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ABSTRACT

In the era of deep learning, supervised residual learning (ResL) has led to many
breakthroughs in low-level vision such as image restoration and enhancement
tasks. However, the question of how to formalize and take advantage of unsuper-
vised ResL remains open. In this paper we consider visual signals with additive
noise and propose to build a connection between ResL and self-supervised learn-
ing (SSL) via contrastive learning (CL). We present residual contrastive learning
(RCL), an unsupervised representation learning framework for downstream low-
level vision tasks with noisy inputs. While supervised image reconstruction tasks
aim to minimize the residual terms directly, RCL formulates an instance-wise dis-
crimination pretext task by using the residuals as the discriminative feature. Em-
pirical results on low-level vision tasks with noisy inputs show that RCL is able
to learn transferable representations, whilst retaining significantly reduced anno-
tation costs over fully supervised alternatives. This further validates that CL is
robust against the task misalignment between the pretext task and the downstream
task in SSL.

1 INTRODUCTION

In statistics and optimization, a residual denotes the difference between an observed value and
an estimated value of interest. In the domain of deep learning, the residual commonly takes the
form of r(x) = y − x, where x is the input, y is the output, and r(·) is the residual function (He
et al., 2016a;b). Residual learning (ResL) has fueled substantial recent advances in low-level image
restoration and enhancement tasks, e.g. denoising (Zhang et al., 2017), demosiacing (Kokkinos &
Lefkimmiatis, 2018), and super resolution (SR) (Lim et al., 2017; Li et al., 2018). While previous
studies focus on learning residuals in a supervised fashion, the analogous formulation of unsuper-
vised ResL remains an open question.

Low-level computer vision tasks commonly have to deal with degraded signals. Specifically, the
task input signals will often contain additive noise. In the case of large-scale supervised training,
representations are learned for a specific task (Zhang et al., 2017; Kokkinos & Lefkimmiatis, 2018).
However, self-supervised learning (SSL)1 on noisy images (Lehtinen et al., 2018; Batson & Royer,
2019; Ehret et al., 2019) requires a distinct formulation and may be considered an emerging research
area in low-level computer vision. A key concept of SSL is to define a pretext task with self-
supervision and, crucially, specific pretext tasks are typically designed based on the nature of the
downstream problems to be solved. However, in this paper our experimental investigation provides
evidence that representations learned by such task-dependent pretext tasks lack transferability for
alternative downstream tasks. In this work, we therefore aim to answer an under-explored question:
how to learn informative and universally useful representations for low-level vision tasks from noisy
images?

Motivation Fueled by the breakthroughs in representation learning, a promising solution is con-
trastive learning (CL) (Chen et al., 2020; He et al., 2020; Misra & Maaten, 2020; Tian et al., 2020;
Chuang et al., 2020), which can learn transferable representations for high-level vision tasks. How-
ever, how to formulate an instance-wise discrimination pretext task on noisy inputs remains a chal-
lenging question for CL. Under standard supervised learning (SL), let (x, y) define a noisy and

1We use the terms “self-supervised learning” and “self-supervised representation learning” interchangeably
in this work.
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noise-free image pair, the loss can then be formulated as ‖y − fθ(x)‖, where fθ(·) is the model of
interest with parameter θ. In many cases, y is unavailable due to annotation costs, e.g. obtaining
ground truth data for low-level vision tasks typically requires complex and often constraining pro-
cedures. By removing the requirement of a noise-free image y, instead minimizing ‖x− fθ(x)‖ can
be seen to easily provide a trivial solution: fθ(·) is an identity mapping. Thus, various efforts in SSL
have been made to minimize ‖x̃− fθ(x)‖, where x̃ constitutes another noisy variant of x (Lehtinen
et al., 2018; Batson & Royer, 2019; Ehret et al., 2019). In this work we propose a distinct alternative
approach to this strategy. We observe that, without the norm operator, x− fθ(x) can be regarded as
a residual term. Inspired by supervised ResL, we aim build a connection between ResL and CL in
this work.

Contributions We bridge a methodological gap between SSL on visual signals with additive noise
and unsupervised ResL. We present residual contrastive learning (RCL), a robust SSL framework
on noisy images. Instead of applying a contrastive loss to encoded images (i.e. feature vectors)
directly, we approach this question by examining the residuals. We conjecture that the residuals
can be effectively used as a discrimination feature for CL. The key challenge that arises is that
existing contrastive loss terms are commonly designed for semantic feature vectors. To solve this
problem, we propose the residual contrastive loss based on InfoNCE (Oord et al., 2018). We utilize
a measure over distributions to compute the similarity between two residual tensors with the same
shape (c.f . cosine similarity for two feature vectors). The statistical distance we choose only mea-
sures the divergence between two probability distributions, instead of element-wise correspondence
between two residual tensors. We systematically evaluate RCL with different data modalities and
downstream tasks. Our empirical results show that RCL robustly outperforms SSL baselines for the
task of representation learning on noisy images. The representations learned by RCL also express
strong generalization ability in multiple downstream tasks, such as denoising, demosaicing, and SR.
Finally, we report that a learning paradigm of pre-training on unlabeled data by RCL, followed by
fine-tuning on small amount of labeled data with SL, can significantly reduce data annotation costs.

Our contributions can be summarised as:

• We provide the first formulation of an instance-wise discrimination pretext task based on
residuals. In order to leverage this task, we demonstrate that contrastive loss functions
(e.g. InfoNCE) can be reformulated using appropriate distance metrics to discriminate be-
tween statistical distributions.

• We propose RCL, a novel unsupervised representation learning framework that can learn
transferable representations from only noisy inputs. To the best of our knowledge, this
constitutes the first study of CL on noisy images for low-level image reconstruction tasks.

• The empirical results show that RCL can learn robust representations from noisy images
without paired ground truth, at significantly reduced annotation cost.

The remainder of the paper is organized as follows. In Sec. 2, we briefly introduce the preliminary
knowledge of unsupervised contrastive learning and signal-dependent noise. In Sec. 3, we introduce
the proposed residual contrastive learning. In Sec. 4, we validate the effectiveness of RCL with
extensive experiments. Finally, in Sec. 5, the conclusions are drawn.

2 PRELIMINARY

2.1 UNSUPERVISED CONTRASTIVE LEARNING

Contrastive learning (CL) was originally developed in order to enable neural networks to identify
what makes two objects similar or different (Baldi & Pineda, 1991). A widely adopted contrastive
loss InfoNCE (Oord et al., 2018), is formulated as,

LNCE = − log
exp(sim(zq, z0)/τ)∑N
i=0 exp(sim(zq, zi)/τ)

(1)

where z denotes the feature vector extracted from an image patch of interest, τ is a temperature
parameter, and sim(·, ·) is the cosine similarity function. Firstly image patches are encoded into
feature vectors via an encoder and then sim(·, ·) can be used to measure the similarity between
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these representations. Here, (zq, z0) is a positive pair such that two patches are taken from the same
image; and (zq, zi>0) is a negative pair, where two patches are taken from different images.

From the perspective of representation learning, recent CL frameworks (Oord et al., 2018; He et al.,
2020; Chen et al., 2020; Tian et al., 2020; Misra & Maaten, 2020) design pretext tasks by utilizing
the invariance of the semantic information encoded between different views of the same instance,
i.e. different crops of the same instance should contain similar semantic information. Mathemati-
cally, minimizing Eq. (1) is equivalent to maximizing the mutual information of two views of the
same image (Oord et al., 2018). Thus, the model is expected to learn, in a self-supervised fashion,
invariant semantic features that are shared by pairs of views, to the benefit of downstream tasks.

2.2 SIGNAL-DEPENDENT NOISE MODEL

In the domains of computer vision and image processing, given an observed image x and its under-
lying noise-free image y serving as ground truth, we have

x = y + n,n ∼ P (n) (2)

where n constitutes additive noise following a probability distribution P (n), that is introduced dur-
ing the image acquisition process due to hardware limitations. The real P (n) is typically unknown
in practical problems and has been modelled with varying levels of complexity (Foi et al., 2008;
Wei et al., 2020). A common simplifying assumption involves statistically modelling P (n) as a
homoscedastic Gaussian distribution. This simplification makes a strong assumption that the noise
is independent of the underlying signal. However, many previous studies (Healey & Kondepudy,
1994; Gow et al., 2007; Liu et al., 2008; Foi et al., 2008; Hasinoff et al., 2010; Makitalo & Foi,
2012) have rigorously shown that image noise is in fact signal-dependent; n ∼ P (n|y), i.e. that the
probability distribution of n is conditioned on y. Statistical signal-dependent noise modeling has
thus also been previously explored and a common modelling choice is the zero-mean heteroscedas-
tic Gaussian model (Mohsen et al., 1975; Liu et al., 2014), known as the noise level function (NLF)
in the domain of computational photography,

ni ∼ N (0, λshotxi + λread), (3)

where ni is the noise at pixel yi of the clean image y, and λshot and λread are parameters controlling
the variance of the Gaussian model.

3 RESIDUAL CONTRASTIVE LEARNING

In this section, we present residual contrastive learning (RCL) in details. Firstly, we formulate the
unsupervised representation learning problem for low-level vision tasks with noisy inputs in Sec. 3.1.
Secondly, we introduce an empirical observation, which is also the main assumption of this study, in
Sec. 3.2. Thirdly, we propose to use the residuals as the discriminative features for CL and present
residual contrastive loss in Sec. 3.3. Fourthly, we describe the regularization term for low-level
vision tasks. Finally, in Sec. 3.5, we discuss an exception of the general problem formulation and
propose an adapted solution.

3.1 PROBLEM FORMULATION

Following the notation in Sec. 2, we denote x as a noisy image signal with clean image signal y
and additive noise n. The tuple (x,y,n) can be formed by considering terms from Eq. (2).2 The
noise element n follows an unknown distribution with variance depending on the underlying but
unknown y. It is common to assume n ∼ N (0,σ2(y)) i.e. n is a zero-mean Gaussian distribution
with variance dependent on y (Yue et al., 2019).

For an image reconstruction task under SL, a training set S = {(xi,yi)}NS
i=1 is given, with NS

training examples. Let fθ denote a model of interest which takes x as input. The optimization goal
is then to minimize ‖fθ(x)− y‖p, for optimal model weights θ where ‖ · ‖p denotes the p-norm.

In contrast to SL; unsupervised representation learning, the problem setting of interest in this work,
involves an unlabelled training set. We alternatively consider S = {xi}NS

i=1 and the goal is to
2For simplicity, we assume x and y take a common image format, e.g. RGB or RAW.
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learn representations (i.e. optimize model weights θ) for downstream tasks with access to the noisy
image signal only. In Sec. 4, we evidence the efficacy of our contributions by considering several
prominent image reconstruction tasks (denoising, demosaicing, and super resolution), through the
lens of unsupervised representation learning.

3.2 ASSUMPTION

Commonly adopted camera models that account for physical noise (Foi et al., 2008; Makitalo & Foi,
2012) state that the acquisition of image signals are subject to various factors such as the radiant
power of the scene, the exposure time, the sensor gain, and the analog-to-digital conversion (ADC).
Thus, signal-dependent noise may be introduced at different stages due to hardware limitations.
Consideration of this model leads to a first assumption:

Assumption 1. On average, the noise distributions associated with two image crops, extracted from
the same image, have delectably smaller divergence than noise distributions pertaining to crops
extracted from different images.

Asm. 1 constitutes a natural extension of the assumption that n ∼ N (0,σ2(y)). In fact, for natural
images, the noise distributions of two crops originating from the same instance may also be corre-
lated due to potential self-similarities (Batson & Royer, 2019), that is, similar structures appearing
at different locations and scales in the same image.

3.3 RESIDUAL CONTRASTIVE LOSS

Figure 1: RCL of low-level visual representations
for noisy inputs. We use the framework of Sim-
CLR (Chen et al., 2020) to illustrate the main con-
cept. x is a noisy image. x̃i and x̃j are two ran-
dom crops from the same x (a positive pair). rθ(·)
is a residual function, defined in Eq. (4). n̂i and
n̂j are two corresponding residual tensors.

In this section, we formally introduce the pro-
posed residual contrastive loss. First, we define
the residual tensor for x as

n̂(x) = rθ(x) = x− fθ(x). (4)

In contrast to common supervised ResL set-
tings (He et al., 2016a;b), we apply a con-
trastive loss on the residuals to learn fθ. We
formulate a residual-based instance-wise dis-
crimination pretext task, i.e. we use the residual
tensors (c.f . the feature vectors in Eq. (1)) as
the input for CL. The framework is illustrated
in Fig. 1. We note, however, that the sim(·, ·)
function in Eq. (1) implicitly imposes two con-
straints: 1. the input z is required to take the
form of a normalized vector; and 2. an element-
wise correspondence between two feature vec-
tors is required in the feature space. To realize a
residual contrastive loss suitable for dense pre-
diction tasks associated with low-level vision,
we relax these constraints by replacing the co-
sine similarity sim(·, ·) with a negative distance
function. The original contrastive loss (Eq. (1))
can then be reformulated as

Lcontrast = − log
exp(−d(n̂(xq), n̂(x0))/τ)∑N
i=0 exp(−d(n̂(xq), n̂(xi))/τ)

(5)

where τ is a temperature parameter (Chen et al., 2020) and d(·, ·) is a non-negative statistical met-
ric measuring the divergence between two probability distributions, such that larger metric values
indicate larger divergence. Similar to Eq. (1), we define a positive pair (n̂(xq), n̂(x0)) as two im-
age patches (xq,x0) cropped from the same instance and a negative pair (n̂(xq), n̂(xi>1)) as two
image patches (xq,xi>1) cropped from two different instances.

We note that, unlike cosine similarity, d(·, ·) should not assume a pair-wise relationship between
two samples, as the noise distribution is independent of the pixel location. Valid distance measure

4



Under review as a conference paper at ICLR 2022

Algorithm 1 Batch-wise training of residual contrastive loss.
1: Sample a batch of N + 1 images. . Sample N + 1 positive pairs
2: Sample two positive patches for each image.
3: Generate n̂(x) for each of 2N + 2 patches. . Eq. 4
4: for j = 1, 2, · · · , N + 1 do . Compute recontrastive loss
5: Take the jth pair as the positive pair (n̂(xq), n̂(x0)).
6: Take the second patch of each of the other N pairs as n̂(xi>1).
7: Compute Lcontrast for the jth positive pair. . Eq. 5
8: Sum up Lcontrast for a batch N + 1 images as the batch-wise residual contrastive loss.

d(·, ·) should also possess desirable properties such as ease of computation and differentiability,
towards enabling efficient end-to-end training. Common information theoretic measures (e.g. Kull-
back–Leibler divergence) that require density estimation do not meet the above requirements.

We therefore investigate a number of alternative feasible options for d(n̂(xp), n̂(xq)), where
(n̂(xp), n̂(xq)) are two residual tensors. The smaller the value of d(·, ·), the smaller the distri-
butional divergence between two residual tensors is.

Bhattacharyya Distance The Bhattacharyya distance (BD) has a closed-form expression in the case
that the two distributions of interest are Gaussian. The sample distribution of residual tensors can
be approximated by a Gaussian distribution when the crop size is large enough. Formally, the BD
between two Gaussian distributions n̂(xp)∼N (µp, σ

2
p) and n̂(xq)∼N (µq, σ

2
q ) can be estimated as
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ln(
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), (6)

where µ and σ2 are the sample mean and the sample variance.

Earth Mover’s Distance The earth mover’s distance (EMD), also known as the 1st Wasserstein
distance, is

EMD(n̂(x)p, n̂(x)q) = inf
γ∈Π(Pp,Pq)

E(n̂(x)p,n̂(x)q)∼γ [‖n̂(x)p − n̂(x)q‖], (7)

where n̂(x)p ∼ Pp, n̂(x)q ∼ Pq , and Π(·, ·) denotes the joint distribution. We highlight that the
EMD does not make assumptions over the residual distribution (c.f . BD).

Maximum Mean Discrepancy The maximum mean discrepancy (MMD) is a non-parametric
method based on the kernel embedding of distributions where a probability distribution is repre-
sented as an element of a reproducing kernel Hilbert space (Gretton et al., 2012). Given a domain
Ω, let an arbitrary function h : Ω → R belongs to a class of functions H, MMD is mathematically
defined as

MMD(H, Pp, Pq) = sup
h∈H

(Ep[h(n̂(xp))]− Eq[h(n̂(xq))]). (8)

Similar to EMD, MMD does not make any assumption over the distribution in question and has a
robust empirical estimation based on Gaussian kernels (Pan et al., 2010).

For completeness, the batch-wise training details of the residual contrastive loss are illustrated in
Algorithm 1.

3.4 OPTIMIZATION

While Eq. (5) enables self-supervised representation learning, a new question arises: as fθ could
represent an arbitrary function that fits in Eq. (4), the representations learned by RCL may not be
meaningful for the downstream tasks of interest. CL works well for high-level visual representa-
tions because the pretext tasks and downstream tasks both involve discrimination of visual objects.
Similarly, we require to build such a connection between RCL and low-level vision tasks.

As the performance of the low-level image reconstruction tasks is sensitive to pixel-level intensities,
a simple solution is to include the term ‖x− fθ(x)‖ as a regularizer. Note that minimizing ‖x −
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fθ(x)‖ alone (i.e. without RCL) could lead to the trivial solution of an identity mapping. This
problem can be mitigated through the introduction of non-linearities to both terms. Inspiring by
this, we leverage the basic concept of the perceptual loss (Johnson et al., 2016) and can define the
consistency loss term as

Lconsistency = ‖φ(ge(x))− φ(ge(fθ(x)))‖22, (9)

where φ(·) represents the features extracted from a pre-trained encoder ge. Note, ge could be pre-
trained in either a supervised fashion (e.g. on ImageNet (Deng et al., 2009)) or an unsupervised
fashion on the unlabeled noisy inputs (e.g. via MoCo (He et al., 2020)). We utilize the assump-
tion that the noisy input image and the reconstructed output image should convey similar semantic
information, i.e. the noise should not drastically change the semantic content of the image.

The final training objective is then the sum of the two introduced losses:

Ltotal = αLcontrast + Lconsistency, (10)

where α is a weighting parameter chosen empirically.

3.5 ILL-DEFINED RESIDUAL

In Sec. 3.3 and Sec. 3.4, the difference x − fθ(x) implicitly assumes that x and fθ(x) (or y) have
the same shape, or more specifically, reside in the same color space. A common scenario in low-
level vision is that the input and output signals reside in different color spaces. One such example
low-level image reconstruction task of fundamental importance is joint demosaicing and denoising
(JDD) (Hirakawa & Parks, 2006; Khashabi et al., 2014; Gharbi et al., 2016), which transforms
noisy RAW images to clean RGB images. In such cases x now defines an image in RAW format,
and fθ learns a mapping for our considered example task, JDD. Given a RAW input x with shape
H×W×13, the output fθ(x) will produce an RGB image with shapeH×W×3. Such a formulation
unfortunately results in Eq. (4) becoming ill-defined. One simple solution involves redefinition of
the residual term in the RAW domain. We can thus redefine Eq. (4) as n̂(x) = x−mosaic(fθ(x)),
where mosaic is a standard image mosaic operation that transforms the images in RGB format
back to RAW format. In lieu of applying ge, pre-trained in the RAW domain, we adopt a simple
consistency loss formulation for JDD (Ehret et al., 2019):

Lconsistency = ‖x−mosaic(T (fθ(x)))‖ (11)

where T is a linear interpolation operation (Keys, 1981). Note, due to the mosaic operation lacking
an inverse, Eq. (11) does not offer a trivial solution.

4 EXPERIMENTS

In this section, we first describe the experimental setting, implementation details and evaluation
metrics in Sec. 4.1. Then, we report and analyze the experimental results on the synthetic RGB
and RAW data in Sec. 4.2 and Sec. 4.3, respectively. At last, we evaluate RCL on the real data in
Sec. 4.4.

4.1 EXPERIMENTAL SETUP

4.1.1 SIMULATION

To empirically validate the idea of contrastive representation learning with residuals, we firstly de-
sign large-scale simulated experiments, based on synthetic signal-dependent noise. Note, we have
to leverage synthetic datasets due to the lack of real-world multi-task datasets for low-level vision
tasks. To simulate such signal-dependent noise, we generate synthetic heteroscedastic Gaussian
noise based on an NLF model (Eq. (3)). We use different (λshot, λread) to model different cameras
and acquisition settings. The parameters (λshot, λread) are randomly sampled to ensure the overall
noise variance level σ2 of each image falls in a reasonable range for the data used in our experi-
ments4 and we set σ ∈ [0, 20] following (Gharbi et al., 2016). In this way, we consider each image

3Following Gharbi et al. (2016), a practical option is to first rearrange x into shape H/2×W/2×4 as a
pre-processing step, where each channel contains one of the four colors in the CFA array.

4See Appendix A.1 for noise simulation.
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to have a noise distribution with unique parameters. From the perspective on the dataset S, there is
therefore an approximate one-to-one mapping between (λshot, λread) and each image. We use this
challenging simulation model to evaluate the robustness of SSL frameworks.

4.1.2 DATASETS

In order to simulate the large-scale unlabeled training data with controllable signal-dependent noise,
we consider three large-scale public datasets, namely, the MIT Demosaicing dataset (Gharbi et al.,
2016) (MIT), the Stanford Taskonomy dataset (Zamir et al., 2018) (Stanford), and the PASCAL
VOC dataset (Everingham et al., 2010) (VOC). We generate noisy RGB images by adding synthetic
noise following Eq. (3). For JDD, following previous work (Heide et al., 2014; Gharbi et al., 2016;
Ehret et al., 2019), each RGB image is first mosaiced to form a Bayer pattern (e.g. RGGB in this
work) RAW image and then synthetic noise is added. The datasets are split into a training set and a
test set.5

4.1.3 PROXY EVALUATION

CL aims to learn representations for the downstream tasks, i.e. pre-training fθ instead of directly
solving the problem. In this work, we aim to test the generalization ability of the learned representa-
tions (Zhang et al., 2016). Following previous studies on CL (He et al., 2020; Chen et al., 2020), we
adopt a proxy evaluation approach. Concretely, we fine-tune the learned representations on down-
stream tasks with a small amount of annotated data, under SL. We report the performance of the
downstream tasks as the proxy performance of SSL. In this way, we can systematically evaluate the
generalization and transferablility of representations learned under different SSL frameworks. Fol-
lowing the linear classification protocol (He et al., 2020), once weights of a network fθ have been
pre-trained using an unlabeled training set, they are then fixed (except the last layer). The original
last layer is replaced with a randomly initiated task-dependent layer for the downstream task. The
new last layer is then fine-tuned with the labeled training set and evaluated on the test set. Note,
under proxy evaluation, the representations of the intermediate layers are fixed. The reported nu-
merical results are used to indirectly reflect the quality of fixed representations, thus this is a proxy
evaluation. This evaluation protocol is different from the commonly seen protocols in low-level
vision tasks, where the end-to-end solutions can be compared directly, without fine-tuning, and the
reconstructed images can be visualized for qualitative comparison.

4.1.4 EVALUATION METRICS

We consider two common image reconstruction metrics for the proxy evaluation, peak signal-to-
noise ratio (PSNR) and structure similarity index measure (SSIM). PSNR is defined as

PSNR = 10 log10

2552

1
H×W×C

∑H
i

∑W
j

∑C
k (x− y)2

, (12)

where H , W , C are the height, width, and number of channels for paired images x and y. SSIM is
defined as

SSIM = l(x− y)αc(x− y)βs(x− y)γ , (13)

where

α > 0, β > 0, γ > 0,

l(x− y) =
2µxµy + c1
µ2
x + µ2

y + c1
,

c(x− y) =
σxy + c2

σ2
x + σ2

y + c2
,

s(x− y) =
σxy + c3
σxσy + c3

.

Here, µx and µy are the mean of x and y, σx and σy are the standard deviation of x and y, σxy is the
covariance between x and y, and c1, c2, and c3 are constants. We use the default implementation of

5See Appendix A.2 for the dataset descriptions.
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scikit-image package6. We repeat experiments over five trials and report mean results. We use
the performance of supervised pre-training as an Oracle.

4.1.5 IMPLEMENTATION

Theoretically, fθ may constitute any model capable of performing dense prediction tasks. In this
section, we will show that the representations learned by fθ can be successfully applied to various
downstream image reconstruction tasks: denoising, demosaicing and super resolution. Following
(Zamir et al., 2018), we utilize a generic network backbone; U-Net (Ronneberger et al., 2015) to
instantiate fθ. We additionally use a ResNet50 (He et al., 2016a), pre-trained on ImageNet (Deng
et al., 2009) for the fixed feature extractor ge. To instantiate Eq. (5), we follow (Chen et al., 2020) in
defining temperature τ values and use a batch size of 64. We use a weighting parameter α = 10−3

in the unsupervised pre-training phase and an L1 loss for the supervised fine-tuning in the evaluation
phase. We use an Adam (Kingma & Ba, 2015) optimizer with β1 = 0.9, β2 = 0.999, and ε = 10−7,
and a fixed learning rate 10−3. The minimal crop size is 128×128. All models are implemented in
PyTorch on a NVIDIA Tesla V100 GPU.

4.2 EXPERIMENTS ON RGB DATA

4.2.1 BASELINES

We consider two strong SSL baselines, which are designed for representation learning on noisy im-
ages, namely noise2noise (N2N) (Lehtinen et al., 2018) and noise2self (N2S) (Batson & Royer,
2019). For N2N, we generate paired noisy RGB images with the same random parameters (λshot,
λread). Note that N2N and N2S both utilize a formulation of ‖x̃ − fθ(x)‖, where x̃ is a noisy
observation of x. We also include three state-of-the-art unsupervised CL framework for high-level
vision tasks to validate our hypothesis that there exists a task misalignment between semantic under-
standing tasks and image restoration tasks. The first one is MoCo (V2) (He et al., 2020). As MoCo
can only pre-train a feature extractor such as ResNet (c.f . U-Net), we use a ResNet-FCN (Long
et al., 2015), where the feature extractor is a ResNet50 pre-trained using MoCo and only the decon-
volutional component is fine-tuned. The second one is a CL framework for dense prediction tasks,
VADeR (O. Pinheiro et al., 2020). Unlike MoCo, VADeR applies CL in a pixel-level, thus can train
an encoder-decoder network directly for dense prediction tasks. The third one is also a pixel-level
CL framework, PixContrast (Xie et al., 2021). Note, in contrast to RCL, VADeR and PixContrast
are designed for semantic understanding tasks, i.e. task misalignment still exists. We use a U-Net
backbone for VADeR and PixContrast, where the number of output channels of the last layer is set
as 3 for RGB images. The pre-training and fine-tuning procedures follow Sec. 4.1.3, same as RCL.

4.2.2 DENOISING

We instantiate denoising as the downstream task and report representation learning results in Table 1.
MoCo has the weakest performance for two reasons. Firstly, MoCo is not designed for learning
representations for low-level vision tasks. Secondly, ResNet-FCN is not designed for image recon-
struction tasks and MoCo cannot pre-train networks (the decoders) for such dense prediction tasks
directly (Dong et al., 2021). VADeR and PixContrast show slightly improved performance over
MoCo, as they can pre-train the decoder. However, all three CL frameworks designed for high-level
tasks produce results much worse than SSL methods designed for low-level vision tasks, thus they
are omitted in the following discussion. Note, in the proxy evaluation, the pre-training set and test-
ing set do not overlap. RCL shows competitive representation learning performance in comparison
with N2N and N2S, which are reported to achieve reasonable performance in blind denoising tasks.
Among the three distance metrics explored, EMD shows robust performance in comparison to BD
and MMD as RCL with EMD consistently outperforms RCL with BD and MMD. The focus of this
work is to present the overall framework of RCL. Though the mathematical analysis on the choice
of the best distance metric is beyond the scope of this work, based on the empirical results, EMD
may be preferred in practical denoising applications.

6https://scikit-image.org/docs/dev/api/skimage.metrics.html
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Table 1: Proxy evaluation of representation learning using denoising as the downstream task.

Method MIT Stanford VOC
PSNR SSIM PSNR SSIM PSNR SSIM

MoCo 12.87 0.0498 16.01 0.1505 14.21 0.1044
VADeR 14.63 0.1088 17.54 0.1601 16.33 0.1573
PixContrast 14.77 0.1101 17.61 0.1610 16.42 0.1585
N2N 28.66 0.8614 34.14 0.8699 30.91 0.8272
N2S 28.16 0.8373 34.04 0.8640 30.71 0.8256
RCL-BD 28.83 0.8871 34.75 0.8618 31.29 0.8274
RCL-EMD 29.54 0.8908 35.43 0.8783 31.39 0.8330
RCL-MMD 28.68 0.8864 34.87 0.8687 31.53 0.8316
Oracle 31.26 0.9187 38.25 0.9422 33.65 0.9038

4.2.3 SUPER RESOLUTION

Although the problem formulation in Sec. 3.1 is defined for noisy images, we also ex-
plore the generalization ability of the learned representations by investigating downstream
tasks with clean input images. Super resolution (SR) commonly constitutes one such ex-
ample task. As each image in the Stanford dataset has two resolutions (512×512 and
1024×1024), we simply use the higher resolution image as the upsampled ground truth. Fol-
lowing the proxy evaluation protocols introduced previously, results are presented in Table 2.

Table 2: Proxy evaluation of representation learn-
ing using SR and JDenSR as the downstream task
on the Stanford dataset.

Method SR JDenSR
PSNR SSIM PSNR SSIM

N2N 31.61 0.8730 27.90 0.7860
N2S 31.11 0.8699 27.80 0.7831
SL (Den) 34.18 0.9118 32.89 0.8353
RCL-BD 38.89 0.9654 32.10 0.8046
RCL-EMD 39.01 0.9658 32.63 0.8214
RCL-MMD 38.31 0.9634 31.95 0.8068
Oracle 38.93 0.9603 35.98 0.9175

We observe that RCL outperforms N2N and
N2S by a large margin. We conclude that
the representations learned by RCL from noisy
images can also be utilized for clean images.
By comparing Table 1 with Table 2, we find
the performance gap between RCL and N2N
(N2S) becomes larger, i.e. N2N and N2S tend
to learn less meaningful representations for
downstream problems when the problem differs
from their pretext tasks, in the investigated set-
ting. This phenomenon has also been discussed
in (Zhang et al., 2016), where a task-dependent
colorization-based SSL shows limited perfor-
mance in image classification. Again, RCL
with EMD consistently outperforms RCL with
BD and MMD.

4.2.4 JOINT DENOISING AND SUPER RESOLUTION

As a natural extension to independent denoising and SR tasks, we consider joint denoising and super
resolution (JDenSR) as the downstream task, which has two sub-tasks and can further demonstrate
the versatility of the learned representations. The results are presented in Table 2. Again, RCL
outperforms the baseline SSL frameworks by a large margin. Notably, as EMD shows more robust
performance than BD and MMD in three downstream tasks, we will use EMD as the default distance
metric in the rest of experiments.

4.2.5 TRANSFERABILITY: SUPERVISED PRE-TRAINING vs. UNSUPERVISED PRE-TRAINING

In addition to unsupervised pre-training, we report the performance of supervised pre-training by
denoising in the “SL (Den)” row of Table 2. We learn representations by applying SL to the de-
noising task, defined in Table 1. We then fine-tune to the alternative downstream tasks in a fashion
identical to the considered SSL methods. We note that interestingly, RCL is able to outperform “SL
(Den)” for the SR task and also RCL-EMD achieves higher performance than the Oracle in Table 2.
This unintuitive phenomenon that unsupervised pre-training can improve performance over super-
vised pre-training, has been corroborated in CL studies that consider high-level vision tasks (Wang
& Isola, 2020). While supervised pre-training tends to learn task-dependent representations, the
representations learned by CL are more informative. In Table 2, the “SL (Den)” row, pertaining to
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Table 3: Standard SL (left) and RCL pre-training with SL fine-tuning (right), evaluated with denois-
ing on the VOC dataset. # Labels denotes the number of labeled data available for SL.

# Labels SL RCL + SL
PSNR SSIM PSNR SSIM

0 - - 22.62 0.7989
10 20.74 0.7299 28.20 0.8834
102 27.19 0.8734 30.24 0.9028
103 31.31 0.9184 32.09 0.9280
104 33.41 0.9437 33.85 0.9514

JDenSR task results, provides strong performance, and a marginal advantage over RCL, which may
be explained by the fact that our JDenSR task can be considered closely related to a pure denoising
task.

4.2.6 RCL vs. SL

To further quantify the performance and labelling-cost trade-off, we perform an ablation study. We
train a U-Net in a supervised fashion (SL) for the denoising task using VOC data and compare
this with RCL(-EMD) under various magnitudes of available training labels. We re-use the same
random seeds for both methods. In the first row of Table 3, we report the performance of RCL by
directly applying the representations pre-trained on the unlabelled training set, on the test set. In the
remaining Table 3 rows, it can be observed that the performance gain obtained by pre-training with
RCL grows larger as SL suffers more from label scarcity.

4.2.7 LABEL-EFFICIENT LEARNING

Our ablation affords us some initial evidence towards answering the questions: can RCL help SL?
and, if so, when can RCL help? We fine-tuned the U-Net, pre-trained by RCL(-EMD) on the entire
training set, with additional paired RGB training images, as above. Pre-training with RCL consis-
tently improves the performance of standard SL. In cases where labelled data are rare, expensive to
collect or curate, such pre-training may be able to offer significant improvement (e.g. +7.46dB with
only ten labels). We can also observe that improvement margins diminish as the number of labels
available significantly grow (e.g. +0.44dB with 10, 000 labels).

4.2.8 ANALYSIS ON RESIDUAL CONTRASTIVE LOSS
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Figure 2: Comparison of residual contrastive loss
(illustrated with EMD) before and after training.
The density plot depicts the pair-wise differences
of EMD between negative pairs minus EMD be-
tween positive pairs.

It is important to validate that RCL indeed
learns from the residuals in the proposed for-
mulation. To illustrate the learning outcome di-
rectly, we extract the residual tensors by using
a U-Net trained on the MIT dataset with RCL-
EMD. Given an anchor image, we calculate the
pair-wise difference for EMD between a neg-
ative pair and EMD between a positive pair.
Given the same network, we record the differ-
ences before the training starts (i.e. the weights
are randomly initialized) and after the loss con-
verges. The density plot of the differences is
shown in Fig. 2. RCL contracts the predicted
distribution closer to the true underlying distri-
bution, where we use the sampled noise as the
residual. We also find that large α in Eq. (10)
will degrade the performance. We conjecture
that this is because low-level vision tasks are sensitive to pixel-level perturbation. To provide an ex-
ample: a very small change in the predicted pixel intensity can change the reconstructed pixel color
but an analogous change in predicted pixel probability may not meaningfully change a segmentation
result. RCL with large α can still learn representations, however the representations might not make
sense for the demonstrated downstream tasks, discussed in Sec. 3.4.
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Table 4: Proxy evaluation of representation learning using JDD, JDemSR, and JDDSR as the down-
stream tasks on Stanford data.

Method JDD JDemSR JDDSR
PSNR SSIM PSNR SSIM PSNR SSIM

SL (JDD) - - 32.55 0.8727 30.70 0.8323
M2M 26.62 0.7463 27.21 0.8219 26.07 0.7292
RCL 27.37 0.7514 28.00 0.8160 26.87 0.7331
Oracle 33.60 0.8979 36.63 0.9431 31.56 0.8490

4.2.9 CROP SIZE vs. BATCH SIZE

Under the constraint of limited computational resource, there will be a trade-off between crop size
and batch size. Intuitively, a larger sample size should improve the estimation of the statistical
distance. We do observe a performance drop of 2.06 dB in PSNR when RCL-EMD is trained with a
crop size reduced from 128×128 to 64×64 on the Stanford dataset. However, increasing the batch
size under crop size 64×64 also leads to a decrease in performance (e.g. -0.98 dB when batch size
is increased from 64 to 128). This contradicts theoretical findings that imply a larger batch size
is always preferred (Chuang et al., 2020). As (Chuang et al., 2020) focus on image classification
problems where images are distinct, we conjecture that this phenomenon may be caused by the fact
that different residual tensor pairs may have close scalar values by coincidence (c.f . a feature vector
cosine similarity does not have this concern). A large batch size may also increase the chance of
such coincidence, thus is less preferable.

4.3 EXPERIMENTS ON RAW DATA

4.3.1 BASELINES

We evaluate RCL with RAW data following a similar protocol as the RGB data. There is limited
related work in the literature. We use mosaic2mosaic (M2M) (Ehret et al., 2019), a state-of-the-art
SSL JDD framework, as the SSL baseline. In this section, we use RCL to denote RCL-EMD, which
is reported to have the most robust performance in Sec. 4.2.

4.3.2 DOWNSTREAM TASKS

Following Sec. 4.2, the representations are evaluated with three downstream tasks on RAW
data, which are joint demosaicing and denoising (JDD), joint demosaicing and super resolution
(JDemSR), and joint demosaicing, denoising and super resolution (JDDSR). The results are eval-
uated on Stanford data and are presented in Table 4. While RCL outperforms M2M overall, the
performance gap between RCL and the baseline becomes smaller while the gap between RCL and
SL becomes larger, compared with Sec. 4.2. We believe this to be partially caused by the nature of
the demosaicing task. The redefined residuals between x and fθ(x) in Sec. 3.5 no longer have a
pixel-level correspondence, which may hamper RCL from learning transferable representations.

4.4 LABEL-EFFICIENT LEARNING ON REAL NOISY DATA

4.4.1 PREPARATION

To illustrate the practical value of RCL, we apply it to denoising of real noisy camera data. In
this experiment, we aim to show that RCL can be efficiently utilized to reduce the annotation cost
with the learning paradigm of unsupervised pre-training followed by supervised fine-tuning. We use
the RGB data from the Smartphone Image Denoising Dataset (SIDD) (Abdelhamed et al., 2018)
where 80% of the data is considered as the training set and the final 20% is reserved for testing.
The data is rearranged into patches of size 128×128. In order to show that the formulation of RCL
generalizes well, we let fθ be a DnCNN (Zhang et al., 2017), a state-of-the-art denoiser. While
common approaches predict the reconstructed pixels (e.g. U-Net in Sec. 4.2), DnCNN predicts the
residuals directly7. In contrast to Eq. (4), the residual term now takes the form of x− (x− fθ(x)),

7Under this formulation, representations will have a lower generalization ability for other downstream tasks,
c.f . UNet in Sec. 4.2

11



Under review as a conference paper at ICLR 2022

such that Eq. (5) and Eq. (9) still hold. We use a batch size of 64 and an Adam optimizer with a
constant learning rate 10−3.

4.4.2 RESULTS

Table 5: Label-efficient learning on real noisy
data, evaluated with denoising on the SIDD
dataset. SL (left) denotes SL with trained with
the full labeled training set. RCL + SL (right) de-
notes RCL pre-training with full unlabeled train-
ing set with SL fine-tuning with only 30% of la-
beled data.

SL RCL + SL
PSNR SSIM PSNR SSIM
37.21 0.936 37.64 0.944

Following the same procedure used to generate
the results in Table 3, the goal is to utilize unsu-
pervised pre-training with RCL to improve the
performance of SL. As the baseline, we train
a DnCNN with the full training set in a super-
vised fashion. For label-efficient learning, we
first train another DnCNN with the full training
set in an unsupervised fashion via RCL. Then,
the DnCNN is fine-tuned with only 30% of la-
beled training set. The results are presented in
Table 5. We find that, with only 30% of la-
beled data, label-efficient learning can outper-
form standard SL using the full training set and
efficiently reduce the annotation cost. The results in Table 3 and Table 5 suggest that the represen-
tations pre-trained by RCL can slightly improve the performance while using only limited number
of labels. We believe that this is due to the fact that, while standard SL could lead to overfitting, the
representations learned by RCL generalizes well on the unseen data (the test set).

5 CONCLUSION

We present a principled unsupervised representation learning strategy which can learn transferable
representations from images with additive noise for image reconstruction tasks. To the best of our
knowledge, we are the first to formulate an instance-wise discrimination pretext task using image
residuals and unify CL and ResL, for SSL on large-scale noisy data. The empirical studies validate
the robustness and generalization of the representations learned by RCL, and further pose a new
generic and label-efficient learning direction for low-level vision tasks. In the future, we will explore
the efficacy of RCL for additional downstream tasks.
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A APPENDIX

A.1 NOISE SIMULATION

Typically, the shot and read noise parameters (λshot, λread) for any given camera sensor approxi-
mately follow a log-linear relationship in the parameter space (Foi et al., 2008; Brooks et al., 2019).
The specific values of these parameters for a given camera and acquisition settings can be automat-
ically obtained through automatic calibration procedures (Foi et al., 2008) and can be found in the
metadata pertaining to the raw images for most cameras. In (Brooks et al., 2019), the authors use a
number of (λshot, λread) samples to define the log-linear distributions of the noise in the Darmstadt
Noise Dataset (DND) (Plotz & Roth, 2017). Such distribution is further perturbed along the log-line
by adding a small Gaussian perturbation which models the specific variability of DND. For example,
the simulation model for RAW data in (Brooks et al., 2019) is

log(λshot) ∼ U(log(0.001), log(0.12)), (14)
log(λread) ∼ N (2.18 log(λshot) + 1.2, 0.26). (15)

In our case, we need to go one step further as we would like to fully randomize the relation of the
noise parameters in the (λshot, λread) domain so as to simulate noise from different cameras and dif-
ferent acquisition settings. We randomly sample (λshot, λread) in the parameter space accordingly.

Given U(σmin, σmax), where σ2
min and σ2

max are the minimum possible variance and maximum
possible variance, the simulation model is

a =

√
2(
σmin

2
)2, b =

√
2(
σmax

2
)2, (16)√

λshot ∼ U(a, b),
√
λread ∼ U(a, b). (17)

The noise simulation model presented above will sample (λshot, λread) for Eq. (3). The minimum
possible variance σ2

min and the maximum possible variance σ2
max enable us to fully control the

strength of the noise applied to the input. Note that our parameterization, in contrast to (Brooks
et al., 2019), will not constrain (λshot, λread) to follow a pre-defined log-linear relationship, but
instead can sample the parameters at arbitrary positions in the domain hence naturally enabling us
to simulate noise from different camera sensors.
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A.2 SIMULATION DATASETS

The three datasets contain RGB images with varying semantic information and image quality. MIT
is a benchmark demosaicing dataset, containing images that are collected from the web with large
variety in terms of object categories and scenes. Stanford is a benchmark multi-task learning (MTL)
dataset, which consists of various indoor scenes. VOC is semantic segmentation dataset of 20 se-
mantic categories. The images of MIT and VOC have various resolutions, while the images of
Stanford have two fixed resolutions 512×512 and 1024×1024. Limited by available resources, we
select two subsets of MIT and Stanford, and VOC to validate our ideas. The MIT subset contains
11000 images8, divided into 10000 images in the training set and 1000 images in the test set. The
Stanford subset contains 9464 images9, and we use 8464 images for training and 1000 images for
testing. VOC contains 17125 images10, including 16125 for training and 1000 for testing. The min-
imal crop size is 128×128 for the Stanford dataset and only 64×64 for the MIT and VOC datasets,
limited by the original image size.

A.3 REAL DATASET

The Smartphone Image Denoising Dataset (SIDD) (Abdelhamed et al., 2018) is a camera image
dataset with real additive noise11. SIDD contains 160 noisy and clean image pairs, with ten individ-
ual scenes repeatedly captured using five different smartphone cameras. We use the SIDD-Medium
Dataset, which is a subset of SIDD. Compared with the simulated signal-dependent data, SIDD has
less variation in terms of (λshot, λread).

8https://groups.csail.mit.edu/graphics/demosaicnet/dataset.html
9https://github.com/alexsax/taskonomy-sample-model-1

10http://host.robots.ox.ac.uk/pascal/VOC/
11https://www.eecs.yorku.ca/˜kamel/sidd/index.php
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