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ABSTRACT

Model robustness indicates a model’s capability to generalize well on unforeseen
distributional shifts, including data corruption, adversarial attacks, and domain
shifts. One of the most prevalent and effective ways to enhance the robustness
often involves data augmentations and label smoothing techniques. Despite the
great success of the related approaches in diverse practices, a unified theoretical
understanding of their efficacy in improving model robustness is lacking. We offer
a theoretical framework to clarify how augmentations, label smoothing, or their
combination enhance model robustness through the lens of loss surface flatness,
generalization bound, and adversarial robustness. Specifically, we first formally
bridge the diversified data distribution via augmentations to the flatter minima on
the parameter space, which directly links to the improved generalization capa-
bility. Moreover, we further bridge augmentations with label smoothing, which
softens the confidence of the target label, to the improved adversarial robustness.
We broadly confirm our theories through extensive simulations on the existing
common corruption and adversarial robustness benchmarks based on the CIFAR
and tinyImageNet datasets, as well as various domain generalization benchmarks.

1 INTRODUCTION

Model robustness, which is seen as a critical factor of deep models in applications requiring high
reliability such as autonomous vehicles and medical diagnosis, entails maintaining performance
despite data distribution shifts. In the past decade, data augmentation has been widely used as
a popular and pragmatic technique to enhance the model performance, as well as the robustness
against data corruption, adversarial attacks, or even domain shifts (DeVries & Taylor, 2017; Zhang
et al., 2018; Hendrycks et al., 2021a; Cubuk et al., 2019; Xu et al., 2023). The intuition of its efficacy
relies on the belief that augmentations enrich the training data distribution, which allows models to
easily extrapolate to unseen data distributions, which is the so-called generalization capability.

On the other hand, label smoothing, which softens the confidence of target labels, has been studied
for its robustness benefits, particularly against adversarial perturbations (Szegedy et al., 2016; Guo
et al., 2017). When combining label smoothing with augmentations such as adversarial perturba-
tions, also known as adversarial training, it has shown promise in strengthening model robustness
against adversarial attacks (Shafahi et al., 2019; Ren et al., 2022).

Despite the strong utility of augmentations, label smoothing, or their combinations, there is a lack of
unified theories that formally clarify how they generally enhance model robustness. The prior for-
mal analyses are quite limited on handling a few types of augmentations and addressing adversarial
robustness. As one of the existing analyses, adversarial perturbation with label smoothing is proved
to improve the smoothness of loss values on the input space, especially along the direction of adver-
sarial perturbation (Ren et al., 2022). However, the theory is still limited in the adversarial settings,
failing to elaborate the settings of the general form of augmentations and the generalization capa-
bility against unforeseen distributional shifts of data samples. As another analysis for other types
of augmentations, Mixup (Zhang et al., 2018) has been proved to enlarge the boundary thickness,
which is the marginal space between two differently labeled samples that is believed to improve the
adversarial robustness (Yang et al., 2020). Still, the analysis is restricted to mixup-based augmenta-
tions and lacks a rigorous link to the improved performance on adversarial samples.

1
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Figure 1: A sketch of the links between augmentations with label smoothing and model robustness.

In this paper, we first provide theories for clarifying how augmentations combined with label
smoothing can bolster model robustness. Our analysis has two main logical sequences: i) First,
we formally bridge the general form of augmentations to the improved generalization bound. To
give a brief sketch of our thinking, we start to demonstrate the duality between the input space re-
gion covered by the augmented samples and the corresponding parameter space region with the same
loss values (formalized by Theorem 1 and Theorem 2). Based on the duality, we then claim that
the augmentations flatten the loss surface on the parameter space (Theorem 3), finally reaching to
the improved generalization bound against distribution shifts via leveraging the flatten loss surface
(Theorem 4). These findings still remain valid when combined with label smoothing. ii) Second, we
switch the focus to the effect of label smoothing on adversarial robustness. As a rigorous link to the
model performance against adversarial settings, we theoretically show that label smoothing lowers
the adversarial risk of the models trained with augmentations. Fig. 1 shows a full sketch.

To provide empirical evidence of the claims, we strictly demonstrate the flatness of loss surface and
the enhanced generalization performance through augmentations1 In addition, we further demon-
strate the improved adversarial robustness through label smoothing2.

2 PRELIMINARIES

We provide the basic notations for further formulations and the background of model flatness.

2.1 BASIC NOTATIONS

Let us consider an input x ∈ Rn from input space X , which is paired with a target label y ∈ Rc from
label space Y , where n and c are the dimensions of the input space and the label space. A model
f(·; θ) : Rn → Rc parameterized by θ ∈ Rm maps a given input to the estimated label, where m is
the dimension of the model parameter space. Based on the model, loss function L(·, ·) is used for
computing the loss value for a given data sample (x, y) with model f(·; θ) as follows: L

(
f(x; θ), y

)
.

The true risk over the data distribution D can be formulated as follows:

ED(θ) := E(x,y)∼D
[
L(f(x; θ), y)

]
. (1)

Similarly, empirical risk ÊD(θ) over N samples from D is:

ÊD(θ) :=
1

N

N∑
i=1

L(f(xi; θ), yi). (2)

2.1.1 DATA AUGMENTATION

Data augmentation A(·) : Rn → Rn augments a given input x to augmented input x̃ := A(x).
Let us further represent it with the difference between the original input and the augmented one:

1Testing is done on domain generalization benchmarks (PACS, VLCS, OfficeHome) and common corrup-
tion benchmarks (CIFAR-10/100-C, tinyImageNet-C), addressing domain shifts and data corruptions in images.

2Testing is done on adversarial benchmarks with the CIFAR-10/100, and tinyImageNet datasets.
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x̃ := A(x) = x+δ, where δ ∈ Rn.3 Also, PA(x̃|x) is the probability density function of augmented
samples x̃, given x.

2.1.2 LABEL SMOOTHING

Label smoothing S(·) : Rc → Rc is a process of softening hard label y to obtain smoothed label
ỹ := S(y) as follows: ỹ := (1 − ϵ) · y + ϵ/c · 1, where 0 < ϵ < 1 and 1 is a vector with ones at
all elements, whose length is c. Label smoothing assigns the target label a probability of 1 − ϵ and
evenly distributes the remaining probability among the other classes.

2.2 DATA AUGMENTATION WITH LABEL SMOOTHING

For a data sample (x, y) from the original dataset D, let us define Ã(x, y) := (A(x),S(y)) = (x̃, ỹ)

as the augmented sample with label smoothing. Also, let us define D̃ := {(x̃, ỹ) | x̃ = A(x), ỹ =
S(y), (x, y) ∼ D} as the augmented dataset with label smoothing.

2.3 MODEL FLATNESS

2.3.1 DEFINITION

Model flatness characterizes the extent of change in the model’s loss values across proximate points
in the parameter space. When the loss rapidly changes around the found minima, it indicates that the
model is located at sharp minima. Otherwise, it denotes flat minima when the loss varies smoothly.
The change of losses around the model parameters can be formalized as follows:

max
∥∆∥≤γ

E(x,y)∼D
[
L(f(x; θ +∆), y)− L(f(x; θ), y)

]
, (3)

where ∆ ∈ Rm is the perturbation around model parameter θ that maximally increases loss within
a radius γ > 0.

2.3.2 SHARPNESS-AWARE MINIMIZATION

The most popular principal way for finding flatter minima is Sharpness-Aware Minimization (SAM)
(Foret et al., 2021), which formally transforms loss minimization into a min-max optimization:

min
θ

max
∥∆∥≤γ

E(x,y)∼D[L(f(x; θ +∆), y)], (4)

As formulated in the work of (Foret et al., 2021), when adding the loss value at θ, only the first term
of equation 3 remains, yielding the objective function in equation 4. Through the minimization of
the maximization term, SAM aims to find the minima θ with flatter loss surfaces around γ radius.

3 HOW DO AUGMENTATIONS ENHANCE GENERALIZATION?

In this section, we provide a rigorous link from the data augmentations to the improved general-
ization capability. Our main claims are twofold: i) Translation between the manifolds on input and
parameter spaces, ii) Association of flatter loss in the input space via augmentations with flatness in
the parameter space, leading to a reduced generalization gap.

3.1 TRANSLATION BETWEEN INPUT AND PARAMETER SPACES

Let us imagine a perturbation δ ∈ Rn around the given input x ∈ Rn. Our basic intuition is then that
there exists a corresponding perturbation ∆ ∈ Rm around the parameter θ, where the loss remains
consistent:

f(x+ δ; θ) = f(x; θ +∆). (5)
Beyond that, for all perturbation within a closed sphere ∥δ∥ ≤ γ on input space, our intuition is that
there exists the corresponding manifold of perturbations Rγ

Θ around the parameter θ, where the loss
remains the same.

3By formulating augmentation as an additive perturbation, we transform the perturbation on the input space
to the one on the parameter space. Details are in the following section.

3
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Figure 2: A graphical illustration of Theorem 1 (a) and 2 (b).

Reversely, for all perturbation within a closed sphere ∥∆∥ ≤ γ on parameter space, our idea is
that there exists the corresponding manifold of perturbations Rγ

X around the input x, where the loss
remains the same.

Let us then formally define the manifolds Rγ
Θ and Rγ

X .

Definition 1. (For Rγ
X ) Given x ∈ Rn and θ ∈ Rm, for perturbation bounded with L2-norm of γ

on parameter space, i.e., {∆ ∈ Rm | ∥∆∥ ≤ γ}, Rγ
X ⊂ Rn is the input space region satisfying the

following two constraints:

For all ∥∆∥ ≤ γ, there exists δ ∈ Rγ
X s.t. equation 5 holds.

For all δ ∈ Rγ
X , there exists ∥∆∥ ≤ γ s.t. equation 5 holds.

Definition 2. (For Rγ
Θ) Given x ∈ Rn and θ ∈ Rm, for perturbation bounded with L2-norm of γ

on input space, i.e., {δ ∈ Rn | ∥δ∥ ≤ γ}, Rγ
Θ ⊂ Rm is the parameter space manifold satisfying the

following two constraints:

For all ∥δ∥ ≤ γ, there exists ∆ ∈ Rγ
Θ s.t. equation 5 holds.

For all ∆ ∈ Rγ
Θ, there exists ∥δ∥ ≤ γ s.t. equation 5 holds.

For an arbitrary deep architectures of f(·; θ), formalizing the existence of the regions Rγ
X and Rγ

Θ is
intractable. We here narrow down our focus on a linear model to explicitly formalize the existence
of the regions. For this case, the number of parameters, which is m, equals to c× n.

Briefly, the region on the input space, i.e., Rγ
X , can be found as an exact solution (referred to

Theorem 1). Reversely, the region on parameter space, i.e., Rγ
Θ, can be bounded with the subset as

follows: Rγ
Θ,sub ⊆ Rγ

Θ, which proves the existence of the region (referred to Theorem 2).

Theorem 1. (A closed-form of Rγ
X ) Given x ∈ Rn and θ ∈ Rc×n, for perturbation bounded with

L2-norm of γ on parameter space, i.e., {∆ ∈ Rc×n | ∥∆∥ ≤ γ}, Rγ
X is a c-dimensional rotated

ellipsoid centered at x:
Rγ

X = {δ ∈ Rn | δ⊤U⊤DUδ ≤ 1}, (6)

where U is from Singular Value Decomposition the model parameter θ with a form of (c×n) matrix:
θ = UΣV ⊤. Also, D is the (c × c) diagonal matrix whose i-th diagonal element is σi∥x∥γ, where
σi is the i-th singular value of θ.

Remark 1.1. (A ball on parameter space is translated to a rotated ellipsoid on input space) The
loss values inside a ball centered at the parameter θ directly correspond to the loss values of inputs
inside the rotated ellipsoid Rγ

X around x. When the model shows flatter loss surface around θ, it
indicates that the input region around x with a shape of ellipsoid shows the flatter loss behavior.

Fig. 2a illustrates the translation based on Theorem 1. The proof is provided in Appendix B.1.

Theorem 2. (A subset of Rγ
Θ, i.e., Rγ

Θ,sub) Given dataset D = {xi}Ni=1 and θ ∈ Rc×n, for pertur-
bation bounded with L2-norm of γ on input space, i.e., {δ ∈ Rn | ∥δ∥ ≤ γ}, Rγ

Θ,sub is the subset of
Rγ

Θ, i.e., Rγ
Θ,sub ⊆ Rγ

Θ:

Rγ
Θ,sub = {∆ ∈ Rc×n | ∥∆∥ ≤ γ2σ2

min/∥xmax∥2}, (7)

where σ2
min := mini σ

2
i is the minimum singular value of θ and xmax := maxx∈D ∥x∥.
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Remark 2.1. (A ball on input space is translated to the region containing a ball on parameter
space) The loss values inside a ball centered at the input x directly correspond to the loss values for
model parameters inside the ball Rγ

Θ, which contains the subset of region Rγ
Θ,sub. The claim shows

that the region Rγ
Θ indeed exists. Moreover, when the model shows a flatter loss behavior around x,

it indicates that the parameter ball around θ shows a flatter surface, i.e., a flat minimum.

Fig. 2b illustrates the translation based on Theorem 2. The proof is provided in Appendix B.2. For
the extension to the case of deep architectures, we provide further discussions in Appendix D.2.

3.2 LINKING AUGMENTATIONS TO MODEL FLATNESS AND GENERALIZATION

Built upon the theorems above, we now formalize how can augmentations lead to flatter loss land-
scape around the minima and the improved generalization capability. Before providing the details,
let us rephrase the formal definition of flat minima, which is called b-flat minima (Shi et al., 2021):
Definition 3. (b-flat local minima) Given loss L(·, ·) and dataset D, a model parameter θ ∈ Rm is
b-flat minima if the followings hold for the perturbation on parameter ∆ ∈ Rm:

For all ∥∆∥ ≤ b, ÊD(θ +∆) = ÊD(θ) and there exists ∥∆∥ > b, ÊD(θ +∆) > ÊD(θ). (8)

Before describing b-flat minima, let us assume a property of PA(x̃|x) for the augmentation.
Assumption 1. Given x ∈ Rn and augmentation A(·), the probability density function of PA(x̃|x)
satisfies:

For all ∥δ∥ ≤ γ, PA(x̃|x) > 0, (9)
where δ = x̃− x and γ is some positive real number.

From the assumption, the distribution of the augmented samples covers the region around the given
original input x. Let Θ∗ and Θ̃∗ be the sets of the optimal model parameters whose elements
θ∗ ∈ Θ∗ and θ̃∗ ∈ Θ̃∗ satisfy the following equalities, ED(θ∗) = 0 and ED̃(θ̃∗) = 0, respectively.
Then our claim is that the minimum b-flatness among the solution parameters in Θ̃∗, shows large b
(flatter) than the minimum b-flatness among the solutions in Θ∗, which is trained on D:

Theorem 3. (Flatness of θ̃∗) Let θ∗ ∈ Θ∗ and θ̃∗ ∈ Θ̃∗ be b∗ and b̃∗-flat minima, respectively. The
following inequality holds:

min
θ∗∈Θ∗

b∗ ≤ min
θ̃∗∈Θ̃∗

b̃∗. (10)

Remark 3.1. (Dense augmentations around the original sample encourage flatter minima) The
key understanding of the theorem above is that the augmentations densely covers the sphere-shaped
region around the given original sample with radius γ, then the model θ̃∗ suppresses the loss values
of the region. Next, the flat-region on the input space is translated to the closed region on parameter
space, i.e., Rγ

Θ, which at least contains Rγ
Θ,sub (referred to Theorem 2).

The proof is provided is in Appendix B.3.

The final linkage to the generalization capability is straightforward by relying on the prior theoretical
results that bridge Robust Risk Minimization (RRM) and the generalization bound (Cha et al., 2021).
RRM aims to find a flat minimum, where its surrounding region shows flat loss surface. Based on
Theorem 3, augmentations make the optimal parameter locate at flatter surface and it implies the
improved generalization bound (referred to Theorem 4).
Theorem 4. (Generalization bound) Given M covering sets {Θk}Mk=1 of parameter space Θ with

Θ =
⋃M

k=1 Θk and diam(Θ) = supθ,θ′∈Θ ||θ− θ′||2, where M =
⌈

diam(Θ)
γ

⌉d
(d is the dimension of

Θ and γ is the value satisfying the condition of Assumption 1), and VC dimension vk for each Θk,
the following inequality holds with probability at least 1− δ:

ET (θ) < ÊD̃(θ) +
1

2
Div(D, T ) + log c+ max

k∈[1,M ]

[√
vk log(N/vk)

N
+

log(M/δ)

N

]
,

where Div(D, T ) = 2 supA |PD(A) − PT (A)| measures the maximal discrepancy between distri-
butions D and T , and N is the number of samples drawn from D̃.
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Table 1: Flatness metrics of ERM and different augmentations on CIFAR-100 benchmark. (↓: The
lower the better, i.e., indicating flatter minimum)

Metrics ERM AugMix PixMix RandAug StyleAug CutOut

λmax ↓ 12.04 2.25 (−9.79) 4.36 (−7.68) 2.49 (−9.55) 10.89 (−1.15) 1.94 (−10.10)
Trace(H) ↓ 540.89 110.42 (−430.47) 241.29 (−299.60) 131.65 (−409.24) 397.15 (−143.74) 100.59 (−440.30)
µPAC-Bayes ↓ 164.50 98.22 (−66.28) 106.94 (−57.56) 101.63 (−62.87) 100.15 (−64.35) 95.47 (−69.03)

LPF ↓ 1.85 0.16 (−1.69) 0.26 (−1.59) 0.18 (−1.67) 0.20 (−1.65) 0.15 (−1.70)
ϵsharp ↓ 17.25 9.71 (−7.54) 11.96 (−5.29) 10.54 (−6.71) 15.53 (−1.72) 8.53 (−8.72)

ERM AugMix PixMix RandAug StyleAug CutOut

Figure 3: Loss surface visualization of ERM and augmentations on the CIFAR-100 benchmark.
(The wider red-colored region, i.e., flatter minima, the better.)

Remark 4.1. (Augmentations improve generalization against data distribution shifts) The theo-
rem implies that the minimization of empirical loss for the augmented dataset, i.e., ÊD̃(θ), directly
aims the tighter generalization bound on target distribution T . Also, the term M is related to γ,
which measures how augmented data distribution covers wider range (referred to Assumption 1).
When augmentation covers wider range around the original sample, i.e., a larger γ, it suppresses
M , leading to the smaller last term of generalization bound. These interpretation elucidates how
augmentations enhance the generalization capability against unseen data distribution shifts.

The proof is provided is in Appendix B.4.

We want to emphasize that Theorem 1 to 4 are still remain valid with application of label smoothing.
The reason is that label smoothing simply softens the hard label into a soft label, which does not
involve the input and parameter translation via Theorem 1 and 2, and does not hurt the flatness and
generalization bound via Theorem 3 and 4.

3.3 EMPIRICAL EXAMINATION ON MODEL FLATNESS AND GENERALIZATION

We evaluate how augmentations effect model flatness and generalization capability.

3.3.1 AUGMENTATION METHODS TO BE CONSIDERED

There exists a massive number of augmentation methods in the literature. To evaluate the practical
impact of well-known augmentation methods, we run experiments with a wide range of augmenta-
tion types and focus on advanced methods rather than a baseline. For the model-free augmentation
type, we pick CutOut (DeVries & Taylor (2017)), which tunes a single image by cutting out a
partial region of the image, and we also select AugMix (Hendrycks et al. (2021b)) and PixMix
(Hendrycks et al. (2022)), which are advanced forms of trying to mix multiple clean images. For the
model-based augmentation type, we pick StyleAug (Jackson et al. (2019)), which utilizes a gener-
ative model-based approach to diversify the style of clean images. Finally, among the policy-based
augmentation type, we consider RandAugment (Cubuk et al. (2020)), which learns the policy for
augmenting images.

3.3.2 TESTS ON MODEL FLATNESS

Flatness metrics: To this end, we focus on measuring various quantitative flatness metrics, in-
cluding the maximum eigenvalue of the Hessian matrix (i.e., λmax), the trace of the Hessian (i.e.,
Trace(H)), the PAC-Bayesian measure (i.e., µPAC-Bayes) (Jiang et al., 2020), and the sharpness of the
local minimum (i.e., ϵsharp) (Keskar et al., 2017). Finally, we test Low-Pass Filter (LPF), which is
recently suggested to show the robust correlation to generalization (Keskar et al., 2017). As a quali-

6
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Table 2: Mean corruption error (mCE) of ERM and different augmentations on common corruption
benchmarks, including CIFAR-10/100-C and tinyImageNet-C. (↓: The lower the better)

Benchmarks ERM AugMix PixMix RandAug StyleAug CutOut

CIFAR-10-C ↓ 25.57 12.47 (−13.10) 8.70 (−16.04) 17.83 (−7.74) 18.91 (−6.66) 24.25 (−1.32)
CIFAR-100-C ↓ 52.21 38.71 (−13.53) 33.08 (−18.45) 44.68 (−7.53) 49.01 (−3.20) 51.84 (−0.37)

tinyImageNet-C ↓ 74.58 63.47 (−11.11) 61.51 (−13.57) 66.95 (−7.63) 79.31 (+4.73) 69.51 (−5.07)

Average ↓ 50.78 38.22 (−12.56) 34.43 (−16.35) 43.15 (−7.63) 48.52 (−2.26) 48.53 (−2.25)

Table 3: Domain generalization accuracies of ERM and different augmentations for domain gener-
alization benchmarks, including PACS, VLCS, and OfficeHome. (↑: The higher the better)

Benchmarks ERM AugMix PixMix RandAug StyleAug CutOut

PACS ↑ 81.5 83.2 (+1.7) 83.0 (+1.5) 83.3 (+1.8) 85.2 (+3.7) 83.3 (+1.8)
VLCS ↑ 77.0 78.0 (+1.0) 77.8 (+0.8) 78.6 (+1.6) 77.6 (+0.6) 78.6 (+1.6)

OfficeHome ↑ 66.4 67.3 (+0.9) 70.2 (+3.8) 67.3 (+0.9) 67.3 (+0.9) 66.9 (+0.5)

Average ↑ 75.0 76.2 (+1.2) 77.0 (+2.0) 76.4 (+1.4) 76.7 (+1.7) 76.3 (+1.3)

tative result, we visualize the loss surface on the parameter space to illustrate how the learned models
show a flatter loss landscape. We add the detailed descriptions of each metric in Appendix C.1.1.

Evaluation results: We trained WideResNet-40-2 architecture on CIFAR-100 datasets by adopt-
ing the five aforementioned augmentations. With the models, we present the statistics of the five
selected flatness metrics in Table 1. As a baseline, we trained a model without augmentations, re-
ferred to as Empirical Risk Minimization (ERM). For all the augmentations, we observe the clear
and consistently flatter minima of the models by augmentation methods over ERM. The empirical
evidence directly coincides with Theorem 3, which proves the flatter surface of the models trained
with augmentations. In Fig. 3, we visualize the loss landscape around the minima of models with
augmentations. When compared to the loss surface of ERM, which shows sharper behavior, the
models with augmentations exhibit a flatter loss landscape around the minima.

3.3.3 TESTS ON GENERALIZATION CAPABILITY

Benchmarks to be considered: Generalization capability implies a model ability to outstretch its
performance to unseen data distributions. The meaning of ‘unseen’ can be widely varying from
a naive train-test splitting, corruptions on clean samples, to some drastic shifts, including domain
shifts and adversarial attacks. For various augmentation, we believe that a naive testing on novel
samples without any meaningful data distribution shifts is already confirmed by prior works. We
thus focus on rather severe data shifts, such as common corruption, including the CIFAR-10-
C, the CIFAR-100-C, and the tinyImageNet-C benchmarks (Hendrycks & Dietterich, 2019), and
domain generalization, including PACS (Asadi et al., 2019), VLCS (Albuquerque et al., 2021),
and OfficeHome (Zhou et al., 2020) benchmarks.

Evaluation results: As done in the flatness tests, we trained the same WRN-40-2 architecture on
CIFAR-10-C and CIFAR-100-C by following Hendrycks et al. (2021b; 2022). For tinyImageNet-C,
we used ResNet18 by following Wang et al. (2021). As shown in Table 2, augmentations lead to
the improved robustness to common corruptions with the consistent gains over ERM. It is empirical
evidence of Theorem 4, which argues the tigher generalization bound via augmentations. For the
case of tinyImageNet-C with StyleAug, we conjecture that StyleAug adopts aggressive perturbations
via jumping to other domains; it is not well-tailored to the additive corruptions of the benchmarks.

For the domain generalization testing, we follow the benchmarks proposed by DomainBed (Gulra-
jani & Lopez-Paz, 2021), utilizing the ResNet50 architecture as implemented in the framework. In
Table 3, we empirically confirm that the augmentations show meaningful gains over ERM even in
the domain shifts. It is noteworthy that StyleAug yields a much larger gain in the PACS case. We
believe that the diversified ‘styles’ via StyleAug directly affects to the image-style-based domains
of the PACS dataset, i.e., ‘Photo’, ‘Cartoon’, ‘Art Painting’, and ‘Sketch’. Also, we emphasize that
even though the augmentations are not tailored to the particular domain shifts, they leads to the clear
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gains of generalization capability. It is a clear evidence of our main claim, i.e., Theorem 4. The
details of the datasets and benchmarks are in Appendix C.1.2.

In Appendix C.2.2, we further discuss how augmented samples that are well-distributed around the
original and satisfying Assumption 1 can relate to performance gains. Briefly, StyleAug and CutOut,
which are slightly inferior to others, only weakly adhere to the assumption.

4 HOW DO AUGMENTATIONS WITH LABEL SMOOTHING ENHANCE THE
ADVERSARIAL ROBUSTNESS?

In this section, we explore how combining data augmentations with label smoothing can enhance a
model’s robustness against adversarial attacks.

4.1 LINKING AUGMENTATIONS WITH LABEL SMOOTHING TO ADVERSARIAL ROBUSTNESS

To understand this enhancement, we first define the adversarial dataset Dadv and its corresponding
risk. Given a sampled dataset D = {(xi, yi)}Ni=1 and a classifier f(·; θ), we follow the description
in Carlini et al. (2019) to define the adversarial dataset as:

Dadv := {(xadv, y) | xadv = x+ δadv, (x, y) ∈ D, f(xadv; θ) ̸= y}. (11)
, where δadv is an adversarial perturbation making the samples cross the decision boundary with
some constraints (e.g. ∥δadv∥ ≤ h for some positive number h.) The adversarial empirical risk
is formulated as Êadv(θ) := 1

N

∑N
i=1

[
L(f(xi; θ), yi)

]
, where (xi, yi) ∈ Dadv. For the sake of

simplicity, we regard L as a cross-entropy loss in this section.

Let θ̃∗LS and θ̃∗ be the optimal parameters of classifier f that achieve zero loss of augmented data
samples, with label smoothing and without label smoothing, respectively. Our claim shows the
superiority of the model parameterized by θ̃∗LS over θ̃∗ in terms of a lower expected loss on Dadv.
Theorem 5. (Adversarial robustness) For the dataset of adversarial samples Dadv, the models pa-
rameterized by θ̃∗LS and θ∗ satisfy the following inequality:

ÊDadv(θ̃
∗
LS) < ÊDadv(θ̃

∗). (12)
Remark 5.1. (Augmentations with the label smoothing enhance adversarial robustness) We em-
phasize that applying label smoothing to augmentations enhances the model robustness against ad-
versarial samples. To the best of our knowledge, the claim first proves the empirical gains observed
by prior methods of augmentations with label smoothing in adversarial robustness.

The proof for Theorem 5 is provided in Appendix B.5.

4.2 EMPIRICAL EXAMINATION ON ADVERSARIAL ROBUSTNESS

In this section, we demonstrate how label smoothing enhances adversarial robustness when applied
to various augmentations. Using the same five target augmentations and model architecture from
Section 3, we test model robustness against untargeted L∞ Projected Gradient Descent (PGD) at-
tacks (Madry et al., 2018) on the CIFAR-10, CIFAR-100, and TinyImageNet datasets. As shown
in Table 4, all augmentations, when combined with label smoothing, exhibit meaningful robustness
gains over their original versions without label smoothing, clearly indicating improved resistance
to adversarial attacks. This provides empirical support for Theorem 5, which asserts the benefit of
label smoothing in enhancing adversarial robustness.

Further results are included in Appendix C.2.1, including adversarial error (complementing Table 4),
model performance on PGD L2 attacks, performance on clean datasets, and adversarial training
(AT). All these results exhibit the same tendency.

5 RELATED WORKS

We here briefly categorize the related works into two parts: i) Existing data augmentations and label
smoothing strategies, ii) Prior investigations of the impact of augmentations and label smoothing on
model robustness, particularly from theoretical and empirical perspectives.
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Table 4: Cross-entropy losses of different augmentations and their combination with label smoothing
against adversarial perturbations from PGD L∞ untargeted attacks. ‘Original’ means the loss with
original augmentation without label smoothing; ‘+ Label Smoothing (LS)’ indicates the loss with
label smoothing applied (↓: The lower the better).

Aug. CIFAR-10 w/ L∞ ↓ CIFAR-100 w/ L∞ ↓ tinyImageNet w/ L∞ ↓ Avg. Gain ↓Original + LS Original + LS Original + LS

AugMix 0.024 0.006 (−0.018) 0.071 0.014 (−0.057) 0.088 0.054 (−0.034) −0.045
PixMix 0.058 0.016 (−0.042) 0.109 0.036 (−0.073) 0.075 0.048 (−0.027) −0.047

RandAug 0.076 0.013 (−0.063) 0.126 0.037 (−0.089) 0.094 0.057 (−0.037) −0.063
StyleAug 0.095 0.014 (−0.081) 0.169 0.039 (−0.130) 0.072 0.047 (−0.025) −0.079
CutOut 0.085 0.013 (−0.072) 0.135 0.039 (−0.096) 0.094 0.056 (−0.038) −0.069

5.1 DATA AUGMENTATIONS AND LABEL SMOOTHING

Data Augmentation Strategies: Existing augmentation methods can be grouped into model-free,
model-based, and policy-based algorithms, borrowing the taxonomy suggested by Xu et al. (2023).

Model-free augmentations can be divided into single-image and multiple-image methods. Single-
image augmentations not only include elementary image manipulations such as translation, rotation,
and color jittering but also includes masking methods such as CutOut (DeVries & Taylor, 2017) and
Hide-and-Seek (Kumar Singh & Jae Lee, 2017). Multi-image augmentations exploit two or more
images to construct augmented images, including the mixing of the two images, such as Mixup
Zhang et al. (2018) and CutMix (Yun et al., 2019). Recently, it is empirically observed that a few
augmentation methods including AugMix (Hendrycks et al., 2021b) and PixMix (Hendrycks et al.,
2022) exhibit their superiority over others in terms of model robustness.

Model-based augmentations utilize pretrained models to generate augmented data. A number of
methods that exploit generative models including CGAN (Mirza & Osindero, 2014), and their vari-
ants (Douzas & Bacao, 2018; Mariani et al., 2018; Ali-Gombe & Elyan, 2019; Yang & Zhou, 2021)
aim to aid data imbalance problems. Other augmentations, including DeepAugment (Hendrycks
et al., 2021a), ANT (Rusak et al., 2020), and StyleAug (Jackson et al., 2019), directly aim to en-
hance the classifier’s robustness against common corruption, adversarial attacks, or domain shifts.

Policy-based augmentations focus on designing an automatic way to determine the optimal augmen-
tation strategies by employing reinforcement learning or adversarial training. From a pioneering
method called AutoAugment (Cubuk et al., 2019) that utilizes reinforcement learning for finding
the best augmentation strategies, subsequent works such as Fast AA (Lim et al., 2019), Faster AA
(Hataya et al., 2020), and RandAugment (Cubuk et al., 2020) aim to enhance both the efficiency of
policy search and the model performance. Adversarial training-based augmentation strategies, in-
cluding AdaTransform (Tang et al., 2019), Adversarial AA (Zhang et al., 2020), and AugMax (Wang
et al., 2021) leverage adversarial perturbations which maximally disturbs samples to be misclassified
into other labels, finally leading to improve model robustness against unseen domains.

Despite the effectiveness of augmentation methods in enhancing model performance, prior studies
have focused more on their practical use rather than on understanding their theoretical impact on
model robustness to data shifts. In our experiments, we carefully select representative methods from
each group: AugMix, PixMix, CutOut from model-free methods, StyleAug from model-based
method, RandAugment from policy-based methods.

Label Smoothing: Label smoothing (Szegedy et al., 2016) is a regularization strategy to enhance
model robustness and generalization by softening training data targets. It reduces model overconfi-
dence, especially in high-dimensional spaces, to prevent overfitting.

Empirical evidence supports label smoothing’s benefits across multiple tasks and models. Müller
et al. (2019) found that it improves deep neural networks’ accuracy and robustness by reducing
noise overfitting. Vaswani et al. (2017) incorporated it into the Transformer model, achieving the
top performance in machine translation, underscoring its value in sequence-to-sequence models.

Label smoothing also enhances model calibration, notably reducing Expected Calibration Error
(ECE). Studies, such as those by Guo et al. (2017) and Thulasidasan et al. (2019), highlight its
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role in improving calibration and adversarial robustness, making models more reliable in critical ap-
plications. Mukhoti et al. (2020) demonstrated its significance on deep neural network calibration.

5.2 AUGMENTATIONS, LABEL SMOOTHING AND MODEL ROBUSTNESS

Augmentations and Model Robustness: A number of previous works have tried to reveal the
relationship between augmentation and model robustness. Zhao et al. (2020) and Volpi et al. (2018)
have theoretically found out that adversarial perturbations in the latent space can simulate worst-
case distributional shifts in the data. Rebuffi et al. (2021) have empirically found out that Mixup
and CutOut with model weight averaging is shown to improve adversarial robustness. Najafi et al.
(2019) and Alayrac et al. (2019) have theoretically shown that utilizing unlabeled data in training can
improve adversarial robustness. Hendrycks et al. (2021a) have empirically found out that exploiting
diverse augmentations together can improve model robustness against both adversarial and common
data corruptions. Yin et al. (2019) interpret the augmentation-originated gains in model robustness
by explaining that augmentations make deep models utilize both high and low frequency information
of images so as to enhance model robustness against data corruptions.

Nonetheless, most of the prior interpretations of how augmentation contributes to model robustness
are either confined to specific augmentations, adversarial robustness, or empirical analysis. None of
the prior works generally explain how augmentations theoretically improve model robustness across
various, along with the extensive empirical testings across augmentations and benchmarks.

Label Smoothing and Model Robustness: Shafahi et al. (2019) have empirically discovered that
the benefits of adversarial training in boosting classifier robustness can also be achieved through sim-
pler regularization techniques like label smoothing and logit squeezing. Similarly, Fu et al. (2020)
have found that label smoothing not only results in logit squeezing but also enhances adversarial
robustness. However, Goibert & Dohmatob (2019) have shown that while label smoothing may im-
prove a model’s defense against gradient-based adversarial attacks to some extent, this robustness
is neither stable nor consistent. Additionally, Ren et al. (2022) have theoretically discovered that
label smoothing promotes logit squeezing and smoothens the loss surface in the input space, which
probably connects to the adversarial robustness.

The related works consistently show a clue of the benefits of label smoothing against adversarial
robustness but do not formally prove the reduced empirical risks against adversarial samples.

Augmentations with Label Smoothing and Model Robustness: While augmentations with label
smoothing have been empirically shown to potentially reduce calibration or adversarial error (Ren
et al., 2022; Shafahi et al., 2019), there’s a lack of research on their combined effect on model
robustness against distributional shifts, including adversarial and common corruptions.

We fill this gap, examining how augmentations and label smoothing together can improve robustness
against various distributional changes, highlighting the significance of our research in this area.

Comparison with Fairness under Distribution Shift: While Jiang et al. (2024) focuses on main-
taining fairness under distribution shifts by highlighting the existence of model weight perturbations,
our work provides a stricter formalization by demonstrating that input space augmentations with
bounded L2 norms can be transformed into equivalent parameter-space regions and vice versa. This
duality allows us to rigorously establish how augmentations and label smoothing enhance model
robustness against various distributional shifts.

6 CONCLUSION

This paper presents a theoretical framework that clarifies how data augmentations and label smooth-
ing enhance model robustness through the lens of model flatness, generalization bounds, and adver-
sarial robustness. With the theoretical claims, we provide extensive simulations verifying each claim
via testing the various flatness metrics, corruption errors, domain generalization, and adversarial loss
with various augmentations. Our findings aim to establish a general foundation for understanding
the benefits of augmentations and label smoothing, which provide intuitions of future advancements
in creating robust deep models capable of handling real-world data variability.
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imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), NeurIPS, volume 32. Curran Associates, Inc.,
2019.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Interna-
tional Conference on Computer Vision (ICCV), 2019.

Honyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond empirical
risk minimization. In International Conference on Machine Learning (ICLR), 2018.

Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong. Adversarial autoaugment. In ICLR, 2020.
URL https://openreview.net/forum?id=ByxdUySKvS.

Long Zhao, Ting Liu, Xi Peng, and Dimitris Metaxas. Maximum-entropy adversarial data augmen-
tation for improved generalization and robustness. NeurIPS, 33:14435–14447, 2020.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Deep domain-adversarial im-
age generation for domain generalisation, 2020. URL https://arxiv.org/abs/2003.
06054.

13

https://doi.org/10.1016/j.patcog.2023.109347
https://doi.org/10.1016/j.patcog.2023.109347
https://openreview.net/forum?id=ByxdUySKvS
https://arxiv.org/abs/2003.06054
https://arxiv.org/abs/2003.06054


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A SUPPLEMENTARY MATERIALS

This appendix contains additional material that could not be incorporated into the main paper due
to page constraints, including detailed proofs of the theorems and experimental details. Section B
provides detailed proofs of Theorems 1 to 5, Section C presents experimental details and additional
results, and and Section D offers further high-level discussions on augmentations, model general-
izations, and broader applicability of our findings.

B PROOFS ON THEOREMS

B.1 PROOF ON THEOREM 1

Theorem 1. (A closed-form of Rγ
X ) Given x ∈ Rn and θ ∈ Rc×n, for perturbation bounded with

L2-norm of γ on parameter space, i.e., {∆ ∈ Rc×n | ∥∆∥ ≤ γ}, Rγ
X is a c-dimensional rotated

ellipsoid centered at x:
Rγ

X = {δ ∈ Rn | δ⊤U⊤DUδ ≤ 1}, (6)
where U is from Singular Value Decomposition the model parameter θ with a form of (c×n) matrix:
θ = UΣV ⊤. Also, D is the (c × c) diagonal matrix whose i-th diagonal element is σi∥x∥γ, where
σi is the i-th singular value of θ.

Proof. Let f : x 7→ σ(θx + b) represent a classifier with sigmoid activation σ(·). Given weights
θ ∈ Rc×n, b ∈ Rc, input x ∈ Rn, and parameter perturbation region ∥∆∥ ≤ γ, we want to find the
region Rγ

X so that for all ∥∆∥ ≤ γ, there exists δ ∈ Rγ
X s.t. σ(θ(x+ δ) + b) = σ((θ +∆)x+ b)

and for all δ ∈ Rγ
X , there exists ∥∆∥ ≤ γ s.t. σ(θ(x+ δ)+ b) = σ((θ+∆)x+ b). In other words,

we want to find the region Rγ
X so that for every element e1 in region {∆ ∈ Rc×n | ∥∆∥ ≤ γ} there

exists an element e2 in region Rγ
X satisfying the equation and vice versa.

Since σ(·) : Rc → (0, 1)c is a bijective function, σ(θ(x + δ) + b) = σ((θ + ∆)x + b) ⇐⇒
θ(x+ δ) + b = (θ +∆)x+ b. This equality can be reduced to θδ = ∆x.

We will first examine the range of ∆x in the output space, given ∥∆∥ ≤ γ. ∆x can be written in
several ways:

∆x =

[
v1 v2 · · · vn

]
x1

x2

...
xn

 =


v11 v12 . . . v1n
v21 v22 · · · v2n

...
...

...
vc1 vc2 . . . vcn



x1

x2

...
xn



= v1x1 + v2x2 + · · ·+ vnxn =

v11v21
. . .
vc1

x1 +

v12v22
. . .
vc2

x2 + · · ·+

v1nv2n
. . .
vcn

xn

, where vi is the ith column vector and vij is an element in ith row, jth column of ∆.

Next, we will rewrite ∥∆∥ ≤ γ as the following constraints:

∥∆∥ ≤ γ

⇐⇒
c∑

i=1

n∑
j=1

v2ij ≤ γ2

⇐⇒
n∑

j=1

∥vj∥2 ≤ γ2
j subject to γ2

1 + γ2
2 + · · ·+ γ2

n = γ2.

When we reexamine the above formulas in Rc, finding the range of ∆x can be regarded as finding
the range of linear combination of column vectors in Rc such that each column vector vi is restricted
to ∥vi∥ ≤ γi.

Given two vectors u1 and u2 s.t. ∥u1∥ ≤ γ1 and ∥u2∥ ≤ γ2, ∥u1+u2∥ ≤ γ1+γ2 . Trivially, for any
α ∈ R, ∥α · u1∥ ≤ |α|γ1. That is, the range of linear combination ∆x = v1x1 + v2x2 + · · ·+ vnxn

is also a ball, i.e. ∥∆x∥ ≤
∑n

i=1 |xi|γi subject to
∑n

i=1 γ
2
i = γ2.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Finding the range of ∥∆x∥ is now equivalent to finding the maximum radius of
∑n

i=1 |xi|γi with the
constraint

∑n
i=1 γ

2
i = γ2. Using Lagrange multipliers method, let r := [γ1, γ2, · · · , γn], f(r) :=∑n

i=1 |xi|γi, g(r) :=
∑n

i=1 γ
2
i − γ2, and L(r, λ) := f(r)− λ(g(r)).

∂L

∂γi
= |xi| − 2λγi = 0 ⇐⇒ γi =

|xi|
2λ

Substituting the above equality to g(r) = 0,

n∑
i=1

x2
i

4λ2
− γ2 = 0 ⇐⇒ λ =

√∑
xi

2

2γ

γi =
|xi|
2λ

=
|xi|γ√∑

xi
2

f(r) =
n∑

i=1

xi
2γ√∑
xi

2
=

∑n
i=1 x

2
i√∑n

i=1 x
2
i

γ = ∥x∥ · γ

Therefore, ∥∆x∥ ≤ ∥x∥γ.

We now consider the LHS of equation θδ = ∆x. Let θ = UΣV ⊤ be the SVD Decomposition
of θ ∈ Rc×n. Multiplying U⊤ to both sides of the equation, ΣV ⊤δ = U⊤∆x. The inequality
induced by L2 norm, i.e. ball, does not change when we multiply any orthogonal matrix. Thus,
∥U⊤∆x∥ ≤ ∥x∥γ.

Let δ′ := V ⊤δ = [δ′1, · · · , δ′n]⊤.

ΣV ⊤δ = Σδ′ =

σ1 0 · · · 0
. . .

...
...

σc 0 · · · 0




δ′1
...
δ′c

δ′c+1
...
δn


=

σ1δ
′
1

...
σcδ

′
c



Since ∥U⊤∆x∥ ≤ ∥x∥γ and Σδ′ = U⊤∆x, ∥Σδ′∥ ≤ ∥x∥γ, i.e.

σ2
1δ

′2
1 + · · ·+ σ2

cδ
′2
c + 0 · (σ2

c+1δ
′2
c+1 + · · ·+ σ2

nδ
′2
n ) ≤ ∥x∥2γ2

However since 0 · (σ2
c+1δ

′2
c+1+ · · ·+σ2

nδ
′2
n ) = 0 holds for any δ, i.e. the general solution to θa = θb

where a ̸= b, we need not contain it in our perturbation region Rγ
X which is induced by ∥∆∥ ≤

γ. Then, the above inequality represents a c-dim region bounded by an ellipsoid whose principal
semi-axes have lengths (σ1∥x∥γ)−1, · · · , (σc∥x∥γ)−1 with respect to δ′ ∈ Rn. Subsequently, the
region of interest Rγ

X ⊂ Rn is an rotated c-dim ellipsoid whose principal semi-axes have lengths
(σ1∥x∥γ)−1, · · · , (σc∥x∥γ)−1 with respect to δ ∈ Rn.
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B.2 PROOF ON THEOREM 2

Prior to delving into the proof of Theorem 2, we first establish the groundwork by proving the
following Lemma:

Lemma 1. Let R be the region of x ∈ Rn satisfying the inequality x⊤Ax ≤ 1, where A is a non-
zero positive semi-definite matrix having σmax as the maximum nonzero singular value. Let R′ be
the region of x ∈ Rn satisfying the ineqaulity x⊤x ≤ σ−1

max. Then, R ⊆ R′.

We handle two cases where rank(A) = m and rank(A) < m. (We use [n] to represent set
{1, 2, · · · , n} henceforth.)

Case rank(A) = m:

Using SVD Decomposition, A = UΣU⊤, where Σ =

σ1

. . .
σn


x⊤Ax = x⊤UΣU⊤x = x′⊤Σx′ ≤ 1, where x′ := U⊤x

Let x′ be represented as x′ = [x′
1, · · · , x′

n].

The constraint induced by R can be rewritten as:

x′⊤Σx′ = σ1x
′2
1 + · · ·+ σnx

′2
n ≤ 1, where Σ = U⊤AU

Let x ∈ Rn be some vector satisfyig x⊤x ≤ σmax. Since U is an orthogonal matrix and x⊤x ≤
σ−1
max is an equidistant ball that is invariant under rotations and reflections, the constraint induced by

R′ can be rewritten as x′⊤x′ ≤ σ−1
max, where x′ = U⊤x.

To prove x ∈ R′ implies x ∈ R, we will show x′⊤x′ ≤ σ−1
max implies x′⊤Σx′ ≤ 1.

x′⊤x′ ≤ σ−1
max ⇐⇒ σmaxx

′⊤x′ ≤ 1

Let ϵi := σmax − σi. Then, ∀i ∈ [n], ϵi ≥ 0.

σmaxx
′⊤x′ −

n∑
i=1

ϵ(x′
i)

2 ≤ 1−
n∑

i=1

ϵi(x
′
i)

2
(
∵ σmaxx

′⊤x′ ≤ 1
)

≤ 1
(
∵ ∀i ∈ [n], ϵi(x

′
i)

2 ≥ 0
)

Case rank(A) < m:

Let rank(A) = k < m. A can be represented as UΣU⊤ using SVD decomposition, where Σ is a
diagonal matrix whose first k elements are non-zero singular values σ1, · · · , σk.

x⊤Ax = x⊤UΣU⊤x = x′Σx′ ≤ 1, where Σ = U⊤AU and x′ := U⊤x

Let x′ be represented as [x′
1, · · · , x′

n]. The constrained induced by R can be rewritten as:

x′⊤Σx′ = σ1x
′2
1 + · · ·+ σkx

′2
k ≤ 1

Let x ∈ Rn be any vector satisfying x⊤x ≤ σ−1
max. Since ball is equidistant, x⊤x ≤ σ−1

max ⇐⇒
x′′⊤x′ ≤ σ−1

max, where x′ = U⊤x.

To prove x ∈ R′ implies x ∈ R, we will show x′⊤x′ ≤ σ−1
max implies x′Σx′ ≤ 1.

x′⊤x′ ≤ σ−1
max ⇐⇒ σmaxx

′⊤x′ ≤ 1 ⇐⇒
n∑

i=1

σmax(x
′
i)

2 ≤ 1
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Let ϵi := σmax − σi. Then, ∀i ∈ [n], ϵi ≥ 0.

k∑
i=1

(σmax − ϵi)x
′2
i ≤ σmaxx

⊤x−
k∑

i=1

ϵi(x
′
i)

2 (∵
n∑

i=k+1

σmaxx
2
i ≥ 0)

≤ 1−
k∑

i=1

ϵi(x
′
i)

2
(
∵ σmaxx

′⊤x′ ≤ 1
)

≤ 1
(
∵ ∀i ∈ [k], ϵi(x

′
i)

2 ≥ 0
)

Since
k∑

i=1

(σmax − ϵi)x
′2
i = x′⊤Σx′, x′⊤Σx′ ≤ 1.

With Lemma 1 established, we now turn our attention to the proof of Theorem 2.
Theorem 2. (A subset of Rγ

Θ, i.e., Rγ
Θ,sub) Given dataset D = {xi}Ni=1 and θ ∈ Rc×n, for pertur-

bation bounded with L2-norm of γ on input space, i.e., {δ ∈ Rn | ∥δ∥ ≤ γ}, Rγ
Θ,sub is the subset of

Rγ
Θ, i.e., Rγ

Θ,sub ⊆ Rγ
Θ:

Rγ
Θ,sub = {∆ ∈ Rc×n | ∥∆∥ ≤ γ2σ2

min/∥xmax∥2}, (7)

where σ2
min := mini σ

2
i is the minimum singular value of θ and xmax := maxx∈D ∥x∥.

Proof. Given weights θ ∈ Rc×n, input x ∈ Rn, and parameter perturbation region ∥δ∥ ≤ γ, we
want to find the region Rγ

X so that for all ∥δ∥ ≤ γ, there exists ∆ ∈ Rγ
X s.t. θδ = ∆x and for all

∆ ∈ Rγ
X , there exists ∥δ∥ ≤ γ s.t. θδ = ∆x as in Theorem 1’s proof ( B.1.)

Using SVD decomposition, θ = UΣV ⊤, where Σ is a diagonal matrix with entries σ1, · · · , σn.

θδ = UΣV ⊤δ = UΣδ′, where δ′ := V ⊤δ. Since rotating or reflecting does not change the region
of a ball, ∥δ∥ ≤ γ gives ∥δ′∥ ≤ γ, i.e. δ′21 + · · · δ′2n ≤ γ2.

Let δ′′ := [δ′′1 , · · · , δ′′c ] = Σδ′ = [σ1δ
′
1, · · · , σcδ

′
c]. ∀i ∈ [c], σ−1

i δ′′i = δ′i. Then,

δ′′21
σ2
1

+ · · ·+ δ′′2c
σ2
c

≤ γ2 −
(
δ′2c+1 + · · · δ′2n

)
(8)

The maximum value of RHS in the above equation is γ2, when
(
δ′2c+1 + · · · δ′2n

)
= 0. This indicates

that δ′′ resides within an ellipsoid with with principle semi-axes of lengths λi := σiγ, i ∈ [c]. Thus,
Uδ′′ = θδ is a region bounded by an rotated ellipsoid.

Now, we will examine the region Rγ
X such that ∆x (∆ ∈ Rγ

X ) forms a rotated ellipsoid with
principle semi-axes of lengths λi. Unlike the case of converting parameter space’s perturbation
region to input space, Rγ

X need not be in a form of ellipsoid. Instead, we provide a subset Rγ
∆,sub

of Rγ
X in the form of a ball such that Rγ

∆,sub ⊆ Rγ
X .

Let θ be decomposed into UΣV ⊤ using SVD decomposition. For now, we will consider the special
case of θ where U = I , i.e. the region of θδ is bounded by an ellipsoid aligned with standard basis.
Afterwards, we will consider the general case of θ, i.e. the region of θδ is bounded by a rotated
ellipsoid.

Let dij denote the ith row, jth column element of ∆ ∈ Rc×n and xi the ith element of x ∈ Rn.
Since the range of ∆x is an ellipsoid, ∆x must satisfy the ellipsoid inequality

(x1d11 + x2d12 + · · ·+ xnd1n)
2

λ2
1

+ · · ·+ (x1dc1 + x2dc2 + · · ·+ xndcn)
2

λ2
c

≤ 1

Let ri denote the ith row vector of ∆, and let X denote xx⊤. The above inequality can be rewritten
as:
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r⊤1 Xr1
λ2
1

+
r⊤2 Xr2
λ2
2

+ · · ·+ r⊤c Xrc
λ2
c

≤ 1 (9)

Since we are interested in finding the region of ∆ in Rc×n space, we may think of it as a vector
d = [r⊤1 , r

⊤
2 , · · · , r⊤c ] in R(c×n) = Rm rather than as a matrix. Then, inequation 2 can be rewritten

as:

d⊤Xλd ≤ 1, where Xλ :=

X/λ2
1

X/λ2
2

· · ·
X/λ2

c

 ∈ Rm2

One property of Xλ is that it is a rank c matrix with singular values ∥x∥2/λ2
1, · · · , ∥x∥2/λ2

c , re-
garding that X/λ2

i is a rank 1 matrix with singular value ∥x∥2/λ2
i . Another property is that Xλ is a

positive-semidefinite matrix (∵ ∀i ∈ [c], ∥x∥2/λ2
i ≥ 0.)

When we think of a single input x, the area of d satisfying d⊤Xλd ≤ 1 is not bounded. However,
when we consider the constraint over multiple values of input datapoints {x1, x2, · · · , xN}(N ≫ n)
that spans Rn, the area becomes bounded. One justification of the multiple constraints is that when
we consider x a uniform random variable over the input datapoints, the region of d that satisfies
all the possible constraint is ∩N

i=1d
⊤X

(i)
λ d ≤ 1, where X

(i)
λ denotes Xλ for x = xi. Another

justification is that when we reach a local plateau in training parameter θ, there is little or no change
in the value of θ.

Now, we will rewrite Theorem 2 as the following statement:

Theorem 2. Given a set of datapoints D = {xi}Ni=1 (xi ∈ Rn/{0}, i ∈ [N ]), let Rγ
Θ be the

region of d ∈ Rm satisfying the inequality d⊤Xλd ≤ 1 for all x ∈ D. Let Rγ
Θ,sub be the region

of d ∈ Rm satisfying d⊤d ≤ (∥xmax∥2/λ2
min)

−1, where xmax := argmaxxi
∥xi∥ and λmin :=

min{λ1, · · · , λc}. Rγ
Θ,sub ⊆ Rγ

Θ.

Remark that X(i)
λ =

x
⊤
i xi/λ

2
1

x⊤
i xi/λ

2
2

· · ·
x⊤
i xi/λ

2
c

. X(i)
λ is a rank c matrix with singular

values ∥xi∥2/λ2
1, · · · , ∥xi∥2/λ2

c .

Let Ri denote the region of d ∈ Rn satisfying d⊤X
(i)
λ d ≤ 1, and let R′

i denote the region d⊤d ≤(
∥xi∥2

λ2
min

)−1

.
∥xi∥2

λ2
min

being the largest singular value of X(i)
λ , R′

i ⊆ Ri by Lemma 1. Since this

holds for all i ∈ [N ],
N⋂
i=1

R′
i ⊆

N⋂
i=1

Ri.
N⋂
i=1

Ri = Rγ
Θ, and

N⋂
i=1

R′
i = Rγ

Θ,sub is a ball with smallest

radius, i.e. d⊤d ≤

(
∥xmax∥2

λ2
min

)−1

= γ2σ2
min/∥xmax∥2.

We have so far addressed the case where U = I for θ = UΣV ⊤ in the equation θδ = ∆x. Now, let
us consider the general case of full rank matrix θ.

∆ ∈ Rc×n can be represented as either column vectors [v1, v2, · · · , vn] or row vectors
[r1, r2, · · · , rc]⊤. The equation θδ = ∆x can be rewritten as:

ΣV ⊤δ = U⊤∆x = U⊤[v1, v2, · · · , vn]x = [U⊤v1, U
⊤v2, · · · , U⊤vn]x

Let ∆′ := U⊤∆ = [v′1, v
′
2, · · · , v′n] = [r′1, r

′
2, · · · , r′c]⊤, and let d′ be the flattened vector rep-

resentation [r′⊤1 , r′⊤2 , · · · , r′⊤c ] of ∆′. Then, finding Rγ
Θ is equivalent to finding the region of ∆′

satisfying d′⊤Xλd
′ ≤ 1 and multiplying U to ∆′.
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The relationship between ∆′ and ∆ can be expressed as:

Udiag


v′1
v′2
...
v′n

 =


v1
v2
...
vn

 , where Udiag :=


U

U
. . .

U

 ∈ Rm2

Udiag is an orthogonal matrix since U is an orthogonal matrix. Furthermore, any permutation π that
permutes the row vectors of Udiag also results in another orthogonal matrix Uπ

diag . Then for some
π, Uπ

diag[r
′⊤
1 , r′⊤2 , · · · , r′⊤c ]⊤ = [r⊤1 , r

⊤
2 , · · · , r⊤c ]⊤, i.e. Uπ

diagd
′ = d. Since the region of a ball is

not affected by rotations or reflections, the subset obtained is not affected. In other words,

Rγ
X = {d ∈ Rc×n | ∀i ∈ [n], d⊤X

(i)
λ d ≤ 1}

Rγ
∆,sub = {d ∈ Rc×n | d⊤d ≤ γ2σ2

min/∥xmax∥2}

satisfies Rγ
∆,sub ⊆ Rγ

X .

B.3 PROOF ON THEOREM 3

Theorem 3. (Flatness of θ̃∗) Let θ∗ ∈ Θ∗ and θ̃∗ ∈ Θ̃∗ be b∗ and b̃∗-flat minima, respectively. The
following inequality holds:

min
θ∗∈Θ∗

b∗ ≤ min
θ̃∗∈Θ̃∗

b̃∗. (10)

Proof. We consider f(·; θ) to be a universal approximator for continuous functions from the input
space Rn to the output space Rc. For the sake of simplicity, we will omit notations θ∗ ∈ Θ∗ and
θ̃∗ ∈ Θ̃∗ in minθ∗∈Θ∗ and minθ̃∗∈Θ̃∗ henceforth. We prove min b∗ = 0 < (γσmin)

2/∥xmax∥2 ≤
min b̃∗.

Let θ∗0 be an optimal parameter of a model that satisfies ∀(x, y) ∈ D, L(f(x; θ∗0), y) = 0 and
∀(x, y) ∈ Rn × Rc / D, L(f(x; θ∗0), y) > 0.

Let b∗0 denote the b-value of the b-flat minima for θ∗0 . Suppose b∗0 = h > 0. By the definition of b-flat
minima, ∀∥∆∥ ≤ h,∀(x, y) ∈ D,L(f(x; θ∗0 +∆), y) = L(f(x; θ∗0), y)). By Theorem 1, ∃ δ ∈ Rγ

X
such that L(f(x+ δ; θ∗0), y) = L(f(x; θ∗0), y) = 0 and ∥δ∥ > 0 for some (x, y) ∈ D. Nonetheless,
L(f(x+ δ; θ∗0), y) > 0 by the definition of θ∗0 . ⇒⇐
This implies min b∗ ≤ min b∗0 ≤ 0, i.e.min b∗ = 0.

We now show (σminγ)
2/∥xmax∥2 ≤ min b̃∗. Let DA = {(x̃, y) | x̃ := A(x), (x, y) ∼ D}

represent an augmented dataset without label smoothing. Let θ̃∗x be some optimal parameter that
satisfies ∀(x̃, y) ∈ DA, L(f(x̃; θ̃∗x), y)) = 0, and b̃∗x be the b value for the b-flat minima w.r.t. D.
We show that (σminγ)

2/∥xmax∥2 ≤ min b̃∗x = min b̃∗.

By definition, γ represents the maximum L2 distance that augmentation has non-zero proba-
bilities around the original input. Using Theorem 2 and the definition of γ and b̃∗x, we have
γ2σ2

min/∥xmax∥2 ≤ b̃∗x.

By definition of θ̃∗, for all (x, y) ∈ D,

L(f(x̃; θ̃∗), ỹ) = ỹT logf(x̃; θ̃∗)

= (1− ϵ)yT logf(x̃; θ̃∗) + ϵ · 1T logf(x̃; θ̃∗) = 0.
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L(f(x̃; θ̃∗), y) = yT logf(x̃; θ̃∗)

= − ϵ

1− ϵ

(
log(1− ϵ+

ϵ

c
) + (c− 1) · log

ϵ

c

)
= α.

, where α > 0 is some constant (∵ ϵ and c are constants.) This implies L(f(x̃; θ̃∗), y) is constant
for all (x, y) ∈ D, i.e. b̃∗ = b̃∗x by the definition of b-flat minima.

B.4 PROOF ON THEOREM 4

Theorem 4. (Generalization bound) Given M covering sets {Θk}Mk=1 of parameter space Θ with

Θ =
⋃M

k=1 Θk and diam(Θ) = supθ,θ′∈Θ ||θ− θ′||2, where M =
⌈

diam(Θ)
γ

⌉d
(d is the dimension of

Θ and γ is the value satisfying the condition of Assumption 1), and VC dimension vk for each Θk,
the following inequality holds with probability at least 1− δ:

ET (θ) < ÊD̃(θ) +
1

2
Div(D, T ) + log c+ max

k∈[1,M ]

[√
vk log(N/vk)

N
+

log(M/δ)

N

]
,

where Div(D, T ) = 2 supA |PD(A) − PT (A)| measures the maximal discrepancy between distri-
butions D and T , and N is the number of samples drawn from D̃.

Proof. We will use DA and D̃ to represent augmented data distributions without and with label
smoothings, respectively. Analogous to robust empirical risk introduced by Cha et al. (2021), we
define Êγ

D(θ) := max∥δ∥≤γ
1
N

∑N
i=1

[
L(f(xi + δ, θ), yi)

]
with respect to D as the robust empirical

risk defined on the input space.

We now list the following prepositions necessary for proving Theorem 6:

Preposition 1. ÊD̃(θ̃∗) = 0, and ÊDA(θ̃
∗) = Êγ

D(θ̃
∗) = −log(ϵ− c+ ϵ/c).

Proof. ÊD̃(θ̃∗) = 0 by the definition of θ̃∗. ÊDA(θ̃
∗) = −1 · log(ϵ− c+ ϵ/c)− (c− 1) · 0 · log(ϵ/c)

= −log(ϵ− c+ ϵ/c) by the definition of θ̃∗. Êγ
D(θ̃

∗) = ÊDA(θ̃
∗) by the definition of γ.

Let γ′ := γ · λmin/∥xmax∥, where γ is the maximal nonzero region around the original image
bounded by L2 norm of size γ. We additionally utilize the following prepositions of Cha et al.
(2021) to prove Theorem 6.

Preposition 2. For all θ ∈ Θ, |ED(θ)− ET (θ)| ≤
1

2
Div(D, T )

Preposition 3. For all θ ∈ Θ, ED(θ) ≤ Êγ′

D +maxk∈[1,M ]

[√
vk log(N/vk)

N + log(M/δ)
N

]
.

For the sake of readability, we will use B(M,N, δ) interchangeably with maxk∈[1,M ][√
vk log(N/vk)

N + log(M/δ)
N

]
. We are now ready to prove Theorem 6.
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ET (θ̃∗) ≤ ED(θ̃∗) +
1

2
Div(D, T ) Prep. 2

≤ Êγ′

D (θ̃∗) +
1

2
Div(D, T ) + B(M,N, δ) Prep. 3

= Êγ
D(θ̃

∗) +
1

2
Div(D, T ) + B(M,N, δ) Def. γ′,Thm. 2

= ÊDA(θ̃
∗) +

1

2
Div(D, T ) + B(M,N, δ) Prep. 1

= ÊD̃(θ̃
∗)− log

(
ϵ− c+

ϵ

c

)
+

1

2
Div(D, T ) + B(M,N, δ) Prep. 1

< ÊD̃(θ̃
∗) + log c+

1

2
Div(D, T ) + B(M,N, δ)

, where the last inequality holds since −log (ϵ− c+ ϵ/c) < log c for all c > 1 and ϵ ∈ (0, 1).

B.5 PROOF ON THEOREM 5

Theorem 5. (Adversarial robustness) For the dataset of adversarial samples Dadv, the models pa-
rameterized by θ̃∗LS and θ∗ satisfy the following inequality:

ÊDadv(θ̃
∗
LS) < ÊDadv(θ̃

∗). (10)

Prior to delving into the proof, we introduce an assumption on the adversarial dataset:
Assumption 2. There exists a datapoint (x, y) ∈ D and its adversarial counterpart (xadv, y) ∈ Dadv
such that:

1. Positive Augmentation Probability:

PA(xadv|x) > 0.

2. Exclusive Generation:

For all (x′, y′) ∈ D\{(x, y)}, PA(xadv|x′) = 0.

Proof. Let (xadv,κ, yκ) denote a hard negative example satisfying Assumption 2.

Suppose there exists θ̃∗LS and θ̃∗ such that ÊDadv(θ̃
∗
LS) ≥ ÊDadv(θ̃

∗).

ÊDadv(θ̃
∗
LS) = − 1

|Dadv|
∑

(xadv,y)∈Dadv

y⊤logf(xadv; θ̃
∗
LS)

= − 1

|Dadv|
∑
i∈[n]

log hi =: lϵ

, where for all i ∈ [n], 0 < hi < 1.

Let Dadv\κ := Dadv\{(xadv,κ, yκ)}.

ÊDadv(θ̃
∗) = − 1

|Dadv|
∑

(xadv,y)∈Dadv

y⊤logf(xadv; θ̃
∗)

= − 1

|Dadv − 1|
∑

(xadv,y)∈Dadv\κ

y⊤logf(xadv; θ̃
∗)− y⊤κ logf(xadv,κ; θ̃

∗)

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Let l := − 1

|Dadv − 1|
∑

(xadv,y)∈Dadv\κ
y⊤logf(xadv, θ̃

∗).

We want to prove l − y⊤κ logf(xadv,κ; θ̃
∗) ≤ lϵ.

Case l > lϵ:

Since −y⊤κ logf(xadv,κ; θ̃
∗) ≥ 0, l − y⊤κ logf(xadv,κ; θ̃

∗) ≥ l > lϵ. ⇒⇐
Case l = lϵ:

l − y⊤κ logf(xadv,κ; θ̃
∗) ≤ lϵ, and −y⊤κ logf(xadv,κ; θ̃

∗) ≤ lϵ − l = 0.

Since 0 ≤ −y⊤κ logf(xadv,κ; θ̃
∗), we have −y⊤κ logf(xadv,κ; θ̃

∗) = 0. This implies f(xadv,κ; θ̃
∗) =

yκ, which violates the definition of adversarial example f(xadv,κ; θ̃
∗) ̸= yκ. ⇒⇐

Case l < lϵ:

l − y⊤κ logf(xadv,κ; θ̃
∗) ≤ lϵ, and −y⊤κ logf(xadv,κ; θ̃

∗) ≤ lϵ − l.

Since 0 ≤ −y⊤κ logf(xadv,κ, θ̃
∗), 0 ≤ −y⊤κ logf(xadv,κ; θ̃

∗) ≤ lϵ − l.

Let i be the ground-truth index of yκ w.l.o.g. Then, −y⊤κ logf(xadv,κ; θ̃
∗) = −logf(xadv,κ; θ̃

∗)i.

0 ≤ logf(xadv,κ; θ̃
∗)i ≤ lϵ − l, and 1 ≥ f(xadv,κ; θ̃

∗)i ≥ 1
elϵ−l > 0. However, f(xadv,κ; θ̃

∗)i = 0

by the definition of θ̃∗ and Dadv. ⇒⇐
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C EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

In this section, we provide a comprehensive account of the experiments corresponding to the tables
and figures presented in the main paper, along with supplementary results and discussions that were
excluded from the primary manuscript due to page constraints.

C.1 DETAILED EXPERIMENTAL METHODOLOGY

For all experiments involving mean accuracy, mean corruption error (mCE), and adversarial robust-
ness, we trained independent models on each benchmark three times and reported the average values.
In the flatness experiments, we selected one of the trained models for each augmentation method to
generate figures and calculate flatness metrics. Following the conventions from Hendrycks et al.
(2021a), we used both the original data and augmented data in equal proportions across all experi-
ments.

C.1.1 FLATNESS METRICS

Descriptions on Metrics. The maximum eigenvalue of Hessian matrix (λmax) represents locally
steep or sharp direction in the loss landscape, implying that small changes in the parameters in this
direction may lead to large changes in the loss. The trace of the Hessian (trace(H)) provides an
overall measure of the curvature in all directions. µPAC-Bayes represents simplified PAC-Bayesian
bound introduced by Jiang et al. (2020). The simplified PAC-Bayesian bound, denoted as µPAC-Bayes,
is computed as 1/σ, where σ is the largest value such that |ED(θ + N(0, σ2I)) − ED(θ)| ≤ τ .
Therefore, flatter local minima correspond to larger σ values and smaller µPAC-Bayes. The LPF-based
flatness measure evaluates the flatness of a local minimum θ∗ by computing the convolution of the
loss function L with a Gaussian kernel K = N(0, σ2I). Formally, it is defined as (L ∗K)(θ∗) =∫
L(θ∗ − τ)K(τ)dτ . This measure effectively averages the loss over a neighborhood around θ∗,

with the Gaussian kernel weighting nearby points more heavily, thereby quantifying how sharp the
loss landscape is in that region. ϵ-sharpness (ϵsharp) measures the sensitivity of a loss function near a
local minimum by quantifying the largest perturbation of model parameters that leads to an increase
in loss of more than ϵ.

Method Implementations. We have deployed power iteration (PI) method and Hutchinson’s
method to estimate λmax and trace(H) with 20 iterations and 10 samples, respectively. We have
adopted the default parameters for the µPAC-Bayes, LPF measure, and ϵsharp i.e. τ = 0.05, σ = 0.05,
and ϵ = 0.1 respectively.

Loss Visualizations. We visualized the loss surface using the same method as in Cha et al. (2021),
but with a modification: we selected θ2 and θ3 as random orientation vectors of length 15. Specifi-
cally, given a trained model parameter θ1, we defined a two-dimensional orthogonal basis u and v as
follows. We set u = θ2−θ1, and computed v by orthogonalizing θ3−θ1 with respect to u, resulting
in:

u = θ2 − θ1, v =
(θ3 − θ1)− (θ3 − θ1)

⊤(θ2 − θ1)

∥θ2 − θ1∥2 · (θ2 − θ1)
.

Using this orthogonal basis, we created a two-dimensional grid and calculated the loss at each coor-
dinate to visualize the loss surface.

C.1.2 ROBUSTNESS BENCHMARK DETAILS

Domain Generalization Benchmarks. We conducted comprehensive domain generalization ex-
periments on the PACS, VLCS, and OfficeHome datasets to evaluate model robustness and gener-
alizability using augmentations. These datasets are specifically designed to test a model’s ability to
generalize across different domains, as they consist of images that share the same labels but differ
in their domain representations. For example, the PACS dataset contains images from four distinct
domains—’art painting’, ’cartoon’, ’photo’, and ’sketch’—all featuring the same classes such as
’dog’, ’elephant’, and others. In all experiments, models were trained until convergence to ensure
fair and consistent comparisons across different settings.

Our baseline employed Empirical Risk Minimization (ERM) with the best hyperparameters selected
from DomainBed’s ERM training configuration (Gulrajani & Lopez-Paz, 2021). To specifically
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assess the impact of augmentations on model performance, we excluded the heavy augmentation
compositions used in the original DomainBed configuration.

For the baseline augmentations — including AugMix, PixMix, RandAug, StyleAug, and CutOut —
we systematically tuned the number of training epochs, exploring options of 1,000, 2,500, and 5,000
epochs. The default setting was 5,000 epochs, aligning with the standard ERM training procedure.
Specifically for StyleAug, we performed additional tuning of its hyperparameter α alongside the
training epochs. Through manual experimentation, we found that setting α = 1.0 yielded the best
results in terms of model robustness and generalization performance.

Common Corruption Benchmarks. We assessed the robustness of models trained with aug-
mentations against common corruptions using the CIFAR-10, CIFAR-100, and tinyImageNet
datasets. Specifically, we utilized their corrupted counterparts — CIFAR-10-C, CIFAR-100-C, and
tinyImageNet-C — which are standard benchmarks generated from the original datasets by applying
15 distinct corruption types at 5 different severity levels. These corruption types include bright-
ness changes, contrast alterations, defocus blur, elastic transformations, fog addition, frost addition,
Gaussian blur, glass distortion, impulse noise, JPEG compression, motion blur, pixelation, shot
noise, snow addition, and zoom blur. Models were trained and validated on the respective clean
datasets, with robustness evaluations performed at test time only to simulate real-world scenarios
where models encounter unforeseen corruptions. To quantify model performance across all corrup-
tions and severity levels, we calculated the mean Corruption Error (mCE), which averages the error
rates over the different conditions.

For training, we adopted the configurations from Hendrycks et al. (2021b), with a modification to the
maximum number of training epochs—extended from 100 to 400—to ensure thorough convergence.
Specifically, we utilized stochastic gradient descent (SGD) with a momentum of 0.9 and a weight
decay of 0.0005. A cosine learning rate decay schedule was applied over the 400 epochs to optimize
learning efficiency.

Regarding the augmentation techniques, default configuration parameters were used for all baseline
augmentations unless specified otherwise. For StyleAug, the hyperparameter α was set to 0.95
for the CIFAR experiments and adjusted to 1.0 for the TinyImageNet experiments to account for
dataset-specific characteristics. In the CIFAR-10 experiment, CutOut was configured with a grid
size of 4 to effectively augment the training data. All other augmentations — AugMix, PixMix, and
RandAug — were applied using their default settings as described in their respective original works.

Adversarial Robustness Benchmarks. To further evaluate the robustness of models in adversarial
settings, we conducted tests using untargeted Projected Gradient Descent (PGD) attacks based on the
L∞ norm. For clarity, we utilize the absolute value α to represent gradient ascent coefficient, rather
than a relative step size with respect to the perturbation magnitude η (where η corresponds to the
commonly used epsilon ϵ in adversarial literature, representing the maximum allowed perturbation).

For the CIFAR-10 and CIFAR-100 experiments, we employed a PGD-7 attack with parameters
(η, α) = (8/255, 2/255). In the tinyImageNet experiment, we used a PGD-3 attack with parameters
(η, α) = (3/255, 1/255). Essentially, more intense attacks have been applied to simpler datasets,
while milder attacks have been used for more complex datasets, with the CIFAR experiments’ attack
configurations borrowed from the Yang et al. (2020). We then evaluate the adversarial robustness of
models trained following the common corruption evaluation protocol detailed above.

C.2 SUPPLEMENTARY EXPERIMENTAL RESULTS

This section contains supplementary results that were excluded from the primary manuscript due to
page constraints.

C.2.1 ADDITIONAL RESULTS ON ADVERSARIAL ROBUSTNESS

This section provides supplementary results, including adversarial accuracy (Table 5) for PGD L∞
attacks as detailed in C.1.2. Additionally, we present results for PGD L2 untargeted attacks per-
formed using a PGD-20 attack configuration with parameters (η, α) = (0.5, 1/800) (Table 6, 7).
We also include the clean accuracies (Table 8) corresponding to each experimental result. Finally,
Table 9 presents the preliminary results of our Theorem 5 concerning adversarial training using
FGSM.
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Table 5: Impact of augmentations with label smoothing on adversarial robustness. Error is computed
against PGD L∞ untargeted attacks. ‘Original’ shows cross-entropy loss with original augmenta-
tion; ‘+ Label Smoothing (LS)’ shows the loss with label smoothing applied. (↓: The lower the
better).

Aug. CIFAR-10 w/ L∞ ↓ CIFAR-100 w/ L∞ ↓ tinyImageNet w/ L∞ ↓ Avg. Gain ↓Original + LS Original + LS Original + LS

AugMix 99.59 69.01 (−30.58) 99.88 93.36 (−6.52) 99.78 99.48 (−0.30) −12.47
PixMix 98.77 79.47 (−19.30) 99.59 97.79 (−1.80) 99.74 99.20 (−0.54) −7.88

RandAug 99.80 59.80 (−40.00) 99.95 96.49 (−3.46) 99.76 99.52 (−0.24) −14.57
StyleAug 99.89 68.04 (−31.85) 99.96 96.99 (−2.97) 100.00 99.96 (−0.04) −11.62
CutOut 99.96 62.80 (−37.16) 99.97 97.23 (−2.74) 99.66 99.47 (−0.19) −13.36

Table 6: Cross-entropy losses of different augmentations and their combination with label smoothing
against adversarial perturbations from PGD L2 untargeted attacks. ‘Original’ means the loss with
original augmentation without label smoothing; ‘+ Label Smoothing (LS)’ indicates the loss with
label smoothing applied. (↓: The lower the better).

Aug. CIFAR-10 w/ L2 ↓ CIFAR-100 w/ L2 ↓ tinyImageNet w/ L2 ↓ Avg. Gain ↓Original + LS Original + LS Original + LS

AugMix 0.024 0.006 (−0.018) 0.051 0.025 (−0.026) 0.012 0.012 (−0.000) −0.015
PixMix 0.018 0.007 (−0.011) 0.041 0.029 (−0.012) 0.011 0.011 (−0.000) −0.008

RandAug 0.030 0.006 (−0.024) 0.061 0.028 (−0.033) 0.013 0.013 (−0.000) −0.019
StyleAug 0.035 0.006 (−0.029) 0.068 0.029 (−0.039) 0.017 0.019 (+0.002) −0.022
CutOut 0.034 0.005 (−0.029) 0.064 0.029 (−0.035) 0.013 0.013 (−0.000) −0.021

Table 7: Impact of augmentations with label smoothing on adversarial robustness. Error is computed
against PGD L2 untargeted attacks. ‘Original’ shows cross-entropy loss with original augmentation;
‘+ Label Smoothing (LS)’ shows the loss with label smoothing applied. (↓: The lower the better).

Aug. CIFAR-10 w/ L2 ↓ CIFAR-100 w/ L2 ↓ tinyImageNet w/ L2 ↓ Avg. Gain ↓Original + LS Original + LS Original + LS

AugMix 63.89 29.09 (−34.80) 92.76 75.83 (−16.93) 60.54 59.01 (−1.53) −17.75
PixMix 59.11 36.01 (−23.10) 89.75 83.62 (−6.13) 57.17 56.26 (−0.91) −10.05

RandAug 72.53 27.25 (−45.28) 95.11 80.67 (−14.44) 61.89 59.55 (−2.34) −20.02
StyleAug 77.68 27.45 (−50.23) 97.19 81.91 (−15.28) 82.18 84.45 (+2.27) −21.08
CutOut 78.52 25.80 (−52.72) 96.19 82.42 (−13.77) 60.17 59.18 (−0.99) −22.49

Table 8: Clean error of different augmentations and their combination with label smoothing. ‘Origi-
nal’ means the loss with original augmentation without label smoothing; ‘+ Label Smoothing (LS)’
indicates the loss with label smoothing applied.

Aug. CIFAR-10 CIFAR-100 tinyImageNet
Original + LS Original + LS Original + LS

AugMix 4.35 4.71 23.07 22.75 30.00 31.17
PixMix 3.72 4.89 21.39 23.38 29.49 30.89

RandAug 4.08 4.31 22.07 21.69 29.90 30.31
StyleAug 9.99 4.67 34.77 20.85 49.41 57.26
CutOut 3.77 4.69 21.50 21.15 29.85 30.24

C.2.2 VISUALIZATIONS FOR DISTRIBUTIONS OF AUGMENTED SAMPLES

While augmentations have been developed for a variety of purposes, we have observed that those
conforming to Assumption 1 generally exhibit superior generalization robustness compared to those
that do not. Specifically, as shown in Tables 2 and 3, methods like AugMix, PixMix, and RandAug
consistently enhance performance across diverse robustness benchmarks. These augmentations offer
rich representations close to the original image, as illustrated in Figure 4. In contrast, StyleAug and
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Table 9: Performance results of adversarial training (AT) using FGSM with ϵ = 2/255. Our findings
continue to align with Theorem 5.

Aug. CIFAR-10 ↓ CIFAR-100 ↓
Original + LS Original + LS

L2 (loss) 0.005 0.004 (−0.001) 0.012 0.010 (−0.002)
L∞ (loss) 0.026 0.010 (−0.016) 0.046 0.033 (−0.013)
L2 (acc) 21.92 20.63 (−1.29) 53.87 52.31 (−1.56)
L∞ (acc) 64.61 44.90 (−19.71) 92.11 87.34 (−4.77)

Figure 4: 2D representations of the augmentation distributions relative to the originals in the input
space on CIFAR-100 dataset.

CutOut, which demonstrate marginal or low improvements on common corruption benchmarks,
have sparse representations near the original image, resulting in minimal or no gains in robustness.

D FURTHER DISCUSSIONS

D.1 WHAT ARE THE DESIRED ASPECTS OF AUGMENTATIONS?

Based on the theoretical foundations and the empirical investigations in our paper, we aim to figure
out what are the desired aspects of augmentations. Revisiting Assumption 1, we found that the
distribution of augmented samples, PA, should cover the surrounding area of each original sample.
By doing so, models aim to suppress the loss values within the area, leading to the flat and minimized
loss surface around each input, which ultimately leads to the flatter surface in the parameter space.

However, in practice, augmentations do not have to densely encompass the surrounding region of
each original sample. It is due to the fact that modern deep models with appropriate regularization
methods show a strong interpolation performance on the input space. Therefore, we believe when
augmentations sufficiently cover the wide range of surrounding region of each sample, deep models
would show the flatter loss surface on the input space, thus on the parameter space.

However, not much existing augmentations are designed to fulfil our key lesson. As a further work,
it is convincing to propose augmentation methods that are tailored to cover the surrounding region
of each sample, e.g., additive Gaussian within a sphere, and combine it with the existing strong
augmentation practices, e.g., reinforcement learning or generative model-based augmentations or
Mixup techniques, to boost up the generalization performance of augmentations.

D.2 HOW DO OUR CLAIMS FURTHER EXTEND TO LARGE & DEEP MODELS?

As one of the key limitations of our work, the proposed theory is applied to linear models, which
is quite shallow than modern architectures. Specifically, the part involving the translation between
input and parameter space, i.e., Theorem 1 and 2, are for linear models. The reason of this condition
is we can further achieve the closed-form or tighter bounds of the solutions, i.e., Rγ

X , and Rγ
Θ, by

using the linear architecture of given models.

However, in practice, we further investigate the proofs of our claims by using modern deep archi-
tectures, such as the WideResNet architecture. Based on the experiments which consistently verify
our claim, we strongly believe that the main claims of this work can be extended to large and deep
model architectures. For a more precise description, formalizing the regions seems to be intractable
for complicated large and deep models. However, as a further insight, when a complex model is
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assumed to be a continuous and smooth function (as widely accepted in deep machine learning
theory), we speculate that our intuition, which links input/parameter regions, is also valid.

D.3 ANY OTHER MODALITIES BEYOND VISUAL DATA?

Our main experiments handle visual data, more specifically, image classification tasks. Also, it
might be unexplored that the key claims of this work can be further applied to other modalities, such
as language, audio, or even sensory signals from devices. Our experiments seem to be limited to
vision cases, but we believe that it is an important step forward to understand theoretical importance
of augmentations in machine learning. Furthermore, we want to emphasize that our main theoretical
claims do not explicitly rely on the characteristics of visual data, so it can be further extended to
the other form of modalities. In addition, extending to other complicated task beyond classification
can be an appropriate future research direction. In particular, sequential training such as natural
language processing or decision based on reinforcement learning probably show distinct and unique
theoretical understanding beyond classification.
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