
Online Generalized Magician’s Problem with Multiple Workers

Ruoyu Wu1 Wei Bao1 Ben Liang2 Liming Ge1

1School of Computer Science, The University of Sydney, Sydney, NSW, Australia
2Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada

Abstract

We study the online Generalized Magician’s Prob-
lem with Multiple Workers (GMPMW), where
tasks arrive sequentially and must be assigned
to one of several workers for processing, with
each worker consuming a stochastic amount of
resources and generating an unknown reward. The
system must decide on the acceptance of each
task and its assignment to a worker, in order to
maximize the accumulated reward within the bud-
get. To address this problem, we propose the On-
line Worker Assignment (OWA) Algorithm. It op-
timally solves an optimization problem to balance
resource allocation across workers and maintains
virtual resource utilization according to the joint
evolution of different workers. The competitive ra-
tio of OWA is lower bounded by the closed-form
expression max{1/L, c} · (1−K− 1

2), where L is
the number of workers, K is the resource budget,
and c is a constant derived from the problem in-
stance. We perform trace-driven experiments with
real-time video analytics, demonstrating the excel-
lent capability of OWA to accommodate multiple
workers in GMPMW.

1 INTRODUCTION

The Generalized Magician’s Problem (GMP) [Alaei et al.,
2013, Alaei, 2014] is a classical online optimization prob-
lem, where a decision maker (magician) chooses from a
sequence of tasks to process in order to obtain as much
reward as possible. Each task has a resource consumption
(cost) and a reward initially unknown to the decision maker,
which are revealed in stages when the task arrives and is
completed.

However, inherent in the original GMP is that there is only
a single worker processing all accepted tasks. Thus, it fails

to consider the complication of many practical scenarios,
where the tasks may be processed by different workers,
each with different capabilities and resource profiles that
influence reward and resource consumption. A generaliza-
tion of GMP toward multiple workers is well motivated by
real-world scenarios in various areas, among which a repre-
sentative example is task processing in cloud computing. In
this application, a cloud provider offers a machine learning
(ML) inference service. It receives ML task requests, where
different ML models produce different accuracies and re-
quire different amounts of energy. The cloud provider needs
to decide which task to accept or reject, and which model to
use to process each accepted task, in order to maximize the
accumulated accuracy. In Section 6 (and Appendix H), this
scenario is used as a case study to evaluate our proposed
algorithm. Other applications of the GMP with multiple
workers include labor outsourcing with different workers
and online ad placement with different types of ads. Further
details on these applications can be found in Appendix A.

In this paper, we introduce the Generalized Magician’s Prob-
lem with Multiple Workers (GMPMW): Each task can be
processed by one of several workers. Different workers gen-
erate different amounts of reward while consuming different
amounts of resources. The decision maker must decide on
the acceptance of each task and its assignment to a worker,
in order to maximize the accumulated reward within a re-
source budget. To the best of our knowledge, this is the first
work to consider multiple workers in GMP.

The GMPMW is substantially more complex than the orig-
inal GMP, which arises from the need to balance resource
consumption across different workers while relying only on
limited and incrementally revealed knowledge of tasks – a
challenge absent in the single-worker GMP. Likewise, this
challenge is absent in other online problems, as it is unique
to GMPMW that we consider multiple stages of observabil-
ity of a task’s cost, progressing from zero initial knowledge
to a probability distribution upon task arrival, and finally the
exact value upon task completion (see details in Section 2).

mailto:<ruoyu.wu@sydney.edu.au>?Subject=Your UAI 2025 paper
mailto:<wei.bao@sydney.edu.au>?Subject=Your UAI 2025 paper
mailto:<liang@ece.utoronto.ca>?Subject=Your UAI 2025 paper
mailto:<liming.ge@sydney.edu.au>?Subject=Your UAI 2025 paper

To overcome these challenges, we develop the Online
Worker Assignment (OWA) algorithm to employ a balanced
probability-fitting approach. We first balance the workers’
resource consumption by optimally solving a problem with
a non-convex constraint, which then guides online resource
allocation through a set of assignment guarantees. Then,
OWA tracks the virtual resource consumption, which cap-
tures the joint evolution of resource usage across workers
and serves as the basis for planning the overall resource
usage across tasks. Consequently, OWA balances resource
consumption across workers and maximizes resource utiliza-
tion to effectively handle uncertain rewards and fluctuating
resource demands.

Main Results:

• OWA establishes a novel framework for addressing
the GMPMW. We derive the competitive ratio α of
OWA, along with a closed-form lower bound α′ =
max{1/L, c} · (1−K− 1

2), where L is the number of
workers, K is the resource budget, and c is a constant
derived from the problem instance. When there is only
one worker, i.e., L = 1, this lower bound is consistent
with the previous best result on the GMP Alaei et al.
[2013]. Furthermore, we show that α can be reached in
certain problem instances, so it is a tight performance
bound.

• We prove that when the reward lower bound for each
worker is 0, OWA is asymptotically optimal, meaning
that α approaches the best competitive ratio as the re-
source budget increases. This result underscores the
effectiveness of OWA’s design and suggests its superi-
ority compared with alternative algorithms.

• For the numerical case study, we perform trace-driven
experiments on real-time video analytics over edge
devices. These experiments validate the theoretical re-
sult and demonstrate OWA’s efficiency in leveraging
multiple workers in GMPMW.

2 RELATED WORK

A distinct feature of GMP and GMPMW is their staged
progression of task cost observability—initially unknown,
partially observable as a distribution upon task arrival, and
fully revealed as an exact value upon task completion. Fig-
ure 1 compares the progression of task cost observability
for different problems. Task cost observability may increase
at four key instants: before task arrival, upon arrival, upon
discarding, and after processing, categorized into three lev-
els: Unknown (no information), Distribution (distribution
known), and Value (value known).

We compare GMP and GMPMW (red) against the Online
Generalized Assignment Problem (OGAP), Online Stochas-
tic Generalized Assignment Problem (OSGAP), Online

Before Arrival Upon Arrival Upon Discarding Upon Processing
Key Instants in Online Decision Making

Unknown

Distribution

Value

Ob
se

rv
ab

ilit
y

of
 T

as
k

Co
st

s

OSKP
OSGAP

OGAP,OKP
BwK-F

BwK-B
GMP, GMPMW (Ours)

Figure 1: Progression of task cost observability in online
problems.

Knapsack Problem (OKP), Online Stochastic Knapsack
Problem (OSKP), and the Bandit with Knapsack (BwK)
problem, including its Full Feedback (BwK-F) and Bandit
Feedback (BwK-B) variants. Unlike other problems that ex-
perience only two levels of task cost observability, GMP and
GMPMW are the only ones that undergo all three levels. We
elaborate below on these differences, with a more detailed
comparison provided in Appendix B.

2.1 GMP, OGAP, AND OSGAP

GMP was originally studied by Alaei et al. [2013] with
a competitive ratio of 1 − K−1/2 achieved, where K is
the resource budget. The Magician’s Problem (MP) Alaei
[2014] is a special case of GMP with random 0-1 cost. Srini-
vasan and Xu [2022] studied a variant of GMP considering
unknown distributions of resource consumption. GMP has
then been applied in e-commerce [Amil et al., 2025] and
transportation [Jiang and Samaranayake, 2022]. However,
none of the above works can accommodate the multiple
workers in GMPMW.

GMP has been adopted to tackle other online problems, such
as OSGAP [Alaei et al., 2013]. In OSGAP, each task belongs
to a type drawn from a known distribution. Upon arrival, the
task’s type is revealed, specifying the reward and the cost
distribution. Yoshinaga and Kawase [2023] extended OS-
GAP to consider a more limited resource budget. Liu et al.
[2023] and Li et al. [2023] studied OGAP with adversarial
task rewards and costs. However, as shown in Figure 1, both
OSGAP and OGAP follow a similar observability progres-
sion: the exact task cost is revealed upon arrival (OGAP)
or upon processing (OSGAP) without an intermediate level.
Consequently, none of these problems considers the full
progression of task cost observability involving all three
levels as in GMP and GMPMW.

2.2 OKP, OSKP, AND BWK

OKP [Zhou et al., 2008, Böckenhauer et al., 2014] assumes
that the decision-maker initially has no knowledge of either

task rewards or costs, and OSKP assumes that the decision-
maker knows the distribution [Papastavrou et al., 1996, Dean
et al., 2008] or the exact value [Jiang et al., 2022] of task
costs. However, the exact task cost in both problems is re-
vealed upon arrival. In BwK [Badanidiyuru et al., 2018,
Immorlica et al., 2022, Drago et al., 2024], the task’s reward
and cost are not known to the decision-maker and are re-
vealed after processing the task (BwK-B) or after the task
is either processed or discarded (BwK-F). To summarize,
as illustrated in Figure 1, none of OKP, OSKP, or BwK
consider the full progression of task cost observability as in
GMP and GMPMW.

2.3 OTHER ONLINE OPTIMIZATION PROBLEMS

Recently, Feldman et al. [2021] introduced the Online Con-
tention Resolution Scheme (OCRS) as a rounding scheme
for solving the Online Bayesian Optimization Problem
(BOP) [Chawla et al., 2010, Gupta and Nagarajan, 2013,
Feldman et al., 2021, Jiang et al., 2022]. However, all of
these works consider deterministic task costs known to the
decision-maker at the beginning. Moreover, the lack of prior
knowledge about task rewards and costs prevents the con-
struction of a linear relaxation for solving GMP via OCRS
and necessitates fundamentally different approaches.

There are additional online optimization problems that have
structural differences from GMP and GMPMW, such as the
One-Way Trading Problem (OTP) [El-Yaniv et al., 2001, Lin
et al., 2019, Cao et al., 2020], the Online Bipartite Matching
Problem [Mehta et al., 2013, Dickerson et al., 2021, Wu
et al., 2023], and the online Pandora’s Box problem [Es-
fandiari et al., 2019, Boodaghians et al., 2020, Gatmiry
et al., 2024]. We discuss these differences in more detail in
Appendix B.4.

3 THE MAGICIAN’S PROBLEM WITH
MULTIPLE WORKERS

In this section, we first present a formal description of the
GMPMW, and then discuss the online environment and
our objective of the algorithm design, including a formal
definition of the competitive ratio adopted in GMP.

3.1 PROBLEM FORMULATION

A sequence of T tasks arrives at the decision maker one at a
time. For each task, the decision maker may choose one of
L different workers to process it, indexed by l. When task
t arrives, the decision maker makes irrevocable decisions
xt,l ∈ {0, 1} for each worker l, determining whether to
assign the task to worker l (i.e., xt,l = 1) or to reject it (i.e.,
xt,l = 0 for all l).

If task t is processed by worker l ∈ [L], it will generate a

reward ut,l. Otherwise, task t is discarded and cannot be
processed in the future. The reward ut,l of processing task
t with worker l is unobservable, determined by the hidden
factors (e.g., user satisfaction), and it is revealed only after
the task is completed. Although ut,l is not known in advance,
it varies within a range [ul, ul], and the upper bound ul and
the lower bound ul are known to the decision maker. We
assume that ut,l ≥ 0.

The decision maker has a total resource budget of K for the
workers. When task t arrives, the probability distribution
Rt,l for the resource consumption of each worker l to pro-
cess this task becomes known. This progressively improving
observability of task cost reflects practical scenarios where
resource consumption is influenced by measurable external
factors (e.g., temperature) or observable task attributes (e.g.,
size), allowing for estimation upon the task’s arrival. When
the decision maker assigns task t to worker l, the worker
consumes an amount of resource rt,l that is drawn from
Rt,l, which is then deducted from the remaining amount
of the total resource budget. Without loss of generality, we
assume that rt,l ∈ (0, 1]. We further assume thatRt,l has a
probability density function (PDF) gt,l(·) that is continuous,
along with the cumulative distribution Gt,l(·).

We consider the hard budget constraint: If processing a
task exceeds the remaining budget, the task will be dis-
carded, and the consumed resource will not be recovered.
Following the conventional large-scale setting proposed
by [Alaei et al., 2013, Alaei, 2014] for GMP, we assume that
1
L

∑
l∈[L]

∑
t∈[T] E[rt,l] ≤ K, i.e., the decision maker’s re-

source is, on average, sufficient to process all tasks. The
large-scale setting assumption of the GMPMW accounts
for real-world engineering and operational problems where
a reasonable budget is allocated to the decision-maker.1

We also assume that K ≥ 1, which is also conventionally
adopted in GMP.

Our objective is to maximize the accumulated reward over
the incoming tasks under the resource budget constraint. We
formulate our optimization problem as follows:

max
xt,l,∀t,l

∑
t∈[T]

∑
l∈[L]

xt,lut,l, (1)

s.t.
∑
t∈[T]

∑
l∈[L]

xt,lrt,l ≤ K, (2)

∑
l∈[L]

xt,l ≤ 1,∀t ∈ [T], (3)

xt,l ∈ {0, 1},∀l ∈ [L], t ∈ [T], (4)
rt,l ∼ Rt,l,∀l ∈ [L], t ∈ [T], (5)

where constraint (2) indicates the limited resource budget,
1For example, in project portfolio selection or maintenance

scheduling, organizations often plan a budget that is, in expectation,
sufficient to cover most (if not all) tasks, while the resources must
be allocated wisely.

constraints (3) specify that at most one worker is assigned
to process each task, constraints (4) give the decision space,
and (5) specify the distributions of resource consumption.

3.2 ONLINE ENVIRONMENT AND
COMPETITIVE RATIO

In GMPMW, each task sequence I is arranged by an adver-
sary, with T , {ut,l}, and {Rt,l} chosen by the adversary. A
task sequence I is random due to the distributions {Rt,l}.
We define ΩI as the sample space of I and i ∈ ΩI as a
sample path of the task sequence I . A sample path i has a
set of rt,l generated from {Rt,l} in its task sequence.

The decision maker does not know T , {ut,l}, or {Rt,l} in
advance since these values are chosen by the adversary. The
length T of the task sequence is revealed when no more
tasks arrive to the decision maker; the probability distribu-
tion of resource consumptionRt,l is revealed with its PDF
gt,l(·) when task t arrives, which as explained previously
is a distinct feature of GMP and GMPMW; and the reward
ut,l and the exact resource consumption rt,l are known to
the decision maker only after task t is processed by worker
l. Note that ut,l and rt,l remain unknown to the decision
maker if task t is not processed by worker l.

For a given sample path i, we denote the performance of an
online algorithm ALG as ALG(i) and denote the optimal
performance of the offline algorithm as OPT(i). We assume
that i is fully known to OPT in advance. We denote the
average performance of the online algorithm ALG over all
sample paths i of the task sequence I as Ei∼I [ALG(i)]. To
assess the performance of an online algorithm in this paper,
we use the competitive ratio as the primary metric. Here,
ALG is α-competitive if

Ei∼I [ALG(i)] ≥ αmax
i∈ΩI

[OPT(i)],∀I ∈ I, (6)

where I is the set of all possible task sequences. This defini-
tion of the competitive ratio is previously adopted by Alaei
et al. [2013], Alaei [2014], Srinivasan and Xu [2022]. Note
that this definition is stronger than another commonly used
definition [Buchbinder et al., 2009]:

Ei∼I [ALG(i)] ≥ αEi∼I [OPT(i)],∀I ∈ I, (7)

as (6) implies (7).

4 ONLINE WORKER ASSIGNMENT
(OWA) ALGORITHM DESIGN

In this section, we present our Online Worker Assign-
ment (OWA) framework for solving GMPMW. OWA is
an online algorithm that addresses the complicated trade-
off between accumulating rewards and balancing limited
resources among multiple workers. It requires fully lever-
aging the progressively improved task cost observability,

making its design significantly more challenging and dis-
tinct from existing solutions for the original GMP and other
online problems.

The OWA algorithm (summarized in Alg. 1) is a bal-
anced probability-fitting approach consisting of four main
phases: Pre-Calculation, Worker-Assignment, Processing,
and Baseline-Calibration. 1⃝ Before the first task arrives,
OWA enters the pre-calculation phase (Line 3), where it
calculates an assignment guarantee γ∗

l for each worker l
based on reward bounds and the resource budget (Eqs. (8)–
(11)), which later guides the decision-making in the online
process by balancing online resource consumption across
workers (Line 7). 2⃝ When task t arrives, we enter the
worker-assignment phase (Lines 6–8), where OWA com-
pares the resource utilization level Θt against a resource
utilization baseline θt to decide whether to accept this task.
3⃝ In the processing phase (Lines 10–17), the task is pro-
cessed or discarded according to the decision. 4⃝ In the
baseline-calibration phase (Lines 19–23), OWA first updates
the virtual resource consumption to capture the long-term
resource availability and the joint evolution of different
workers, accounting for both the randomness of task cost
and the randomization of online decisions. It then derives
a new baseline θt+1 for the next decision, carefully fitting
the probability of processing the next task to the long-term
resource availability, striking a balance between accumulat-
ing rewards and preserving sufficient resources for future
high-reward tasks.

4.1 PRE-CALCULATION PHASE

Before the first task arrives, OWA starts in the pre-
calculation phase to determine an assignment guarantee γ∗

l

for each worker l. It is the optimal solution to the following
problem:

P1 max
γl,∀l

min
l

∑
l′∈[L]\{l} γl′ul′

ul
+ γl (8)

s.t. K ≥ 1

(1−
∑

l∈[L] γl)(1−maxl γlL)
, (9)

max
l

γl <
1

L
, (10)

γl ≥ 0, ∀l. (11)

This optimization problem captures the limited prior knowl-
edge of task rewards and costs while accounting for the im-
pact of each decision on future resource dynamics, ensuring
that the assignment guarantees optimally balance resource
consumption across workers in online decision-making. The
reason why OWA sets the assignment guarantee γ∗

l in this
way will be explained in detail later in Section 5, where we
derive the competitive ratio of OWA.

Since the decision maker knows L, K, ul, and ul, the op-
timization problem P1 is solved in an offline manner be-

Algorithm 1 Online Worker Assignment (OWA) Algorithm
INPUT: L, K, {ul} and {ūl}

1: t← 1, θ1 ← 0, Θ1 ← 0, xt,l ← 0, ϕ1 ← 1
2: # Pre-Calculation Phase
3: Calculate γ∗

l by solving optimization problem P1 in
Eqs. (8)–(11).

4: while task t arrives (gt,l is observed) do
5: # Worker-Assignment Phase
6: if Θt ≤ θt and K −Θt ≥ 1 then
7: Select a worker l with probability γ∗

l /ϕt and set
xt,l ← 1.

8: end if
9: # Processing Phase

10: if
∑

l xt,l = 1 then
11: The selected worker l processes task t.
12: (Reward ut,l and resource consumption rt,l are

revealed).
13: Θt+1 ← Θt + rt,l
14: else
15: Discard task t
16: Θt+1 ← Θt

17: end if
18: # Baseline-Calibration Phase
19: if t = 1 then
20: Initialize h1(·) as δ(·).
21: end if
22: Calculate ht+1(·) by Eq. (12).
23: Calculate θt+1 and ϕt+1 by Eqs. (15)–(16).
24: t← t+ 1
25: end while

fore the tasks arrive. Note that although problem P1 has
a non-convex constraint (9), its optimal solution can still
be obtained using standard convex optimization solvers, as
detailed in Section 5. Throughout this paper, we denote the
optimal value of the objective of P1 by P1({γ∗

l }), such that
P1({γ∗

l }) = minl (
∑

l′∈[L]\{l} γ
∗
l′ul′)/ul + γ∗

l .

4.2 WORKER-ASSIGNMENT PHASE

When task t arrives, OWA starts the worker-assignment
phase (Lines 5–7). For all tasks, we use Θt =∑

τ<t

∑
l xτrτ,l to record the current resource utilization

level at the arrival of task t. If the remaining amount of
resource K − Θt is less than 1, OWA discards task t to
avoid exceeding the resource budget and causing an infea-
sible solution, due to the random nature of the resource
consumption. If the remaining amount of resource K −Θt

is at least 1 and Θt ≤ θt, OWA selects a worker l with
probability γ∗

l /ϕt and sets xt,l = 1, or discards task t with
probability 1−

∑
l γ

∗
l /ϕt and sets xt,l = 0 for all l. Here,

ϕt is an offset parameter initialized to 1 and updated in
the baseline-calibration phase, and its update rule will be
discussed shortly in Section 4.4.

4.3 PROCESSING PHASE

After the decision {xt,l} is made, OWA enters the process-
ing phase. In this phase, task t is processed by the selected
worker l or discarded, and Θt is updated accordingly. If task
t is processed by worker l, its reward ut,l is revealed and
received by the decision maker, and its consumption rt,l is
realized from the probability distributionRt,l and is counted
toward the current resource utilization level in Θt (Line 13).
Otherwise, the reward ut,l and the resource consumption
rt,l of the task t for each worker l remain unknown. The
decision maker receives no reward from this task, and Θt

does not change toward Θt+1 (Line 16).

4.4 BASELINE-CALIBRATION PHASE

In the Baseline-Calibration Phase, given the observed PDF
gt,l(·) of the resource consumption of each worker, OWA
generates the new resource utilization baseline θt+1 and the
new offset ϕt+1 (Lines 18–23). Note that this calculation
does not depend on whether the task t is processed. This
calculation is based on the virtual resource consumption
ht(w), which evaluates the impact of all past decisions on
future resource consumption by considering all potential
task acceptances, task assignments to different workers, and
the corresponding resource consumption. It is initialized as
the Dirac delta function h1(w) = δ(w), representing the
initial budget before any consumption, and is updated as

ht+1(w) =(1−
∑
l∈[L]

γ∗
l /ϕt)ht(w) + (

∑
l∈[L]

γ∗
l /ϕt)

×
[
ht(w) ∗ gt(w) + ht(w)− ht(w)

]
. (12)

In Eq. (12), the first summation term captures the impact of
potentially discarding task t on future resource consumption,
while the second term corresponds to the decision to accept
it. In the second summation term in Eq. (12), ht is the
truncated resource utilization function

ht(w) =

{
ht(w), w ≤ θt,

0, w > θt,
(13)

capturing the impact of baseline θt on the decision making,
gt is the average resource consumption PDF calculated by

gt(w) = (1/
∑
l∈[L]

γ∗
l)
∑
l∈[L]

γ∗
l gt,l(w), (14)

capturing the balanced resource consumption across work-
ers while incorporating the newly improved observability
(i.e., distribution) of task costs, and ∗ is the convolution op-
erator, capturing the potential future dynamics of resource
consumption caused by processing task t. In this way, the
virtual resource consumption ht+1 captures the stochastic
nature of actual resource consumption and the long-term

resource availability, accounting for both the randomness of
task costs and the randomization in decision-making. We
then calculate θt+1 and ϕt+1 (Line 23) as follows:

θt+1 =argmin
w


∫ w

−∞
ht+1(v)dv ≥

∑
l∈[L]

γ∗
l

 , (15)

ϕt+1 =

∫ θt+1

−∞
ht+1(v)dv, (16)

in order to ensure that the baseline θt+1 and offset ϕt+1

carefully “fit” the resource consumption of processing task
t + 1 to the long-term resource availability, balancing im-
mediate resource utilization with preserving resources for
the future.

4.5 OWA ALGORITHM COMPLEXITY ANALYSIS

We provide a detailed complexity analysis of OWA in Ap-
pendix D and offer a summary here. The complexity of the
pre-calculation phase is O(L3) when the optimal solution
to P1 is obtained by the barrier method [Boyd and Vanden-
berghe, 2004]. The complexity of the worker-assignment
phase isO(1). In the baseline-calibration phase, the random
variables Rt,l can be continuous, with continuous PDFs
{gt,l}. In practice, we can discretize them with arbitrary
granularity. Let D be the number of levels used for dis-
cretization (a larger D implying higher accuracy). The com-
plexity is O(D log(D)) in this phase. We note that the pre-
calculation phase is performed offline before online tasks ar-
rive. Only the processing phase and the baseline-calibration
phase are performed in an online manner. Accordingly, the
overall complexity of OWA for each task is O(D log(D)).

5 THEORETICAL ANALYSIS

In this section, we analyze the competitive ratio of the OWA
algorithm and show that it is tight and approaches the maxi-
mum possible competitive ratio as the budget K increases.
Before that, we first show that the optimization problem P1
can be solved by standard convex optimization solvers.

Theorem 1. (Convex Equivalence) There exists a convex
optimization problem P′, such that its optimal solution is
also the optimal solution to P1.

Proof. (Sketch of Proof) We first transform the objective
function into an equivalent form. We then show that there
exists an optimal solution that satisfies the quality of a key
constraint, so we can further transform the problem into a
convex optimization problem. Consequently, the optimal
solution of this convex problem is also optimal for P1. The
complete proof is provided in Appendix C.

5.1 COMPETITIVE RATIO OF THE OWA
ALGORITHM

To analyze the competitive ratio of the OWA algorithm, we
will lower-bound the probability of processing each task t
by each worker l by the assignment guarantee γ∗

l . To show
that OWA avoids the situation where the tasks can no longer
be accepted because the remaining amount of resource falls
below 1, leading to a 0 probability of processing subse-
quent tasks, we proactively identify a “safe range” for {γ∗

l }.
This ensures that the resource remains sufficiently distant
from the stop line. We start with a definition of resource
sufficiency in Definition 1.

Definition 1. We say that the resource sufficiency condition
is satisfied if the following statement is true: For each task t,
K −Θt ≥ 1 if Θt ≤ θt.

The meaning of Definition 1 is that, if the current resource
consumption Θt ≤ θt, we guarantee that the remaining
amount of the resource is greater than or equal to 1, allow-
ing processing of the future tasks. We next show that the
computed γ∗

l from solving P1 in Eqs. (8)–(11) satisfies the
resource sufficiency condition in Definition 1.

Theorem 2. (Sufficient Resource) With γ∗
l from solving P1

in Eqs. (8)–(11), the OWA algorithm satisfies the resource
sufficiency condition.

Proof. (Sketch of Proof) To prove Theorem 2, we require
several lemmas. First, we define Ht as the anti-derivative of
ht and show Ht+1(θt) ≤ Ht(θt) for every t ∈ [T]. Second,
we show that θt ≤ θt+1 for every t. Third, we define Θt =
minw{

∫ w

−∞ ht(v)dv = 1} and show that Θt+1 ≤ θt+1 for
every t. Fourth, we show that θt ≤ θt+1 < θt+1 for every t.
Finally, we show that constraint (9) implies that K ≥ θt+1,
which in turn leads to the resource sufficiency condition.
The complete proof is given in Appendix E.1.

As a result of Theorem 2, OWA will accept a task and
process it by some worker l as long as the current resource
consumption Θt is less than or equal to the target θt. Using
such an approach, we can bound from below the probability
that each task t will be processed by each worker l.

Theorem 3. (Worker Assignment Probability Lower Bound)
For all l, the probability of processing each task t by worker
l is no less than γ∗

l .

Proof. (Sketch of Proof) To prove Theorem 3, we first show
a relation between ht(w) and the distribution of Θt over all
sample paths. Using this relation, the design of the OWA
algorithm, the update rule of ht(w), and Theorem 2, we
arrive at the theorem’s conclusion. The complete proof is
given in Appendix E.2.

Theorem 3 leads to the competitive ratio of OWA:

Theorem 4. (Competitive Ratio) The competitive ratio
achieved by the OWA algorithm is at least α = P1({γ∗

l }).

Proof. (Sketch of Proof) We use the results of Theorem 3
to analyze the competitive ratio of the OWA algorithm. We
find that when the probability of processing each task t by
worker l is lower bounded by γ∗

l , the competitive ratio of the
OWA algorithm is at least P1({γ∗

l }). The complete proof is
given in Appendix E.3.

Since in general we only have a numerical solution to the
optimization problem P1 and its optimal value P1({γ∗

l }),
we give a closed-form lower bound on the competitive ratio
P1({γ∗

l }) in the following corollary:

Corollary 1. (Closed-Form Lower Bound on the Com-
petitive Ratio) The competitive ratio of OWA is lower
bounded by α′ = max{1/L, c} · (1 − K− 1

2), where
c = minl∈[L] ul/maxl∈[L] ul is a constant derived from
the problem instance.

Proof. (Sketch of Proof) To prove Corollary 1, we find a fea-
sible solution to the optimization problem P1 and show that
the competitive ratio achieved by this solution in GMPMW
is no less than α′. Then, since α = P1({γ∗

l }) is the optimal
value obtained on problem P1 by the optimal solution γ∗

l ,
it is lower bounded by α′. The complete proof is given in
Appendix E.4.

Note that the numerical value of α consistently exceeds
its lower bound α′. We provide numerical results in Ap-
pendix F to illustrate the actual behavior of the competitive
ratio α. When there is only one worker (i.e., L = 1), the
competitive ratio α is lower bounded by α′ = 1 − K− 1

2 ,
matching the previous best result on the original single-
worker GMP [Alaei et al., 2013]. This result confirms that
our algorithm design is consistent with the previous best
algorithm design for the single-worker GMP, while also
addressing the multiple workers in GMPMW.

5.2 TIGHTNESS OF THE COMPETITIVE RATIO

Now that we have obtained the competitive ratio of the OWA
algorithm, we investigate how tight this performance bound
is. First, we give a formal definition of the tightness of the
competitive ratio of an online algorithm in Definition 2.

Definition 2. (Tightness) The competitive ratio α for an
online algorithm ALG is tight if and only if there exists a task
sequence I where Ei∼I [ALG(i)] = αmaxi∈ΩI [OPT(i)].

Next, we prove that the competitive ratio α = P1({γ∗
l })

achieved by the OWA algorithm on GMPMW is tight.

Theorem 5. (Tightness of α) For every combination of
K and L, there exists a tasks sequence I , where the per-
formance ratio achieved by the OWA algorithm is exactly
Ei∼I [ALG(i)]/maxi∈ΩI [OPT(i)] = α = P1({γ∗

l }).

Proof. We focus on the task sequence where the reward
lower and upper bounds for each l are ul = 0 and
ul = u. In this case, the competitive ratio of OWA is
α = P1({γ∗

l }) = minl γ
∗
l . To induce the worst-case per-

formance, the adversary will arrange the task sequence in
the following way: The reward for processing each task t
by the worker l′ = argminl γ

∗
l is set to ut,l′ = u, and

ut,l = 0 for processing each task by every other worker l.
The offline optimal result is thus maxOPT(i) = Tu, which
is obtained when the offline algorithm processes each task
t by worker l′, reached when

∑
t∈[T] rt,l′ < K. In this

case, the expected total reward obtained by the OWA algo-
rithm is exactly γ∗

l′Tu, resulting in a performance ratio of
γ∗
l′ = minl γ

∗
l = P1({γ∗

l }).

5.3 OPTIMALITY OF THE OWA ALGORITHM

We investigate whether any online algorithm can achieve
a higher competitive ratio on GMPMW than that of OWA.
For the single-worker GMP, Alaei et al. [2013] proved the
existence of asymptotically optimal solutions only for the
special case where the reward lower bound is 0. In what
follows, we show that the competitive ratio α of OWA is also
asymptotically optimal with respect to K when the reward
lower bound ul for every worker l is 0 (i.e., c = 0), such that
OWA recovers the best existing solution for GMP [Alaei
et al., 2013] when there is only one worker (i.e., L = 1).
However, since α does not have a closed-form expression,
we will first prove that its lower bound α′ is asymptotically
optimal, as stated in Theorem 6.

Theorem 6. (Asymptotic Optimality of α′) When the reward
lower bound of each worker is 0, α′ is an asymptotically op-
timal competitive ratio for the OWA algorithm on GMPMW,
meaning that α′ approaches the maximum possible compet-
itive ratio when budget K approaches infinity.

Proof. (Sketch of Proof) To prove Theorem 6, we show
that there exists an adversary for which no online algorithm
can achieve a competitive ratio higher than α∗ = 1

L . The
complete proof is in Appendix E.5.

Remark 1. Since Corollary 1 establishes that α′ ≤ α,
Theorem 6 directly implies that, when c = 0, the competitive
ratio α of OWA also approaches the maximum competitive
ratio as the budget K approaches infinity.

Note that the asymptotic optimality of [Alaei et al., 2013]
was also proved in the case where the reward lower bound
is 0, such that our result implies that OWA is a natural

Faster R-
CNN

YOLOv5
Medium

YOLOv5
Large

Input Frame

Accuracy: 12.76%

Accuracy: 58.91%

Accuracy: 87.88%

Figure 2: Video analytics and accuracy calculation.

generalization of the existing best solution to incorporate the
multiple workers in GMPMW. In Appendix G, we further
provide numerical results to study the impact of various
system parameters on the competitive ratio of OWA.

6 EVALUATION OF OWA BY CASE
STUDY

To further evaluate the performance of OWA, we conduct
trace-driven experiments under a practical system of real-
time video analytics at the Internet edge with multiple de-
ployed machine learning models.

6.1 MODEL SELECTION FOR REAL-TIME
VIDEO ANALYTICS

Real-time video analysis requires sophisticated machine
learning models, but the edge devices, such as tablets and
laptops, are equipped with limited batteries. In many situ-
ations, the edge devices are not connected to a persistent
power supply, so it is important to efficiently manage the
workload on the edge devices. Here we consider a general
scenario where an edge computing device, equipped with
multiple machine learning models, is used for real-time
video analytics, processing a sequence of video chunks in
practical applications such as traffic monitoring in smart
cities and hazard prevention. Different machine learning
models (workers) generate different accuracy values (re-
ward) and consume different amounts of energy (resource).
We need to decide whether to process or discard a video
chunk and, if so, which machine learning model to use, in
order to maximize the overall accuracy within the energy
constraint.

This application scenario of real-time video analysis with
multiple models deployed on the edge device is consistent
with the problem formulation of the GMPMW. The video
chunks are the incoming tasks, and the multiple machine
learning models to process each video chunk are the multiple
workers in the GMPMW. The probability distribution of the
energy consumption of each model Rt,l can be estimated
by model profiling and video pre-processing Hung et al.
[2018], and the upper bound ul and lower bound ul can
also be obtained by profiling Zhang et al. [2017]. The edge

device does not know the accuracy and energy consumption
of processing each video chunk before that chunk arrives,
and only after processing a chunk using a model can it know
the corresponding accuracy and energy consumption. The
energy budget of the edge device is the limited resource
budget.

6.2 VIDEO TRACE COLLECTION AND MODEL
PROFILING

For the video traces, we use a Xiaomi 12 Pro Android smart-
phone equipped with a Sony IMX766 photosensor to capture
the traffic on the road as well as the network condition. We
collect 4 sets of video traces with different lengths, labeled
as Trace 1–4. The video frames are grouped into video
chunks, with each video chunk containing the video frames
in 3 seconds. The video chunks are then sent to the edge
device for analysis, so each video chunk is a task.

We deploy 3 machine learning models on a laptop com-
puter powered by an Intel Core i5-11320H CPU with in-
tegrated graphics to analyze the video chunks. The ma-
chine learning models deployed are Faster R-CNN Ren et al.
[2017], YOLOv5 Jocher [2020] with medium backbone,
and YOLOv5 with large backbone. To obtain the power
consumption of each model, we use the Python implemen-
tation of Intel’s Running Average Power Limit (pyRAPL)
Spirals [2023]. The video frames are grouped into video
chunks, each containing 3 seconds of video frames. The
video chunks are then sent to the edge device for analysis,
with each video chunk being a task.

We obtain the accuracy of each model by model profil-
ing Zhang et al. [2017], and we adopt an accuracy criterion
based on the Intersection over Union metric, which is widely
accepted in video analytics Lin et al. [2014], Redmon et al.
[2016], Ren et al. [2017]. In Figure 2, each inference gener-
ated by an object detection model yields a set of predicted
bounding boxes (red boxes). In parallel, we construct a set
of ground truth objects, each represented by its own bound-
ing box (green boxes). These ground truth bounding boxes
are derived from a highly reliable model, the Faster R-CNN
Ren et al. [2017], which uses the Resnet 50 He et al. [2016]
backbone. The accuracy of our model is determined by com-
paring these two sets of bounding boxes.

We profile the accuracy and the energy consumption of each
model in the same environment. The accuracy and energy
measurements are executed once per second and averaged
over each 3-second video chunk. Further details are given
in Appendix H.

6.3 BENCHMARKS

We compare the performance of OWA against that of the
following benchmarks (with further details on each of them

4 5 6
K (kJ)

0

20

40

60

80

100

120

140

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y
OWA
R

Ada
GOK

EAE
UCB

MOT
MPC

S-OWA
A-OWA

(a) Trace 1 (1200s).

6 7 8
K (kJ)

0

50

100

150

200

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y

OWA
R

Ada
GOK

EAE
UCB

MOT
MPC

S-OWA
A-OWA

(b) Trace 2 (1800s).

8 9 10
K (kJ)

0

50

100

150

200

250

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y

OWA
R

Ada
GOK

EAE
UCB

MOT
MPC

S-OWA
A-OWA

(c) Trace 3 (2400s).

10 11 12
K (kJ)

100

150

200

250

300

350

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y
OWA
R

Ada
GOK

EAE
UCB

MOT
MPC

S-OWA
A-OWA

(d) Trace 4 (3000s).

Figure 3: Comparing OWA against benchmarks.

given in Appendix H): (i) R: the Random algorithm ran-
domly decides whether to process a video chunk with a
model or to discard it; (ii) Ada: the Adaptive algorithm
selects a random model to process a new chunk if it has
previously discarded any chunk; (iii) GOK: the Greedy On-
line Knapsack algorithm processes every video chunk using
the model with the highest efficiency; (iv) EAE: Explo-
ration and Exploitation [Audibert et al., 2009]; (v) UCB:
Upper Confidence Bound Bandit [Garivier and Moulines,
2011]; (vi) MOT: Multi-worker One-way Trading [Cao et al.,
2020]; (vii) MPC: Model Predictive Control [Morari and
Lee, 1999]; (viii) S-OWA: Single-Worker OWA implements
a single-worker version of OWA; (ix) A-OWA: Average
OWA first selects a fixed model and then decides whether
to process the video chunks. Further details on each of the
benchmarks are given in Appendix H.

6.4 PERFORMANCE

To compare the performance of the OWA algorithm against
that of the benchmarks, we apply all algorithms to each
video trace with different resource budgets K, as shown in
Figure 3.

In all settings, we observe that the OWA algorithm outper-
forms all benchmarks under all conditions on our video
traces. We also have some observations on the performance
of each of the benchmarks. We will discuss them in three
groups: 1⃝ Random, Adaptive, and GOK; 2⃝ EAE, UCB,
MOT, and MPC; and 3⃝ S-OWA and A-OWA.

The Random algorithm performs worse than OWA because
it does not consider the resource constraints. The adaptive
algorithm considers the resource constraint, but simply con-
trols the number of tasks (chunks) processed, rather than the

resource consumption, so it performs worse than OWA. The
GOK algorithm sticks to the worker (model) with the high-
est average efficiency, but the most efficient worker may not
fully utilize all of the resource (energy), leading to inferior
performance.

EAE and UCB perform worse than OWA because they are
not aware of the resource constraint. MOT performs worse
than the OWA algorithm because, in our system, the reward
(accuracy) and the resource consumption are not known
when a video chunk arrives. However, these are important
variables for the decision-making process in the MOT algo-
rithm. When MOT can only use the profiled data to make de-
cisions, its performance suffers. MPC performs worse than
the OWA algorithm because the real-world street scenes
captured in our video traces are highly fluctuating. As a
result, the predictions made by MPC are not accurate.

Finally, we discuss S-OWA and A-OWA, which are different
variants of OWA. S-OWA focuses only on the best possible
worker (model) according to model profiling. It performs
worse than OWA because it does not balance between the
reward and resource consumption by utilizing all workers.
On the other hand, A-OWA first chooses the worker (model)
and then makes a decision based on that worker’s baseline.
This strategy of A-OWA leads to worse performance than
OWA because each worker only updates its own baseline,
but the different reward and resource consumption levels
among different workers are coupled in GMPMW. In con-
trast, OWA updates the baselines in a joint manner and
assigns each task to different workers based on the model
profiling result, thus achieving superior performance.

In conclusion, our experimental results demonstrate the
excellent capability of the OWA algorithm to utilize the
multiple workers in GMPMW in a variety of realistic system
settings, and they show the importance of properly handling
the multiple workers in the proposed approach.

7 CONCLUSION

In this paper, we study GMPMW and consider the compli-
cated trade-off between reward accumulation and resource
consumption imposed by multiple workers. We propose the
OWA algorithm to tackle the new challenges. OWA balances
the resource consumption across workers through a set of
assignment guarantees and tracks the virtual resource con-
sumption to capture the long-term resource availability. The
competitive ratio of OWA, α = P1({γ∗

l }), which is lower
bounded by α′ = max{1/L, c} · (1 −K− 1

2), is tight and
approaches the maximum competitive ratio. When there is
only one worker, this lower bound (thus the competitive ra-
tio α) matches the best existing result for the original GMP.
We perform trace-driven experiments to demonstrate the
excellent capability of the OWA algorithm to accommodate
multiple workers in GMPMW.

References

Saeed Alaei. Bayesian Combinatorial Auctions: Expand-
ing Single Buyer Mechanisms to Many Buyers. SIAM
Journal on Computing, 43(2):930–972, 2014.

Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid
Liaghat. The Online Stochastic Generalized Assignment
Problem. In Proceedings of the International Workshop
on Approximation Algorithms for Combinatorial Opti-
mization, pages 11–25, 2013.

Ayoub Amil, Ali Makhdoumi, and Yehua Wei. Multi-Item
Order Fulfillment Revisited: LP Formulation and Prophet
Inequality. Management Science, 0(0):1–19, 2025.

Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári.
Exploration–exploitation tradeoff using variance esti-
mates in multi-armed bandits. Theoretical Computer
Science, 410(19):1876–1902, 2009.

Ashwinkumar Badanidiyuru, Robert Kleinberg, and Alek-
sandrs Slivkins. Bandits with Knapsacks. Journal of the
ACM, 65(3):1–55, 2018.

Hans-Joachim Böckenhauer, Dennis Komm, Richard
Královič, and Peter Rossmanith. The online knapsack
problem: Advice and randomization. Theoretical Com-
puter Science, 527:61–72, 2014.

Shant Boodaghians, Federico Fusco, Philip Lazos, and Ste-
fano Leonardi. Pandora’s Box Problem with Order Con-
straints. In Proceedings of the ACM Conference on Eco-
nomics and Computation, pages 439–458, 2020.

Stephen P Boyd and Lieven Vandenberghe. Convex Opti-
mization. Cambridge University Press, 2004.

Niv Buchbinder, Joseph Seffi Naor, et al. The Design of
Competitive Online Algorithms via a Primal–Dual Ap-
proach. Foundations and Trends® in Theoretical Com-
puter Science, 3(2–3):93–263, 2009.

Ying Cao, Bo Sun, and Danny HK Tsang. Optimal Online
Algorithms for One-Way Trading and Online Knapsack
Problems: A Unified Competitive Analysis. In Proceed-
ings of the IEEE Conference on Decision and Control,
pages 1064–1069, 2020.

Shuchi Chawla, Jason D Hartline, David L Malec, and Bala-
subramanian Sivan. Multi-parameter Mechanism Design
and Sequential Posted Pricing. In Proceedings of the
ACM Symposium on Theory of Computing, pages 311–
320, 2010.

Brian C Dean, Michel X Goemans, and Jan Vondrák. Ap-
proximating the Stochastic Knapsack Problem: The Ben-
efit of Adaptivity. Mathematics of Operations Research,
33(4):945–964, 2008.

John P Dickerson, Karthik A Sankararaman, Aravind Srini-
vasan, and Pan Xu. Allocation Problems in Ride-sharing
Platforms: Online Matching with Offline Reusable Re-
sources. ACM Transactions on Economics and Computa-
tion, 9(3):1–17, 2021.

Davide Drago, Andrea Celli, and Marek Elias. Bandits with
Knapsacks and Predictions. In Proceedings of the Con-
ference on Uncertainty in Artificial Intelligence, pages
1189–1206, 2024.

Ran El-Yaniv, Amos Fiat, Richard M Karp, and Gordon
Turpin. Optimal Search and One-Way Trading Online
Algorithms. Algorithmica, 30:101–139, 2001.

Hossein Esfandiari, MohammadTaghi HajiAghayi, Brendan
Lucier, and Michael Mitzenmacher. Online Pandora’s
Boxes and Bandits. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, pages 1885–1892, 2019.

Moran Feldman, Ola Svensson, and Rico Zenklusen. On-
line Contention Resolution Schemes with Applications
to Bayesian Selection Problems. SIAM Journal on Com-
puting, 50(2):255–300, 2021.

Aurélien Garivier and Eric Moulines. On Upper-Confidence
Bound Policies for Switching Bandit Problems. In Pro-
ceedings of the International Conference on Algorithmic
Learning Theory, pages 174–188, 2011.

Khashayar Gatmiry, Thomas Kesselheim, Sahil Singla, and
Yifan Wang. Bandit Algorithms for Prophet Inequality
and Pandora’s Box. In Proceedings of the Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 462–500,
2024.

Anupam Gupta and Viswanath Nagarajan. A Stochastic
Probing Problem with Applications. In Proceedings of
the International Conference on Integer Programming
and Combinatorial Optimization, pages 205–216, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 770–778, 2016.

Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik,
Leana Golubchik, Minlan Yu, Paramvir Bahl, and Matthai
Philipose. VideoEdge: Processing Camera Streams using
Hierarchical Clusters. In Proceedings of the IEEE/ACM
Symposium on Edge Computing, pages 115–131, 2018.

Nicole Immorlica, Karthik Sankararaman, Robert Schapire,
and Aleksandrs Slivkins. Adversarial Bandits with Knap-
sacks. Journal of the ACM, 69(6):1–47, 2022.

Hongyi Jiang and Samitha Samaranayake. Approximation
Algorithms for Capacitated Assignment with Budget Con-
straints and Applications in Transportation Systems. In
Proceedings of the International Computing and Combi-
natorics Conference, pages 94–105, 2022.

Jiashuo Jiang, Will Ma, and Jiawei Zhang. Tight Guarantees
for Multi-unit Prophet Inequalities and Online Stochastic
Knapsack. In Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1221–1246,
2022.

Glenn Jocher. Yolov5 by ultralytics. https://github.
com/ultralytics/yolov5, 2020. Accessed: 2024-
01-15.

Zihao Li, Hao Wang, and Zhenzhen Yan. Sample-Based
Online Generalized Assignment Problem with Unknown
Poisson Arrivals, 2023.

Qiulin Lin, Hanling Yi, John Pang, Minghua Chen, Adam
Wierman, Michael Honig, and Yuanzhang Xiao. Com-
petitive Online Optimization under Inventory Constraints.
SIGMETRICS Perform. Eval. Rev., 47(1):35–36, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft COCO: Common Objects
in Context. In Proceedings of the European Conference
on Computer Vision, pages 740–755, 2014.

Haodong Liu, Huili Zhang, Kelin Luo, Yao Xu, Yinfeng Xu,
and Weitian Tong. Online generalized assignment prob-
lem with historical information. Computers & Operations
Research, 149:106047, 2023.

Aranyak Mehta et al. Online Matching and Ad Alloca-
tion. Foundations and Trends® in Theoretical Computer
Science, 8(4):265–368, 2013.

Manfred Morari and Jay H Lee. Model predictive control:
past, present and future. Computers & Chemical Engi-
neering, 23(4-5):667–682, 1999.

Jason D Papastavrou, Srikanth Rajagopalan, and Anton J
Kleywegt. The Dynamic and Stochastic Knapsack Prob-
lem with Deadlines. Management Science, 42(12):1706–
1718, 1996.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You Only Look Once: Unified, Real-Time Ob-
ject Detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 779–
788, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(6):1137–
1149, 2017.

Spirals. pyrapl. https://pypi.org/project/
pyRAPL/, 2023. Accessed: 2024-01-15.

Aravind Srinivasan and Pan Xu. The Generalized Magi-
cian Problem under Unknown Distributions and Related
Applications. In Proceedings of the International Con-
ference on Autonomous Agents and Multiagent Systems,
pages 1219–1227, 2022.

Ruoyu Wu, Wei Bao, and Liming Ge. Online Task Assign-
ment with Controllable Processing Time. In Proceedings
of the International Joint Conference on Artificial Intelli-
gence, pages 5466–5474, 2023.

Toru Yoshinaga and Yasushi Kawase. Size-stochastic knap-
sack online contention resolution schemes, 2023.

Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J Freed-
man. Live Video Analytics at Scale with Approximation
and Delay-Tolerance. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implemen-
tation, pages 377–392, 2017.

Yunhong Zhou, Deeparnab Chakrabarty, and Rajan Lukose.
Budget Constrained Bidding in Keyword Auctions and
Online Knapsack Problems. In Proceedings of the
International Conference on World Wide Web, page
1243–1244, 2008.

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://pypi.org/project/pyRAPL/
https://pypi.org/project/pyRAPL/

Online Generalized Magician’s Problem with Multiple Workers
(Supplementary Material)

Ruoyu Wu1 Wei Bao1 Ben Liang2 Liming Ge1

1School of Computer Science, The University of Sydney, Sydney, NSW, Australia
2Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada

A REAL-WORLD APPLICATIONS OF GMPMW

GMPMW has real-world applications in various areas. The following are a few examples.

Cloud Computing Task Processing A cloud provider offers a machine learning (ML) inference service. It receives ML
task requests, where different ML models produce different accuracies and require different amounts of energy. The cloud
provider needs to decide which task to accept or reject, and if so, which model to use to process each task, in order to
maximize the accumulated accuracy. In the experiment section of the paper (and Appendix H), this scenario is used as a
case study to evaluate our proposed algorithm.

Labor Outsourcing A labor outsourcing company receives job requests, and different workers can be assigned to the
job. Different workers generate different profits and require different hourly wages, while the total wage is budgeted. The
company decides which job to accept or reject, and which worker to assign to which task, in order to maximize the total
profit.

Online Ad Placement An online ad service provider receives ad placement requests, and different types of ads can be
placed for each request. Different types of ads generate different interaction rates and consume different amounts of ad time,
while the total amount of ad time is budgeted. The service provider decides which request to accept, and if so, which type
of ad to serve, in order to maximize the overall interaction rate. In this scenario, the maximum total ad time is the limited
resource, and the different types of ads are different workers.

B COMPREHENSIVE COMPARISON OF GMP AND GMPMW WITH RELATED
PROBLEMS

A distinct feature of GMP and GMPMW is their unique progression of task cost observability, which refers to the key
instants in online decision-making when the observability of task costs improves, as well as the extent of those improvements.
This uniqueness in GMP and GMPMW stems from their complete progression of task cost observability—initially unknown,
partially observable as a probability distribution upon task arrival, and fully revealed as an exact value upon task completion,
involving all three levels of task cost observability.

To further clarify this distinction, Figure 4 compares the progression of task cost observability across different problems.
Task cost observability may increase at four key instants: before task arrival, upon task arrival, upon discarding, and after
processing, categorized into three levels: Unknown (no information), Distribution (probability distribution known), and Value
(exact value known). We compare GMP and GMPMW (red) against the Online Generalized Assignment Problem (OGAP),
Online Stochastic Generalized Assignment Problem (OSGAP), Online Knapsack Problem (OKP), Online Stochastic
Knapsack Problem (OSKP), and the Bandit with Knapsack (BwK) problem, including its Full Feedback (BwK-F) and
Bandit Feedback (BwK-B) variants. Unlike other problems that experience only two levels of task cost observability, GMP
and GMPMW are the only ones that undergo the full progression involving all three levels. Figure 1 summarizes Tables 1–3,

mailto:<ruoyu.wu@sydney.edu.au>?Subject=Your UAI 2025 paper
mailto:<wei.bao@sydney.edu.au>?Subject=Your UAI 2025 paper
mailto:<liang@ece.utoronto.ca>?Subject=Your UAI 2025 paper
mailto:<liming.ge@sydney.edu.au>?Subject=Your UAI 2025 paper

Before Arrival Upon Arrival Upon Discarding Upon Processing
Key Instants in Online Decision Making

Unknown

Distribution

Value

Ob
se

rv
ab

ilit
y

of
 Ta

sk
 C

os
ts

OSKP
OSGAP

OGAP,OKP
BwK-F

BwK-B
GMP, GMPMW (Ours)

Figure 4: (Reproduced from Figure 1) Progression of task cost observability in online problems.

Table 1: Task Observability of Rewards (R) and Costs (C) in GMP, OGAP, and OSGAP

Online
Problems

Before
Arrival

Upon
Arrival

Upon
Discarding

Upon
Processing Typical Work

GMP and
GMPMW

R: Unknown.
C: Unknown.

R: Unknown.
C: Distribution.

R: Unknown.
C: Distribution.

R: Value.
C: Value. [Alaei et al., 2013, Alaei, 2014]

OGAP R: Unknown.
C: Unknown.

R: Value.
C: Value.

R: Value.
C: Value.

R: Value.
C: Value. [Liu et al., 2023, Li et al., 2023]

OSGAP R: Distribution.
C: Distribution.

R: Value.
C: Distribution.

R: Value.
C: Distribution.

R: Value.
C: Value. [Alaei et al., 2013, Yoshinaga and

Kawase, 2023]

where we compare the progression of observability of both task reward and cost across different problems. For conciseness,
we use “R” to denote the observability of task reward and “C” to denote the observability of task cost throughout Tables 1–3.
The details of this comparison, along with the tables, are discussed in the remainder of this section.

B.1 GMP, OGAP, AND OSGAP

In this section, we first introduce the origins and history of GMP, followed by an introduction to OGAP and OSGAP. We
will also compare the observability of task reward and cost in these problems, which is summarized in Table 1.

In GMP, which was originally introduced by Alaei et al. [2013], a decision maker needs to decide which task to process
in a task sequence, in order to maximize the cumulative reward within the resource budget K. Alaei et al. [2013] studied
GMP and achieved a competitive ratio of 1−K−1/2. In GMP, task reward is unobservable: The decision-maker has no
knowledge about task reward before or upon task arrival, and the task reward is revealed only after processing. Task cost has
progressively improved observability: The decision maker has no knowledge about task cost before task arrival, then knows
the distribution of task cost upon arrival, and knows the value of task cost only after processing it. A special case of GMP
with random 0-1 cost is the Magician’s Problem (MP), which was then studied by Alaei [2014] with a competitive ratio
of 1− (K + 3)−1/2 achieved. Recently, Srinivasan and Xu [2022] studied a variant of GMP considering scenarios with
unknown distributions of resource consumption. Owing to the large-scale setting and the unique observability of tasks, GMP
has found widespread application in various fields, including e-commerce [Amil et al., 2025] and transportation [Jiang and
Samaranayake, 2022]. However, none of the above works can accommodate the multiple workers in GMPMW.

Table 2: Task Observability of Rewards (R) and Costs (C) in OKP, OSKP, and BwK

Online
Problems

Before
Arrival

Upon
Arrival

Upon
Discarding

Upon
Processing Typical Work

OKP R: Unknown.
C: Unknown.

R: Value.
C: Value.

R: Value.
C: Value.

R: Value.
C: Value. [Zhou et al., 2008, Cao et al., 2020]

OSKP
(Stochastic
Reward and

Cost)

R: Distribution.
C: Distribution.

R: Value.
C: Value.

R: Value.
C: Value.

R: Value.
C: Value. [Papastavrou et al., 1996]

OSKP
(Stochastic

Reward)

R: Distribution.
C: Value.

R: Value.
C: Value.

R: Value.
C: Value.

R: Value.
C: Value. [Jiang et al., 2022]

OSKP
(Stochastic

Cost)

R: Value.
C: Distribution.

R: Value.
C: Value.

R: Value.
C: Value.

R: Value.
C: Value. [Dean et al., 2008]

BwK-B R: Unknown.
C: Unknown.

R: Unknown.
C: Unknown.

R: Unknown.
C: Unknown.

R: Value.
C: Value. [Badanidiyuru et al., 2018, Immor-

lica et al., 2022]

BwK-F R: Unknown.
C: Unknown

R: Unknown.
C: Unknown.

R: Value.
C: Value.

R: Value.
C: Value. [Badanidiyuru et al., 2018, Immor-

lica et al., 2022]

The unique task cost observability and the large-scale setting also enabled GMP to be adopted to tackle other online
problems, such as OSGAP [Alaei et al., 2013, Alaei, 2014], which is also studied in the large-scale setting. In OSGAP, each
task belongs to a type drawn from a known distribution. A task’s type determines its reward and cost distribution, both
known in advance. Therefore, by knowing the distribution of task types, the decision-maker also knows the distributions
of both task reward and cost. Upon arrival, the task’s type is revealed, specifying the reward and the cost distribution.
Recently, Yoshinaga and Kawase [2023] extended OSGAP to consider a more limited resource budget while maintaining
the large-scale setting. Liu et al. [2023] and Li et al. [2023] studied OGAP as an adversarial variant of OSGAP, where the
reward and cost of each task are arranged by an adversary and are revealed only upon arrival. However, as shown in Figure 4
and Table 1, despite the differing initial knowledge of task costs in OSGAP (distribution) and OGAP (none), both problems
follow a similar observability progression: the exact task cost is fully revealed immediately upon arrival (OGAP) or upon
processing (OSGAP), without an intermediate level. Consequently, none of these problems considers the full progression of
task cost observability involving all three levels as in GMP and GMPMW.

B.2 OKP, OSKP, AND BWK

In this section, we introduce OKP, OSKP, and BwK, and discuss the task observability in these problems, which is
summarized in Table 2. In OKP [Zhou et al., 2008, Cao et al., 2020], the decision-maker also chooses from a sequence of
tasks to process to maximize the reward accumulation within the cost budget. OKP [Zhou et al., 2008, Böckenhauer et al.,
2014] assumes that the decision-maker has no information on the reward and cost of tasks except the bounded ratio between
task reward and cost, and the reward and cost of a task are fully revealed upon task arrival. A stochastic variant of OKP is
the Online Stochastic Knapsack Problem (OSKP). In OSKP, task costs are either deterministic (with stochastic rewards) or
stochastic (with deterministic or stochastic rewards). In the deterministic cost setting [Jiang et al., 2022], costs are known by
the decision maker at the beginning, while in the stochastic cost setting [Papastavrou et al., 1996, Dean et al., 2008], the cost
of each task follows a known distribution, with its exact value revealed upon task arrival. However, as shown in Figure 4 and
Table 2, despite the differing initial knowledge of task costs in the stochastic-cost OSKP (distribution) and OKP (none), both
problems follow the same observability progression: the exact task cost is fully revealed immediately upon arrival, without
an intermediate level. Moreover, as shown in Table 2, in the stochastic-reward OSKP, when task costs are deterministic,
the decision-maker knows the task costs even before task arrival. Consequently, none of these problems considers the full
progression of task cost observability involving all three levels as in GMP and GMPMW.

Table 3: Task Observability of Rewards (R) and Costs (C) in OMuPI, COPM, and the Stochastic Probing Problem

Online
Problems

Before
Arrival

Upon
Arrival

Upon
Discarding

Upon
Processing Typical Work

OMuPI R: Distribution.
C: Value.

R: Value.
C: Value.

R: Value.
C: Value.

R: Value.
C: Value. [Feldman et al., 2021, Jiang et al.,

2022]

COPM R: Distribution.
C: Value.

R: Distribution.
C: Value.

R: Distribution.
C: Value.

R: Value.
C: Value. [Chawla et al., 2010, Feldman et al.,

2021]

Stochastic
Probing

R: Distribution.
C: Value.

R: Distribution.
C: Value.

R: Distribution.
C: Value.

R: Value.
C: Value. [Gupta and Nagarajan, 2013, Feld-

man et al., 2021]

In BwK [Badanidiyuru et al., 2018, Immorlica et al., 2022, Drago et al., 2024], the decision-maker does not know a task’s
reward or cost even upon its arrival. Two feedback settings are considered: bandit feedback (BwK-B), where both values
are revealed only after processing the task, and full feedback (BwK-F), where they are revealed after the task is either
processed or discarded. However, as shown in Figure 4 and Table 2, both BwK-B and BwK-F start with no knowledge
of task costs and follow a similar observability progression, where the exact task cost is directly revealed after the task is
discarded (BwK-B) or processed (BwK-F). Consequently, none of these problems considers the full progression of task cost
observability involving all three levels as in GMP and GMPMW.

B.3 THE ONLINE CONTENTION RESOLUTION SCHEME

Recently, Feldman et al. [2021] introduced the Online Contention Resolution Scheme (OCRS) as a rounding scheme for
solving online submodular function optimization problems. The core of OCRS involves generating a fractional solution
for a linear relaxation of the problem using available prior knowledge, followed by a stochastic and sequential rounding
process to derive a feasible integer solution for the original online problem. OCRS has been found capable of solving the
Online Bayesian Optimization Problem (BOP), including the Online Multi-Unit Prophet Inequality (OMuPI) [Feldman
et al., 2021, Jiang et al., 2022], the Constrained Oblivious Posted Price Mechanisms Problem (COPM) [Chawla et al., 2010,
Feldman et al., 2021], and the Stochastic Probing Problem [Gupta and Nagarajan, 2013, Feldman et al., 2021]. In OMuPI,
task rewards follow known distributions and are revealed upon arrival, with task costs known to the decision-maker at the
beginning. In both COPM and the Stochastic Probing Problem, task rewards follow known distributions and are revealed
only after processing, with task costs known to the decision-maker at the beginning. Later, Jiang et al. [2022] adopted
OCRS to solve a deterministic-cost OSKP. However, as shown in Figure 4 and Tables 2–3, all of these works consider
deterministic task costs known to the decision-maker at the beginning. Moreover, the absence of prior knowledge about
task rewards and costs distinguishes GMP and GMPMW from BOP, making it impossible to construct a meaningful linear
relaxation in advance for GMP. Consequently, GMP and GMPMW require fundamentally different approaches from OCRS.

B.4 OTHER ONLINE OPTIMIZATION PROBLEMS

Further to Section 2, here we summarize other online optimization problems that are less relevant to GMP and GMPMW.
The One-Way Trading Problem (OTP) involves continuous resource consumption with task reward arriving in an adversarial
order, considering an infinite time horizon and resource consumption controlled by the decision maker [Cao et al., 2020,
El-Yaniv et al., 2001, Lin et al., 2019]. Compared with the OTP, GMP and GMPMW are distinct in their unknown and
limited time horizon and uncertain resource consumption. The Online Bipartite Matching Problem deals with the matching
of online tasks and offline machines, where the time horizon is known to the decision maker [Mehta et al., 2013, Dickerson
et al., 2021, Wu et al., 2023]. The online Pandora’s Box problem introduces a unique approach where the decision maker
strategically reveals item values, in order to maximize the maximum value (rather than the sum value) of revealed items
minus the cost of revealing, with no limit on total cost, controlled item arrival order, and known item number [Boodaghians
et al., 2020, Esfandiari et al., 2019, Gatmiry et al., 2024]. These problems are structurally different from GMP and GMPMW.

C PROOF OF THEOREM 1

(Convex Equivalence) There exists a convex optimization problem P′, such that its optimal solution is also the optimal
solution to P1.

Proof. Recall that the optimization problem P1 is defined as

P1 max
γl,∀l

min
l

∑
l′∈[L]\{l} γl′ul′

ul
+ γl (17)

s.t. K ≥ 1

(1−
∑

l∈[L] γl)(1−maxl γlL)
, (18)

max
l

γl <
1

L
, (19)

γl ≥ 0, ∀l. (20)

(i) Note that the objective function in Eq. (17) is equivalent to∑
l′∈[L]

γl′ −
∑

l′∈[L]\l

γl′(1−
ul′

ūl
). (21)

In addition, by Eq. (19), Eq. (18) is equivalent to∑
l∈[L]

γl ≤ 1− 1

K −maxl γlKL
. (22)

Therefore, P1 is equivalent to

P2 max
γl,∀l

min
l

∑
l′∈[L]

γl′ −
∑

l′∈[L]\l

γl′(1−
ul′

ūl
) (23)

s.t.
∑
l∈[L]

γl ≤ 1− 1

K −maxl γlKL
, (24)

max
l

γl <
1

L
, (25)

γl ≥ 0, ∀l. (26)

(ii) There exists an optimal solution that satisfies the equality of Eq. (24). Otherwise, for an optimal solution not satisfying
the equality of Eq. (24), we can increase the γl that is smaller than 1/L until the equality of Eq. (24) is satisfied. During this
process, Eq. (23) will not decrease.

(iii) Therefore, an optimal solution of P1 can be obtained by optimally solving

P3 max
γl,∀l

min
l

1− 1

K −maxl γlKL
−

∑
l′∈[L]\l

γl′(1−
ul′

ūl
) (27)

s.t. max
l

γl <
1

L
, (28)

γl ≥ 0, ∀l. (29)

(iv) We set w = maxl γl, then P3 is equivalent to

P′ max
w,{γl}l∈[L]

min
l

1− 1

K − wKL
−

∑
l′∈[L]\l

γl′(1−
ul′

ūl
) (30)

s.t. 0 ≤ w <
1

L
, (31)

0 ≤ γl ≤ w, ∀l. (32)

(v) In Eq. (30), the second term 1/(K − wKL) is convex when w < 1/L, the last term is linear, so the objective function
1− 1

K−wKL −
∑

l′∈[L]\l γl′(1−
ul′
ūl

) is concave, the minimization of this function is concave, and Eq. (30) is convex. With
Eq. (31) and Eq. (32), P′ is a convex optimization problem.

(vi) Therefore, an optimal solution to the convex optimization problem P′ is also an optimal solution to P1.

D OWA ALGORITHM COMPLEXITY ANALYSIS

Complexity of the Pre-Calculation Phase. Before the first task arrives, we need to solve the optimization problem P1
to obtain the parameters γ∗

l . Since, by Theorem 1 and its proof (Appendix C), the optimal solution to P1 can be obtained
by solving the convex optimization problem P′, which is given in Eq. (29)–(31). We can solve P′ by standard solvers for
convex optimization problems, such as the interior-point method (or the barrier method). Specifically, if we solve P′ using
the barrier method [Boyd and Vandenberghe, 2004] with the starting point as w = 0 and γl = 0 for each l, it will take at
most ⌈2 log2(

5P1({γ∗
l })

ϵ)⌉(1
2p + c) Newton steps (centering steps), where ϵ is the error tolerance, 1

p = 20−8α
αβ(1−2α)2 where α

and β are the backtracking parameters, and c = log2(log2(1/ϵ)). Each Newton step has a complexity of O(L3). Since the
pre-calculation phase is performed offline before the online process, this complexity can be well accepted.

Complexity of the Worker-Assignment Phase and the Processing Phase. In the worker-assignment phase, the loops on
lines 5–7 result in a complexity of O(1). Then we go through the processing phase, where the update of Θt+1 on lines 9–16
has O(1) complexity. Therefore, the total complexity of the worker-assignment phase and the processing phase is O(1).

Complexity of the Baseline-Calibration Phase. In the baseline-calibration phase, we need to calculate the resource
utilization function ht+1 according to Eq. (12). A straightforward solution to perform the convolution operation is to
calculate its value directly by performing an integral, which can have high computational complexity. However, as we will
see later in the proof of Theorem 2, every ht(w) has a finite length (i.e., ht(w) = 0 if w < 0 or w ≥ K). Therefore, we may
use Fast Fourier Transform (FFT) to efficiently compute the convolution in this step. Let D be the number of discrete-time
samples of each continuous function ht and gt. First, for each task t, we update ht+1 by Eq. (12) in Line 22. To calculate
each gt by Eq. (14), we first calculate each (1/

∑
l γl)γlgt,l(w) with O(LD) complexity, then calculate gt with O(LD)

complexity, which leads to O(LD) total complexity. Second, to update ht+1, we calculate ht with O(D) complexity,
perform FFT on ht and gt with a complexity of O(D log(D)), calculate the multiplication of the FFT results with O(D)
complexity, perform iFFT on the multiplication result with a complexity of O(D log(D)), and finally add (ht − ht) with
O(D) complexity. In conclusion, updating ht+1 requires a complexity of O(D log(D)). Finally, in Line 23, we find θt
by binary search with complexity O(log(D)) and update ϕt with complexity O(1) (since ht(w) = 0 when w < 0). In
summary, the complexity of Line 22 to update ht+1 for each task t isO(D log(D)), and the complexity of Line 23 to update
θt+1 and ϕt+1 for each task is O(log(D)). As a result, the total complexity of the baseline-calibration phase for each task t
is O(D log(D)).

In conclusion, the complexity of the OWA algorithm for each task during the online process is O(D log(D)).

E PROOF OF THEOREMS 2–6 AND COROLLARY 1

E.1 THEOREM 2

(Sufficient Resource) With γ∗
l from solving P1 in Eqs. (8)–(11), the OWA algorithm satisfies the resource sufficiency

condition.

Proof. To prove Theorem 2, we require several lemmas. For convenience of presentation, we define γ∗ =
∑

l γ
∗
l . Since

PDFs gt,l(·) are continuous, we have ϕt = γ∗ when θt,m > 0. As a result, it holds that

ht+1(w) = ht(w) ∗ gt(w) + ht(w)− ht(w). (33)

Let us define Ht(w) =
∫ w

−∞ ht(v)dv, Gt,l(w) =
∫ w

−∞ gt,l(v)dv, and Gt(w) =
∫ w

−∞ gt(v)dv.

We first show that Ht+1(θt) ≤ Ht(θt).

Lemma 1. Ht+1(θt) ≤ Ht(θt), ∀t ∈ [T].

Proof. If θt = 0, according to the update rule of ht and by the fact that rt,l > 0, we have Ht+1(0) = (1− γ∗ϕt)Ht(0) <
Ht(0). If θt > 0, by the definition of Ht(w), we have

Ht+1(θt) =

∫ θt

0

ht+1(w)dw (34)

=

∫ θt

0

(
ht(w) ∗ gt(w) + ht(w)− ht(w)

)
dw. (35)

Then by the definition of ht(w), we have ht(w)−ht(w) = 0 when w ≤ θt. Hence we have Ht+1(θt) =
∫ θt
0

ht(w)∗gt(w)dw.
Since

∫ θt
0

ht(w)dw =
∫ θt
0

ht(w)dw = Ht(θt), by Fubini’s theorem, we have∫ ∞

−∞
ht(w) ∗ gt(w)dw =

(∫ ∞

−∞
ht(w)dw

)
·
(∫ ∞

−∞
gt(w)dw

)
(36)

=Ht(θt). (37)

It is straightforward that ht(w) ≥ 0 and gt(w) ≥ 0, so we have

Ht+1(θt) =

∫ θt

0

ht(w) ∗ gt(w)dw ≤ Ht(θt). (38)

Thus, Lemma 1 is proved.

Next, we show that θt ≤ θt+1.

Lemma 2. θt ≤ θt+1 for every t ∈ [T]

Proof. To prove Lemma 2, we first show three properties for Ht and θt:

• (i) CDF Ht(w) is continuous and non-decreasing for w > 0. This is because Ht(w) is the integral of ht(w), where
ht(w) has a limited number of removable discontinuities at w > 0, and we have h1(w) ≥ 0 at every w.

• (ii) We have θt ≥ 0 for every t. This is because ht(w) = 0 when w < 0.

Then we prove Lemma 2 by discussing separately the two cases where θt = 0 and θt > 0. When θt = 0, by property (ii) we
have θt+1 ≥ 0, leading to θt+1 ≥ θt. When θt > 0, by Lemma 1 we have Ht+1(θt) ≤ Ht(θt). Then by property (i), we
have θt+1 ≥ θt. Thus, Lemma 2 is proved.

Next, we define Θt = minw{Ht(w) = 1} and prove that Θt+1 ≤ θt + 1.

Lemma 3. Θt+1 ≤ θt + 1 for every t ∈ [T].

Proof. We prove this lemma by induction. We start from the base case at t = 1. By the fact that θ1 = 0, ϕ1 = 1, the update
rule of ht and the convolution property of δ(w), we have h2(w) = (1− γ∗)δ(w) + γ∗gt(w). Since Gt(1) = 1 for every t,
we have H2(1) = 1. As a result, Θ2 ≤ 1 = θ1 + 1. The base case is proved.

Suppose that Θt+1 ≤ θt + 1 is valid at every t ∈ [τ − 1]. We next prove that Θ̄τ+1 ≤ θτ + 1. We first show that there exists
w such that Hτ+1(w) = 1. By Fubini’s theorem, when θτ = 0, we have∫ ∞

−∞
hτ+1(w)dw =(1− γ∗/ϕτ)

∫ ∞

−∞
hτ (w)dw + (γ∗/ϕτ)

∫ ∞

−∞
hτ (w)dw (39)

=1. (40)

When θτ > 0, for hτ+1 we have∫ ∞

−∞
hτ+1(w)dw =

∫ ∞

−∞

(
hτ (w) ∗ gτ (w) + hτ (w)− hτ (w)

)
dw (41)

=

(∫ ∞

−∞
hτ (w)dw

)
·
(∫ ∞

−∞
gτ (w)dw

)
+

∫ ∞

−∞
hτ (w)dw −

∫ ∞

−∞
hτ (w)dw (42)

=

∫ ∞

−∞
hτ (w)dw (43)

We define τ ′ = maxτ ′′∈[τ+1]{θτ ′′ = 0}, and by Lemma 2, we have τ ′ < τ . Then by the same derivation of Eqs. (41)–(43),
we have ∫ ∞

−∞
hτ+1(w)dw =

∫ ∞

−∞
hτ (w)dw (44)

=

∫ ∞

−∞
hτ−1(w)dw (45)

= · · · (46)

=

∫ ∞

−∞
hτ ′+1(w)dw (47)

=1, (48)

where the last equation comes from Eq. (40).

Second, we show that when w ≥ θτ +1, we have hτ+1(w) = 0. When θτ = 0, by the update rule of ht, we have hτ+1(w) =

(1−γ∗/ϕτ)hτ (w)+(γ∗/ϕτ)(ϕτ ·δ(w)∗gτ (w)+hτ (w)−hτ (w)), since ϕτ =
∫ 0

−∞ hτ (w)dw =
∫ 0

−∞ hτ (w)dw. Therefore,
by the convolution property of δ(w), we have hτ+1(w) = (1 − γ∗/ϕτ)hτ (w) + (γ∗/ϕτ)(ϕτ · gτ (w) + hτ (w) − hτ (w).
Since hτ (w) and gτ (w) become 0 when w ≥ 1, so does hτ+1(w). When θτ > 0, according to the definition of convolution
and that fact that hτ (w) = gτ (w) = 0 at w < 0, we have

hτ (w) ∗ gτ (w) =
∫ w

0

hτ (v)gτ (w − v)dv. (49)

When v ≤ w − 1, we have w − v ≥ 1 and gτ (w − v) = 0, so

hτ (w) ∗ gτ (w) =
∫ w

w−1

hτ (v)gτ (w − v)dv. (50)

By the definition of hτ , when w ≥ θτ + 1, we have hτ (v) = 0 at v ∈ (w − 1, w], so hτ (v) · gτ (w − v) = 0. As a result,
when w ≥ θτ + 1, we have hτ+1(w) = hτ (w) by the update rule of hτ+1.

Next, by Lemma 1, Hτ (θτ−1) ≤ Hτ−1(θτ−1). We note that since Hτ (w) is the integral of hτ (w), it continuously increases
to 1 on w > 0. Then, 1⃝ since θτ is at least 0 for every τ , when θτ−1 = 0, we have θτ ≥ θτ−1; and 2⃝ when θτ−1 > 0, we
have Hτ−1(θτ−1) = γ∗ and θτ ≥ θτ−1. Then, since by the induction hypothesis, Hτ (θτ−1 + 1) = 1, we have hτ (w) = 0
when w ≥ θτ + 1 ≥ θτ−1 + 1. Therefore, we have hτ+1(w) = 0 when w ≥ θτ + 1. Since 1⃝ there exists w that
Hτ+1(w) = 1, 2⃝ Hτ+1(w) =

∫ w

−∞ h(v)dv, 3⃝ Θt = minw{Ht(w) = 1}, and 4⃝ hτ+1(w) = 0 when w ≥ θτ + 1, we
have Θτ+1 ≤ θτ + 1. Thus, Lemma 3 is proved.

Now we show that θt+1 < θt + 1.

Lemma 4. θt+1 < θt + 1 for every t ∈ [T].

Proof. Since 1⃝ by Lemma 3 we have Ht+1(θt + 1) = 1, 2⃝ by the definition of θt+1, we have Ht+1(θt+1) ∈ [γ∗, 1], and
3⃝ Ht+1(w) is non-decreasing in w, we have θt+1 ≤ θt + 1. Furthermore, if θt+1 = θt = 0, we have θt+1 < θt + 1 = 1.

And if θt+1 > 0, since Ht+1(w) is continuous on w > 0, we have Ht+1(θt+1) = γ∗ < 1. As a result, we also have
θt+1 < θt + 1. Thus, Lemma 4 is proved.

Next, we prove an inequality on Ht.

Lemma 5. For every t we have

Ht(w − 1) ≤ γ∗Ht(w),∀w ∈ (−∞,Θt). (51)

Proof. First, if θt−1 = 0, then Θt ≤ 1. For w < Θt, we have w − 1 < 0 and Ht(w − 1) = 0. Therefore, Eq. (51) holds.

Next, we consider θt−1 > 0. We first derive the expression of Ht from ht. According to the update rule of ht, we have

Ht+1(w) =

∫ w

0

(∫ v

0

ht(u)gt(v − u)du+ ht(v)− ht(v)

)
dv (52)

=

∫ w

0

∫ v

0

ht(u)gt(v − u)dudv +Ht(w)−min{Ht(w), Ht(θt)}.

We define Ht(w) = min{Ht(w), Ht(θt)}, and it is straightforward that Ht(w) =
∫ w

0
ht(v)dv. Then from Eq. (53) and by

the differential property of convolution, we have

Ht+1(w) =

∫ w

0

Ht(w − v)gt(v)dv +Ht(w)−Ht(w). (53)

Now, we prove Eq. (51) by induction. Consider the first t′ such that θt′ > 0. Since we have proved that Eq. (51) holds when
θt−1 = 0, our base case is that Eq. (51) holds for all t ≤ t′. Next, we assume that Eq. (51) holds for Ht at every t ∈ [τ], we
prove that it also holds for t = τ + 1.

When w ≤ θτ , since gτ (w − v) = 0 when v ≤ w − 1, and since Hτ (v) = Hτ (v) when v ≤ w, we have

Hτ+1(w) =

∫ w

w−1

Hτ (v)gτ (w − v)dv (54)

and

Hτ+1(w − 1) =

∫ w−1

w−2

Hτ (v)gτ (w − 1− v)dv (55)

=

∫ w

w−1

Hτ (v − 1)gτ (w − v)dv (56)

≤γ∗Hτ+1(w), (57)

where the last inequality comes from the induction hypothesis.

When w ∈ (θτ ,Θτ), by Lemma 2 and Lemma 3 we have Θτ − 1 ≤ θτ . As a result,

Hτ+1(w) =

∫ w

w−1

Hτ (v)gτ (w − v)dv +Hτ (w)−Hτ (w) (58)

=

∫ θτ

w−1

Hτ (v)gτ (w − v)dv +

∫ w

θτ

Hτ (θτ)gτ (w − v)dv (59)

+Hτ (w)

∫ w

w−1

gτ (w − x)dx−
∫ w

w−1

Hτ (θτ)gτ (w − v)dv (60)

=

∫ θτ

w−1

Hτ (v)gτ (w − v)dv +Hτ (w)

∫ w

w−1

gτ (w − x)dx−
∫ θτ

w−1

Hτ (θτ)gτ (w − v)dv (61)

≥
∫ w

w−1

Hτ (v)gτ (w − v)dv +

∫ θτ

w−1

(Hτ (w)−Hτ (θτ)) · gτ (w − v)dv (62)

≥
∫ w

w−1

Hτ (v)gτ (w − v)dv (63)

and

Hτ+1(w − 1) =

∫ w−1

w−2

Hτ (v)gτ (w − 1− v)dv

=

∫ w

w−1

Hτ (v − 1)gτ (w − v)dv (64)

≤γ∗
∫ w

w−1

Hτ (v)gτ (w − v)dv (65)

≤γ∗Hτ+1(w). (66)

When w ∈ [Θτ ,Θτ+1), we have w − 1 ≤ θτ . Therefore,

Hτ+1(w) =

∫ w

w−1

Hτ (v)gτ (w − v)dv +Hτ (w)−Hτ (w) (67)

=

∫ θτ

w−1

Hτ (v)gτ (w − v)dv +

∫ w

θτ

Hτ (θτ)gτ (w − v)dv +Hτ (w) (68)

−
∫ w

w−1

Hτ (θτ)gτ (w − v)dv (69)

≥
∫ w

w−1

Hτ (v)gτ (w − v)dv (70)

=

∫ Θτ

w−1

Hτ (v)gτ (w − v)dv +

∫ w

Θτ

Hτ (v)gτ (w − v)dv (71)

=

∫ Θτ

w−1

Hτ (v)gτ (w − v)dv +

∫ w

Θτ

gτ (w − v)dv. (72)

Meanwhile, by the induction hypothesis,

Hτ+1(w − 1) =

∫ w−1

w−2

Hτ (v)gτ (w − 1− v)dv (73)

≤
∫ Θτ

w−1

Hτ (v − 1)gτ (w − v)dv +

∫ w

Θτ

Hτ (v − 1)gτ (w − v)dv. (74)

Since Θτ − 1 ≤ θτ−1 ≤ θτ , and Θτ+1 − 1 ≤ θτ ,

Hτ+1(w − 1) ≤γ∗
∫ Θτ

w−1

Hτ (v)gτ (w − v)dv + γ∗
∫ w

Θτ

gτ (w − v)dv (75)

=γ∗Hτ+1(w). (76)

And Lemma 5 is proved.

Now we start to prove Theorem 2, i.e., we prove that K ≥ (1 −
∑

l∈[L] γ
∗
l)

−1(1 − maxl γ
∗
l L)

−1 satisfies the resource
sufficiency condition.

To meet the resource sufficiency condition, we only need to make sure that θt + 1 ≤ K for every t. At t = 1, we have
θ1 = 0 and K ≥ 1, so θ1 + 1 ≤ K regardless of γ∗

l . For t ∈ [2, T], by Lemma 3 we have Ht+1(θt + 1) = 1. Then we can
express θt + 1 by

θt + 1 =

∫ θt+1

0

Ht+1(θt + 1)dw (77)

=

∫ θt+1

0

Ht+1(θt + 1)−Ht+1(w) +Ht+1(w)dw (78)

=

∫ θt+1

0

Ht+1(w)dw +

∫ θt+1

0

Ht+1(θt + 1)−Ht+1(w)dw. (79)

We define dt =
∫ θt+1

0
Ht+1(w)dw and d′t =

∫ θt+1

0
Ht+1(θt + 1)−Ht+1(w)dw, then we have

θt + 1 = dt + d′t. (80)

Now we first seek an upper bound on dt. By Lemma 2 and Lemma 4, we have

dt =

∫ θt+1

0

Ht+1(w)dw (81)

=

∫ θt

0

Ht+1(w)dw +

∫ θt+1

θt

Ht+1(w)dw +

∫ θt+1

θt+1

Ht+1(w)dw (82)

≤
∫ θt

0

Ht+1(w)dw + γ∗(θt+1 − θt) + (θt + 1− θt+1) (83)

=

∫ θt

0

Ht+1(w)dw + γ∗(θt+1 − θt)− (θt+1 − θt) + 1 (84)

≤
∫ θt

0

Ht+1(w)dw + 1. (85)

Then, by Lemma 5 and the fact that Ht(w) is continuous and non-decreasing on w ≥ 0, we have

dt ≤
∫ θt

0

Ht+1(w)dw + 1 (86)

=
∑

k=0,1...⌊θt⌋

∫ θt−k

θt−k−1

Ht+1(w)dw + 1 (87)

≤
∑

k=0,1...⌊θt⌋

Ht+1(θt − k) + 1 (88)

≤
∑

k=0,1...⌊θt⌋

(γ∗)
k · γ∗ + 1 (89)

=
γ∗(1− (γ∗)

⌊θt⌋)

1− γ∗ + 1 (90)

≤ γ∗

1− γ∗ + 1 (91)

=
1

1− γ∗ . (92)

Meanwhile, for d′t, we have

d′t =

∫ θt+1

0

Ht+1(θt + 1)−Ht+1(w)dw (93)

=

∫ θt+1

0

∫ θt+1

w

ht+1(x)dxdw (94)

=

∫ θt+1

0

∫ v

0

ht+1(v)dwdv (95)

=

∫ θt+1

0

vht+1(v)dv. (96)

When θt = 0, we can bound d′t by

d′t =

∫ θt+1

0

vht+1(v)dv (97)

=

∫ 1

0

vht+1(v)dv (98)

=

∫ 1

0

v

[
(1− γ∗

ϕt
)ht(v) +

γ∗

ϕt

(∫ v

0

ht(w)gt(v − w)dw + ht(v)− ht(v)

)]
dv (99)

≤
∫ 1

0

v

[
(1− γ∗

ϕt
)ht(v) +

γ∗

ϕt

(∫ v

0

ht(w)gt(v − w)dw + ht(v)

)]
dv (100)

=

∫ 1

0

v

[
γ∗

ϕt

(∫ v

0

ht(w)gt(v − w)dw

)
+ ht(v)

]
dv (101)

=
γ∗

ϕt

∫ 1

0

v

∫ v

0

ht(w)gt(v − w)dwdv +

∫ 1

0

vht(v)dv. (102)

Since θt ≤ θt+1 and ϕt =
∫ 0

−∞ ht(w)dw =
∫ 0

−∞ ht(w)dw, we have ht(w) = ϕtδ(w) and we obtain the following
recursive form to bound d′t:

d′t =
γ∗

ϕt

∫ 1

0

v

∫ v

0

ht(w)gt(v − w)dwdv + d′t−1 (103)

=
γ∗

ϕt

∫ 1

0

vϕtgt(v)dv + d′t−1 (104)

=γ∗
∫ 1

0

v

∑
l γ

∗
l gt,l(v)

γ∗ dv + d′t−1 (105)

≤
∑
l

(γ∗
l E[rt,l]) + d′t−1. (106)

When θt > 0, noting that
∫ 1

0
vh1(w)dw = 0, we have

d′t =

∫ θt+1

0

vht+1(v)dv (107)

=

(∫ θt

0

+

∫ θt+1

θt

)
vht+1(v)dv (108)

=

∫ θt

0

v

[∫ v

0

ht(w)gt(v − w)dw

]
dv +

∫ θt+1

θt

v

[∫ θt

0

ht(w)gt(v − w)dw + ht(v)

]
dv (109)

=

∫ θt

0

∫ θt

w

vht(w)gt(v − w)dvdw +

∫ θt

0

∫ θt+1

θt

vht(w)gt(v − w)dvdw +

∫ θt+1

θt

vht(v)dv. (110)

By setting l = v − w, we can rewrite the above as

d′t =

∫ θt

0

∫ θt+1−w

0

(l + w)ht(w)gt(l)dldw +

∫ θt+1

θt

vht(v)dv. (111)

Note that for w ∈ [0, θt], we have θt + 1− w ≥ 1. Furthermore, gt(l) = 0 when l ≥ 1. Therefore, we have

d′t =

∫ θt

0

∫ 1

0

(l + w)ht(w)gt(l)dldw +

∫ θt+1

θt

vht(v)dv (112)

=

∫ θt

0

∫ 1

0

lht(w)gt(l)dldw +

∫ θt

0

∫ 1

0

wht(w)gt(l)dldw +

∫ θt+1

θt

vht(v)dv. (113)

By Lemmas 2–4, ht(v) = 0 when v ≥ θt−1 + 1. Besides, since
∫ 1

0
gt(l)dl = 1, we have:

d′t =

∫ θt

0

ht(w)

∑
l γ

∗
l E[rt,l]
γ∗ dw +

∫ θt+1

0

vht(v)dv (114)

=
∑
l

γ∗
l E[rt,l] + d′t−1. (115)

By Eqs (106) and (115), we have d′t ≤
∑

l γ
∗
l

∑
t′∈[T] E[rt′,l] ≤ maxl γ

∗
l KL. By Eq. (92), we finally have

θt + 1 = d′t + dt ≤
1

1− γ∗ +max
l

γ∗
l KL. (116)

In optimization problem P1, constraint (9) is equivalent to K ≥ 1
1−

∑
l γl

+maxl γlKL, which leads to K ≥ θt + 1. As a
result, the γ∗

l solved from P1 satisfies K ≥ θt + 1 when Θt ≤ θt, which meets the resource sufficiency condition. Thus,
Theorem 2 is proved.

E.2 THEOREM 3

(Worker Assignment Probability Lower Bound) For all l, the probability of processing each task t by worker l is no less than
γ∗
l .

Proof. We use h′
t(w) to denote the PDF of Θt and use H ′

t(w) to denote its CDF. We prove Theorem 3 by proving that
h′
t(w) ≥ ht(w) by induction.

It is straightforward that h′
1(w) = h1(w), so h′

1(w) ≥ h1(w) and H ′
t(w) ≥ Ht(w) is valid for t = 1. We assume that

h′
t(w) ≥ ht(w) is valid for every t ∈ [1, τ], and we show that it is also valid for t = τ + 1.

If θτ = 0, we have

h′
τ+1(w) =(1−

∑
l∈[L]

γ∗
l /ϕτ)h

′
τ (w) + (

∑
l∈[L]

γ∗
l /ϕτ)

[∫ w

0

h
′
τ (v)gτ (w − v)dv + h′

τ (w)− h
′
τ (w)

]
(117)

≥hτ+1(w), (118)

where

h
′
τ (w) =

{
h′
τ (w), w ≤ θτ

0, w > θτ .

If θτ > 0, we have

h′
τ+1(w) =

∫ w

0

h
′
τ (v)gτ (w − v)dv + h′

τ (w)− h
′
τ (w) (119)

≥hτ+1(w). (120)

We note that the evolution of h′
τ in Eqs. (117) and (119) is not simply duplicated from the update rule of hτ , but derived

from the operation of OWA. The term
∑

l γ
∗
l /ϕτ in Eq. (117) is the probability that we accept a task when θτ = 0 and

Θτ ≤ θτ , and the convolution represents the sum of two random variables.

Now that we have proved that h′
t(w) ≥ ht(w), we finally prove Theorem 3. When θt = 0, since Ht(0) = ϕt, the probability

of processing task t by worker l is γ∗
l

ϕt
H ′

t(0) ≥
γ∗
l

ϕt
Ht(0) = γ∗

l . When θt > 0, the probability of processing task t with

worker l is γ∗
l

γ H ′
t(θt) ≥

γ∗
l

γ Ht(θt) ≥ γ∗
l . Thus, Theorem 3 is proved.

E.3 THEOREM 4

(Competitive Ratio) The competitive ratio achieved by the OWA algorithm is at least

α = P1({γ∗
l }). (121)

Proof. By Theorem 3, the expected total reward of OWA is E[ALG] =
∑

t

∑
l γ

∗
l ut,l. The total reward of the offline optimal

algorithm is at most
∑

t

∑
l x

∗
t,lut,l, where x∗

t,l is the decision of the offline optimal solution. Therefore, the competitive
ratio of OWA is

E[ALG]

maxOPT
≥
∑

t

∑
l γ

∗
l ut,l∑

t

∑
l x

∗
t,lut,l

(122)

≥min
t

∑
l γ

∗
l ut,l∑

l x
∗
t,lut,l

(123)

≥min
t

min
l

∑
l′ γ

∗
l′ut,l′

ut,l
(124)

=min
t

min
l

∑
l′∈[L]\{l} γ

∗
l′ut,l′

ut,l
+ γ∗

l (125)

≥min
t

min
l

∑
l′∈[L]\{l} γ

∗
l′ul′

ul
+ γ∗

l (126)

=min
l

∑
l′∈[L]\{l} γ

∗
l′ul′

ul
+ γ∗

l . (127)

E.4 COROLLARY 1

(Closed-Form Lower Bound on the Competitive Ratio) The competitive ratio of OWA is lower bounded by α′ =
max{1/L, c} · (1−K− 1

2), where c = minl∈[L] ul/maxl∈[L] ul is a constant derived from the problem instance.

Proof. We find a set of feasible solutions for problem P1, and show that they achieve a competitive ratio of α′ on GMPMW.

It is straightforward that the constant solution γl = γ′ = 1−K− 1
2

L for all l satisfies every constraint of P1. With this feasible
solution, the competitive ratio satisfies

E[ALG]

maxOPT
≥min

l

∑
l′∈[L]\{l} γ

′ul′

ul
+ γ′ (128)

≥γ′ (129)

=
1−K− 1

2

L
. (130)

In addition, denote umin = minl∈[L] ul and umax = maxl∈[L] ul, then the competitive ratio also satisfies

E[ALG]

maxOPT
≥min

l

∑
l′∈[L]\{l} γ

′ul′

ul
+ γ′ (131)

≥min
l

∑
l′∈[L]\{l} γ

′umin

ul
+ γ′ (132)

≥min
l

∑
l′∈[L]\{l} γ

′umin

umax
+ γ′ (133)

=γ′c(L− 1) + γ′ (134)
≥γ′cL (135)

=c · (1−K− 1
2). (136)

By Eqs. (130) and (136), we have E[ALG]
max OPT ≥ (1−K− 1

2) ·max{1/L, c} = α′. Thus, Corollary 1 is proved.

E.5 THEOREM 6

(Asymptotic Optimality of α′) When the reward lower bound of each worker is 0, α′ is an asymptotically optimal competitive
ratio for the OWA algorithm on GMPMW, meaning that α′ approaches the maximum possible competitive ratio when
budget K approaches infinity.

Proof. We only need to show that there exists an adversary for which no online algorithm can achieve a competitive ratio
higher than α∗ = 1

L when c = 0. We focus on the task sequence where the lower and upper bounds of the reward for each l
are ul = 0 and ul = u. First, we have that the sum of the average probabilities that an online algorithm ALG processes a
task by each worker l is no more than 1. If ALG assigns tasks to some worker l with an average probability greater than
1/L, then there must exist some worker l′ for which the probability that ALG assigns tasks to it is less than 1/L. Then the
adversary arranges the task sequence as follows: the reward for processing each task by worker l′ is set to u, and the reward
for processing each task by other workers l ̸= l′ is set to 0. Then the offline optimal reward is exactly Tu, and the expected
total reward of ALG is less than Tu/L.

100 101 102 103 104 105

Number of Workers L (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pe
tit

iv
e

Ra
tio

 (Numerical Result of OWA) Lower Bound 1 Lower Bound 2

0.0

0.2

0.4

0.6

0.8

1.0

(a) c = 0.25.

100 101 102 103 104 105

Number of Workers L (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pe
tit

iv
e

Ra
tio

 (Numerical Result of OWA) Lower Bound 1 Lower Bound 2

0.0

0.2

0.4

0.6

0.8

1.0

(b) c = 0.1.

Figure 5: Numerical result on α.

Next, we consider the case where the average probabilities of ALG processing a task by each worker are all 1/L. First, if
the probability that each worker l processes each task t is 1

L (i.e., Pr{xt,l = 1} = 1
L), then the performance ratio of ALG

is exactly 1
L . Next, for an arbitrary worker l′, if for any t′, Pr{xt′,l′ = 1} < 1

L , the adversary can arrange the reward by
setting ut′,l′ = u and ut,l = 0 for every other t ̸= t′ and l ̸= l′, so that the competitive ratio achieved by ALG is exactly
Pr{xt′,l′ = 1} < 1

L . On the other hand, if for some t′, ALG has {xt′,l′ = 1} > 1
L , there must exist some other t′′ where

{xt′′,l′ = 1} < 1
L , since the average probabilities of ALG processing a task by this worker is 1/L. In this case, the adversary

arranges the reward by setting ut′′,l′ = u and ut,l = 0 for every other t ̸= t′′ or l ̸= l′, so that the performance ratio achieved
by ALG is Pr{xt′′,l′ = 1} < 1

L .

Now we have proved that α∗ = 1
L is the optimal competitive ratio that any online algorithm ALG can achieve on GMPMW.

When c = 0, since limK→∞ α′ = 1
L , α′ is an asymptotically optimal competitive ratio.

F NUMERICAL RESULTS ON COMPETITIVE RATIO α

In this section, we present numerical results on the competitive ratio α in Figure 5 and compare them with the lower
bound α′. Specifically, Figure 5 shows the numerical results of our competitive ratio P1({γ∗

l }) (brown lines) alongside
two components of the lower bound: the first part, 1

L (1−K− 1
2) (red lines, labeled as "Lower Bound 1"), and the second

part, c(1−K− 1
2) (green lines, labeled as "Lower Bound 2"), evaluated under varying values of c and different numbers of

workers L.

In Figure 5, the reward upper bound ul for each worker is set to 1. In Figure 5a, the reward lower bound ul for each worker
is 0.25, so the constant c equals 0.25. In Figure 5b, the reward lower bound ul for each worker is 0.1, so there is c = 0.1. As
shown in Figure 5, when L is small, the numerical competitive ratio α is well bounded by and stays close to 1

L (1−K− 1
2)

(red line), which corresponds to the first part of the lower bound α′. As L increases, the numerical competitive ratio α
approaches but remains above c(1−K− 1

2) (green line), representing the second part of the lower bound α′. Consequently,
Figure 5 illustrates that the competitive ratio α of the OWA algorithm consistently exceeds its lower bound α′, while α′

closely approximates α by capturing the dominant factors that influence its value for both small and large numbers of
workers.

G EXPERIMENTAL EVALUATION OF THE COMPETITIVE RATIO

In Figure 6 we show the ratio between the performance of the OWA algorithm, i.e., E[ALG], and the optimal offline result
maxOPT. Recall that maxOPT is calculated as maxOPT =

∑
t maxl ut,l. In each simulation round, we generate one task

sequence, and can directly obtain maxOPT. In each realization of the task sequence, ul is independently set uniformly
randomly in the interval from 0 to 100 for each l ∈ [L] and ul is set to 0. We generate 10 realizations of the task sequence to
estimate E[ALG] of the OWA algorithm. We plot the ratio E[ALG]

max[OPT] as one red point in Figure 6. We plot 15 points for each
bar.

The expectation of the distribution Rt,l are set to 1
L

∑
l

∑
t E[rt,l] = K for the base case, and Rt,l are generated as

follows. For the task sequence of each simulation round, we randomly generate a demand factor al from (0, 1] for each

300 400 500 600
K

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

[A
LG

] /
 m

ax
 O

PT
Experimental Theoretical

(a) Impact of K.

0.8 0.85 0.9 0.95
1
L

l t
[rt, l]/K

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

[A
LG

] /
 m

ax
 O

PT

Experimental Theoretical

(b) Impact of 1
L

∑
l

∑
t E [rt,l] /K.

1 2 3 4
L

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

[A
LG

] /
 m

ax
 O

PT

Experimental Theoretical

(c) Impact of L.

600 700 800 900 1000
T

0.46

0.48

0.50

0.52

0.54
[A

LG
] /

 m
ax

 O
PT

Experimental Theoretical

(d) Impact of T .

Figure 6: Impact of various parameters on the performance of the OWA algorithm.

worker, then set the expected overall consumption of each worker to Kl =
alKL∑

l al
. The granularity of each PDF gt,l is

set to 0.1. We generate E[rt,l], for each t and l, uniformly on (0, 1). Then we normalize them so that
∑

t E[rt,l] = Kl.
Then, if E[rt,l] is greater than 0.5, we set Pr{rt,l = 1} = (E[rt,l] − 0.5)/0.5 and Pr{rt,l = 0.5} = 1 − Pr{rt,l = 1};
if E[rt,l] ∈ [0.1, 0.5), we set Pr{rt,l = 0.5} = (E[rt,l] − 0.1)/0.4 and Pr{rt,l = 0.1} = 1 − Pr{rt,l = 0.5}; and if
E[rt,l] < 0.1, we set Pr{rt,l = 0} = 1. This approach guarantees that the resource consumption follows our assumptions
that 1

L

∑
l

∑
t E[rt,l] ≤ K and rt,l ≤ 1.

In Figure 6a, we investigate the competitive ratio of the OWA algorithm under different resource budgets K. We let the
resource budget K increase from 300 to 600 while setting T = 1000 and L = 2. We observe that the theoretical competitive
ratio and the actual performance increase as K increases.

In Figure 6b, we investigate the competitive ratio of the OWA algorithm under different 1
L

∑
l

∑
t E[rt,l]/K, which

represents the ratio between the expected resource consumption and the resource budget. We set K = 400, T = 1000,
and L = 2. The ratio 1

L

∑
l

∑
t E[rt,l]/K is set to 0.8, 0.85, 0.9, and 0.95, with the randomly generated total consumption

Kl of each worker scaled accordingly. In GMPMW, the ratio 1
L

∑
l

∑
t E[rt,l]/K can be interpreted as the scarcity of the

resource budget, and is no larger than 1 due to the assumption that 1
L

∑
l

∑
t E[rt,l] ≤ K. In this case, a larger ratio of

1
L

∑
l

∑
t E[rt,l]/K indicates that, on average, more resource is required to process all tasks. We observe that the theoretical

competitive ratio and the actual performance of OWA are not affected by this ratio, demonstrating that the OWA algorithm
is insensitive to fluctuations in resource demand, which is consistent with our theoretical result.

In Figure 6c, we investigate the competitive ratio of the OWA algorithm with different numbers of workers L. We increase
L from 1 to 4, while fixing T=1000 and K=600. We observe that the theoretical competitive ratio and the actual performance
of OWA decrease as L increases.

In Figure 6d, we investigate the competitive ratio of the OWA algorithm with different T values. In this set of experiments,
we fix K = 600 and L = 2. We increase T from 500 to 1000. We observe that the theoretical competitive ratio and the
actual performance of OWA are insensitive to the length of the task sequence T , which is consistent with the theoretical
result.

In all cases of the above experiments, we further notice that the lowest red dots are usually close to the gray bars while
remaining above them. This is consistent with the proven tightness of our theoretical bound.

H PERFORMANCE OF THE OWA ALGORITHM IN CASE STUDY

Besides deriving performance bounds for the OWA algorithm in terms of its competitive ratio, we also study its real-
world performance against benchmarks. In this section, we evaluate the performance of OWA through a case study, with
trace-driven experiments on real-time video analytics with multiple deployed machine learning models.

H.1 MODEL SELECTION FOR REAL-TIME VIDEO ANALYTICS

The rapid development of machine learning and edge computing has made it possible to deploy real-time video analytics on
edge devices. Real-time video analysis requires sophisticated machine learning models, but the edge devices, such as tablets
and laptops, are equipped with limited batteries. In many situations, the edge devices are not connected to a persistent
power supply, so it is important to efficiently manage the workload on the edge devices.

Here we consider a general scenario where an edge computing device, equipped with multiple machine learning models, is
used for real-time video analytics, processing a sequence of video chunks in practical applications such as traffic monitoring
in smart cities and hazard prevention. Different machine learning models (workers) generate different accuracy values
(reward) and consume different amounts of energy (resource). We need to decide whether to process or discard a video
chunk and, if so, which machine learning model to use, in order to maximize the overall accuracy (equivalently, the average
accuracy) within the energy constraint.

This application scenario of real-time video analysis with multiple models deployed on the edge device is consistent with
the formulation of GMPMW. The video chunks are the incoming tasks, and the multiple machine learning models to process
each video chunk are the multiple workers in GMPMW. The probability distribution of the energy consumption of each
modelRt,l can be estimated by model profiling and video pre-processing [Hung et al., 2018], and the upper bound ul and
lower bound ul can also be obtained by profiling [Zhang et al., 2017]. The edge device does not know the accuracy and
energy consumption of processing each video chunk before that chunk arrives, and only after processing a chunk using a
model can it know the corresponding accuracy and energy consumption. The energy budget of the edge device is the limited
resource budget.

Video Traces For the video traces, we use a Xiaomi 12 Pro Android smartphone equipped with a Sony IMX766
photosensor to capture the video content as well as the network traces. The smartphone is mounted on a moving vehicle and
positioned to capture a comprehensive view of the traffic on the road. We collect 4 sets of video traces, labeled as Trace 1,
Trace 2, Trace 3, and Trace 4. The length of Trace 1 is 1200 seconds, the length of Trace 2 is 1800 seconds, the length of
Trace 3 is 2400 seconds, and the length of Trace 4 is 3000 seconds. The video frames are grouped into video chunks, with
each video chunk containing the video frames of 3 seconds. The video chunks are then sent to the edge device for analysis,
so each video chunk is a task.

Model Profiling (Energy Consumption) As illustrated in Figure 7, we deploy 3 machine learning models on a laptop
computer powered by an Intel Core i5-11320H CPU with integrated graphics, to analyze the video chunks. The machine
learning models deployed are Faster R-CNN [Ren et al., 2017], YOLOv5 [Jocher, 2020] with a medium backbone, and
YOLOv5 with a large backbone. To obtain the maximum and minimum accuracy and energy consumption of each model,
we deploy them on the same laptop as above.

We profile the energy consumption distribution for the models (edge devices) on a 300-second video. The video is captured
by the same Xiaomi 12 Pro smartphone and streamed to the laptops via the HTTP Live Streaming protocol using the FFmpeg

software, simulated using the network traces. The resolution of the video varies among {360p, 540p, 720p} as a result of the
bitrate adaptation under different network conditions. To evaluate power consumption, we use the Python implementation of
Intel’s Running Average Power Limit (pyRAPL) [Spirals, 2023]. The pyRAPL library connects Intel’s hardware-level power
counters, facilitating the measurement of power consumed by CPU cores and DRAM. This integration enables accurate,
real-time monitoring of energy consumption throughout our experiments. By regularly sampling energy data, pyRAPL
provides valuable insights into the energy efficiency of various computational tasks, allowing us to establish correlations
between specific software actions and corresponding energy consumption.

Model Profiling (Accuracy) We use the accuracy of processing each video chunk by each model as the reward. To
effectively benchmark and compare the performance of different object detection models, it is critical to define a consistent
metric for accuracy. Each inference generated by an object detection model yields a set of predicted bounding boxes. In
parallel, we construct a set of ground truth objects, each represented by its own bounding box. These ground truth bounding
boxes are derived from a highly reliable model, the Faster R-CNN [Ren et al., 2017], which uses the Resnet 50 [He et al.,
2016] backbone.

The accuracy of our model is determined by comparing these two sets of bounding boxes, as illustrated in Figure 7. This
evaluation is quantified by the Intersection over Union (IoU) metric. For each object, IoU represents the ratio of the
intersection area to the union area. Specifically, the intersection area is defined as the overlap between the predicted bounding
box and the ground truth bounding box, while the union area encompasses both bounding boxes in their entirety. Thus, we
have

IoU =
Area of Intersection

Area of Union
(137)

for each object. This metric is a standard and widely accepted method in video analytics [Lin et al., 2014, Redmon et al.,
2016, Ren et al., 2017], as it provides a clear measure of the accuracy of the bounding boxes proposed by the model.

Let IoUi represent the IoU of the i-th bounding box. The total number of detected objects is denoted by Det, while GT
(Ground-Truth) represents the number of ground-truth objects. The accuracy of the model is then quantified as the ratio of
the sum of all IoUs to the total number of ground-truth objects. This can be expressed as

Accuracy =

∑Det
i=1 IoUi

GT
. (138)

The upper and lower bounds of the accuracy of each model are profiled in the same environment as the energy consumption
distributions for each model. The accuracy and energy measurements are executed once per second and averaged over each
3-second time slot. Note that even if a task is discarded, a small amount of accuracy can still be achieved. This is due to
the temporal similarity between consecutive video chunks. By utilizing the inference results from the previous chunk, we
can still gain some accuracy. For example, if we choose to discard chunk t+ 1, reapplying the results from chunk t can
still contribute some accuracy. However, we do not allow the continuous reuse of these results. Should chunk t+ 2 also be
discarded, the resulting accuracy would be set to zero.

Trace Parameter The results of our model profiling are as follows. The minimum accuracy of each model is 0. The
maximum accuracy of Faster R-CNN is 0.9581, the maximum accuracy of YOLOv5 with a medium backbone is 0.9716,
and the maximum accuracy of YOLOv5 with a large backbone is 0.9773. The average energy consumption to process one
video chunk for Faster R-CNN, YOLOv5 with medium backbone, and YOLOv5 with large backbone are 6.4 J, 11.0 J, and
18.9 J, respectively. Accordingly, the average energy consumption of these models to process videos of 1200 s, 1800 s,
2400 s, and 3000 s is estimated as 4 kJ, 6 kJ, 8 kJ, and 10 kJ, respectively.

H.2 BENCHMARKS

We consider a wide range of benchmarks to compare with the OWA algorithm in the trace-driven experiments.

1. Random (R): The system decides to process each video chunk using each model l with a probability of 1/(L+ 1), and
to discard it also with a probability of 1/(L+ 1).

2. Adaptive (Ada): If the ratio between the total number of tasks processed and the number of tasks that have arrived
is less than 1 (since the resource budget is on average enough to process every task), the system randomly chooses a
model l with a probability of 1/L to process the incoming task.

Faster R-
CNN

YOLOv5
Medium

YOLOv5
Large

Input Frame

Accuracy: 12.76%

Accuracy: 58.91%

Accuracy: 87.88%

Figure 7: (Reproduced from Figure 1) Illustration of video analytics and IoU calculation. Green boxes are ground-truth
results, and red boxes are profiling results.

3. Greedy Online Knapsack (GOK): For each incoming task, the system calculates the average reward of each model
as (ul + ul)/2, and calculates the average consumption of each model as E[rt,l]. The system then processes the
incoming task that has the highest efficiency, which is calculated as the average reward divided by the average energy
consumption.

4. Exploration and Exploitation (EAE) [Audibert et al., 2009]: The system repeatedly performs exploration and exploitation
as follows: The system starts from the exploration at t = 1. In the exploration stage, the system uses each model l
to process 5 tasks and discards 5 tasks, and memorizes each reward and resource consumption. Each time a task is
processed by a model or discarded, the average reward and the average resource consumption of that model (or the
discarding of a task) are updated. The average reward (resp. average resource consumption) of a model is calculated
as the cumulative reward (resp. total resource consumption) of that model divided by the number of tasks processed
by that model. The average reward of discarding a task is calculated as the cumulative reward of discarding a task
divided by the number of tasks discarded. The average resource consumption of discarding a task is always 0. In total,
the system processes 5(L + 1) tasks in each exploration stage. After each exploration stage, the system enters the
exploitation stage, which also lasts for 5(L+ 1) tasks. In the exploitation stage, for each incoming task, the system
selects the model (or discards a task) with the highest efficiency, which is calculated by dividing the average reward by
the average resource consumption. The system also updates the average reward and the average resource consumption
of each model (or discarding a task) in the exploitation stage.

5. Upper Confidence Bound Bandit (UCB) [Garivier and Moulines, 2011]: For the first L chunks, the system processes
the l-th chunk using model l. Then the system discards the (L + 1)-st chunk. The system records and updates Qt,l

as the average reward per task of model l, and uses Qt,L+1 to record and update the average reward of discarding a
task. The system records and updates Nt,l as the number of tasks processed by model l, and uses Nt,L+1 to record and
update the number of tasks discarded. Each time a new task t arrives, the system processes it with the model with the
highest upper confidence bound, or discards it if the upper confidence bound for discarding a task is the highest. The
upper confidence bound UCBl is calculated as UCBl = Qt,l + 1.75 (ln(t)/Nt,l)

1/2.

6. Multi-Worker One-Way Trading (MOT): The MOT algorithm is a multi-worker variant of the algorithm designed for
the One-Way Trading Problem (OTP) [Cao et al., 2020]. The system estimates the length of the task sequence as T ′

and operates under two situations: The first situation is K −Θt < T ′ − t. In this case, when task t arrives, the system
calculates the following threshold for each model l as

∫ Θt/K+ravg
l /K

Θt/K
ϕ(x)dx, where ϕ(x) = ulK

2 +(ρ− ulK
2)e

xρulK

2 ,

ravgl is the average resource consumption of model l, ρ = ulK
2 (W (1e) + 1), and W is the Lambert-W function. The

system compares each ul with this threshold, and chooses the worker with the largest ul that exceeds its threshold to
process task t. The second situation is K −Θt ≥ T ′ − t. In this case, the system will process the incoming task with
the model that has the highest ul.

7. Model Predictive Control (MPC) [Morari and Lee, 1999]: The system predicts the reward and resource consump-
tion of processing task t by each model using the history data of tasks t − 30 to t − 1. For each model l, if the
system has processed at least one of the last 30 tasks with it, the efficiency of model l for task t is predicted
as (
∑

τ∈[t−10,t−1] xτ,luτ,l)/
∑

τ∈[t−10,t−1] xτ,lrτ,l. Otherwise, the efficiency of model l for task t is predicted as

4 5 6
K (kJ)

0

20

40

60

80

100

120

140

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y

OWA
R

Ada
GOK

EAE
UCB

MOT
MPC

S-OWA
A-OWA

(a) Trace 1 (1200s).

6 7 8
K (kJ)

0

50

100

150

200

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y

OWA
R

Ada
GOK

EAE
UCB

MOT
MPC

S-OWA
A-OWA

(b) Trace 2 (1800s).

8 9 10
K (kJ)

0

50

100

150

200

250

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y

OWA
R

Ada
GOK

EAE
UCB

MOT
MPC

S-OWA
A-OWA

(c) Trace 3 (2400s).

10 11 12
K (kJ)

100

150

200

250

300

350

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y

OWA
R

Ada
GOK

EAE
UCB

MOT
MPC

S-OWA
A-OWA

(d) Trace 4 (3000s).

Figure 8: (Reproduced from Figure 2) Comparing the OWA algorithm against benchmarks on different traces.

1
2 (ul + ul)/E[Rt,l]. The system will then process task t using the processing level with the highest predicted efficiency.
If the current task t < 30 or the system has not processed any of the past 30 tasks, it randomly selects a model to
process the incoming task.

8. Single-Worker OWA (S-OWA): The system implements a naive single-worker version of the OWA algorithm, focusing
on the model with the largest ul. We denote this model by l∗. The system initializes h1(w) = δ(w), updates ht+1(w) by
ht+1(w) = (1−γ′/ϕt)ht(w)+(γ′/ϕt)[ht(w)∗gt,l∗(w)+ht(w)−ht(w)] if θt = 0, and update by ht+1(w) = ht(w)∗
gt,l∗(w) + ht(w)− ht(w) otherwise, where the target θt+1 is updated by θt+1 = argminw{

∫ w

−∞ ht+1(v)dv ≥ γ′}
and γ′ is set to γ′ = 1−K−1/2. The system processes the task using this model if the resource consumption level Θt

falls below the target θt, and discards it otherwise.

9. Average OWA (A-OWA): This is another naive variant of the OWA algorithm. The system keeps a different resource
utilization function ht,l(w) and baseline θt,l for each model l. A-OWA initializes ht,l as δ(·) and updates it by
ht+1,l(w) = (1 −

∑
l′ γ

∗
l′/ϕt,l)ht,l(w) + (

∑
l′ γ

∗
l′/ϕt,l)[ht,l(w) ∗ gt,l(w) + ht,l(w) − ht,l(w)] if θt,l = 0, and

ht+1,l(w) = ht,l(w) ∗ gt,l(w) + ht,l(w) − ht,l(w) otherwise, where ht,l(w) = ht,l(w) if w ≤ θt,l and ht,l(w) = 0
otherwise. Furthermore, θt,l is initialized to 0 and updated as θt,l = argminw{

∫ w

−∞ ht,l(v)dv ≥
∑

l′ γ
∗
l′}, and ϕt,l

is initialized to 1 and updated by ϕt,l =
∫ 0

−∞ ht,l(w)dw. When each task arrives, the decision maker chooses model
l with probability γ∗

l /
∑

l′ γ
∗
l′ . If the remaining resource budget of the decision maker falls below θt,l, model l will

process that task. Otherwise, the incoming task will be discarded.

The accuracy of the R, Ada, MPC, S-OWA, and A-OWA algorithms is averaged over 10 runs, as they are randomized, while
a single run is performed for the deterministic algorithms GOK, EAE, UCB, and MOT.

H.3 PERFORMANCE

To compare the performance of the OWA algorithm against that of the benchmarks, we apply all algorithms to each video
trace with different resource budgets K, as shown in Figure 8.

In all settings, we observe that the OWA algorithm outperforms all benchmarks under all conditions on our video traces.
We also have some observations on the performance of each of the benchmarks. We will discuss them in three groups: 1⃝
Random, Adaptive, and GOK; 2⃝ EAE, UCB, MOT, and MPC; and 3⃝ S-OWA and A-OWA.

The Random algorithm performs worse than OWA because it does not consider the resource constraints. The adaptive
algorithm considers the resource constraint, but simply controls the number of tasks (chunks) processed, rather than the
resource consumption, so it performs worse than OWA. The GOK algorithm sticks to the worker (model) with the highest
average efficiency, but the most efficient worker may not fully utilize all of the resource (energy), leading to inferior
performance.

EAE and UCB perform worse than the OWA algorithm because they are not aware of the resource constraint. MOT performs
worse than the OWA algorithm because, in our system, the reward (accuracy) and the resource consumption are not known
when a video chunk arrives. However, these are important variables for the decision-making process in the MOT algorithm.
When MOT can only use the profiled data to make decisions, its performance suffers. MPC performs worse than the OWA
algorithm because the real-world street scenes captured in our video traces are highly fluctuating. As a result, the predictions
made by MPC are not accurate.

Finally, we discuss S-OWA and A-OWA, which are different variants of OWA. S-OWA focuses only on the best possible
worker (model) according to model profiling. It performs worse than OWA because it does not balance between the reward
and resource consumption by utilizing all workers. On the other hand, A-OWA first chooses the worker (model) and then
makes a decision based on that worker’s baseline. This strategy of A-OWA leads to worse performance than OWA because
each worker only updates its own baseline, but the different reward and resource consumption levels among different workers
are coupled in GMPMW. In contrast, OWA updates the baselines in a joint manner and assigns each task to different workers
based on the model profiling result, thus achieving superior performance.

In conclusion, our experimental results demonstrate the excellent capability of the OWA algorithm to utilize the multiple
workers in GMPMW in a variety of realistic system settings, and they show the importance of properly handling the multiple
workers in the proposed approach.

	Introduction
	Related Work
	GMP, OGAP, and OSGAP
	OKP, OSKP, and BwK
	Other Online Optimization Problems

	The Magician's Problem with Multiple Workers
	Problem Formulation
	Online Environment and Competitive Ratio

	Online Worker Assignment (OWA) Algorithm Design
	Pre-Calculation Phase
	Worker-Assignment Phase
	Processing Phase
	Baseline-Calibration Phase
	OWA Algorithm Complexity Analysis

	Theoretical Analysis
	Competitive Ratio of the OWA Algorithm
	Tightness of the Competitive Ratio
	Optimality of the OWA Algorithm

	Evaluation of OWA by Case Study
	Model Selection for Real-Time Video Analytics
	Video Trace Collection and Model Profiling
	Benchmarks
	Performance

	Conclusion
	Real-World Applications of GMPMW
	Comprehensive Comparison of GMP and GMPMW with Related Problems
	GMP, OGAP, and OSGAP
	OKP, OSKP, and BwK
	The Online Contention Resolution Scheme
	Other Online Optimization Problems

	Proof of Theorem 1
	OWA Algorithm Complexity Analysis
	Proof of Theorems 2–6 and Corollary 1
	Theorem 2
	Theorem 3
	Theorem 4
	Corollary 1
	Theorem 6

	Numerical Results on Competitive Ratio
	Experimental Evaluation of the Competitive Ratio
	Performance of the OWA Algorithm in Case Study
	Model Selection for Real-Time Video Analytics
	Benchmarks
	Performance

