
Contrastive Sampling Chains in Diffusion Models

Junyu Zhang
Central South University

zhangjunyu@csu.edu.cn

Daochang Liu
The University of Sydney

daochang.liu@sydney.edu.au

Shichao Zhang
Central South University
zhangsc@csu.edu.cn

Chang Xu∗

The University of Sydney
c.xu@sydney.edu.au

Abstract

The past few years have witnessed great success in the use of diffusion models
(DMs) to generate high-fidelity images with the help of stochastic differential
equations (SDEs). However, discretization error is an inevitable limitation when
utilizing numerical solvers to solve SDEs. To address this limitation, we provide
a theoretical analysis demonstrating that an appropriate combination of the con-
trastive loss and score matching serves as an upper bound of the KL divergence
between the true data distribution and the model distribution. To obtain this bound,
we utilize a contrastive loss to construct a contrastive sampling chain to fine-tuning
the pre-trained DM. In this manner, our method reduces the discretization error
and thus yields a smaller gap between the true data distribution and our model
distribution. Moreover, the presented method can be applied to fine-tuning various
pre-trained DMs, both with or without fast sampling algorithms, contributing to
better sample quality or slightly faster sampling speeds. To validate the efficacy of
our method, we conduct comprehensive experiments. For example, on CIFAR10,
when applied to a pre-trained EDM, our method improves the FID from 2.04 to
1.88 with 35 neural function evaluations (NFEs), and reduces NFEs from 35 to 25
to achieve the same 2.04 FID. The code is available at Contrastive-Sampling.

1 Introduction

Diffusion models (DMs) [57, 22] have emerged as powerful generative models, breaking records
in image generation [67, 29, 26, 32], and finding rapid applications in other domains such as video
generation [23], 3D point cloud generation [46], text-to-image generation [52], speech synthesis
[7, 6], inverse problems [62, 30], and lossless compression [36]. While score-based generative models
(SGMs) [57, 58] and denoising diffusion probabilistic models (DDPMs) [47, 22] are two branches of
DMs, a certain parameterization reveals an equivalence between them [45]. In a seminal work, Song
et al. [61] generalized DMs through the lens of stochastic differential equations (SDEs). Specifically,
for any given stochastic diffusion process that progressively diffuses a data point into random noise
with a continuum noise schedule, a DM learns to remove the added noise with a reverse-time SDE [1].
For SGMs, SDEs utilize deep neural networks to match the gradient of the log probability density
with respect to data at each noise scale, which is dubbed denoising score matching [25, 68, 59]. In
this manner, DMs enable not only exact likelihood computation [61] like variational auto-encoders
(VAE) [37] but also higher sample quality [19] than widely-used generative adversarial networks
(GANs) [3].

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/BestJunYu/Contrastive-Sampling

In practice, directly solving the reverse-time SDE to obtain an image is intractable. Instead, numerical
solvers [69, 2, 44] are utilized to discretize the problem by constructing a discrete sampling chain with
many sampling steps. Concretely, numerical solvers decompose the intractable integration of an SDE
into multiple integration intervals [31] and solve them iteratively. However, due to the intractability
of the integration in high dimensions, numerical solvers are unable to obtain the exact solution for
the integration of each interval. Instead, they provide approximate solutions, which introduce a
discretization error. This error represents the discrepancy between the approximate solution and
the exact solution. It is important to note that any discretization scheme used by numerical solvers
introduces discretization errors [42] in each integration interval. Consequently, there is a gap between
the intermediate data distribution and its corresponding model distribution at each discretization step
[75]. The accumulation of these discretization errors results in a larger gap between the true data
distribution and its model distribution. It is worth noting that the estimation error, resulting from
score matching or noise prediction during training, can also contribute to the gap between these two
distributions [75, 17]. However, in this paper, we solely concentrate on the discretization error. From
an integration point of view, the discretization error gradually decreases as the step size of the interval
decreases. However, it cannot be completely avoided because the step size cannot be reduced to
infinitesimal values.

To alleviate this issue, more discretization steps can be used to make each approximate solution of the
discretization step closer to the exact solution, but this significantly increases the computational cost
during sampling. For example, DDPM [22] requires 1000 steps to produce an image, with each step
requiring the evaluation of the neural network once, which is substantially slower than GANs [28, 55].
While recent works have made it possible to achieve high-quality images with significantly reduced
sampling steps [29, 32, 70], they still encounter the issue of discretization errors. On the other hand,
some fast sampling DMs [27, 65, 72, 53] speed up sampling process for SDEs or ordinary differential
equations (ODEs) [61], but suffer from a sharp decline in image quality since the discretization error
grows larger. Hence, discretization errors have an severe impact on DMs.

More recently, several studies have been conducted to enhance numerical solvers which aim to reduce
the discretization error. DPM-Solver [44] utilizes the semi-linear structure to avoid the corresponding
discretization error by analytically computing the linear part of the solutions. By comparison, Liu
et al. [42] combine high-order methods with Denoising Diffusion Implicit Model (DDIM) [56] to
solve the ODE and achieve further acceleration. However, the accuracy of this approximation is not
theoretically justified and may suffer from significant discretization error if the step size is large [75].
To fill the theoretical gap, Zhang and Chen [75] propose to utilize an exponential integrator to remedy
the discretization error, achieving much better sample quality with smaller step numbers compared to
previous fast sampling approaches. Orthogonal to this direction, our focus lies in minimizing the
discretization error by optimizing the upper bound of the Kullback-Leibler (KL) divergence between
the true sampling chain and a simulated chain at each time step.

The objective of our work is to establish a contrastive sampling chain to fine-tune any pre-trained DMs
so as to reducing the discretization error, contributing to a small gap between data distribution and
model distribution. Our method is motivated by the observation that minimizing the KL divergence
between the true sampling chain and a simulated chain at each corresponding time step effectively
reduces the discretization error. This reduction in discretization error directly translates into an
improvement in sample quality. To achieve this, we propose minimizing a contrastive loss [11, 9, 21]
that effectively reduces the gap between intermediate data distribution and the model data distribution
at each time step. Specifically, by selecting instances on the sampling chain of a pre-trained DM for a
same image as positive pairs, and choosing negative instances from other training images, a contrastive
loss function is formed. To keep the pre-trained model stable in its generative ability, in practice, we
combine the contrastive loss with the original generative loss using dynamic weighting schedules
during the fine-tuning process. Moreover, the contrastive loss is optimized with backpropagation
through time (BPTT) to spread the gradients on the whole sampling chain. In this manner, our method
reduces the gap between true data distribution and model distribution, which improves sample quality
without increasing sampling time overhead. Comprehensive experiments validate that our method
can improve generation quality for various pre-trained models when using the same neural function
evaluations (NFEs), or require less NFEs to achieve the same generation quality.

In a nutshell, our work makes the following contributions: 1) We demonstrate that the discretization
error results in a gap between each intermediate data distribution and its corresponding model
data distribution. 2) We analyze that an appropriate combination of contrastive loss and score

2

matching serves as an upper bound for the KL divergence between the data distribution and the model
distribution. 3) We propose a contrastive sampling chain to fine-tune a pre-trained DM with the
assistance of our derived upper bound. 4) We present dynamic weighting schedules and BPTT as
optimization techiniques for our method.

2 Background

As mentioned previously, SGMs and DDPMs have been considered almost equivalent when a certain
parameterization is applied. For the sake of simplicity, we solely focus on utilizing denoising score
matching under SDEs for further investigation in this paper. Below, we present a comprehensive
review of the entire DMs process with the lens of SGMs.

Forward noising diffusion: The forward diffusion of a DM for D-dimensional data is a linear
diffusion described by the stochastic differential equation (SDE) [54]

dx = F txdt+Gtdω, (1)

where F t ∈ RD×D denotes the linear drift coefficient, Gt ∈ RD×D denotes the diffusion coefficient,
and ω is a standard Wiener process. The diffusion Eq. (1) is initiated at the training data and simulated
over a fixed time schedule [0, T]. Denote by pt(xt) the marginal distribution of xt and by p0t(xt | x0)
the conditional distribution from x0 to xt, then p0(x0) represents the underlying distribution of the
training data. The simulated stochastic process is represented by

{
xSDE
t

}
t∈[0,T]

, where pT (xT) is a
prior π(xT) which is is easy to sample from, like Gaussian distribution. The parameters F t and Gt

are chosen such that the conditional marginal distribution p0t(xt | x0) is a simple Gaussian transition
kernel, denoted as N (µtx0,Σt). Three popular SDEs in DMs are summarized by Song et al. [61],
which are variance preserving SDE (VP SDE), variance exploding SDE (VE SDE) and sub-variance
preserving (subVP SDE). Ideally, we enable to diffuse any data distribution to a prior distribution
π(xT) with one of those three SDEs.

Backward denoising diffusion: Under mild assumptions [61], the forward diffusion Eq. (1) is
associated with a reverse-time diffusion process

dx =
[
F tx−GtG

T
t ∇ log pt(x)

]
dt+Gtdω, (2)

where ω denotes a standard Wiener process in the reverse-time direction, ∇ log pt(x) denotes the
gradient of the log probability density with respect to data at each time step t. In general, with a
known prior distribution π(xT), one can model the data distribution p0(x0) with Eq. (2) as F t and
Gt are fixed according to the forward SDEs. However, to solve Eq. (2), one needs to match the score
function ∇ log pt(x), which is not accessible.

Training: The basic idea of DMs is to use a time-dependent score matching network sθ(xt, t) to
approximate the score ∇ log pt(x). This is achieved by score matching techniques [25, 68, 59] where
the score network sθ is trained by minimizing the denoising score matching loss

JSM (θ;ω(t)) = Et∼U [0,T]Ep(x0)p0t(xt|x0)

[
ω(t) ∥∇ log p0t(xt|x0)− sθ(xt, t)∥22

]
. (3)

Here ∇ log p0t(xt|x0) has a closed form expression as p0t(xt|x0) is a simple Gaussian distribution
which represents the discretized form of a given SDE, ω(t) denotes a time-dependent weighting
function. This loss can be evaluated using empirical samples by Monte Carlo methods and thus
standard stochastic optimization algorithms can be used for training.

Sampling: Once the score network sθ(xt, t) ≈ ∇ log pt(x) is matched for almost all x ∈ RD and
t ∼ U [0, T], it can be used to generate new samples by solving the backward SDE Eq. (2) with
∇ log pt(x) replaced by sθ(xt, t). It turns out there are infinitely many diffusion processes one can
use. In this work, to show the scalability of our method, we consider a general expression of SDEs

dxSDE =

[
F tx

SDE − 1 + λ2

2
GtG

T
t sθ(x

SDE, t)

]
dt+ λGtdω, (4)

parameterized by λ > 0. When λ = 0, Eq. (4) reduces to an ordinary differential equation (ODE)
known as the probability flow ODE [8]. The reverse-time diffusion Eq. (2) with an approximated
score is a special case of Eq. (4) with λ = 1.

3

3 Discretization Error Analysis

To generate a new image, one can sample xT from a standard distribution π(xT) and solve Eq. (4) to
obtain an image xSDE

0 . However, in practice, exact solutions are not attainable as it is intractable to
solve Eq. (4) directly. To remedy this, one needs to discretize Eq. (4) over time to get an approximated
solution, which leads to a discretization error. For brevity, we next investigate the discretization error
of solving the probability flow ODE (λ = 0)

dx

dt
= F tx− 1

2
GtG

T
t sθ(x

SDE
t , t), (5)

and xSDE
t represents the discretization samples solved by Eq. (4) with a numerical solver. The exact

solution to this ODE is

xSDE
t = Ψ(t, T)xSDE

T +

∫ t

T

Ψ(t, τ)

[
−1

2
GτG

T
τ sθ

(
xSDE
τ , τ

)]
dτ, (6)

where Ψ(t, T) satisfying ∂Ψ(t,T)
∂(t) = FTΨ(t, T), Ψ(t, T) = I is known as the transition matrix from

time T to t associated with Fτ . There exist many numerical solvers for Eq. (5) associated with
different discretization schemes to approximate Eq. (6). As the discretization step size goes to
infinitesimal, the solutions obtained from all these methods converge to that of Eq. (5).

However, the performances of these methods can be dramatically different when the step size is large.
On the other hand, to achieve fast sampling in DMs, one needs to approximately solve Eq. (5) with a
small number of discretization steps, and thus large step size. Concretely, the discretization of Eq.
(4) equals to build a discretization sampling chain, which is

{
xSDE
t

}
t∈[0,T]

, and iteratively convert

it to a new image xSDE
0 with randomly initialize a sample from xT , where T is the total sampling

steps. Following the philosophy of discretization sampling, a small number of discretization steps is
equivalent to small sampling steps T and a large step size ∆t from xT to xt. When Euler method
applied to Eq. (5), the discretization form can be expressed as

xSDE
t = xSDE

T −
[
F Tx

SDE
T − 1

2
GTG

T
T sθ(x

SDE
T , T)

]
∆t. (7)

From the integral point of view, samples xSDE
0 obtained from Eq. (7) equals the exact solutions of

Eq. (5) if and only if the step size between xSDE
T and xSDE

t goes to infinitesimal. In practice, it’s
impossible to achieve it, especially the fast sampling demand in DMs that requires small T even
one-step sampling [63], which means xSDE

0 is an approximate solution. Hence, the discretization
error is essentially a gap between the approximate solution and the exact solution

∆(xSDE
t , xSDE

T) =
1

2

∥∥∥∥∫ t

T

Ψ(t, τ)
[
GτG

T
τ sθ

(
xSDE
τ , τ

)]
dτ

−
[
2 ∗ F Tx

SDE
T −GTG

T
T sθ(x

SDE
T , T)

]
∆t

∥∥∥2
2
.

(8)

In light of this, the presence of ∆(xSDE
t , xSDE

T) creates a gap between pt(xt) and pSDE
t (xSDE

t) since
each sample xSDE

t only approximates the exact solution xt. Consequently, one enables to optimize the
KL divergence between pt(xt) and pSDE

t (xSDE
t) to minimize this gap, denoted as DKL

(
pt∥pSDE

t

)
.

By minimizing this KL term, one can effectively reduce the discretization error. This is because each
pSDE
t (xSDE

t) from the simulated chain will closely approximate pt(xt) from the true sampling chain.

4 Theoretical Analysis

It is well-known that maximizing the log-likelihood of a probabilistic model is equivalent to mini-
mizing the KL divergence from the data distribution to the model distribution [60, 43]. Similarly, in
order to improve the log-likelihood of DMs, we can optimize the KL divergence DKL

(
p0∥pSDE

0

)
between the true distribution p0(x0) and its corresponding model distribution pSDE

0 (xSDE
0).

In what follows, we demonstrate that with a appropriate combination of DKL

(
pt∥pSDE

t

)
and score

matching losses JSM

(
θ; g(t)2

)
, they actually becomes an upper bound on DKL

(
p0∥pSDE

0

)
[60].

Notably, the weighting function ω(t) in Eq. (3) is replaced by g(t)2 which is the diffusion coefficient
of a SDE in Eq. (1).

4

Theorem 1. Let p0(x0) be the true data distribution, π(xT) be a known prior distribution. Suppose
{xt}t∈[0,T] is a stochastic process defined by the SDE in Eq. (1) with x0 ∼ p0(x0), where the
marginal distribution of xt is denoted as pt(xt). By comparison,

{
xSDE
t

}
t∈[0,T]

is another stochastic

process obtained by the reverse-SDE in Eq. (4) from a pre-trained DM with xSDE
T ∼ pT (xT) and

xSDE
0 ∼ pSDE

0 (xSDE
0), where the marginal distribution of xSDE

t is denoted as pSDE
t (xSDE

t). Under
some regularity conditions detailed in Appendix B, we have

DKL

(
p0∥pSDE

0

)
≤ DKL

(
pt∥pSDE

t

)
+ JSM

(
θ; g(t)2

)
. (9)

Sketch of proof. Let µ and ν denote the path measures [40, 38] of SDEs in Eq. (1) and Eq. (4) with
λ = 1. Conceptually, µ is the joint distribution of the forward diffusion process {xt}t∈[0,T] given
by Eq. (1) and ν represents another joint distribution of the process xSDE

0 ∼ pSDE
0 (xSDE

0) simulated
by Eq. (4). Since we can marginalize µ and ν to obtain distributions p0(x0) and pSDE

0 (xSDE
0), the

data processing inequality [60] gives DKL

(
p0∥pSDE

0

)
≤ DKL(µt∥νt), where µt and νt are subset

of µ and ν respectively. Intuitively, DKL

(
p0∥pSDE

0

)
is a subset of the path measure between µ and

ν which accumulate all the KL divergence DKL

(
pt∥pSDE

t

)
t∈[0,T]

[40]. Hence, DKL

(
p0∥pSDE

0

)
≤

DKL(µt∥νt) =
∑t

i DKL

(
pi∥pSDE

i

)
, t ∼ [0, T]. From the chain rule for the KL divergence [40],

we also have DKL(µt∥νt) = DKL

(
pt∥pSDE

t

)
+ Epi(z)

[
DKL

(
µ(· | xi = z)∥ν

(
· | xSDE

i = z
))]

with i ∈ [0, t], where the KL divergence in the final term can be computed by applying the Girsanov
theorem [48] to Eq. (4) and the reverse-time SDE of Eq. (1). Combining above analysis completes
the proof, detailed see in Appendix B.

Though we demonstrate that the combination of score matching losses JSM

(
θ; g(·)2

)
and a KL

term DKL

(
pt∥pSDE

t

)
is an upper bound of DKL

(
p0∥pSDE

0

)
, it is intractable to optimize Eq. (9)

due to the unknown function form of pt. To circumvent this problem, we combined with the
mutual information (MI) theory [50] that MI between pt(xt) and pSDE

t (xSDE
t) can be expressed

as I(pSDE
t (xSDE

t), pt(xt)) ≤ DKL(p
SDE
t ∥ pt). Moreover, when applied the Jensen’s inequal-

ity to this term, we enable to obtain an upper bound of DKL(pt ∥ pSDE
t) by a InfoNCE loss:

IInfoNCE(x
SDE
t , xSDE

j) ≥ DKL(pt ∥ pSDE
t) [49], where j ∈ [0, T] and j ̸= t (detailed in Appendix

B). Hence, we obtain a new upper bound of the KL divergence of DKL

(
p0∥pSDE

0

)
when applies this

term to Eq. (9), which is

DKL

(
p0∥pSDE

0

)
≤ Γ(xSDE

j , xSDE
t ;β(t)) + JSM

(
θ; g(t)2

)
, (10)

where Γ(xSDE
t , xSDE

j ;β(t)) = β(t)∗IInfoNCE(x
SDE
t , xSDE

j) is a scaling of IInfoNCE with the weight-
ing function β(t). Hence, it is obvious that the the combination of score matching losses JSM and a
contrastive loss IInfoNCE(x

SDE
t , xSDE

j) in Eq. (10) is an upper bound of the KL divergence between
data distribution p0(x0) and the model distribution pSDE

0 (xSDE
0).

Importantly, the score matching term JSM

(
θ; g(t)2

)
is stable and almost fixed in the Eq. (10),

as we fine-tune the pre-trained DMs that the score network sθ(xt) ≈ ∇ log pt(x) is matched
for almost all x ∈ RD and t ∼ U [0, T]. In this context, optimizing the Eq. (10) equals to
minimize Γ(xSDE

t , xSDE
j ;β(t)), which is the upper bound of DKL

(
pt∥pSDE

t

)
[50]. Therefore,

minimizing DKL

(
pt∥pSDE

t

)
results in a smaller gap between xt and xSDE

t , indicating that the
approximate solution obtained through numerical solvers is closer to the exact solution with the
help of contrastive loss. On the other hand, each minimized DKL

(
pt∥pSDE

t

)
will decreased the

corresponding ∆(xSDE
t , xSDE

T), contributing to a smaller discretization error between step T and any
step t. From this perspective, utilizing a contrastive loss to increase the similarity between xSDE

j and
each xSDE

t in a sampling chain is actually minimizing DKL

(
pt∥pSDE

t

)
t∈[0,T]

. Hence, by minimizing

the Eq. (10), one can achieve a better model distribution pSDE
0 (xSDE

0) with a reduction in all the
discretization error present in the sampling chain. Moreover, the decreased discretization error also
benefits the faster sampling speed [44, 2, 75, 63].

5 Methodology

Contrastive learning has recently achieved remarkable performance [4, 12, 21] and has made signif-
icant waves in deep learning for computer vision tasks [35, 51]. These influential works leverage

5

the contrastive loss to bring similar images closer together in high-dimensional space, resulting in
notable improvements in downstream tasks. Building on the insights provided in Section 4, we
employ the InfoNCE loss [49] to formulate our objective function. By doing so, we effectively reduce
the discretization error between xSDE

t and xSDE
t−1 by optimizing the upper bound of DKL

(
pt∥pSDE

t

)
.

Consequently, numerical solvers are capable of providing more precise solutions when solving Eq.
(5), and a fine-tuned DM naturally enhances the quality of generated samples. In the following
sections, we will present our method, focusing on constructing contrastive sampling chains and
optimizing DMs.

5.1 Contrastive Sampling Chain

As previously mentioned, our objective is to enhance the quality of samples by reducing the dis-
cretization error. Additionally, we illustrate that the presence of this discretization error creates
a gap between xSDE

t and xt. Analogously, optimizing this gap is equivalent to minimizing the
corresponding discretization error. While directly decreasing this gap is infeasible, minimizing its
upper bound provides an alternative approach to achieve the same outcome. Leveraging Theorem
1 and Eq. (10), we propose a contrastive sampling chain for fine-tuning pre-trained DMs using the
contrastive loss. To accomplish this, we construct the contrastive loss and combine it with the score
matching loss JSM

(
θ; g(t)2

)
to jointly update the parameter θ.

To construct the contrastive loss, we randomly select an image xSDE
t and another image xSDE

j from
the defined sampling chain to form a positive pair. Meanwhile, negative instances are sampled from
the training images. Next, we extract 128-dimensional latent representations of these images using the
pre-trained MoCov2 [11]. The contrastive loss, known as the InfoNCE loss [49], is then computed in
the subsequent steps. When applying the pre-trained MoCov2 E, the InfoNCE loss can be expressed
as follows:

IInfoNCE(x
SDE
t , xSDE

j) = log
exp

(
E(xSDE

t) ·E(xSDE
j)/τ

)
exp

(
E(xSDE

j) ·E(xSDE
t)/τ

)
+

∑
k− exp

(
E(xSDE

j) ·E(x−)/τ
) , (11)

where xSDE
j and xSDE

t form a positive pair which all generated via iteratively calculating Eq. (7)
during the fine-tuing process. By comparsion, x− are negative instances which sampled from training
images and τ is a temperature hyper-parameter. Conceptually, the InfoNCE loss is crafted to bring
similar features closer, thereby reducing the distance between xSDE

t and xSDE
j . In this manner, the

sampling chain will become tighter and the discretization error decreased accordingly because the
integration interval between sampling steps decreased.

Though we show that IInfoNCE(x
SDE
t , xSDE

j) is an upper bound of DKL(pt ∥ pSDE
t) in Section 4,

directly using Eq. (11) to fine-tune DMs will destroy the optimal result of the previous score matching
in practice. To circumvent this problem, we combine the generative loss Eq. (3) and contrastive loss
Eq. (11) to optimize pre-trained DMs

Lθ = JSM

(
θ; g(t)2

)
+ β(t) ∗ IInfoNCE(x

SDE
t , xSDE

j), (12)

where β(t) is the weighting schedule to balance score matching term and contrastive loss term, which
will be analyzed in detail in the following subsection. In Eq. (12), we apply the contrastive loss via
calculating xSDE

t and all xSDE
j in the same sampling chain with Eq. (11). Though we amplify the

IInfoNCE with β(t), the combination of score matching term JSM

(
θ; g(t)2

)
is still an upper bound

of DKL

(
p0∥pSDE

0

)
.

5.2 Optimization

Considering the previous discussion, it is crucial to strike a balance between the InfoNCE loss and
the generative loss. Placing excessive emphasis on the InfoNCE loss may disrupt the stability of
the pre-trained generative task, while assigning a high weight to the generative loss may have a
negligible impact. To address this, we draw inspiration from the fact that the InfoNCE loss quantifies
the similarity between xSDE

t and xSDE
j , where the similarity increases as xSDE

j approaches xSDE
t .

Consequently, it is reasonable to implement a dynamic weighting schedule based on the time step t.
This schedule assigns higher weights to the loss when xSDE

j is closer to xSDE
t , and lower weights

otherwise. To strike an appropriate balance between the two losses during the refinement of pre-
trained DMs, we have devised two dynamic weighting schedules: the linear and nonlinear weighting
schedules.

6

Figure 1: Optimizing Diffusion Models via Back Propogation Through Time.

Linear weighting schedule: The weights in this schedule increase progressively with the discretiza-
tion step as it gets closer to xSDE

j . For instance, larger weights are assigned to xSDE
t if it shares

a higher similarity with xSDE
j . In contrast, smaller weights are assigned to the earlier step of the

sampling chain. At this extreme, a linear weighting schedule can be expressed as

β(t) = α ∗ (T − t), (13)

where α is a hyper-parameter to scale the weighting schedule.

Nonlinear weighting schedule: The nonlinear weighting schedule works in a similar fashion to the
linear weighting schedule, with the only difference being that the weights increase at different rates.
Specifically, we calculate the noise ratio in xSDE

t compared to xSDE
j using the peak signal-to-noise

ratio (PSNR) [76, 14] and subsequently apply the PSNR as the elements of this weighting schedule.
Therefore, the nonlinear weighting schedule can be expressed as:

β(t) = α ∗ PSNR(xSDE
j , xSDE

t). (14)

In general, the nonlinear weighting schedule is more consistent with the principle of the sampling
chain in DMs, as the weights gradually remove the noise in the samples. However, in practice, both
weighting schedules demonstrate similar effectiveness.

Computational graph: As mentioned earlier, we construct a contrastive sampling chain to fine-tune
a pre-trained DM. Though we utilize Eq. (6) to directly obtain the sample xSDE

t , in practice, xSDE
t

is iterately solved by Eq. (4). Hence, we need to consider the accumulated discretization error
such as ∆(xSDE

T−1, x
SDE
T) and ∆(xSDE

T−2, x
SDE
T−1), leads to a larger gap between xSDE

t and xSDE
T . To

address this issue and influence the parameters of previous steps while optimizing the KL divergence
DKL

(
pt∥pSDE

t

)
for the current step t, we propose to fine-tune pre-trained DMs using a gradient

propagation mechanism similar to BPTT [73], shown in Figure 1.

Specifically, for a given sampling chain, we randomly select one sample xSDE
t and another sample

xSDE
j , and calculate the InfoNCE loss with the previously mentioned weighting function. By

combining it with the generative loss (Eq. (3)), we employ an optimizer to propagate the gradients of
these two losses in reverse order through the chain from the current step t to the final step T . In this
manner, the gradients influence the entire sampling chain and update the parameters of DMs at each
time step t. Consequently, the training objective can be reformulated as follows:

Lθ = JSM (θ;ω(t)) + Γ(xSDE
t , xSDE

j ;β(t)); t ∼ U [0, T], (15)

where Γ(xSDE
t , xSDE

j ;β(t)) represents the InfoNCE loss Eq. (11) with weighting function β(t). By
following this design philosophy, the InfoNCE loss does not solely update parameters independently;
rather, it operates as a unified entity. Consequently, we enable to optimize the current KL divergence
DKL

(
pt∥pSDE

t

)
and simultaneously influence KL divergences in previous time steps. This approach

ensures a cohesive and synchronized optimization process throughout the entire contrastive sampling
chain. In summary, our method effectively mitigates the cumulative discretization errors, as each
discretization error is correspondingly reduced. Below, we demonstrate experiment results to further
prove our analysis.

7

Table 1: Performance on CIFAR-10. Our method, denoted as
C++, has better quality than baselines with the same NFEs, and
fewer NFEs for the same quality.

Method Space NFE↓ NLL↓ FID↓
Unconditional

VDM [36] Data 1000 2.49 7.41
DDPM [22] Data 1000 3.75 3.17
iDDPM [47] Data 1000 3.37 2.90

STDDPM [34] Data 2000 2.91 2.47
INDM [33] Latent 2000 3.09 2.28

CLD-SGM [20] Data 312 3.31 2.25
NCSN++ [61] Data 2000 3.45 2.20

LSGM [67] Latent 138 3.43 2.10
LSGM-C++ (Ours) Latent 100 3.40 2.10
LSGM-C++ (Ours) Latent 138 3.40 1.99

EDM [29] Data 35 2.60 2.04
EDM-C++ (Ours) Data 25 2.55 2.04
EDM-C++ (Ours) Data 35 2.55 1.88

Conditional
NCSN++-G [5] Data 2000 - 2.25

EDM Data 35 2.60 1.82
EDM-C++ (Ours) Data 27 2.55 1.82
EDM-C++ (Ours) Data 35 2.55 1.73

Table 2: Performance on fast samplers on CIFAR-10 and ImageNet 64x64
with FID reported. DDIM [56], DPM-Solver [44], and DEIS [75] are classical
training-free fast samplers. "†" means the actual NFE is smaller than the NFE
[44] given in the table. "-" represents that the FID for this NFE is not shown in
original papers.

Method
NFE 10 12 15 20 50

DDPM (CIFAR-10) [22]
DDIM [56] 13.36 - - 6.84 4.67

DDIM-C++ (Ours) 11.52 - - 6.09 4.12
DPM-Solver-3 [44] †24.37 8.20 5.73 †5.43 †5.29

DPM-Solver-3-C++ (Ours) †21.13 7.14 5.22 †5.06 †4.91
SDE VP (CIFAR-10) [61]

DPM-Solver-3 †54.56 6.03 3.55 †2.90 †2.65
DPM-Solver-3-C++ (Ours) †43.81 5.41 3.25 †2.84 †2.60

DEIS-tAB3 [75] 4.17 - 3.37 2.86 2.57
DEIS-tAB3-C++ (Ours) 4.02 - 3.20 2.77 2.48
IDDPM (ImageNet) [47]

DPM-Solver-3 †57.48 24.62 19.76 †18.95 †17.52
DPM-Solver-3-C++ (Ours) †50.63 22.65 19.45 †18.73 †17.49

IDDPM (ImageNet Conditional) [47]
DEIS-tAB3 6.65 3.99 †3.67 3.10 2.69

DEIS-tAB3-C++ (Ours) 6.59 3.91 †3.60 3.07 2.67
DPM-Solver-2 [44] 7.93 5.36 †4.46 3.42 2.82

DPM-Solver-2-C++ (Ours) 7.78 5.22 †4.38 3.36 2.80

6 Experiments

In this section, we demonstrate effectiveness of the contrastive sampling chain by experimental results,
namely higher image quality, better log-likelihood, or slightly faster sampling speed. Comprehensive
experiments are conducted on various datasets, including CIFAR-10, CelebA/FFHQ 64x64, and
ImageNet 64x64. We first utilize contrastive sampling chain to improve pre-trained DMs, for which
we select EDM [29] and LSGM [67] on CIFAR-10, EDM [29] on FFHQ, and STDDPM [34] on
CelebA. Additionally, we further verify the performance of our method with sampling chains defined
by training-free fast sampling methods, such as DDIM [56], DPM-Solver [44], and DEIS [75], when
they are combined with various pre-trained DMs. Specifically, we combine these fast sampling
methods with IDDPM [47] on ImageNet 64x64, DDPM [22] and SDE VP [61] on CIFAR-10.
Our objective is not to focus on achieving state-of-the-art metrics in generative models, but rather
to demonstrate the significant performance of our method in enhancing pre-trained DMs, either
combined with or without training-free fast-sampling methods.

It is worth noting that we maintain all the training settings of the pre-trained DMs and only modify
the part that constructs the contrastive loss, thereby ensuring fair comparison and demonstrating the
flexibility of our method. Similarly, to showcase the applicability of our method to sampling chains
defined by fast sampling methods, we replace the original chains provided by pre-trained DMs with
new chains for fast sampling, while retaining all other settings the same as fine-tuning pre-trained
DMs. Once the fine-tuning process is completed, we test the performance of the refined model by
drawing 50,000 samples from it and measuring the widely adopted Fréchet Inception Distance (FID)
score, Negative Log-Likelihoods (NLL), and Neural Function Evaluations (NFEs), where lower
values indicate better performance. Moreover, we also present the generated images for qualitative
comparison, shown in Figure 2.

6.1 Performance on Pre-trained DMs

We first showcase the performance of our method in refining the original pre-trained DMs. Tables 1,
4 and 5 present the results of our method on CIFAR-10, FFHQ and CelebA respectively. Our method
can achieve better generation quality than baselines when using the same NFEs. On the other hand,
our method requires less NFEs to achieve the same quality as baselines. To evaluate on CIFAR-10, we
apply our method to LSGM [67] and EDM [29] under unconditional or conditional settings. For a fair
comparison, we report performances on EDM [29] under the random seed from [32, 63]. Specifically,
our method improves LSGM from 2.10 FID to 1.99 FID and achieves slightly better NLL with 138
NFEs, while requiring only 100 NFEs to attain the same 2.10 FID. Moreover, we enhance EDM from
2.04 FID to 1.88 FID and reduce the NLL from 2.60 to 2.55 with 35 NFEs, while requiring only 25
NFEs for the same 2.04 FID. Furthermore, we improve the performance on conditional EDM, with
1.82 FID reduced to 1.73 FID using 35 NFEs or maintaining the same 1.82 FID with only 27 NFEs.
For the evaluation on CelebA and FFHQ, we apply our method to refine STDDPM [34] and EDM

8

Figure 2: Randomly selected ImageNet Samples from IDDPM Improved by Our Method.

[29] respectively. Specifically, our method improves the performance of STDDPM on CelebA 64x64
from 1.90 FID to 1.73 FID with the same 131 NFEs, and achieves the same 1.90 FID with fewer
NFEs (100). Similarly, we significantly enhance the performance of EDM on FFHQ 64x64 from 2.39
FID to 2.07 FID with the same 79 NFEs, and achieve the same 2.39 FID with fewer NFEs (63).

6.2 Performance on Fast Samplers

To demonstrate the applicability of our approach to sampling chains defined by training-free fast
sampling methods, we carry out a sequence of experiments on CIFAR-10 and ImageNet 64x64,
with detailed results in Table 2. We test our method on different fast samplers when combined with
various pre-trained DMs. We utilize DDIM [56], DPM-Solver [44], and DEIS [75] to replace the
original chains given by DDPM [22], SDE VP [61] and IDDPM [47]. Subsequently, for a pre-trained
model with sampling chain defined by these fast samplers, we refine it with Eq. (15). In this manner,
our method remarkably improves the results as illustrated in Table 2. For example, our method
obtains better sample quality when applied to refine the SDE VP with DEIS. Concretely, our method
improve the FID from 4.17 to 4.02 in 10 NFEs and increase the 2.57 FID to 2.48 FID in 50 NFEs. In
comparison, the improvement on ImageNet is not significant as our main objective is to demonstrate
the effectiveness of our method rather than achieving state-of-the-art performance metrics. For
instance, when we apply our method to IDDPM with a conditional setting and replace the original
chain with DEIS, we observe improvements in FID. With 10 NFEs, the FID decreases from 6.65
to 6.59, and with 14 NFEs, the FID decreases from 3.67 to 3.60. It is worth noting that the symbol
"†" indicates that the actual NFE is smaller than the NFE reported in the table provided by Lu et al.
[44]. In summary, our method seamlessly integrates with training-free fast sampling algorithms and
enables us to achieve better overall performance.

6.3 Ablation Study

We conduct ablation studies in Table 3 to assess the impact of different techniques. Table 3 compares
four different settings, i.e., the proposed contrastive loss with a single pair (xt, xj), a variant of
contrastive loss with all samples

∑T
i=1,i̸=t(xt, xj) in the chain, the proposed contrastive loss with

BPTT, and naive fine-tuning without contrastive loss for the same number of epochs as the previous

9

Table 3: FID Comparison of Ablation Study with Different Weighting
Schedules on CIFAR-10. To prove the performance of BPTT and
contrastive guided technique respectively, we conduct ablation study
with three different settings. "EDM Baseline" [29] is the pre-trained
model, "Naive Fine-Tuning" means just train more epochs as other
settings. For our techniques: "Contrastive Loss" means fine-tune the
model with only contrastive loss and no BPTT, "Contrastive Loss (All
Steps)" is calculating the contrastive loss with all the discretization
step in contrastive sampling chain and no BPTT, "Contrastive Loss +
BPTT" is our setting with best performance.

Weighting Schedule
Method Fixed Linear Nonlinear

EDM Baseline [29] 2.04 - -
+ Naive Fine-Tuning 2.04 - -
+ Contrastive Loss 2.04 1.98 1.99

+ Contrastive Loss (All Steps) 2.18 2.32 2.39
+ Contrastive Loss + BPTT 2.00 1.88 1.88

Table 4: FID comparison on FFHQ 64x64.
Method NFE↓ FID↓

EDM [29] 79 2.39
EDM-C++ (Ours) 63 2.39
EDM-C++ (Ours) 79 2.07

Table 5: FID comparison on CelebA 64x64.
Method NFE↓ FID↓

DDPM++ [61] 131 2.32
Soft Diffusion [16] 300 1.85

INDM [33] 132 1.75
Diffusion StyleGAN2 [71] 1 1.69

STDDPM [34] 131 1.90
STDDPM-C++ (Ours) 100 1.90
STDDPM-C++ (Ours) 131 1.73

settings. We also test three weighting schedules, including two previously mentioned dynamic
weighting schedules and no schedule with a fixed weight during the entire process. As we mentioned
in Section 5.2, calculating the contrastive loss with all samples in the chain disregards the consistency
of the entire chain, which can destabilize pre-trained DMs on generative tasks. Therefore, it is
reasonable that we obtained a worse FID when fine-tuning DMs with this setting. Moreover, the two
dynamic weighting schedules show equivalent performance, both of which are much better than the
fixed weight. Our results demonstrate that our contrastive method trained with BPTT for updating
parameters can yield the best performance.

7 Conclusions

In this paper, we demonstrate the effectiveness of optimizing the KL divergence between the true
sampling chain and the simulated chain at each time step in reducing the discretization error associated
with numerical solvers used for solving SDEs. Our theoretical analysis supports the use of our
objective function as an upper bound of the KL divergence between the data distribution and the
model distribution. Notably, optimizing our objective function is equivalent to minimizing the KL
divergence between the true sampling chain and the simulated chain at each time step. To address
this, we propose a contrastive sampling chain that leverages the derived upper bound to reduce the
discretization error. Additionally, we introduce the use of backpropagation through time (BPTT) to
propagate gradients in the reverse direction of the sampling chain, and we design dynamic weighting
schedules to enhance the stability of the refinement process. Our empirical results demonstrate that
our approach significantly improves both the sample quality and the log-likelihood, while slightly
accelerating pre-trained DMs without compromising image quality.

Limitations and broader impact: Although our method has shown significant improvements,
there remains potential for further optimization of our method. For instance, implementing the
BPTT computational graph demands a significant amount of GPU memory. Additionally, obtaining
analytical solution of our weighting function will undoubtedly tighten the upper bound of the KL
divergence between the data distribution and the model distribution. On the other hand, the issue of
inefficient sampling remains a major obstacle to the practical application of DMs. It is reasonable to
expect that the sampling speed can be greatly improved by a method that effectively optimizes the
discretization error. However, it is important to acknowledge that the generation of deepfake images
using our method also carries the potential risk of negative misuse of this technology.

Acknowledgments

This work was supported by the Natural Science Foundation of China under grant 61836016. Chang
Xu was supported in part by the Australian Research Council under Projects DP210101859 and
FT230100549. The AI training platform supporting this work were provided by High-Flyer AI
(Hangzhou High-Flyer AI Fundamental Research Co., Ltd.). This work was also supported in part by
the High Performance Computing Center of Central South University. This work was supported in
part by the China Scholarship Council.

10

References
[1] B. D. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications, 12

(3):313–326, 1982.

[2] F. Bao, C. Li, J. Zhu, and B. Zhang. Analytic-DPM: an analytic estimate of the optimal reverse variance in
diffusion probabilistic models. In International Conference on Learning Representations, 2022.

[3] A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural image synthesis.
In International Conference on Learning Representations, 2018.

[4] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin. Emerging properties in
self-supervised vision transformers. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9650–9660, 2021.

[5] C.-H. Chao, W.-F. Sun, B.-W. Cheng, Y.-C. Lo, C.-C. Chang, Y.-L. Liu, Y.-L. Chang, C.-P. Chen, and C.-Y.
Lee. Denoising likelihood score matching for conditional score-based data generation. In International
Conference on Learning Representations, 2022.

[6] N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and W. Chan. Wavegrad: Estimating gradients for
waveform generation. In International Conference on Learning Representations, 2021.

[7] N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, N. Dehak, and W. Chan. Wavegrad 2: Iterative
refinement for text-to-speech synthesis. arXiv preprint arXiv:2106.09660, 2021.

[8] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential equations.
Advances in neural information processing systems, 31, 2018.

[9] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual
representations. In International conference on machine learning, pages 1597–1607. PMLR, 2020.

[10] T. Chen, G.-H. Liu, and E. A. Theodorou. Likelihood training of Schrödinger bridge using forward-
backward sdes theory. arXiv preprint arXiv:2110.11291, 2021.

[11] X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum contrastive learning. arXiv
preprint arXiv:2003.04297, 2020.

[12] X. Chen, S. Xie, and K. He. An empirical study of training self-supervised vision transformers. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9640–9649, 2021.

[13] Y. Chen, T. T. Georgiou, and M. Pavon. Stochastic control liaisons: Richard sinkhorn meets gaspard monge
on a Schrödinger bridge. Siam Review, 63(2):249–313, 2021.

[14] J. Choi, J. Lee, C. Shin, S. Kim, H. Kim, and S. Yoon. Perception prioritized training of diffusion
models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11472–11481, 2022.

[15] F.-A. Croitoru, V. Hondru, R. T. Ionescu, and M. Shah. Diffusion models in vision: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

[16] G. Daras, M. Delbracio, H. Talebi, A. G. Dimakis, and P. Milanfar. Soft diffusion: Score matching for
general corruptions. arXiv preprint arXiv:2209.05442, 2022.

[17] G. Daras, Y. Dagan, A. G. Dimakis, and C. Daskalakis. Consistent diffusion models: Mitigating sampling
drift by learning to be consistent. arXiv preprint arXiv:2302.09057, 2023.

[18] V. De Bortoli, J. Thornton, J. Heng, and A. Doucet. Diffusion Schrödinger bridge with applications to
score-based generative modeling. Advances in Neural Information Processing Systems, 34:17695–17709,
2021.

[19] P. Dhariwal and A. Nichol. Diffusion models beat GANs on image synthesis. Advances in Neural
Information Processing Systems, 34:8780–8794, 2021.

[20] T. Dockhorn, A. Vahdat, and K. Kreis. Score-based generative modeling with critically-damped langevin
diffusion. In International Conference on Learning Representations, 2022.

[21] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable vision
learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16000–16009, 2022.

11

[22] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020.

[23] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models. arXiv
preprint arXiv:2204.03458, 2022.

[24] G. Huguet, D. S. Magruder, A. Tong, O. Fasina, M. Kuchroo, G. Wolf, and S. Krishnaswamy. Manifold
interpolating optimal-transport flows for trajectory inference. Advances in Neural Information Processing
Systems, 35:29705–29718, 2022.

[25] A. Hyvärinen and P. Dayan. Estimation of non-normalized statistical models by score matching. Journal
of Machine Learning Research, 6(4), 2005.

[26] B. Jing, G. Corso, R. Berlinghieri, and T. Jaakkola. Subspace diffusion generative models. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXIII, pages 274–289. Springer, 2022.

[27] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas. Gotta go fast when
generating data with score-based models. arXiv preprint arXiv:2105.14080, 2021.

[28] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4401–4410,
2019.

[29] T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the design space of diffusion-based generative
models. Advances in Neural Information Processing Systems, 35:26565–26577, 2022.

[30] B. Kawar, G. Vaksman, and M. Elad. Snips: Solving noisy inverse problems stochastically. Advances in
Neural Information Processing Systems, 34:21757–21769, 2021.

[31] B. Kim and J. C. Ye. Denoising MCMC for accelerating diffusion-based generative models. arXiv preprint
arXiv:2209.14593, 2022.

[32] D. Kim, Y. Kim, W. Kang, and I.-C. Moon. Refining generative process with discriminator guidance in
score-based diffusion models. arXiv preprint arXiv:2211.17091, 2022.

[33] D. Kim, B. Na, S. J. Kwon, D. Lee, W. Kang, and I.-c. Moon. Maximum likelihood training of implicit
nonlinear diffusion model. In Advances in Neural Information Processing Systems, 2022.

[34] D. Kim, S. Shin, K. Song, W. Kang, and I.-C. Moon. Soft truncation: A universal training technique of
score-based diffusion model for high precision score estimation. In International Conference on Machine
Learning, pages 11201–11228. PMLR, 2022.

[35] G. Kim, T. Kwon, and J. C. Ye. Diffusionclip: Text-guided diffusion models for robust image manipulation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2426–
2435, 2022.

[36] D. Kingma, T. Salimans, B. Poole, and J. Ho. Variational diffusion models. Advances in neural information
processing systems, 34:21696–21707, 2021.

[37] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

[38] K. Lee and J. Shin. Rényicl: Contrastive representation learning with skew Rényi divergence. Advances in
Neural Information Processing Systems, 35:6463–6477, 2022.

[39] C. Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport.
arXiv preprint arXiv:1308.0215, 2013.

[40] C. Léonard. Some properties of path measures. Séminaire de Probabilités XLVI, pages 207–230, 2014.

[41] X. Li, T.-K. L. Wong, R. T. Chen, and D. K. Duvenaud. Scalable gradients and variational inference for
stochastic differential equations. In Symposium on Advances in Approximate Bayesian Inference, pages
1–28. PMLR, 2020.

[42] L. Liu, Y. Ren, Z. Lin, and Z. Zhao. Pseudo numerical methods for diffusion models on manifolds. In
International Conference on Learning Representations, 2022.

[43] C. Lu, K. Zheng, F. Bao, J. Chen, C. Li, and J. Zhu. Maximum likelihood training for score-based diffusion
odes by high order denoising score matching. In International Conference on Machine Learning, pages
14429–14460. PMLR, 2022.

12

[44] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. DPM-solver: A fast ode solver for diffusion probabilistic
model sampling in around 10 steps. Advances in Neural Information Processing Systems, 35:5775–5787,
2022.

[45] C. Luo. Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970, 2022.

[46] Z. Lyu, Z. Kong, X. Xudong, L. Pan, and D. Lin. A conditional point diffusion-refinement paradigm for 3d
point cloud completion. In International Conference on Learning Representations, 2022.

[47] A. Q. Nichol and P. Dhariwal. Improved denoising diffusion probabilistic models. In International
Conference on Machine Learning, pages 8162–8171. PMLR, 2021.

[48] B. Oksendal. Stochastic differential equations: an introduction with applications. Springer Science &
Business Media, 2013.

[49] A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018.

[50] B. Poole, S. Ozair, A. Van Den Oord, A. Alemi, and G. Tucker. On variational bounds of mutual information.
In International Conference on Machine Learning, pages 5171–5180. PMLR, 2019.

[51] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PMLR, 2021.

[52] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen. Hierarchical text-conditional image generation
with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[53] T. Salimans and J. Ho. Progressive distillation for fast sampling of diffusion models. In International
Conference on Learning Representations, 2022.

[54] S. Särkkä and A. Solin. Applied stochastic differential equations, volume 10. Cambridge University Press,
2019.

[55] A. Sauer, K. Schwarz, and A. Geiger. StyleGAN-XL: Scaling StyleGAN to large diverse datasets. In ACM
SIGGRAPH 2022 conference proceedings, pages 1–10, 2022.

[56] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In International Conference on
Learning Representations, 2022.

[57] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. Advances in
neural information processing systems, 32, 2019.

[58] Y. Song and S. Ermon. Improved techniques for training score-based generative models. Advances in
neural information processing systems, 33:12438–12448, 2020.

[59] Y. Song, S. Garg, J. Shi, and S. Ermon. Sliced score matching: A scalable approach to density and score
estimation. In Uncertainty in Artificial Intelligence, pages 574–584. PMLR, 2020.

[60] Y. Song, C. Durkan, I. Murray, and S. Ermon. Maximum likelihood training of score-based diffusion
models. Advances in Neural Information Processing Systems, 34:1415–1428, 2021.

[61] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative mod-
eling through stochastic differential equations. In International Conference on Learning Representations,
2021.

[62] Y. Song, L. Shen, L. Xing, and S. Ermon. Solving inverse problems in medical imaging with score-based
generative models. In International Conference on Learning Representations, 2022.

[63] Y. Song, P. Dhariwal, M. Chen, and I. Sutskever. Consistency models. arXiv preprint arXiv:2303.01469,
2023.

[64] X. Su, J. Song, C. Meng, and S. Ermon. Dual diffusion implicit bridges for image-to-image translation. In
The Eleventh International Conference on Learning Representations, 2022.

[65] H. Tachibana, M. Go, M. Inahara, Y. Katayama, and Y. Watanabe. Itô-taylor sampling scheme for denoising
diffusion probabilistic models using ideal derivatives. arXiv e-prints, pages arXiv–2112, 2021.

[66] B. Tzen and M. Raginsky. Neural stochastic differential equations: Deep latent gaussian models in the
diffusion limit. arXiv preprint arXiv:1905.09883, 2019.

13

[67] A. Vahdat, K. Kreis, and J. Kautz. Score-based generative modeling in latent space. Advances in Neural
Information Processing Systems, 34:11287–11302, 2021.

[68] P. Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23(7):
1661–1674, 2011.

[69] G. Wang, Y. Jiao, Q. Xu, Y. Wang, and C. Yang. Deep generative learning via Schrödinger bridge. In
International Conference on Machine Learning, pages 10794–10804. PMLR, 2021.

[70] Y. Wang, X. Wang, A.-D. Dinh, B. Du, and C. Xu. Learning to schedule in diffusion probabilistic models.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
2478–2488, 2023.

[71] Z. Wang, H. Zheng, P. He, W. Chen, and M. Zhou. Diffusion-GAN: Training GANs with diffusion. In
International Conference on Learning Representations, 2023.

[72] D. Watson, W. Chan, J. Ho, and M. Norouzi. Learning fast samplers for diffusion models by differentiating
through sample quality. In International Conference on Learning Representations, 2022.

[73] Y. Yu, X. Si, C. Hu, and J. Zhang. A review of recurrent neural networks: LSTM cells and network
architectures. Neural computation, 31(7):1235–1270, 2019.

[74] Q. Zhang and Y. Chen. Diffusion normalizing flow. Advances in Neural Information Processing Systems,
34:16280–16291, 2021.

[75] Q. Zhang and Y. Chen. Fast sampling of diffusion models with exponential integrator. International
Conference on Learning Representations, 2023.

[76] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 586–595, 2018.

14

Appendix

A Related Works

In this paper, our focus lies in reducing the discretization error by optimizing the Kullback-Leibler
(KL) divergence at each time step between the true sampling chain and the simulated chain. To
this end, our method involves fine-tuning pre-trained Diffusion Models (DMs) by minimizing a
combination of the contrastive loss and the score matching loss. Thus, our objective function aims to
optimize the upper bound of each KL divergence between the true sampling chain and the simulated
chain. In line with this design philosophy, our method can be regarded as solving the Schrödinger
Bridges [39, 40, 13]. Within this context, extensive research has been conducted to enhance DMs
[57, 22, 61, 15]. In [74], a diffusion normalizing flow is proposed, which jointly trains the two neural
stochastic differential equations (SDEs) [64] to minimize a common cost function that quantifies
the difference between the two. By comparison, the diffusion Schrödinger Bridge optimizes an
entropy-regularized transport problem on path spaces, yields diffusions which generate samples from
the data distribution in finite time [18, 10]. In [69], they propose to learn a generative model via
entropy interpolation [24] with a Schrödinger Bridge. This however comes with a heavy training
overhead since they train the model from scratch. By contrast, our method fine-tune pre-trained DMs
via reducing the gap between the true sampling chain and the simulated chain.

On the other hand, certain fast sampling methods aim to essentially reduce the discretization error
in order to enhance both the sampling speed and the quality of the results. In [56] the authors use a
non-Markovian forward noising. The resulted algorihtm, DDIM, achieves significant acceleration
than DDPMs. More recently, the authors of [44] optimize the backward Markovian process to
approximate the non-Markovian forward process and get an analytic expression of optimal variance
in denoising process. Concurrent to this work, Zhang and Chen [75] propose diffusion exponential
integrator sampler, which leverages a semilinear structure of the learned diffusion process to reduce
the discretization error. Orthogonal to those direction, our focus lies in minimizing the discretization
error by optimizing the upper bound of the Kullback-Leibler (KL) divergence between the true data
distribution and the model distribution.

B Proofs

We follow the regularity assumptions in [60, 43] to prove the Theorem 1. For completeness, we list
all these assumptions in this section. We use C to denote all continuous functions, and let Ck denote
the family of functions with continuous k-th order derivatives.

Assumptions We make the following assumptions throughout the paper:

(i) p(x) ∈ C2 and Ex∼p

[
∥x∥22

]
< ∞.

(ii) π(x) ∈ C2 and Ex∼π

[
∥x∥22

]
< ∞.

(iii) ∀t ∈ [0, T] : f(·, t) ∈ C1,∃C > 0∀x ∈ RD, t ∈ [0, T] : ∥f(x, t)∥2 ⩽ C (1 + ∥x∥2) .
(iv) ∃C > 0,∀x,y ∈ RD : ∥f(x, t)− f(y, t)∥2 ⩽ C∥x− y∥2.
(v) g ∈ Cand∀t ∈ [0, T], |g(t)| > 0.

(vi) For any open bounded set O,
∫ T

0

∫
O ∥pt(x)∥22 +Dg(t)2 ∥∇xpt(x)∥22 dxdt < ∞.

(vii) ∃C > 0∀x ∈ RD, t ∈ [0, T] : ∥∇x log pt(x)∥2 ⩽ C (1 + ∥x∥2) .

(viii) ∃C > 0,∀x,y ∈ RD : ∥∇x log pt(x)−∇y log pt(y)∥2 ⩽ C∥x− y∥2.

(ix) ∃C > 0∀x ∈ RD, t ∈ [0, T] : ∥sθ(x, t)∥2 ⩽ C (1 + ∥x∥2) .

(x) ∃C > 0,∀x,y ∈ RD : ∥sθ(x, t)− sθ(y, t)∥2 ⩽ C∥x− y∥2.

(xi) Novikov’s condition: E
[
exp

(
1
2

∫ T

0
∥∇x log pt(x)− sθ(x, t)∥22 dt

)]
< ∞.

(xii) ∀t ∈ [0, T]∃k > 0 : pt(x) = O
(
e−∥x∥k

2

)
as∥x∥2 → ∞.

15

Below we provide all proofs for our theorems.

Proof. Let µ and ν in the Theorem 1 denote the path measures [40, 38] of SDEs in Eq. (1) and Eq. (4)
with λ = 1 respectively. Due to assumptions (i) (ii) (iii) (iv) (v) (ix) and (x), both µ and ν are uniquely
given by the corresponding SDEs. Consider a Markov kernel K({xt}t∈ [0, T] , y) := δ(z0 = y).
Since x0 ∼ p0(x0), and xSDE

0 ∼ pSDE
0 (xSDE

0), we have the following result∫
K({xt}t∈[0,T] , x)dµ({xt}t∈[0,T]) = p0(x0),∫

K(
{
xSDE
t

}
t∈[0,T]

, x)dν(
{
xSDE
t

}
t∈[0,T]

) = pSDE
0 (xSDE

0).

Here the Markov kernel K essentially performs marginalization of path measures to obtain “sliced”
distributions at t = 0. We can use the data processing inequality with this Markov kernel to obtain

DKL

(
p0∥pSDE

0

)
= DKL

(∫
K

(
{xt}t∈[0,T], x

)
dµ∥

∫
K

({
xSDE
t

}
t∈[0,T]

, xSDE
)
dν

)
⩽DKL(µ∥ν) =

∫ T

0

DKL(pt∥pSDE
t)dpt.

(16)

From the perspective of the Schrödinger Bridge, the KL divergence between the true data distribution
and the model distribution is bounded by the integral of KL at each time step t ∈ [0, T] between µ
and ν. On the other hand, the value of any KL is greater than or equal to zero. Hence, we enable also
to obtain

DKL

(
p0∥pSDE

0

)
⩽ DKL(µt∥νt) =

∫ t

0

DKL(pi∥pSDE
i)dpi. (17)

Recall that by definition xt ∼ pt(xt) and xSDE
t ∼ pSDE

t (xSDE
t), and now we assume pSDE

t is a prior
distribution. Leveraging the chain rule of KL divergences [40], we have

DKL(µt∥νt) = DKL

(
pt∥pSDE

t

)
+ Ez∼pt

[
DKL

(
µ(· | xt = z)∥ν

(
· | xSDE

t) = z
))]

. (18)

Under assumptions (i) (iii) (iv) (v) (vi) (vii) (viii), the SDE in Eq. (1) has a corresponding reverse-time
SDE given by

dx =
[
F txdt−GtG

T
t ∇ log pt(xt)

]
dt+Gtdω. (19)

Since Eq. (19) is the time reversal of Eq. (1), it induces the same path measure µ. As a result,
DKL

(
µ(· | xt = z)∥ν

(
· | xSDE

t) = z
))

can be viewed as the KL divergence between the path
measures induced by the following two (reverse-time) SDEs:

dx =
[
F txdt−GtG

T
t ∇ log pt(xt)

]
dt+Gtdω, xt = x,

dx =
[
F txdt−GtG

T
t sθ(x

SDE
t)

]
dt+Gtdω, x

SDE
t = x.

The KL divergence between two SDEs with shared diffusion coefficients and starting points exists
under assumptions (vii) (viii) (ix) (x) (xi) (see in [41, 66]), and can be computed via the Girsanov
theorem [48]

DKL

(
µt(· | xt = z)∥νt

(
· | xSDE

t = z
))

= −Eµt

[
log dνt

dµt

]
(j)
= Eµ

[∫ t

0
g(i) (∇x log pi(x)− sθ(x, i)) dwi +

1
2

∫ t

0
g(i)2 ∥∇x log pi(x)− sθ(x, i)∥22 di

]
(jj)
= Eµ

[
1
2

∫ t

0
g(i)2 ∥∇x log pi(x)− sθ(x, i)∥22 di

]
= 1

2

∫ t

0
Epi(x)

[
g(i)2 ∥∇x log pi(x)− sθ(x, i)∥22

]
di

(jjj)

≤ 1
2

∫ T

0
Epi(x)

[
g(i)2 ∥∇x log pi(x)− sθ(x, i)∥22

]
di

= JSM

(
θ; g(·)2

)
,

(20)
where (i) is due to Girsanov Theorem II [[48], Theorem 8.6.6], and (ii) is due to the martingale
property of Itô integrals. Combining Eqs. (16), (18) and (20) completes the proof of Theorem 1.

16

Though we demonstrate that the combination of score matching losses JSM

(
θ; g(·)2

)
and a KL

term DKL

(
pt∥pSDE

t

)
is an upper bound of DKL

(
p0∥pSDE

0

)
, it is intractable to optimize Eq. (9)

due to the unknown function form of pt. To circumvent this problem, we combined with the
mutual information (MI) theory [50] that MI between pt(xt) and pSDE

t (xSDE
t) can be expressed

as I(pSDE
t (xSDE

t), pSDE
j (xSDE

j)) ≤ DKL(p
SDE
t ∥ pt), where j ∈ [0, T] and j ̸= t. The detailed

process can be shown as

I(pSDE
t (xSDE

t), pSDE
j (xSDE

j)) ≡ Ep(xSDE
t ,xSDE

j)

[
log

p(xSDE
t | pSDE

j)

pSDE
t (xSDE

t)

]

=Ep(xSDE
t ,xSDE

j)

[
log

p(xSDE
t | pSDE

j)pt(xt)

pt(xt)pSDE
t (xSDE

t)

]

=Ep(xSDE
t ,xSDE

j)

[
log

p(xSDE
t | pSDE

j)

pt(xt)

]
−DKL(p

SDE
t (xSDE

t) ∥ pt(xt))

≤EpSDE
j (xSDE

j)

[
DKL(p(x

SDE
t | pSDE

j) ∥ pt(xt))
]

=EpSDE
j (xSDE

j)

[
DKL(p

SDE
t ∥ pt)

]
.

(21)

Therefore, we obtain the upper bound of I(pSDE
t (xSDE

t), pSDE
j (xSDE

j)) given by DKL(p
SDE
t ∥ pt).

However, it it still intractable since the marginal distribution pt(xt) is inaccessible. To remedy
this, when applied the Jensen’s inequality to this term, we enable to obtain a upper bound of
DKL(pt ∥ pSDE

t) by a InfoNCE loss: IInfoNCE(x
SDE
t , xSDE

j) ≥ DKL(pt ∥ pSDE
t) [49], where

j ∈ [0, T] and j ̸= t. To prove this upper bound in detail, we first review the original lower bound of
MI [49]

I(xSDE
t , xSDE

j) ≥ logN − IInfoNCE(x
SDE
t , xSDE

j), (22)

where logN means the total numbers of positive pair (xSDE
t , xSDE

j) when calculating the InfoNCE
loss. To show clearly the connection between MI and the InfoNCE loss, we demonstrate the derivation
process as follows

IInfoNCE(x
SDE
t , xSDE

j) = −E
X
log


p(xSDE

t |xSDE
j)

p(xSDE
t)

p(xSDE
t |xSDE

j)
p(xSDE

t)
+

∑
x−∈Xneg

p(x−|xSDE
j)

p(x−)

]


= E
X
log

1 + p
(
xSDE
t

)
p
(
xSDE
t | xSDE

j

) ∑
x−∈Xneg

p
(
x− | xSDE

j

)
p (x−)


≈ E

X
log

[
1 +

p
(
xSDE
t

)
p
(
xSDE
t | xSDE

j

) (N − 1)E
x−

p
(
x− | xSDE

j

)
p (x−)

]

= E
X
log

[
1 +

p
(
xSDE
t

)
p
(
xSDE
t | xSDE

j

) (N − 1)

]

≥ E
X
log

[
p
(
xSDE
t

)
p
(
xSDE
t | xSDE

j

)N]
= −I

(
xSDE
t , xSDE

j

)
+ log(N).

(23)

Here, x− are negative instances sampled from training images. Eqs. (23) quickly becomes more
accurate as N increases. At the same time log(N)− I

(
xSDE
t , xSDE

j

)
also increases, so it’s useful to

use large values of N . In practice, we choose a bigger batch size for the large N . Concretely, we
obtain much more samples from the given sampling chain to form the positive pairs in each training
iteration. In consequence, when combined with Eq. (21), we have

IInfoNCE(x
SDE
t , xSDE

j) ≥ logN − I(xSDE
t , xSDE

j) = logN −DKL(p
SDE
t ∥ pt). (24)

17

Subsequently, we apply the Jensen’s inequality to further scale Eq. (24)

IInfoNCE(x
SDE
t , xSDE

j) ≥ logN −DKL(p
SDE
t ∥ pt)

=logN − pSDE
t (xSDE

t) log
pSDE
t (xSDE

t)

pt(xt)

≥logN − log
pSDE
t (xSDE

t)pSDE
t (xSDE

t)

pt(xt)

=logN − 2 log pSDE
t (xSDE

t) + log pt(xt).

(25)

However, the KL in Eq. (9) is DKL(pt ∥ pSDE
t) which is not equivalent to DKL(p

SDE
t ∥ pt). To fill

the gap, we scale the former as follows

DKL(pt ∥ pSDE
t) = pt(xt) log

pt(xt)

pSDE
t (xSDE

t)

≤ log
pt(xt)pt(xt)

pSDE
t (xSDE

t)
= 2 log pt(xt)− log pSDE

t (xSDE
t).

(26)

Therefore, when combined Eq. (25) and Eq. (26), we have

IInfoNCE(x
SDE
t , xSDE

j)−DKL(pt ∥ pSDE
t)

= logN − 2 log pSDE
t (xSDE

t) + log pt(xt)− [2 log pt(xt)− log pSDE
t (xSDE

t)]

= logN − [log pSDE
t (xSDE

t)− log pt(xt)]

(a)
= logN − log pSDE

t (xSDE
t)pt(xt)

≥ logN,

(27)

where (a) is due to both pSDE
t (xSDE

t) ≤ 1 and pt(xt) ≤ 1 because of the attribute of
marginal distribution. Hence, it is reasonable that pSDE

t (xSDE
t)pt(xt) ≤ 1 and naturally there

is log pSDE
t (xSDE

t)pt(xt) ≤ 0. Accordingly, we have IInfoNCE(x
SDE
t , xSDE

j) ≥ DKL(pt ∥ pSDE
t).

Under such a perspective, we replace DKL(pt ∥ pSDE
t) in Eq. (9) by IInfoNCE(x

SDE
t , xSDE

j) and we
have

DKL

(
p0∥pSDE

0

)
≤ IInfoNCE(x

SDE
t , xSDE

j) + JSM

(
θ; g(t)2

)
. (28)

In practice, we enable to fine-tune pre-trained DMs with Eq. (28). Moreover, JSM

(
θ; g(t)2

)
is

almost fixed in each pre-trained DM. Similarly, optimizing Eq. (28) is equivalent to minimizing
DKL(pt ∥ pSDE

t). Therefore, our objective function is essentially solving the Schrödinger Bridges.

C More Experiment Details

In this section, we will provide a more comprehensive account of our experiments, focusing on
the implementation of DMs. To conduct our experiments, we utilized NVIDIA A100 GPUs for
conducting experiments on CIFAR-10, CelebA, FFHQ, and ImageNet datasets. Additionally, we
employed Nvidia V100 GPUs for experiments involving the combination of fast sampling methods.
Based on our theoretical analysis, to optimize the KL divergence DKL(pt ∥ pSDE

t), it is sufficient
to add an InfoNCE loss to mitigate the discretization error. As a result, this flexible method can be
applied to fine-tuning various pre-trained DMs, both with and without training-free fast sampling
algorithms, thereby enhancing sample quality or achieving marginally faster sampling speeds.

To achieve this, one simply needs to include sampling chains given by pre-trained DMs or defined by
fast sampling algorithms in the training process. This involves first selecting one sample xSDE

t and
then randomly choose another sample xSDE

j from the chain to calculate the contrastive loss and form
the total loss using Eq. (15). Afterwards, back-propagation through time (BPTT) is utilized to update
the parameters of DMs, with the gradient flow directed in the opposite direction of this chain. It is
worth noting that we maintain all the training settings of the pre-trained DMs and only modify the
part that constructs the contrastive loss, thereby demonstrating the flexibility of our method. Similarly,
to showcase the scalability of our method on chains defined by fast sampling methods, we replace
the original chains provided by pre-trained DMs with new chains defined by fast sampling methods,
while retaining all other settings the same as fine-tuning pre-trained DMs. To fine-tune a pre-trained

18

DM with a sampling chain of default N steps in practice, we extend it to a chain of 2N , 3N , or even
4N steps to construct the contrastive loss. Once the fine-tuning process is completed, we test the
performance of the N -step chain by drawing 50,000 samples from it and measure the widely adopted
FID score, negative log-likelihood (NLL), and NFEs, where lower values indicate better performance.
Ideally, a default chain in pre-trained DM with more steps will demonstrate better performance when
fine-tuned by our method. However, a very long sampling chain suffers from gradient disappearance
when BPTT is executed. Hence, we utilize different steps to fine-tune different DMs for different
target datasets and demonstrate only the best results in this paper.

19

	Introduction
	Background
	Discretization Error Analysis
	Theoretical Analysis
	Methodology
	Contrastive Sampling Chain
	Optimization

	Experiments
	Performance on Pre-trained DMs
	Performance on Fast Samplers
	Ablation Study

	Conclusions
	Related Works
	Proofs
	More Experiment Details

