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ABSTRACT

Humans experience the world through multiple modalities, such as, vision, lan-
guage, and speech, making it natural to explore the commonality and distinctions
among them. In this work, We take a data-driven approach to address this question
by analyzing interpretable, monosemantic features extracted from deep multi-
modal models. Specifically, we introduce the Modality Dominance Score (MDS)
to attribute each multimodal feature to a specific modality. We then map the fea-
tures into a more interpretable space, enabling us to categorize them into three
distinct classes: vision features (single-modal), language features (single-modal),
and visual-language features (cross-modal). Interestingly, this data-driven catego-
rization closely aligns with human intuitive understandings of different modal-
ities. We further show that this modality decomposition can benefit multiple
downstream tasks, including reducing bias in gender detection, generating cross-
modal adversarial examples, and enabling modal-specific feature control in text-
to-image generation. These results indicate that large-scale multimodal models,
when equipped with task-agnostic interpretability tools, can offer valuable insights
into the relationships between different data modalities.

1 INTRODUCTION

Multimodal models have become foundational to the advancement of AI, enabling AI systems to
process and understand information from multiple data modalities, such as vision and language
Radford et al. (2021); Kim et al. (2021); Lu et al. (2019); Liang et al. (2024). Vision-Language
Models (VLMs) in particular operate under the premise that different data modalities share common,
or cross-modal, features that can be jointly learned (Ngiam et al., 2011). Along with such remark-
able advancements, ongoing AI research also aims to deepen our understanding of how modalities
interact and diverge within these VLMs (Liang et al., 2022; Rawal et al., 2023; Schrodi et al., 2025).
For example, Liang et al. (2022) identified a modality gap in VLM, revealing that image and text
embeddings often reside in two disjoint regions of the shared embedding space. Further studies
explored the relationship between the degree of modality fusion and downstream task performance,
e.g., in video understanding (Rawal et al., 2023) and object detection (Schrodi et al., 2025).

Different from the predominant research in encouraging and explaining the modality alignment (Li
et al., 2023; Yi et al., 2024; Schrodi et al., 2025), our work investigates whether the “modality gap”
is both prevalent and beneficial for downstream tasks. At the same time, the modality commonality
and separation has long been a central theme in cognitive science, where researchers have examined
how humans integrate and differentiate information across sensory modalities (Paivio, 1991; Spence,
2011; Fan et al., 2016). Building on this perspective, we explore the phenomenon by formulating
and testing three key hypotheses through a variety of approaches, as summarized in Table ??. For
each of these hypotheses, we demonstrate that:

1. We can extract modality-specific information in VLMs, i.e., text-dominant (TextD), image-
dominant (ImgD), and cross-modality features (CrossD) in CLIP; and they exhibit different pat-
terns when dealing with input images and texts. (Section 2)
2. We enhance the monosemanticity of VLM features via self-supervised methods such as Sparse
AutoEncoders (SAE), and observe improved interpretability and modality specificity in TextD
and ImgD after enhancement. (Section 3)
3. We further demonstrate that our identified modality-specific features can be seamlessly inte-
grated into various downstream tasks: gender bias detection, generating adversarial attacks, and
controllable text-to-image generation. (Section 4)
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2 IDENTIFY MODALITY-SPECIFIC INFORMATION IN VLMS

Modality alignment and fusion are crucial to the success of existing VLMs (Liang et al., 2022;
Schrodi et al., 2025), while the modality-specific gap has been extensively studied in cognitive
science. For instance, Ungerleider & Haxby (1994); Fan et al. (2016) have found that regional
specificity and coordinated processing coexist in the human brain. Therefore, we start with the
question whether there are modality-specific features in VLMs? To answer the question, we use
CLIP models from OpenAI (Radford et al., 2021) as the testbed to quantify the modality-specific
information (Section 2.1) and interpret these features via their activated samples (Section 2.3).

2.1 MODALITY-SPECIFIC FEATURE IDENTIFICATION

Modality Alignment in VLMs. Typically, there are an image encoder and a text encoder in a VLM
for image and text inputs processing, respectively. Specifically, the image-text pair (ximg, xtxt) is fed
to an image encoder fimg and a text encoder ftxt within the model, respectively and the final-layer
representations zimg ∈ RD and ztxt ∈ RD are then optimized jointly in the shared D-dimensional
representation space. An alignment loss, such as the contrastive loss in CLIP (Ilharco et al., 2021)
across the two modalities are then applied to enhance modality fusion. , a persistent modality gap
remains across most multimodal models (Liang et al., 2022). Instead of closing the gap and im-
proving the downstream tasks (Schrodi et al., 2025), we posit that an irreducible modality gap may
be essential for capturing modality-specific concepts—for instance, emotions that are difficult to
visualize or visual experiences that cannot be fully expressed in language.

Modality Dominance Score. Liang et al. (2022) measure the modality gap using the dif-
ference between the center of image embeddings and text embeddings of M input pairs, i.e.,
1
M (

∑M
i=1 ||zimg,i||2 −

∑M
i=1 ||ztxt,i||2). We extend this model-level measurement to a fine-grained

metric, i.e., the predominant modality associated with each dimension d ∈ {1, 2, . . . , D} in the
shared embedding space. The proposed modality dominance score (MDS), denoted as R(d) shown
in Eq. (1) reflects how strongly the d-th feature 1 is influenced by the image modality:

R(d) =
1

M

M∑
i=1

||z(d)img,i||

||z(d)img,i||+ ||z(d)txt,i||
. (1)

Specifically, we feed M image-text pairs to the VLM and extract the corresponding image features
zimg,i and text features ztxt,i for i-th input. For each d-th dimension in the D-dimension shared space,
we calculate the relative activation between the features from the two modalities. This modality
fraction is averaged over more than M = 10k input pairs, providing a representative estimate of the
modality distribution.2

We then categorize all D features into three groups based on their deviation from the mean µ and
standard deviation σ of the MDS distribution:

TextD: R(d) < µ− σ; CrossD: µ− σ < R(d) < µ+ σ; ImgD: R(d) > µ+ σ.

We anticipate that ImgD features are predominantly activated by visual concepts, TextD features
by textual concepts, and CrossD features are simultaneously activated by the shared commonalities
between image and text. To clearly illustrate the differences among these three feature groups, we
interpret each feature by examining the samples that activate it most strongly.

2.2 MODALITY-CLASSIFICATION FOR MDS VALIDATION

To verify that the modality-specific features effectively capture the intended modality information,
we remove these features from the original representation by setting the corresponding indices to
zero, and then use the modified features for a modality-specific classification task. If a higher clas-
sification accuracy is observed, it indicates that the removed features contained a substantial portion
of the modality information.

1Each feature dimension corresponds directly to a feature/neuron in the VLM’s final layer; our study thus
focuses on the interpretability of the model’s intrinsic components.

2Details of the MDS calculation are provided in Appendix A.2.
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Table 1: Performance changes of Modality-specific
classification after removing: random vs. specialized
features, i.e., ImgD, TextD and CrossD.

Task Deletion # Neurons Accuracy ∆ Accuracy

Image
CLS

None 0 0.776 /
Random 426 0.757 -2.1%
ImgD 426 0.750 -2.6%
Random 554 0.756 -2.0%
TextD 554 0.760 -1.0%
Random 44 0.773 -0.3%
CrossD 44 0.769 -0.5%

Text
CLS

None 0 0.713 /
Random 426 0.694 -1.9%
ImgD 426 0.702 -1.1%
Random 554 0.693 -2.0%
TextD 554 0.683 -3.0%
Random 44 0.710 -0.3%
CrossD 44 0.712 -0.1%

We evaluate the extracted features from CLIP
ViT-H/14 (LAION-2B) Ilharco et al. (2021) in
both image/text classifications on COCO (Lin
et al., 2014) using 10,000 image-caption pairs
(80/20 stratified split). Specially, we intervened
features from the final transformer layer are
classified using logistic regression. As there
are different number of ImgD, TextD and
CrossD, we also remove the same number of
random feature indices as comparison. The re-
sults are shown in Table 1. It is observed that
removal the ImgD leads to larger classification
degradation in Image classification, while re-
moval TextD leads to larger drops in text clas-
sification; while CrossD does not show any
particular modality tendency in classficaition.

2.3 QUALITATIVE EVALUATION FOR MODALITY-SPECIFIC INFORMATION

We randomly select two features from the three groups, and then display their most-activated images
and texts in Figure 1 (ImD), Figure 2 (TextD) and Figure 3 (CrossD).

ImgD activates fundamental visual concepts, such as repeated patterns and colors. Feature 647
activates images with diverse repetitive patterns; feature 667 focuses on scenes with aquatic-blue
elements. Although less coherent than the images, some patterns do emerge for its activated texts:
feature-647 activates two sentences that refer to repetitive patterns, such as “tufted upholstery”;
feature-667 activates texts related to “snowy” and “winter”. These observations indicate the modality
alignment while the visual commanalities are more predominant for the ImgD.

Feature-647: Pattern and others. Feature-667: Scenes in winter and other.
A bed with tufted upholstery. White trotting on snowy ground with a tree.
Seamless pattern, flowers on a background. Covering the trailhead in a winter wonderland.
Every girl should have this in their bedroom. Red leather belt, a perfect accessory.
Could new showroom and model signal the start? The image of drum under the white background.

Figure 1: Activated images and texts (in Table) by ImgD. Top image row (feature 647): patterns and textures.
Bottom image (feature 667): water and aquatic themes in blue. Texts in blue align with visual concepts.

TextD capture abstract concepts, such as human feelings and atmosphere. For the activated
images for feature-34 (the 1st row), most of the images have red color, with one image depicting a
couple talking beside the sea; for feature-242, there are no clear patterns among the activated images.
When looking at the activated texts, sentences activated by feature-34 center around a sweet and
happy atmosphere between couples, with themes like cuddling, embracing, and hugging. Feature-
242 focuses on strong human emotions, such as “never”, “terrifying” and exclamation marks. These
TextD generally correspond to abstract and consistent human emotions, which can be conveyed
with a variety of visual objects. For example, in the second row, the first image depicts a collection
of stones forming a heart shape, while the fourth image is a scenic view during a great trip.

CrossD (the majority features) capture shared semantics across modalities. Different from
modality-specific features, TextD and ImgD, CrossD features capture common concepts that
could be expressed in both visual and language modalities. We randomly select two CrossD fea-
tures and show their top activated images and texts. As shown in Figure 3, feature-6 mostly activates
scenes involving individuals performing activities, especially outdoor activities, and feature-47 cap-
tures general outdoor environments. The coherence across both modalities reflects successful align-
ment, which is consistent with multimodal training objectives.

3
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Feature-34: Sweet and happy Couple. Feature-242: Strong emotion.
Attractive young couple sitting on a
bench, talking and laughing with the city.

Animal looking for a cat tree without carpet your
options have greatly expanded.

Sculpture of lovers at the temple Sinkhole, most terrifying thing I have ever seen.
Happy couple in winter embrace each
other with love

Where’s the best place to show off your nails?
right in front of the castle, of course !

Young couple in love, hugging in the old
part of town.

We’re away from the beginning of the holiday
season here!

Figure 2: Activated images and texts (in Table) by TextD. Top image row (feature 34): couples and individ-
uals in red attire. Bottom image row (feature 242): diverse objects. Text in blue aligns with visual concepts.

Feature-6: Actions performed by individuals Feature-47: Outdoors Scenery
Young man working on invention in a ware-
house.

A stile on a public footpath overlooking the vil-
lage on a frosty autumn morning.

cricketers exercise during a practice session. A private chapel, and the wrought iron gates in
the grounds.

Cricket player checks his bat during a training
session.

Train track: a man blending in with the scenery
as he stands on a railway track near a river

Basketball coach watches an offensive posses-
sion from the sideline during the second half.

surveying the scene: people look out over loch
today on a warm day in the village

Figure 3: Activated images and texts by CrossD features. Top image row (feature 6): activities performed by
individuals. Bottom image row (feature 47): scenery outside the doors. Text in blue aligns with visual concepts.

3 ENHANCE MODALITY-SPECIFIC INFORMATION VIA MONOSEMANTICITY

We have identified the modality-specific features above, although the features in deep models are
mostly polysemantic (Olah et al., 2020), that is, each feature often encloses multiple unrelated se-
mantic concepts. Meanwhile, recent advances in interpretability methods, particularly in monose-
manticity (Elhage et al.; Bills et al., 2023; Gurnee et al., 2023; Yan et al., 2024a), enable deeper
insights into the inner workings of deep models. Monosemantic neurons or features refer to model
components that correspond to a single, interpretable concept.

Many existing monosemanticity works focus on improving the interpretability of the single-modality
model, e.g., a language model (Elhage et al.; Bills et al., 2023). Additionally, scaling interpretability
tools remains an open challenge due to the heavy reliance on costly human annotations (Gao et al.,
2024). To address these gaps, we disentangle CLIP features to obtain interpretable monosemantic
features in §3.1; and we propose new metrics to quantitatively evaluate the interpretability of these
features §3.2.

3.1 EXTRACT MULTIMODAL MONOSEMANTIC FEATURE VIA SELF-SUPERVISION

To obtain disentangled features and improve the interpretability, we consider the following self-
supervised representation learning methods 3:

DeCLIP. Beyond multimodal supervision (image-text pairs), DeCLIP (Li et al., 2022) also incorpo-
rates single-modal self-supervision (image-image pairs and text-text pairs) for more efficient joint
learning. We hypothesize that, with the incorporation of self-supervision tasks, DeCLIP can extract
more single-modal features from data, enhancing its interpretability and alignment with modality-
specific characteristics.

3Implementation details for these methods are shown in Appendix A.1.
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Multimodal SAE. Sparse Autoencoders (SAEs) (Cunningham et al., 2023) have emerged as a scal-
able tool for transforming polysemantic neurons into interpretable, monosemantic features across
various LLMs (Templeton, 2024; Gao et al., 2024; Lieberum et al., 2024). We adapt this technique
for multimodal settings by training a single SAE model g : Z → Z to reconstruct z, i.e., the final-
layer outputs from the image and text encoder within CLIP, respectively. Specifically, we adopt a
TopK SAE (Makhzani & Frey, 2013; Gao et al., 2024) that applies a linear encoder Wenc followed
by a TopK operation that only keeps the K most activated units while zeroing out the rest. The
sparse latent representation zsae is then reconstructed using a linear decoder Wdec:

(latent) zsae = TopK (Wenc (z − bpre )) , (reconstruction) ẑ = Wdecz
sae + bpre. (2)

z ∈ RD is the inputs of SAE, i.e., zimg or ztxt. zsae ∈ Rn is the learned sparse representation. We
train the multimodal SAE to reconstruct zi, zt from CLIP image and text encoder, respectively.

LM−SAE(g) = E(zimg,ztxt)∼P
[
∥zimg − g(zsae

img)∥
2 + ∥ztxt − g(zsae

txt )∥2
]
. (3)

By expanding the original latent dimension d to n and activating only the top-k latent units, the
representation zsae is encouraged to capture specialized and interpretable features.

Multimodal NCL. A key limitation of leveraging SAEs for extracting multimodal features is that its
reconstruction objective is still essentially single-modal, and thus may underutilize the multimodal
alignment inherent to models such as CLIP. To address this, we introduce a variant of Non-negative
Contrastive Learning (NCL) (Wang et al., 2024) to enhance multimodal interpretability with the
following Multimodal NCL loss,

LM−NCL(g) = −Ezimg,ztxt log
exp(g(zimg)

⊤g(ztxt))

E
z−txt

exp(g(zimg)⊤g(z
−
txt))

, (4)

where here we use an MLP network to map input features to non-negative output latent features, i.e.
zncl = g(z) = ReLU(W2 ReLU(W1z + b1) + b2), ∀ z ∈ RD.

As shown in Wang et al. (2024), the non-negative constraints allow NCL to extract highly sparse
features and significantly improve feature monosemanticity.

By applying these two interpretability models, Multimodal SAE and Multimodal NCL, we obtain
sparse, interpretable features zsae and zncl, along with the original multimodal representation z from
CLIP and DeCLIP. These representations form the foundation for analyzing modality purity and
interpretability.

MDS with monosemanticity enhancements. With the monosemanticity-improving models (SAE
and NCL), we hypothesize that modality purity will become more pronounced, making dominant
modality assignments more meaningful. To validate this, we calculate the MDS and visualize the
distributions of the three feature groups across models in Figure 4. Interestingly, we find that CLIP,
which is only trained on an image-text contrastive learning objective, contains a spectrum of features
with different modality dominance. Specifically, its distribution skews towards the image modality,
and this trend is consistent across all models. DeCLIP, on the other hand, shows a more balanced
and less centered distribution. This suggests that DeCLIP, through self-supervision, extracts more
modality-specific features, which might be overlooked by pure vision-language contrastive models
like CLIP. The extracted features on top of NCL and SAE also exhibit less skewness, with SAE
showing the most balanced distribution, indicating its strong capability to extract diverse monose-
mantic features.
3.2 QUANTITATIVE EVALUATION FOR INTERPRETABILITY IN MULTIMODAL MODEL

A feature is considered interpretable if its semantic meaning can be readily understood by users;
typically, it can be assessed by examining whether the top-k activated samples exhibit a coherent
and consistent pattern. For instance, Bills et al. (2023) first prompt a large language model (LLM)
to generate an explanation based on the activated tokens. Using this explanation, they then prompt
the LLM (like GPT-4o) to predict activation values for a given set of tokens, and the correlation
between predicted and actual activation values is used as an interpretability score. The reliance on
LLM-as-a-Jude limits its utility due to reliability and scalability (Gu et al., 2024; Yan et al., 2024b).

Therefore, we propose an interpretability evaluation that is both scalable and applicable to multi-
modal models. First, we assess monosemanticity (§3.2.1) by testing whether activated samples for
each feature are consistently similar in a scalable way. Second, we analyze modality dominance
across three feature categories, i.e., TextD, ImgD, and CrossD via examining whether certain
features are more interpretable within specific modalities (§3.2.2).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

#TextD #CrossD #ImgD
0.045 0.820 0.144

MDS

C
ou

nt

               CLIP            DeCLIP           CLIP+NCL            CLIP+SAE

C
ou

nt

C
ou

nt

C
ou

nt

MDS MDS MDS
#TextD #CrossD #ImgD
0.173 0.645 0.183

#TextD #CrossD #ImgD
0.121 0.739 0.140

#TextD #CrossD #ImgD
0.197 0.344 0.459

C
ou

nt

Figure 4: Modality Dominance Score (MDS) distributions of three feature categories for different VLMs.

3.2.1 MONOSEMANTICITY EVALUATION

A feature z(d) 4, the d-th dimension of z ∈ RD, is monosemanticity if it encodes a single, coher-
ence semantic concept (Templeton, 2024). We propose a scalable interpretability measure based on
embedding models h : ZD → ZD′

that can be applied to both images and text samples.

Evaluation metrics. For each image/text feature z(d), we collect the top m most-activated image/-
text samples for this dimension, and feed them to the embedding model h to get Z+ ∈ Rm×D′

. For
comparison, we embed m random samples into Z− ∈ Rm×d′

. Then, we calculate the inter-sample
similarity between the selected samples, S+ = Z+Z

⊤
+ ∈ Rm×m and S− = Z−Z

⊤
− ∈ Rm×m.

The monosemanticity of an individual feature z(d) is measured by calculating the relative difference
between the two similarity scores, denoted as I(z(d)) (EmbSim). We also propose a binary metric
to avoid the different scales in different modalities, denoted as W (z(d)) (WinRate):

I(z(d)) =
1

m(m− 1)

∑
i̸=j

(S+)ij − (S−)ij
(S−)ij

; W (z(d)) =
1

m(m− 1)

∑
i̸=j

1[(S+)ij>(S−)ij ]. (5)

The overall interpretability score is the average across all d dimensions for z(d) where d ∈ [1, D].
A higher monosemanticity score (we call the EmbSim and WinRate as Mono5) indicates that the
extracted features exhibit stronger semantic consistency.

Results. We compute the Mono (interpretability) score by identifying the top-20 most activated
images and texts for each feature, respectively. From the average interpretability results in Figure 5,
we observe the following: (i) The features extracted using SAE and NCL (which enforce the feature
sparsity) exhibit the highest overall monosemanticity for both activated input images and texts. (ii)
DeCLIP does not enhance interpretability through self-supervision alone, the monosemanticity on
textual side becomes even worse. This suggests that polysemantic features remain prevalent in
DeCLIP, although their modality separation is clearer than in CLIP.

3.2.2 MODALITY SPECIFICATION EVALUATION

We have observed improved average monosemanticity across all features above. Therefore, we
now investigate the question to which modality is a particular feature most sensitive? focusing on
the three categorized feature types. Specifically, we ask: is ImgD indeed more effective at cap-
turing visual inputs than TextD? Similarly, is TextD better at encoding textual semantics com-
pared to ImgD? Specifically, for visual inputs, we calculate the Visual Mono, i,e, Mono(ImgD)-
Mono(TextD). For text inputs, we calculate Textual Mono using Mono(TextD)-Mono(ImgD).

Results. We have the following observations from Figure 6: (i) For CLIP, all the modality monose-
manticity is negative, demonstrating the highly entanglement of the two modality information. (ii)
All the methods prompt the modality monosemanticity compared with CLIP. Particularly, the im-
provements of DeCLIP can be attributed to its single-modal alignment training loss, which could
weaken some cross-modal associations in CLIP. (iii) NCL stands out as the best model for capturing
both visual and textual monosemantic features, followed by SAE.

4We consider both zimg and ztxt as z, as we don’t study the modality-specific information in this subsection.
5We calculate the average of EmbSim and WinRate as Monosemanticity score (Mono) in the main paper,

the complete results for the two metrics can be found in Appendix A.3.2.
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Figure 5: Monosemanticity for four VLMs.
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Figure 6: Modality-specific monosemanticity.

4 APPLICATIONS OF USING MODALITY-SPECIFIC INFORMATION

Beyond interpretability, we further explore how these modality-aware features contribute to perfor-
mance in representative multimodal tasks. 6

4.1 CASE STUDY 1: UNDERSTANDING GENDER PATTERN IN DIFFERENT MODALITIES

We describe gender using both visual and textual features and these data are used to train VLMs.
To test whether there is a modality-specification in different genders, e.g., Does the concept of the
feminine get described by images more frequently? such as more colorful outfits.

Table 2: Gender classifica-
tion changes (%) after remov-
ing ImgD(textD) from input
image(text) for both female and
male concepts identification. It is
to verify the dominant modality
for different gender.

Gender w.o ImgD w.o TextD
Female 17.65 7.27

Male 5.64 28.67

To test this hypothesis, we collect both male and female im-
ages with their corresponding textual descriptions from the cc3m-
wds (Sharma et al., 2018). These images are then encoded using the
Clip+SAE model, extracting 1024-dimensional features for both fe-
male and male subjects. Next, we apply a zero-mask intervene strat-
egy to remove the ImgD and TextD from these representations.

To examine this, we compare changes in gender classifica-
tion accuracy when removing ImgD features from image in-
puts, which capture dominant feminine visual cues, versus re-
moving TextD features from text inputs. As shown in Ta-
ble 2, we find that feminine concepts are primarily preserved in
ImgD (as the removal of ImgD from image lead to larger clas-
sification degradation), whereas male concepts are more affected by the removal of TextD.

 

Figure 7: Female figures ordered by their percentages of ImgD
features: 0.14, 0.16, 0.18,0.20, 0.22, 0.24, 0.26. More feminine
concepts are observed to be related with more ImgD.

Understand the what feminine con-
cepts the ImgD represent. We sam-
ple different female images which dif-
fer in how many percentage of their
most activated features categorized as
ImgD features. The results are in Fig-
ure 7. From left to right, more activated
features are ImgD and they tend to con-
tains more detailed (stereotype) femi-
nine concepts, such as backless skirt,
hair accessories. The middle images show professional female, such as politician and doctor; and
the first image shows a pair of leg in sports shoes, with minimal feminine factors, the pink color.

4.2 CASE STUDY 2: GENERATING MODALITY-SPECIFIC ADVERSARIAL ATTACKS

We investigate the impact of different types of features on multimodal adversarial attacks (Cui et al.,
2024; Yin et al., 2024), following the setup in Shayegani et al. (2024).

The adversarial sample is a benign-appearing image, e.g., a scenery image but injected with harmful
semantic information, such as the phrase “I want to make bomb”. One defense optimization strategy
involves minimizing the distance, between the embeddings of adversarial sample Fadv and a benign
sample Fben, and accordingly update the adversarial sample (in Figure 8). The paired benign image

6Detailed implementations are in Appendix A.4.
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is injected with the friendly text, e.g., “peace and love”. To study the effects of our identified modal-
ity features, we only select the target feature index I for alignment training, i.e., ImgD, TextD, and
CrossD. The alignment loss is L = ∥Fadv[:, I] − Fben[:, I]∥2. Finally, the optimized adversarial
sample is then adopted to attack a VLM, LLaVA-1.5-7b (Liu et al., 2023). We use the LLM-as-a-
Judge to evaluate the generated response from the VLM, where DeepSeek-V3 (DeepSeek-AI et al.,
2024) is required to generate a binary label indicating whether the attack is successful. Supposedly,
the features containing more information related to the malicious semantics will contribute most to
the attack defense.

Adversarial
image

Paired benige
image

Multimodality
Feature Extractor

Alignment
Loss

function

select target feature dimension 

Embeddings

update

Figure 8: Alignment training to de-toxicity of the adversarial sam-
ple, with only selected target feature dimensions (in gray), i.e.,
ImgD, TextD and CrossD, involved in the alignment.

Table 3: Success rate for adversarial
attacks with different target features in-
volved in the alignment training. The
success rate for original adversarial sam-
ples without alignment training is 73.26%,
with random selected features is 54.28%.

Target feature ImgD TextD CrossD

Success Rate (↓) 62.71% 24.89% 35.44%

Results. The attack success rates are shown in Table 3. We select the same number from ImgD,
TextD, CrossD to be involved in alignment training, as well as randomly sample the same number
of features cross the three feature sets as a baseline. We attack the VLM repeatably for 100 times
per sample, and we have generated 50 adversarial samples. We observe that (i) by comparing with
the success rate of original adversarial samples, the alignment training with any selected features
defense the attacks in some extent; (ii) using TextD yields the best defense performance, followed
by CrossD and ImgD. This can be explained that the adversarial information primarily stems from
undesirable textual semantics. And it demonstrates that TextD effectively captures most of the
semantic content. In contrast, CrossD captures partial semantics, while ImgD is the least related
to semantic information, resulting in minimal benefits for such modality-specific jailbreak defense.

4.3 CASE STUDY 3: MODALITY-AWARE CONTROL FOR TEXT-TO-IMAGE GENERATION

Despite the impressive capabilities of text-to-image generation models (Yu et al., 2024; Koh et al.,
2024; Swamy et al., 2024), their internal mechanisms for bridging linguistic semantics and visual
details remain poorly understood. A key challenge is disentangling how modality-specific features
influence the fidelity and controllability of generation. Therefore, we conduct feature intervnetion
experiment during the generation of Stable Diffusion v2 (Rombach et al., 2022)

Decoder
(generator)

Vi
si

on
-la

ng
ua

ge
 m

od
el

new Image 

"Please draw an animal"

Encoder

Intervention on 
selected indices

Figure 9: The reference image R
is used for modality-specific con-
trol over text-to-image generation
process.

Intervention. The process is depicted in Figure 9. We investi-
gate the generation process by intervening in different modality-
specific features in Stable-Diffusion-v2 (Rombach et al., 2022),
i.e., the shown VLM with an encoder and decoder (generator).
The input text prompt is “Please draw an animal”. The encoder
generates an embedding T, representing the original multimodal
embedding ready for generation. Additionally, we provide a refer-
ence image, here is a horse - processed through the same encoder,
producing a reference embedding R. To control the generation
through modality-specific feature intervention, we interpolate T
only at the specified indices defined by MDS. The final multi-
modal embedding is computed as: T′[I] = αT[I]+(1−α)R[I],
where operations are applied exclusively to the feature indices
defined by I , i.e., TextD, CrossD and ImgD.

Results. We feed T ′ to the generator of the VLM with different
α ranging from 0 to 0.7 with an interval of 0.1. The generated
images with the selected indices correspond to TextD, CrossD,
and ImgD are shown in Figure 10. The results clearly demon-
strate that larger interventions on TextD lead to stronger control
over high-level semantic concepts—for example, the generated image more distinctly resembles a
horse (head). All these generated images injected by TextD typically depict clear main subjects

8
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larger intervention level

0.1  0.2  0.3  0.4  0.5  0.6  0.7 

larger interpolation weights

Inject with 
CrossD

Inject with  
ImgD

Inject with 
TextD

Figure 10: Generated new images from the VLM with the text prompt “Please draw an animal” and
varying levels of intervention from a reference image (horse). From left to right, the interpolation
weights α range from 0.0 to 0.7. Images generated with TextD typically depict clear main subjects
(horse) without transferring the visual background details from the reference image. In contrast,
injection of ImgD introduces low-level visual details as well as image distortions when α is large.

without transferring visual background details from the reference image. In contrast, interventions
on ImgD result in more visual details from the reference image being preserved, such as non-white
and fur-like patterned background are visible in ImgD when α ≥ 0.3. To better contrast the effects
of ImgD and TextD, we also use a reference image with horse as the main subject, but in different
styles/backgrounds. More results are shown in Figure 14.

5 RELATED WORK

Mechanistic Interpretability. Mechanistic interpretability aims to understand the internal compu-
tations of deep learning models by identifying and analyzing individual components and interac-
tions. Recent research has been focused on identifying polysemanticity(Olah et al., 2020). This has
led to the exploration of monosemanticity, the hypothesis that models might contain features that
correspond to single, interpretable concepts (Elhage et al.). Recent advances in dictionary learning
have made it possible to decompose polysemantic neurons into monosemantic features (Cunning-
ham et al., 2023). These techniques, coupled with automated methods for interpreting and labeling
features (Bills et al., 2023; Gurnee et al., 2023; Yan et al., 2024a), have enabled the extraction of
large numbers of interpretable features from models like CLIP (Radford et al., 2021).

Modality Gaps. The study of modality gaps, or the differences and limitations in how different
modalities represent information, has been a topic of interest in cognitive science (Spence, 2011;
Paivio, 1991; Calvert et al., 2004). Our research offers an alternative human-free approach to study
the modality gap. This opens a new approach to study the modality gap that could alleviate potential
bias from human-centric viewpoint and bring more insights from large-scale data. Existing methods
of measuring modality gap primarily are sample-level, such as L2M (Liang et al., 2022), informa-
tion decomposition (Liang et al., 2023), which measures the different percentages of visual and
textual information for a single VLM representation. We, instead, is to identify the different model
components respond to different modalities in order to understand model-level behavior patterns.

6 LIMITATIONS AND CONCLUSION

In this study, we explored the monosemanticity of features within VLMs to elucidate the commonal-
ities and distinctions across visual and textual modalities. we successfully categorized interpretable
features according to their predominant modality, which demonstrate close correspondence to hu-
man cognitive interpretations. Our interpretability analysis in three case studies also demonstrated
the great potential in understanding modality-features in gender bias, defensing adversarial attacks
and controllable multimodal generation. One limitation is that we don’t analyze the evaluation and
results via human study. Future work may extend these methodologies to other multi-modal archi-
tectures and investigate their implications for cognitive science, ultimately fostering the development
of more interpretable and human-centric AI systems.
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A APPENDIX

A.1 IMPLEMENTATION FOR MONOSEMANTICITY TOOLS

The three monosemantic tools, DeCLIP, Multimodal SAE and Multimodal NCL are all
on top of the canonical ViT-B-32 CLIP 7 model from OpenAI (Radford et al., 2021),
with ResNet50. The four methods (including CLIP) share the same model structures but
trained with different training objectives, we load them by feeding the checkpoints using
the open clip.create model and transforms function in the published in https://
github.com/mlfoundations/open_clip.

The feature dimensions of the output features from image encoder and text encoder are both 1024,
the same for CLIP, DeCLIP and Multimodal NCL. Too retain the multimodal representation effi-
ciency in downstream tasks, we have trained the SAE and NCL to reach very small reconstruction
loss for the original features z from CLIP. The dataset for NCL and SAE training is the train split
(around 2900k image-text pairs) from cc3m-wds8. We train the two variants, i.e., SAE and NCL
on top of the pretrained CLIP using a single 3090 GPU.

DeCLIP. We use the checkpoint released in https://github.com/Sense-GVT/DeCLIP
to extract the last layer features, zi and zt.

Multimodal SAE. We insert a SAE model to map the original feature into a sparse latent space,
i.e., zd → zn , with top-k latent as nonzero values. Empirically, we found that when n = d and
k = 32, we can get best results to balance the sparsity and downstream task performance. Such a
SAE model (shared parameter) is inserted at the end of image and text encoder in CLIP. And the
training loss is shown in Eq. 3.

def g e t s a e e m b e d d i n g ( s e l f , z ) :
z = s e l f . e n c o d e r ( z )
z s a e = F . r e l u ( z )
v a l s , i d s = z s a e . t opk ( s e l f . k , dim =1)
z s a e = t o r c h . z e r o s l i k e ( z s a e )
z s a e . s c a t t e r ( 1 , i d s , v a l s )

re turn z s a e

Inspired by Gao et al. (2024), we train the SAE until the sparsity (the inactive dimension) of image
features and text features don’t increase (the same stop criteria for NCL). Noted that there are many
zero values in zsae, we remove those zero activity features (called dead latents in (Gao et al., 2024))
for the further studies. We show the changes of active dimensions of image features and text features
in Figure 11.

Figure 11: The changes of active dimensions over SAE training.

Non-negative Contrastive Learning (NCL). We add the NCL block, i.e., projector after obtain-
ing zi and zt from image encoder and text encoder. The training loss is shown in Eq. 4.

7https://github.com/openai/CLIP
8https://huggingface.co/datasets/pixparse/cc3m-wds

13

https://github.com/mlfoundations/open_clip
https://github.com/mlfoundations/open_clip
https://github.com/Sense-GVT/DeCLIP
https://github.com/openai/CLIP
https://huggingface.co/datasets/pixparse/cc3m-wds


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

s e l f . p r o j e c t o r = nn . S e q u e n t i a l (
nn . L i n e a r ( embed dim , embed dim ) ,
nn . LayerNorm ( embed dim ) ,
nn . ReLU ( ) ,
nn . L i n e a r ( embed dim , embed dim ) ,
)

z n c l = s e l f . p r o j e c t o r ( z )

Similarly, the activated dimensions for image features and text features decrease and are then flat-
tened.(shown in Figure 12.) By comparing with Figure 11, we noticed that the features in SAE is
much more sparse than that in NCL.

Figure 12: The changes of active dimensions over NCL training.

A.2 IMPLEMENTATION OF MDS

Based on the trained CLIP, CLIP+SAE, CLIP+NCL and DeCLIP, we feed the test split of
cc3m-wds dataset to these pretrained models, around 15k image-text pairs to calculate MDS, ac-
cording to Eq.(1). The features are the last-layer output from the text and image encoder. We tried
to calculate the normalization of zi and zt, but found it makes little difference to the final results. It
could be attributed to the existing normalization technique in image and text encoder in CLIP.

A.3 IMPLEMENTATION AND RESULTS OF INTERPRETABILITY EVALUATION

We describe the experiment setup and other results for Section ??.

A.3.1 IMPLEMENTATION

Embedding models h for activated image/text samples. Our interpretability metrics, i.e., Emb-
Sim and WinRate are based on the embeddings of activate image/text samples by each feature. We
need the embedding models to obtain these embeddings, i.e., Z+ and Z−. We use the Vision Trans-
former (ViT-B-16-224-in21k) for image embeddings and the Sentence Transformer (all-MiniLM-
L6-v2) for text embeddings. The goal here is to derive the general and effective image and text
embeddings, so we can also use the image encoder and text encoder from CLIP.

A.3.2 RESULTS

EmbSimi and WinRate for Monosemanticity measurement. Firstly, we show the complete re-
sults for EmbSmi and WinRate in the Table 4.

The results of monosemanticity changes as training goes on. We show the results of monose-
manticity score changes as training goes on for both NCL and SAE in Figure 13.

A.4 IMPLEMENTATIONS AND MORE RESULTS FOR CASE STUDIES

We provide the implementation details and more experimental results for the three case studies in
the follows.
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Table 4: Average interpretability scores (by examining the top activated images/texts) for features extracted
from VLMs.

Models EmbSim WinRate
Activated→ Image Text Image Text
CLIP 0.11 0.45 0.65 0.59
DeCLIP 0.06 -0.07 0.61 0.46
CLIP+NCL 0.14 0.45 0.71 0.60
CLIP+SAE 0.17 0.74 0.60 0.61

Figure 13: Monosemanticity (EmbSimi and WinRate) changes as training goes on. Upper is for
CLIP+NCL, bottom is for CLIP+SAE.

A.4.1 CASE STUDY 1: UNDERSTANDING GENDER PATTERN IN DIFFERENT MODALITIES

Datasets. We select male and female images using a gender classifier touchtech/fashion-images-
gender-age-vit-large-patch16-224-in21k-v3 from cc3m-wds validation set. We have both input im-
ages and text, the original gender classification accuracy is 83.4% and 73.4%, respectively.

Classification. As the intervened features are not compatible with existing pretrained text or text
classifier, we compare these features with the golden feature from male and female data. Specially,
we randomly select a female/male image with classification logits larger than 0.9 (ensuring the
gender patterns are obvious) as the reference features. We use the same embedding models in §A.3
, i.e., Vision Transformer and Sentence Transformer as the encoder and encode both intervened
feature and golden feature. The intervened feature is labeled as the same label as the reference
image with which their distance in encoder space is smaller.

Intervention. There are different number of ImgD and TextD for a given representation of input
sample. To avoid the effects of different number of removal feature, we remove (set the corre-
sponding dimension as zero) the minimal number between ImgD and TextD, and remove the same
number of random selected features as a baseline.

TextD in male concepts. We also cluster different male descriptions according to the percentage
of TextD features among all their top-20 activated features, and we calculate the frequency of
the top7 tokens in each cluster shown in Table 6. We remove the gendered personal pronouns,
e.g., he, she, woman, man, boy, girl and only focus on how gender-neutral concepts represent the
gender. With more TextD injection, the textual descriptions become more sports related, such
coach, basketball, soccer; while the sentences with less activated TextD have top words, as party,
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Models CLIP DeCLIP CLIP+NCL CLIP+SAE
Mono is EmbSim

Visual Mono -0.007 0.009 0.043 0.005
Textual Mono -0.017 -0.001 0.210 0.146

Mono is WinRate
Visual Mono -0.007 0.005 0.002 0.030

Textual Mono -0.069 -0.059 0.018 0.016

Table 5: table
The visual and textual monosemanticity. A higher value indicates that ImgD captures more visual than

linguistic features, and vice versa for TextD.

hip, game, smile, home. This trend is consistent with the social stereotype that male are more active
in sport activities.

Table 6: Representative words in male-related descriptions with different percentage of TextD.

Percentage of TextD Top8 words in male-related textual description
0.1 attends, party, hip, game, comedian, city, black, artist
0.12 smile, made, blue, outside, looks, home, got, book
0.18 artist, player, film, pop, performs, festival, young, suit
0.24 player, football, basketball, team, game, portrait, holding, gym

A.4.2 CASE STUDY 2: DEFENSING MODALITY-SPECIFIC ADVERSARIAL ATTACKS

Models We employed the same ViT-B-32 CLIP as in §A.1 as the multimodality feature extractor
shown in the Figure 8 to extract 1024-dimension features, so we use the categorized TextD, ImgD
and CrossD calculated before. We use LLaVA-1.5-7b as the attacked VLM (Liu et al., 2023). The
whole process of defensing adversarial attack is two steps:

• Generating adversarial images by injecting harmful requests. We have benign scenery
image and a list of 50 harmful requests. Firstly, we create a image with white background
with the text saying the one piece of harmful request, as the contrast image. Then, we apply
the alignment training by minimizing the distance of benign image and contrast image in
the embedding space of the image encoder. The benign image is thus being injected with
harmful semantics, denoted as Fadv .

• Defensing the adversarial attacks. To remove the toxicity of the adversarial samples,
we employ the alignment training shown in Figure 8 by updating the embeddings of the
adversarial samples. Specially, we only select the target features, i.e., the ImgD, TextD
and CrossD to be involved in the training.

When attacking the VLM, we feed the adversarial images/samples along with the text prompt, i.e.,
the according harmful request injected to the adversarial sample. For each adversarial sample, we
repeat the attack process for 100 times. For comparison, we apply the original generated 50 adver-
sarial samples to attack VLM, and the average success rate is 73.26%; and the success rate of the
(benign image - harmful request) is 10.00%. We conducted five independent runs for each experi-
ment to ensure statistical reliability. Results in the tables show mean values across runs, with relative
standard deviations below 3% for accuracy metrics.

Computing resources cost The experiments were conducted with a GPU with 48GB memory. Ad-
versarial sample generation requires approximately 4 GPU hours, while adversarial sample detoxi-
fication takes approximately 6 GPU hours.

A.4.3 CASE STUDY 3: MODALITY-AWARE CONTROL FOR TEXT-TO-IMAGE GENERATION

Models. We select Stable-Diffusion-v2 (https://huggingface.co/stabilityai/
stable-diffusion-2) as our text-2-image generation model. As its image encoder (CLIP-
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ViT-H-14-laion2B-s32B-b79K) is not the same CLIP we used before, we recalculate the MDS dis-
tribution to derive the three categorizes of features.

More results. We present additional images generated by modifying the original multimodal rep-
resentation through feature injection from a reference image. To emphasize the distinction between
ImgD and TextD, we use two reference images of horses in different backgrounds and artistic
styles. Specifically, we compare two sets of images where features from sketch and oil painting
styles are injected using ImgD. We observe that images influenced by sketches tend to be predom-
inantly black and white, while those influenced by oil paintings appear more colorful. In contrast,
the images generated using TextD remain visually similar across both the sketch and oil painting
settings.

Inject with ImgD

Inject with TextD

0.1               0.2                  0.3               0.4                0.5                0.6                0.7    

       Sketch 
Reference Image

           Oil 
Reference Image

(1) Using the sketch reference image for a text-to-image experiment

(2) Using the oil reference image for a text-to-image experiment
0.1               0.2                  0.3               0.4                0.5                0.6                0.7    

Inject with ImgD

Inject with TextD

Figure 14: Generated new images from the VLM with the text prompt ”Please draw an animal”
and varying levels of intervention from different reference image. We found that TextD captures sig-
nificant semantic information, such as shape, etc. Notably, when sketch is selected as the reference
image, both imgD and TextD display sketch-like stylistic features. When oil-painting is chosen as
the reference image, both imgD and TextD exhibit styles that resemble oil paintings. Comparatively,
the stylistic differences between imgD in conditions (1) and (2) are distinct: imgD in (1) lacks color,
whereas imgD in (2) presents diverse coloration. Similar to Figure 10, TextD does not affect low-
level visual features, while ImgD and show significant distortion at higher α values.
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