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ABSTRACT

Diffusion probabilistic models learn to remove noise that is artificially added to
the data during training. Novel data, like images, may then be generated from
Gaussian noise through a sequence of denoising operations. While this Markov
process implicitly defines a joint distribution over noise-free data, it is not simple
to condition the generative process on masked or partial images. A number of
heuristic sampling procedures have been proposed for solving inverse problems
with diffusion priors, but these approaches do not directly approximate the true
conditional distribution imposed by inference queries, and are often ineffective
for large masked regions. Moreover, many of these baselines cannot be applied to
latent diffusion models which use image encodings for efficiency. We instead de-
velop a hierarchical variational inference algorithm that analytically marginalizes
missing features, and uses a rigorous variational bound to optimize a non-Gaussian
Markov approximation of the true diffusion posterior. Through extensive experi-
ments with both pixel-based and latent diffusion models of images, we show that
our VIPaint method significantly outperforms previous approaches in both the
plausibility and diversity of imputations, and is easily generalized to other inverse
problems like deblurring and superresolution.

1 INTRODUCTION

Diffusion models (Ho et al., 2020b; Song et al., 2021b; Nichol & Dhariwal, 2021; Song & Er-
mon, 2019) and hierarchical variational autoencoders (VAEs) (Child, 2021; Vahdat & Kautz, 2020;
Sønderby et al., 2016) are generative models in which a sequence of latent variables encode a rich
data representation. For diffusion models, this latent structure is defined by a diffusion process that
corrupts data over “time” via additive Gaussian noise. While each step of hierarchical VAE training
requires end-to-end inference of all latent variables, diffusion models estimate stochastic gradients
by sampling a few timesteps, and learning to incrementally denoise corrupted data. Given a learned
denoising network, synthetic data is generated by sequentially refining Gaussian noise for hundreds
or thousands of time steps, producing deep generative models that have advanced the state-of-the-art
in natural image generation (Dhariwal & Nichol, 2021; Kingma et al., 2021a; Karras et al., 2022).

Diffusion models for high-dimensional data like images are computationally intensive. Efficiency
may be improved by leveraging an autoencoder (Kingma & Welling, 2019; Rombach et al., 2022b;
Vahdat et al., 2021) to map data to a lower-dimensional encoding, and then training a diffusion model
for the lower-dimensional codes. This dimensionality reduction enables tractable but expressive
models for images with millions of pixels. The effectiveness of latent diffusion models (LDMs) has
made them a new standard for natural image generation, and they are thus our focus here.

Motivated by the foundational information captured by diffusion models of images, numerous al-
gorithms have incorporated a pre-trained diffusion model as a prior for image editing (Meng et al.,
2021), inpainting (Song et al., 2021b; Wang et al., 2023b; Kawar et al., 2022; Chung et al., 2022b;
Lugmayr et al., 2022; Cardoso et al., 2024; Feng et al., 2023; Trippe et al., 2023; Dou & Song,
2024), or other inverse problems (Kadkhodaie & Simoncelli, 2021; Song et al., 2023; Graikos et al.,
2022; Mardani et al., 2023; Chung et al., 2023). Many of these prior methods are specialized to in-
painting with pixel-based diffusion models, where every data dimension is either perfectly observed
or completely missing, and are not easily adapted to state-of-the-art LDMs.
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!! = 400!" = 550 & = 300 & = 200

Figure 1: VIPaint inpainting with a pretrained, unconditional LDM (Rombach et al., 2022b) of
LSUN churches. For two image-mask pairs (left columns), we show the expected reconstruction for
a sample taken from our hierarchical VIPaint posterior at times {Te = 550, 500, 450, Ts = 400}.
We skip intermediate noise levels between these critical times during variational optimization, and
add fine-grained details to our final inpaintings (three right columns, Inpainting 1 corresponds to
t = 200 sample) via 400 sequential denoising steps at times 0  t < Ts.

Most algorithms for inpainting with diffusion models employ an iterative refinement procedure, like
that used to generate unconditional samples, and then guide their predictions towards the partially
observed image via various approximations and heuristics. But by sequentially annealing from
independent Gaussian noise to noise-free images, these approaches produce myopic samples that do
not adequately incorporate information from observed pixels, and fail to correct errors introduced in
earlier stages of the “reverse-time” diffusion. More recent work has extended these approaches to
enable image editing (Avrahami et al., 2022) or inpainting (Rout et al., 2023; Corneanu et al., 2024;
Chung et al., 2023; Song et al., 2024) with LDMs, but continues to suffer similar inaccuracies.

In this work, we present VIPaint, a novel application of variational inference (VI) (Wainwright &
Jordan, 2008; Blei et al., 2017) that efficiently optimizes a hierarchical, Markovian, non-Gaussian
approximation to the true LDM posterior. VI has achieved excellent image restoration results with
a wide range of priors, including mixtures (Fergus et al., 2006; Ji et al., 2017) and hierarchical
VAEs (Agarwal et al., 2023), but there is little work exploring its integration with state-of-the-art
LDMs. While Red-Diff (Mardani et al., 2023) applies VI to approximate the posterior of pixel-based
DMs, its local approximation of the noise-free image posterior is difficult to optimize, requiring an-
nealing heuristics that we demonstrate are sensitive to local optima. Our VIPaint method instead
defines a hierarchical posterior that strategically accounts for a subset of noise levels, enabling the
inference of both high-level semantics and low-level details from observed pixels simultaneously

(see Fig. 1). We efficiently infer variational parameters via non-amortized optimization for each
inpainting query, avoiding the need to collect a training set of corrupted images (Liu et al., 2024;
Corneanu et al., 2024), expensively fine-tune generative models (Avrahami et al., 2022) or vari-
ational posteriors (Feng et al., 2023) for each query, or retrain large-scale conditional diffusion
models (Rombach et al., 2022b; Saharia et al., 2022; Nichol et al., 2022; Chung et al., 2022a).

We begin by reviewing properties of (latent) diffusion models in Sec. 2, and prior work on inferring
images via pre-trained diffusion models in Sec. 3. Sec. 4 then develops the VIPaint algorithm,
which first fits a hierarchical posterior that best aligns with the observations, and then samples
from this approximate posterior to produce diverse reconstruction hypotheses. Results in Sec. 5
on inpainting, and the Appendix on other inverse problems, then show substantial qualitative and
quantitative improvements in capturing multimodal uncertainty for both pixel-based and latent DMs.

2 BACKGROUND: DIFFUSION MODELS

The diffusion process begins with clean data x, and defines a sequence of increasingly noisy versions
of x, which we call the latent variables zt, where t runs from t = 0 (low noise) to t = T (substantial
noise). The distribution of latent variable zt conditioned on x, for any integer time t 2 [0, T ], is

q(zt | x) = N (zt | ↵tx,�
2
t I), (1)

where ↵t and �t are strictly positive scalar functions of t. This noise implicitly defines a Markov
chain for which the conditional q(zt | zt�1) is also Gaussian. Also, q(zt�1 | zt, x) is Gaussian (see
Appendix B.1) with mean equal to a linear fuction of the input data x and the latent sample zt.

The signal-to-noise ratio (Kingma et al., 2021b) induced by this diffusion process at time t equals
SNR(t) = ↵

2
t /�

2
t . The SNR monotonically decrease with time, so that SNR(t) < SNR(s) for

t > s. Diffusion model performance is very sensitive to the rate at which SNR decays with time,
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or equivalently the distribution with which times are sampled during training (Nichol & Dhariwal,
2021; Karras et al., 2022). This DM specification includes variance-preserving diffusions (Ho et al.,
2020a; Sohl-Dickstein et al., 2015) as a special case, where ↵t =

p
1� �2

t . Another special case,
variance-exploding diffusions (Song & Ermon, 2019; Song et al., 2021b), takes ↵t = 1.

Image Generation. The generative model reverses the diffusion process outlined in Eq. (1), result-
ing in a hierarchical generative model that samples a sequence of latent variables zt before sampling
x. Generation progresses backward in time from t = T to t = 0 via a finite temporal discretization
into T ⇡ 1000 steps, either uniformly spaced as in discrete diffusion models (Ho et al., 2020a),
or via a possibly non-uniform discretization (Karras et al., 2022) of an underlying continuous-time
stochastic differential equation (Song et al., 2021b). Denoting t� 1 as the timestep preceding t, for
0 < t < T , the hierarchical generative model for data x is expressed as follows:

p(x) =

Z

z
p(zT )p(x | z0)

TY

t=1

p(zt�1 | zt) dz. (2)

The marginal distribution of zT is typically a spherical Gaussian p(zT ) = N (zT | 0,�2
T I). Pixel-

based diffusion models take p(x | z0) to be a simple factorized likelihood for each pixel in x, while
LDMs define p(x | z0) using a decoder neural network. The conditional latent distribution maintains
the same form as the forward conditional distributions q(zt�1 | zt, x), but with the original data x

substituted by the output of a parameterized denoising model z0 as

p✓(zt�1 | zt) = q(zt�1 | zt, z0 = ẑ✓(zt, t)), where ẑ✓(zt, t) =
zt � �t✏̂✓(zt, t)

↵t
. (3)

This denoising model ✏̂✓(zt, t) typically uses variants of the UNet architecture (Ronneberger et al.,
2015) to predict the noise-free latent z0 from its noisy counterpart zt.

The Gaussian diffusion implies that p✓(zt�1 | zt) = N (zt�1 | c1(t)zt + c2(t)ẑ✓(zt, t), �̃2
t�1I), so

the mean is a linear combination of the latent zt and the prediction ẑ✓, with constants determined
from the diffusion hyperparameters as detailed in Appendix B.1. Our VIPaint approach flexibly ac-
commodates multiple parameterizations of the denoising model, including the EDM model’s direct
prediction of z0 for higher noise levels (Karras et al., 2022).

Training Objective. The variational lower bound (VLB) of the marginal likelihood is given by
� log p(x)  �Eq(z0|x)[log p✓(x|z0)]| {z }

reconstruction loss

+D
⇥
q(zT |z0)||p(zT )

⇤
| {z }

prior loss

+L(0,T )(z0)| {z }
diffusion loss

, (4)

where D is the Kullback-Leibler (KL) divergence. The reconstruction loss, usually L1, can be
estimated stochastically and differentiably using standard reparametrization techniques (Kingma &
Welling, 2019). The prior loss is a constant because p(zT ) is a Gaussian with fixed parameters. Ho
et al. (2020b) express the diffusion loss for finite time T as follows:

L(0,T )(z0) =
TX

t=1

Eq(zt|z0)D
⇥
q(zt�1|zt, z0)||p✓(zt�1|zt)

⇤
. (5)

To boost training efficiency, instead of summing the loss over all T times, timesteps are sampled
from a uniform distribution t ⇠ U{1, T} to yield an unbiased approximation. Most prior work (Ho
et al., 2020b; Song et al., 2021b) also chooses to optimize a re-weighted KL divergence that reduces
sensitivity towards losses at very-low noise levels, so the final loss L(0,T )(z0) becomes

L(0,T )(z0) =
T

2
E✏⇠N (0,1),t⇠U(1,T )


||✏� ✏̂✓(zt, t)||22

�
. (6)

Latent Diffusion Models. To encourage resource-efficient diffusion models, Rombach et al.
(2022b); Vahdat et al. (2021) utilize an encoder q�(z0|x) to map high-dimensional data RD into a
lower-dimension space Rd (d < D), and a decoder p (x|z0) to (approximately) invert this mapping.
Together with an L1 reconstruction loss, the training loss for the autoencoder employs a combination
of the perceptual loss (Zhang et al., 2018) and a patch-based adversarial objective (Rombach et al.,
2022a) to encourage realism and reduce blurriness. Given this autoencoder, one can train a diffusion
model in the space of low-dimensional encodings. The diffusion process is the same as defined in
Eq. (1), but now corrupts z0 ⇠ q�(z0 | x) samples in the lower-dimensional space. Generation uses
the reverse diffusion process to sample from p✓(z0) via the time-dependent noise prediction function
✏̂✓(zt, t), and the decoder p (x | z0) to map the synthesized encodings z0 to data space.
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3 BACKGROUND: INFERENCE USING DIFFUSION MODELS

3.1 GENERAL INVERSE PROBLEMS

In many real-life scenarios, we encounter partial observations y derived from an underlying x. Typ-
ically, these observations are modeled as y = f(x)+ v, where f represents a known linear degrada-
tion model and v is Gaussian noise with v ⇠ N (0,�2

v). For instance, in an image inpainting task, y
might represent a masked imaged y = x�m, where m is a binary mask indicating missing pixels.

In cases where the degradation of x is significant, exactly recovering x from y is challenging, be-
cause many x could produce the same observation y. To express the resulting posterior p(x | y)
given a DM prior, we can adapt the Markov generative process in Eq. (2) as follows:

p✓(x | y) =
Z

z
p✓(zT | y)p✓(x | z0, y)

TY

t=1

p✓(zt�1 | zt, y) dz. (7)

Exactly evaluating this predictive distribution is infeasible due to the non-linear noise prediction
(and decoder) network, and the intractable posteriors of latent codes p(zt�1 | zt, y) for all t.

Blended methods like Song et al. (2022); Wang et al. (2023a) define a procedural, heuristic ap-
proximation to the posterior and is tailored for image inpainting. They first generate unconditional
samples zt�1 from the prior using the learned noise prediction network, and then incorporate y

by replacing the corresponding dimensions with the observed measurements. RePaint Lugmayr
et al. (2022) attempts to reduce visual inconsistencies caused by blending via a resampling strat-
egy. A “time travel” operation is introduced, where images from the current time step zt�1 are first
blended with the noisy version of the observed image yt�1, and then used to generate images in the
(t � 1) + r, (r � 1) time step by applying a one-step forward process and following the Blended
denoising process.

Sampling Methods. Motivated by the goal of addressing more general inverse problems,
Diffusion Posterior Sampling (DPS) (Chung et al., 2023) uses Bayes’ Rule to sample from
p✓(zt�1|zt, y) / p✓(zt�1|zt)p✓(y|zt�1). Instead of directly blending or replacing images with
noisy versions of the observation, DPS uses the gradient of the likelihood log p✓(y|zt) to guide the
generative process at every denoising step t. Since computing rzt log p(y|zt�1) is intractable due
to the integral over all possible configurations of zt0 for t0 < t � 1, DPS approximates p(y|zt�1)
using a one-step denoised prediction x̂ using Eq. (3). The likelihood p(y|x) = N (f(x),�2

v) can
then be evaluated using these approximate predictions. To obtain the gradient of the likelihood term,
DPS require backpropagating gradients through the denoising network used to predict x̂.

Specializing to image inpainting, CoPaint (Zhang et al., 2023) augments the likelihood with another
regularization term to generate samples zt�1 that prevent taking large update steps away from the
previous sample zt, in an attempt to produce more coherent images. Further, it proposes CoPaint-TT,
which additionally uses the time-travel trick to reduce discontinuities in sampled images.

Originally designed for pixel-space diffusion models, it is difficult to adopt these works directly
to latent diffusion models. Posterior Sampling with Latent Diffusion (PSLD) (Rout et al., 2023)
first showed that employing DPS directly on latent space diffusion models produces blurry images.
It proposes to add another “gluing” term to the measurement likelihood which penalizes samples
zt that do not lie in the encoder-decoder shared embedding space. However, this may produce
artifacts in the presence of measurement noise (see Song et al. (2024)). To address this issue, recent
concurrent work on the ReSample (Song et al., 2024) method divides the timesteps in the latent
space into 3 subspaces, and optimizes samples zt in the mid-subspace to encourage samples that are
more consistent with observations. Other work (Yu et al., 2023) highlights a 3-stage approach where
data consistency can be enforced in the latter 2 stages which are closer to t = 0.

3.2 RED-DIFF: VARIATIONAL INFERENCE VIA FEATURE POSTERIORS

RedDiff (Mardani et al., 2023) approximates the true complex posterior p(x | y) (Eq. 7) by a simple
Gaussian distribution q�(x) = N (µ,�2), where � = {µ,�} represents the variational parameters.
Minimizing the KL divergence D(q�(x)||p(x|y)) guides the distribution q to seek the mode in the
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True Observed VIPaint-4 VIPaint-2 RedDiff RedDiff-V

Figure 2: Red-Diff (Mardani et al., 2023) defines its posterior directly on the space of unobserved
pixels, and can be seen as a simplified special case of our VIPaint. Red-Diff produces blurry images,
and direct optimization of its variational bound (RedDiff-V) leads to poor local optima, so must
resort to annealing through diffusion time (RedDiff, T ! 0). Our VIPaint method suffers from no
such difficulty and uses the variational bound for optimization, leading to more robust inference.

posterior distribution over all possible images that align with the observation y:
D(q�(x)||p(x|y)) = �Eq�(x)[log p(y|x)] +D(q�(x)||p(x))

= Eq�(x)

h ||y � f(x)||22
2�2

v

i
+

Z T

0

g(t)2

2
Eq�(x)[||✏� ✏✓(zt, t)||22] (8)

where g(t) is the loss-weighing term, zt denotes samples generated by drawing x from q�(x) and
applying the forward process in Eq. (1). However, RedDiff assumes a small constant variance for
the variational distribution (� ⇡ 0), which further simplifies the optimization problem to

min
µ

||y � f(µ)||22 + Et,✏
g(t)2

2
(2�2

v)[||✏� ✏✓(zt, t)||22], (9)

where zt = ↵tµ + �t✏. RedDiff seeks an image µ that reconstructs the observation y according to
the measurement model f , while having a high likelihood under the diffusion prior (second term).

The expectation in the second term averages over many time steps, but in practice they find op-
timization with such a loss to be difficult. Moreover, RedDiff observes that annealing time from
t = T to t = 0, as in standard backward diffusion samplers, yields better performance rather than
directly optimizing the variational bound through random time sampling. Some visual examples
are provided in Fig. 6 for a comparison between RedDiff-V, which uses random-time sampling as
justified by the correct variational bound, and RedDiff which employs descending time from T to 0.
Red-Diff formulates the loss function at each time step t as follows:

||y � f(µ)||2 + wt(sg[✏� ✏✓(zt, t)])
T
µ (10)

where wt is a loss weighing term adjusted by Red-Diff and sg denotes a stop-gradient operator used
by Red-Diff to prevent optimization instability, which may arise due to the denoising function’s lack
of smoothness at low-noise levels (Yang et al., 2024).

Because Red-Diff employs a simple variational posterior that directly optimizes an image at the
noise free (t = 0) level only, it is inherently incapable to capture uncertainty in x, due to its mode-
seeking behaviour. Additionally, its optimization process is biased because it relies on annealing
time during the diffusion process rather than randomly sampling time points. We demonstrate that
in contrast, our VIPaint framework better models posterior uncertainty, enables stable optimization
of an unbiased variational bound, and can be applied to both pixel-based and latent DMs.

4 VIPAINT: VARIATIONAL INFERENCE OF DIFFUSIONS FOR INPAINTING

Given a pre-trained diffusion model, our framework defines a structured family of distributions on
the latent variable z, which is optimized for each partial observation. This simple and general
approach can be applied both to models which diffuse in the pixel-space, or latent space.

Rather than optimizing a posterior or latent samples at a single noise level and annealing through
noise levels, our VIPaint method constructs a joint posterior that is Markovian across a subset of
zt, introducing a hierarchical structure to our inference. The parameters � of this posterior are
optimized separately for each query to steer our proposed variational distribution to be semantically
aligned with the observation, while searching for consistent images within the prior higher ranged
([Te, T ]) latent space z. Once fit, the second stage involves sampling from this posterior and utilizes
DPS gradient updates in the low ranged ([0, Ts]) latent space, see Fig. 3.
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Figure 3: Top: The hierarchical approximate posterior of VIPaint is defined over a coarse sequence
of intermediate latent steps between Te and Ts. During optimization, the variational parameters
� defining the posterior on a subset of latent times are fit via a prior loss on times above Te, a
hierarchical loss defined across K intermediate times, and a reconstruction loss estimated using a
one-step approximation p✓(x|zTs) from the posterior samples. Bottom: After variational inference,
samples from the hierarchical posterior (now aligned with the observation) transition smoothly in
the intermediate latent space [0, Ts] via gradient updates. Note that samples at Te and Ts are aligned
much better for VIPaint then the baseline PSLD (Rout et al., 2023), whose predications at Te = 550
contain artifacts which subsequent steps cannot correct.

4.1 DEFINING THE VARIATIONAL POSTERIOR

Our variational posterior is defined on the latent space z, at multiple noise levels, to capture global
semantics in the observation y. Because diffusion models encode a rich, multi-scale representation
in the latent space z, we hypothesize that a range of timesteps in between contain critical relevant
information, that we aim to capture through our posterior. We avoid having our posterior be (explic-
itly) defined on timesteps (Te, T ] which behaves close to Gaussian noise, and [0, Ts) which contains
only fine-details, and define a hierarchical posterior over K intermediate timesteps.

VIPaint retains the non-linearity and complexity of the noise prediction model ✓ and follows the
sample generating reverse diffusion process to produce inpaintings x. The variational parameters
� stochastically bias this sample generation towards samples from the true posterior induced by
observation y, and can be factorized as:

q(x) =

Z

z
q(x | zTs)

 
K�1Y

i=1

q�(zs(i) | zs(i+1))

!
q�(zTe) dz, (11)

where timesteps (Ts, Te) define the boundaries of our variational posterior along the diffusion
timesteps. We model q(x | zTs) =

R
z0
p(x | z0)p(z0 | zTs) dz0, where p(x | z0) is a factor-

ized Gaussian likelihood for pixel-based diffusion models, or a decoder for LDMs. p(z0|zTs) also
follows the prior with a one-step expected mean prediction E[ẑ0|zTs ] as in Eq. (3) and negligible
standard deviation. For our highest timestep Te, we let our posterior q�(zTe) be a simple Gaussian
N (µTe , ⌧Te) with variational parameters (µTe , ⌧Te ) defined over each pixel in the image or its en-
coding. Denoting s(i) as the timestep preceding s(i+1) for all i 2 [1,K � 1], and generalizing the
hierarchical VAE approximation of Agarwal et al. (2023), we let our conditional equal

q�(zs(i) | zs(i+1)) = N (zs(i) | �s(i)ẑs(i) + (1� �s(i))µs(i), ⌧
2
s(i)), (12)

where ẑs(i) = ẑs(i)(✓, zt, t) is the mean prediction of the prior diffusion model p(z(s(i))|z(s(i+1))),
and � = {µTe , ⌧Te , (�s(i), µs(i), ⌧s(i))

K�1
i=1 } are the set of variational parameters. We use y to initial-

ize µs(i) by first encoding it using the encoder and then scaling it by the forward diffusion parameter
↵s(i). We also use the prior (�t) and posterior (�̃t) from the diffusion noise schedule to initialize our
posterior variance, Appendix E.1 for details.

At every timestep i, the mean of the posterior interpolates between the noise prediction network
ẑs(i) and a contextual parameter µs(i) for a given query y. This is key when reusing the diffusion

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: We show the progress of fitting VIPaint’s posterior and draw samples after every 50
iterations of inference for two test cases. We see that VIPaint quickly figures out the semantics in
the underlying image within 50 optimization iterations.

prior to adjust the posterior to align precisely with a particular observation y, without the need to
re-train ✓. Previous work (Song et al., 2021b; Lugmayr et al., 2022; Kawar et al., 2022; Song et al.,
2024) uses linear combinations between the observed y and generated sample zt, but either use hard
constraints or fixed weights that are manually tuned. Instead, we incorporate free latent parameters
and optimize them using the variational bound derived below.

4.2 PHASE 1 : OPTIMIZATION

To fit our hierarchical posterior, we optimize the variational lower bound (VLB) of the marginal
likelihood of the observation y (we derive this in Appendix C): � log p(y) 

�Eq[log p✓(y|zTs)]| {z }
reconstruction loss

+�

K�1X

i=1

D

h
q�(zs(i)|zs(i+1))||p✓(zs(i)|zs(i+1)))

i

| {z }
hierarchical loss

+� L(Te,T )(zTe)| {z }
diffusion loss

, (13)

where VIPaint seeks latent-code distributions that assign high likelihood to the observed features y,
while simultaneously aligning with the medium-to-high noise levels encoding image semantics via
weight � > 1 (Higgins et al., 2017; Agarwal et al., 2023).

Diffusion Loss. L(Te,T )(zTe) is essentially a restriction of Eq. (5) to a small set of times (Te, T )
with high noise levels. This diffusion term queries the latent space of the diffusion model at high
noise levels (> Te) to guide the posterior q(zTe) towards a distribution in the prior latent space
to be consistent with the observation y in high-level semantics. Following prior work, instead of
summing this loss over all t > Te, we sample timesteps t ⇠ U(Te, T ) defined on a non-uniform
discretization (Karras et al., 2022), yielding an unbiased estimate of the loss as (see App. C) :

L(Te,T )(zTe) =
T � Te

2
Et⇠U(Te,T ),q(zt|zTe )

D[q(zt�1|zt, zTe)||p✓(zt�1|zt)]. (14)

Hierarchical Loss. For subsequent steps in our Markov posterior, the hierarchical loss closes the
gap between our posterior q(zs(i)|zs(i+1)) and the prior p(zs(i)|zs(i+1)) at each step i by minimizing
the KL divergence (an analytic function of the means and variances).

Reconstruction Loss. While the posterior aligns with the prior latent space, the reconstruction
term guides the samples from the posterior zTs to be closer to the observations y. We utilize
Tweedie’s formula to approximate z0 and then, for latent diffusion models, we use decoder up-
sampling to produce image x̂. We follow the L1 reconstruction loss that was used to pre-train the
diffusion models. For latent diffusion models specifically for the task of image inpainting, we add
the perceptual loss (Zhang et al., 2018) that was also originally used to train the decoder. Fig. 9
(Appendix) shows an ablation that adding such a term helps avoid blurry reconstructions.

All the loss terms in Eq. (13) are stochastically and differentiably estimated based on samples from
the hierarchical posterior, enabling joint optimization. From Eq. 13, if the posterior is only defined
on the noise-free level z0 as in Red-Diff (Mardani et al., 2023), the VIPaint objective reduces to
an objective mentioned in their work. However, VIPaint strategically avoids low noise levels in its
posterior and decreases training instabilities as observed by RedDiff.

4.3 PHASE 2 : SAMPLING

After optimization, samples zTs are drawn from
QK

i=1 q�(zs(i�1)|zs(i))q�(zTe), that is now seman-
tically aligned with the observation, using ancestral sampling on our K level hierarchical posterior
starting from Te to Ts. This step gradually adds more semantic details in samples. Additionally,
VIPaint utilizes DPS gradient updates to iteratively refine zTs to produce z0 to ensure fine-grained
consistency with y, as this approximation is effective in low-noise regimes. See Fig. 3.
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Figure 5: Image completion results on Imagenet256 using the LDM prior for Rotated Window and
Random Masking schemes shown in the second row. We show an inpainting from each method
in the following four rows. DPS, PSLD, and ReSample show blurry inpaintings of widely varying
quality. In contrast, VIPaint interprets the global semantics in the observed image and produces very

realistic images. Please find more qualitative plots for LSUN-church in the Appendix Fig. 15.

5 EXPERIMENTS & RESULTS

5.1 EXPERIMENTAL SETUP

Task VIPaint-4 VIPaint-2 CoPaint-TT CoPaint RePaint DPS Blended RedDiff RedDiff-V

Rotated Window 0.289 0.300 0.316 0.347 0.3213 0.3203 0.3409 0.463 0.407

Random Mask 0.231 0.227 0.245 0.278 0.2575 0.2880 0.2763 0.409 0.671

Task Imagenet-256 LSUN-Church

VIPaint-4 VIPaint-2 ReSample PSLD DPS VIPaint-2 ReSample PSLD DPS

Rotated Window 0.358 0.392 0.537 0.576 0.606 0.455 0.510 0.541 0.502

Random Mask 0.373 0.409 0.559 0.583 0.607 0.439 0.485 0.523 0.490

Small Mask 0.292 0.197 0.381 0.534 0.564 0.299 0.374 0.413 0.421

Table 1: Quantitative results (LPIPS, lower is better) for ImageNet64 for the task of image inpaint-
ing using pixel-based EDM prior (top) and Imagenet-256 and LSUN-Church using LDM priors
(bottom). LPIPS is estimated as the mean score of 10 inpaintings with respect to the true image,
averaged across the test set. VIPaint has superior performance (highlighted in bold) in nearly all
cases. We underline the second best method. Fig. 11 in the appendix has further comparisons.

We conduct experiments across 3 image datasets: LSUN-Church Yu et al. (2015), ImageNet-64
and ImageNet-256 Deng et al. (2009). For ImageNet-64, we use the class-conditioned pixel-space
”EDM” diffusion model Karras et al. (2022) with the pre-trained score network provided by the
authors. For LSUN-Churches256 and ImageNet256 we use the pre-trained latent diffusion models
from Rombach et al. (2022b). Then, we sample 100 non-cherry-picked test images across the three
datasets. We consider three masking patterns: 1) a small mask distribution (Zhao et al., 2021) that

8
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Figure 6: Image completion results on ImageNet64 using a conditional pixel-based EDM prior for
image inpainting (Random Masking and Rotated Window schemes) shown in the second row. We
show an inpainting from each method in the following rows. Even though the prior diffusion model
for ImageNet is conditioned on class labels, inpaintings for baseline methods are inconsistent with
the observed image. RePaint and CoPaint is typically more accurate than other baselines, but still
produce inconsistent samples unless masks are small. In contrast, VIPaint interprets the global
semantics in the observed image while enforcing consistency with the few observed pixels.

masks upto 20% of each image 1) a random mask distribution that uses a similar setup masking
between 40 and 80% of each image, and 2) a randomly rotated masking window that masks at least
half of the image. By masking large portions of each image we ensure a sufficiently challenging
benchmark for in-painting. Some prior works (DPS, Chung et al. (2023)) only employ masks cover-
ing a small percentage of the image. Recent works (RePaint Lugmayr et al. (2022), CoPaint Zhang
et al. (2023)) note that their methods struggle with larger masks. For each test image, we evaluate
each method across 10 reconstructions per test image, totalling 1000 inpaintings. We test VIPaint
for other linear inverse problems like super resolution and gaussian deblurring in Appendix H.2.
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Figure 7: Sample completions comparing VIPaint with the best performing baseline, CoPaint, for a
test image. We show the true and masked images, and 5 in-painted samples for each method. For
an extended comparison see Appendix Fig. 22. CoPaint shows high variance in the quality of image
completions, while VIPaint yields coherent samples while capturing uncertainty.

Comparison. We compare VIPaint with several recent methods that directly apply the diffusion
models trained in the pixel space: i) blending methods: blended (Song et al., 2021b) and RePaint

Lugmayr et al. (2022) ; ii) Sampling methods: DPS (Chung et al., 2023), and CoPaint (Zhang et al.,
2023) and iii) variational approximations: RED-Diff Mardani et al. (2023). Although not exhaustive,
this set of methods summarizes recent developments in the state-of-the-art for image inpainting. For
latent diffusion models, we compare VIPaint with DPS, PSLD Rout et al. (2023) and ReSample
Song et al. (2024) which are state-of-the-art for inpainting with latent diffusion models. Please see
Appendix E.2 for additional details on their implementation. Since large masks in images can induce
high-uncertainty in the image, Peak-Signal-To-Noise-Ratio (PSNR) is not very well defined for this
task. While metrics like Kernel Inception Distance Bińkowski et al. (2018) require a large set of
images, we report the Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018) metric
in Table 1. We report Peak-Signal-To-Noise-Ratio (PSNR) for some other linear inverse problems
like Super Resolution and Gaussian Deblurring in Table 4 (Appendix). We show qualitative images
across methods for ImageNet64 in Fig 6, ImageNet256 in Fig. 5 and LSUN-Church in Fig. 15
(Appendix). For tasks like super-resolution and Gaussian Deblurring, we show qualitative results in
Fig. 12, 13 and 14. Additionally, we visualize multiple inpaintings in Fig. 7.

Hyperparameters. We use the notation VIPaint-K to denote the number of steps in the hierarchical
posterior in our experiments. We found empirically that discretizations and hyperparameters of
VIPaint translate well between models using the same noise schedule (as shown for the LSUN and
ImageNet-256 latent diffusion models). Please see Appendix E.1 for more details.

5.2 RESULTS

VIPaint enforces consistency with large masking ratios. Table 1 reports LPIPS scores for the task
of image inpainting with large masking ratios using pixel and latent-based diffusion models, respec-
tively. For pixel-based diffusion models, we see that RED-Diff and DPS perform poorly. RePaint,
CoPaint and CoPaint-TT show relatively better scores, but do not match VIPaint across any dataset
or masking pattern. We show imputations for multiple test examples in Fig. 6, 5 and 15 (Appendix)
to highlight differences in inference methods. We see that VIPaint consistently produces plausible
inpaintings while other methods fail to complete images for larger masking ratios meaningfully.

VIPaint yields multiple plausible reconstructions in the case of high uncertainty. We compare
VIPaint with the best performing baseline, CoPaint across multiple sample inpaintings in Fig. 7,
a more comprehensive comparison is in Appendix (Fig 18-24). We observe that VIPaint produces
multiple visually-plausible imputations while not violating the consistency across observations. We
show diversity in possible imputations using different class conditioning using VIPaint in Fig. 24.

VIPaint smoothly trades off time and sample quality. VIPaint-2, utilizing a two-step hierarchy
naturally is the fastest choice for any k in VIPaint-K. It is comparable with other baselines with
respect to time (for a more detailed analysis, please refer to Appendix F). However, from Tables 1,
we see a remarkable gain in performance when compared with other baselines. VIPaint-4 converges
a bit more slowly (Fig. 10), but ultimately reaches the best solutions.

6 CONCLUSION

We present VIPaint, a simple and a general approach to adapt diffusion models for image inpaint-
ing and other inverse problems. We take widely used (latent) diffusion generative models, allocate
variational parameters for the latent codes of each partial observation, and fit the parameters stochas-
tically to optimize the induced variational bound. The simple but flexible structure of our bounds
allows VIPaint to outperform previous sampling and variational methods when uncertainty is high.
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