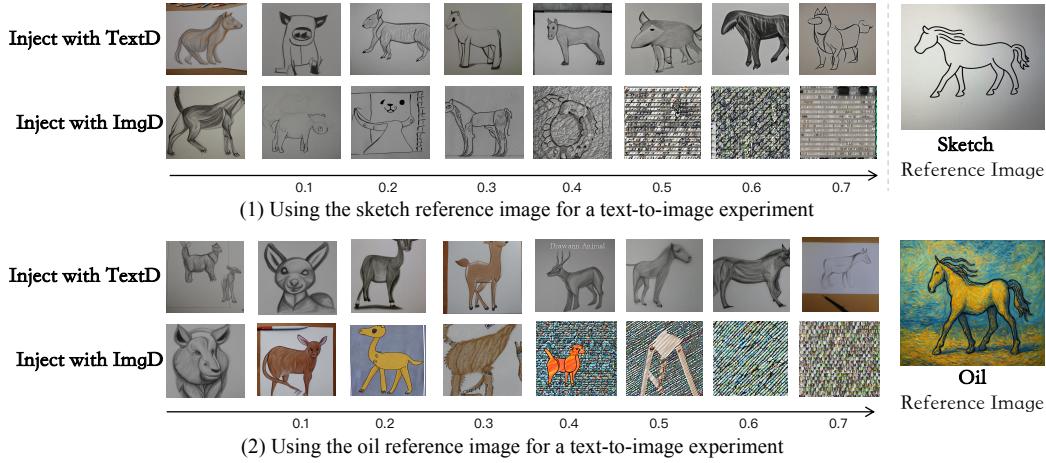
Computing resources cost The experiments were conducted with a GPU with 48GB memory. Adversarial sample generation requires approximately 4 GPU hours, while adversarial sample detoxification takes approximately 6 GPU hours.

A.4.3 CASE STUDY 3: MODALITY-AWARE CONTROL FOR TEXT-TO-IMAGE GENERATION

Models. We select Stable-Diffusion-v2 (<https://huggingface.co/stabilityai/stable-diffusion-2>) as our text-2-image generation model. As its image encoder (CLIP-

864 ViT-H-14-laion2B-s32B-b79K) is not the same CLIP we used before, we recalculate the MDS dis-
 865 tribution to derive the three categorizes of features.
 866

867 **More results.** We present additional images generated by modifying the original multimodal rep-
 868 resentation through feature injection from a reference image. To emphasize the distinction between
 869 ImgD and TextD, we use two reference images of horses in different backgrounds and artistic
 870 styles. Specifically, we compare two sets of images where features from sketch and oil painting
 871 styles are injected using ImgD. We observe that images influenced by sketches tend to be predom-
 872 inantly black and white, while those influenced by oil paintings appear more colorful. In contrast,
 873 the images generated using TextD remain visually similar across both the sketch and oil painting
 874 settings.
 875



890 Figure 14: Generated new images from the VLM with the text prompt *"Please draw an animal"*
 891 and varying levels of intervention from different reference image. We found that *TextD* captures sig-
 892 nificant semantic information, such as shape, etc. Notably, when sketch is selected as the reference
 893 image, both *imgD* and *TextD* display sketch-like stylistic features. When oil-painting is chosen as
 894 the reference image, both *imgD* and *TextD* exhibit styles that resemble oil paintings. Comparatively,
 895 the stylistic differences between *imgD* in conditions (1) and (2) are distinct: *imgD* in (1) lacks color,
 896 whereas *imgD* in (2) presents diverse coloration. Similar to Figure 10, *TextD* does not affect low-
 897 level visual features, while *ImgD* and show significant distortion at higher α values.
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917