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Abstract

Despite the promising capabilities of vision-language models (VLMs) across diverse tasks,
recent studies reveal that they struggle with the fundamental task of image classification.
In this study, we explore leveraging state-of-the-art task-specific classification models as
a foundation for VLMs, aiming to preserve strong classification performance. Specifically,
we assess the impact of contrastive tuning to enable cross-modal retrieval capabilities on
a Hierarchical Image Pyramid Transformer (HIPT) trained for prostate cancer grading in
Whole-Slide Images (WSIs) and a ViT-Base model trained for multi-label classification on
natural images. Our results demonstrate that contrastive fine-tuning creates a clear trade-
off: classification accuracy rapidly deteriorates toward zero as vision-text alignment im-
proves. By balancing the two objectives in the loss function during fine-tuning, we achieve
competitive slide-level retrieval performance while maintaining classification accuracy.

Keywords: Multi-task Learning, Vision-Language Models, Representation disentangle-
ment, Computational Pathology

1. Introduction

The field of computational pathology is seeing an increase in the development of foundation
models (FMs) (Vorontsov et al., 2024; Ikezogwo et al., 2023). Large-scale pretraining using
self-supervised learning (SSL) on thousands of histopathological slides spanning diverse
tissue types and diseases can provide foundation models with advantages over task-specific
models. They can serve as a general foundation for various downstream tasks in pathology,
such as cancer subtyping and prognostication (Wang et al., 2024; Chen et al., 2024). Vision-
language models (VLMs), a subset of foundation models incorporating textual data from
sources like pathology reports, educational materials, or PubMed, can learn cross-modal
associations (Lu et al., 2023). These models have demonstrated promising capabilities in
tasks such as cross-modal retrieval (Lu et al., 2023), image captioning (Lu et al., 2023;
Shaikovski et al., 2024), and report generation (Tran et al., 2024).

Despite their successes, recent computer vision research highlights VLMs’ critical lim-
itations. In particular, VLMs significantly underperform on standard image classification
benchmarks compared to state-of-the-art (SOTA) task-specific classification models (Lau-
rençon et al., 2024; Karamcheti et al., 2024; Zhang et al., 2024; Tong et al., 2024; Zhai
et al., 2023). Zhang et al. (2024) attribute this shortfall primarily to the limited availability
of classification-focused data during pretraining of VLMs. Zhai et al. (2023) demonstrate
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that fine-tuning VLMs with classification-focused data enhances in-domain performance but
causes catastrophic forgetting, leading to reduced performance on out-of-domain datasets
and compromised generalizability.

In high-stakes domains like medicine, where diagnosis guides treatment decisions and
directly impacts patient outcomes, even slight declines in classification performance can
have serious consequences. This raises a key question: can task-specific vision models be
adapted for multi-modal tasks without compromising their classification performance? How
much classification-specific information do we sacrifice in favor of cross-modal alignment?

To address this question, we begin with SOTA task-specific image classification models
and explore the impact of contrastive tuning for enabling cross-modal tasks like image-
to-text retrieval. Without any mitigation strategy, we hypothesize that the model will
suffer from catastrophic forgetting while adapting to the cross-modal task. To mitigate
forgetting, we introduce a balancing parameter, λ, which modulates the relative emphasis
on classification and vision-language alignment in the loss function.

We summarize our contributions as follows:

1. We show that contrastive fine-tuning without a classification objective leads to catas-
trophic forgetting, where classification accuracy deteriorates rapidly in favor of vision-
text alignment in general vision and the medical domain.

2. To address this trade-off, we propose fine-tuning with a dual-objective loss function
weighted by a balancing parameter, λ, which controls the trade-off between classifi-
cation and contrastive objectives.

3. We show that λ selection is task-specific and that we can achieve competitive re-
trieval performance through careful tuning while preserving classification accuracy on
a prostate cancer grading task.

2. Methods

2.1. Experimental setup

To demonstrate that our results are applicable and transferable to both natural and medical
images, we conduct experiments on two distinct datasets: the Microsoft Common Objects
in Context (COCO) (Lin et al., 2015) dataset and a curated medical dataset of prostate
biopsies and corresponding pathology reports.

We start with a high-performing vision model for a specific classification task and a
frozen language encoder to test our hypothesis that classification performance is traded
away when fine-tuning for cross-modal performance. We then use a dual-objective loss
function that weights a classification and contrastive objective by a parameter λ, defined
as follows:

Ltotal = λLcontrastive + (1− λ)Lclassification

Thus, λ of 0.0 implies disregarding the contrastive objective and continuing fine-tuning
for classification, while a 1.0 is equivalent to purely focusing on the contrastive objective.
We hypothesize that the higher the λ, the more classification performance you lose. Addi-
tionally, we assume that the best value for λ is task or dataset-specific.
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We analyze the trade-off between classification and cross-modal alignment by tracking
validation performance metrics per epoch for different lambdas during contrastive tuning.
Moreover, we optimized for several epochs over early stopping to assess the trade-offs rather
than fully maximize peak performance. Our code is available on github.

2.2. COCO Experiments

Dataset
We select 30, 000 image-caption pairs from the 2014 MS COCO release for contrastive tun-
ing. Of these, 4, 952 pairs are held out for independent testing, while the remaining pairs
are divided into five cross-validation folds. Figure 1A shows an example of an image-caption
pair.

Models
The COCO experiments use a Vision Transformer (ViT)-base architecture, google/vit-base-
patch16-224 (Wu et al., 2020) fine-tuned for multi-label classification on the 80 classes in
the dataset. Fine-tuning details are provided in Appendix A.

We experimented with two publicly available SentenceTransformer models (Reimers and
Gurevych, 2019) for the language encoder. We report results in the main paper using the
RoBERTa base model (roberta-base-nli-stsb-mean-tokens) and present additional results us-
ing the MPNet model architecture (multi-qa-mpnet-base-dot-v1 ) in the Appendix C.0.1.

Evaluation Metrics
We evaluate multi-label classification using mean average precision (mAP) and vision-
language alignment through image-to-text retrieval. Retrieval performance is measured
by Recall@K, where the top K captions are retrieved from 4, 690 validation captions based
on the cosine similarity between image and text embeddings. A retrieval is considered cor-
rect if at least one of the K-retrieved captions matches any of the five reference captions
associated with the image.

Implementation Details
Experiments are run over 50 epochs using the Binary Cross-Entropy (BCE) loss for the
multi-label classification task and the CLIP Loss (Radford et al., 2021) for vision-language
alignment. Optimization is performed with the AdamW optimizer, employing a learning
rate of 1× 10−4, a weight-decay parameter of 0.001, and a batch size of 64.

2.3. Prostate biopsy grading experiments

Dataset
We curated a dataset of 425 WSIs containing a single prostate biopsy, their ISUP grade, and
a report from the Radboud University Medical Center, Nijmegen, the Netherlands. Each
report consists of a microscopy and conclusion section. An example is shown in Figure 1B,
and the label distribution of the dataset in Figure 1C. We reserve a test set of 35 cases and
partition the remaining data into five stratified cross-validation folds based on ISUP grade.

Models
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Image Label(s) 5 reference captions

Truck

Plane

Person

1. A large white plane is sitting at a terminal.

2. Large jet parked at a gate with service modules preparing plane.

3. A large white airplane and a truck on a lot. 

4. A passenger jet that is at the terminal

5. The airplane is being loaded at the airport.

ISUP Grade
B

Microscopy: II: In the black-inked biopsy, there is adenocarcinoma present consisting mainly of 

well-described, small round glandular structures covered by one-layered epithelium with 

enlarged cell nuclei and prominent nucleoli. Focally also fusion/splitting into small ducts. There 

are several small nests, together accounting for about 50% but spread over a length of 10 mm. 

Conclusion: Gleason score of 3+4=7, approximately 50% volume, tumor length of 10mm.

A

WSI Pathology report
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Figure 1: (A) An example case from the COCO dataset comprising a natural image, one
or multiple label(s), and five reference captions. (B) An example case from the
prostate biopsy data comprising a thumbnail of a WSI, its corresponding ISUP
grade, and the pathology report. (C) Label distribution of the prostate biopsy
data.

For the task-specific vision model, we trained a hierarchical vision transformer (HIPT), pre-
trained with the DINO framework on the PANDA dataset of 11, 554 H&E-stained prostate
WSIs (Bulten et al., 2022). This model achieves state-of-the-art performance in multi-class
ISUP grade classification with a quadratic kappa score of 0.892 on the PANDA test set
(Grisi et al., 2023). Given the small tuning dataset size, we freeze the two patch and region
transformers of our HIPT model and update only the weights of the final transformer.

For the language encoder, we report results in the main paper using a model pretrained
on Dutch clinical reports and fine-tuned for the task of predicting ISUP grade from the
microscopic sections of a pathology report (see Appendix B for details) (Bosma, 2024).
Additionally, results using the BioBERT model (Lee et al., 2020), pretrained on English
biomedical text are presented in the Appendix C.0.2 for comparison.

Evaluation Metrics
We evaluate ISUP grade classification performance on prostate biopsies using the quadratic
kappa score (κ2). For retrieval, we introduce a new metric, retrieval κ2, to measure WSI-
level image-to-text retrieval. Retrieval κ2 assesses the agreement between each slide’s orig-
inal labels and the labels of the top-one retrieved report by calculating Cohen’s quadratic
kappa.

Implementation Details
For ISUP grade classification, we frame the task as a regression problem to better capture
the ordinal nature of ISUP scores (Grisi et al., 2023) and use the Mean Squared Error (MSE)
loss for classification and the Triplet loss for cross-modal alignment. We run experiments
for a maximum of 30 epochs, using the AdamW optimizer with a learning rate of 1× 10−5,
a weight decay of 0.001, and a StepLR scheduler with a step size of five and a decay factor
of 0.5. We use a batch size of 1 with gradient accumulation over 16 steps.

4



Balancing Classification and Retrieval in Cross-modal Vision Models

A

B

Figure 2: Validation performance metrics during contrastive tuning using λ = 1.0 for the
COCO dataset in (A) and the prostate biopsy grading experiments in (B). Lines
represent the medians across five folds, with shaded areas indicating the interquar-
tile range.

3. Results

3.1. COCO

Baseline
Before contrastive tuning, our vision encoder achieves an mAP of 0.77 on the independent
test set, a median classification loss of 0.049, and a median mAP of 0.768 on the validation
sets.

Contrastive tuning without classification objective (λ = 1.0)
We evaluate the most natural choice for the hyperparameter λ, specifically λ = 1.0 in Figure
2A. We observe a clear trade-off: classification performance declines immediately after the
first epoch, as reflected by a steep increase in classification loss. At the same time, alignment
improves significantly, as indicated by a moderate Recall@K achieved at around 25 epochs
of fine-tuning. Finally, the mAP reaches zero after approximately 30 epochs, reflecting the
complete loss in classification capabilities when tuning without a classification objective.

Balancing classification and alignment
To address the trade-off, we evaluate intermediate values of the hyperparameter λ to bal-
ance classification and contrastive objectives during tuning. Figure 3A shows the results.
The training classification loss decreases linearly across all values of λ with lower values of
λ (e.g., λ = 0.1), achieving lower final loss as they prioritize the classification compared
to higher λ values (e.g., λ = 0.9) which favor vision-language alignment. In contrast, the
validation classification loss increases more rapidly for lower λ values, suggesting that the
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A

B

Figure 3: Impact of λ on the classification-alignment trade-off for COCO with (A) λ ∈
[0.1, 0.9] and (B) λ ∈ [0.9, 1.0].

model starts overfitting on the classification task. The validation contrastive loss converges
quickly and displays similar trajectories across all λ values, highlighting that a stronger
emphasis on classification does not severely hinder contrastive learning performance.

Optimizing λ to minimize catastrophic forgetting
In our third experiment, we redefine λ as the range [0.9, 1.0) to isolate its impact from
the previously observed overtraining effect, as shown in Figure 3B. Selecting λ closer to 1.0
should maximize multi-modal alignment, mitigating overfitting and identifying the point at
which classification performance begins to decline. Indeed, classification loss increases, but
less sharply than when no mitigation is applied (λ = 1.0), and this is accompanied by a
slight decline in mAP. Contrastive loss and retrieval performance remain largely unaffected
by the choice of λ, stabilizing around 25 epochs. Importantly, lower values (e.g., 0.9) achieve
marginally better mAP compared to higher values like 0.98, indicating values around, e.g.,
λ = 0.9 may be ideal for this task as they maintain the highest classification performance
while obtaining similar retrieval performance.

3.2. Prostate biopsy grading

Baseline The pretrained HIPT model achieves a κ2 = 0.8 on the independent test set and
a median κ2 = 0.839 with a median classification loss of 0.857 across five validation folds.

Contrastive tuning without classification objective (λ = 1.0)
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A

B

Figure 4: Impact of λ on the classification-alignment trade-off for the prostate biopsy grad-
ing experiments with (A) λ ∈ [0.1, 0.9] and (B) λ ∈ [0.9, 1.0].

As illustrated in Figure 2B, we observe a rise in classification loss alongside continued con-
trastive alignment optimization, confirming a similar trade-off for prostate cancer grading
as in COCO. Consistent with prior observations, fine-tuning with λ = 1.0 results in a com-
plete loss of classification performance for prostate biopsies within 20 epochs, trading it for
a retrieval κ2 of approximately 0.8.

Balancing classification and alignment Using λ ∈ [0.1, 0.9] for the medical task results
in a consistent rise in classification loss with minimal variation across λ values as illustrated
in Figure 4A. This trend, observed after just a few epochs, indicates a potential overtraining
effect consistent across all λ values. However, the loss stabilizes around 1.0, significantly
lower than the approximately 3.5 observed with λ = 1.0 after 30 epochs. Both training
and validation classification losses exhibit higher variability compared to natural images.
In contrast, the contrastive loss shows noticeable differences, as lower λ values result in sig-
nificantly lower final contrastive loss, suggesting that higher values may be more favorable
for maximizing alignment.

Optimizing λ to minimize catastrophic forgetting
Figure 4B displays results using λ ∈ [0.9, 1.0]. Regarding the losses for the two objectives,
there is no clear difference between the intermediate and higher ranges of λ. Lower λ values,
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such as 0.9, appear more advantageous, achieving comparable retrieval performance while
maintaining higher classification accuracy. However, the high variability across folds com-
plicates the precise interpretation of performance scores. Still, classification performance
declines are mitigated for all λ ̸= 1.0, maintaining a competitive κ score of 0.82 after 30
epochs.

4. Discussion

In the medical domain, where accurate classification underpins critical tasks such as clini-
cal decision-making and treatment planning, task-specific algorithms remain the standard
for AI systems implemented in the clinic. This paper explored whether task-specific clas-
sification models can serve as a foundation for multi-modal systems, aligning cross-modal
objectives without sacrificing classification performance.

Our findings indicate that contrastive tuning of a task-specific vision model without
a classification objective results in catastrophic forgetting. The classification performance
declined to nearly zero within fewer than 30 epochs in both the COCO experiments and
the medical task as the model increasingly prioritized vision-text alignment. These findings
align with the catastrophic forgetting literature, where neural networks lose previously
learned information when adapting to new objectives. They may also explain why VLMs
often fail to surpass SOTA vision classifiers in classification tasks.

We proposed a simple yet effective approach to address this trade-off by integrating a
classification objective into the loss function during contrastive tuning. By carefully tun-
ing the weighting factor λ, we effectively reduced the decline in classification performance
from a complete 100% drop (λ = 1.0) to just 10% with λ = 0.9 after 50 epochs, thus
retaining approximately 90% of the baseline mAP performance in COCO. Similarly, con-
trastive tuning using λ = 0.9 for the prostate cancer grading task reduced the total κ2 drop
to approximately 3% while achieving acceptable retrieval performance within just a few
epochs. The consistent trend is independent of the language encoder, as shown in Appen-
dices C.0.1 and C.0.2. Moreover, our experiments demonstrate that the optimal value of λ
varies depending on the task.

Our study has some limitations. First, a single dataset per domain was used. Second,
although we propose a simple solution to mitigate the loss of classification performance,
a more thorough investigation and the development of more sophisticated methods could
improve and simplify the management of the trade-off between classification and retrieval.

Third, while the variability in the prostate cancer grading dataset is relatively high, we
anticipate that this variability could be reduced and that higher overall retrieval perfor-
mance will be achieved with a larger dataset.

In summary, this study calls for a renewed focus on catastrophic forgetting as a critical
challenge in multi-task model development in the medical field. By developing strategies
that ensure that fundamental classification capabilities are preserved, we can pave the way
for building more robust models that are better suited for clinical implementation.
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Appendix A. Fine-tuning Details for the Task-specific Vision Encoder in
COCO

We utilize the MS COCO 2014 dataset, which consists of 123, 287 images, each paired with
five reference captions (training + validation). For vision-only fine-tuning, we randomly
select 93, 813 image-label pairs stratified across 80 classes, transforming the google/vit-base-
patch16-224 architecture into a task-specific multi-label classification model. The remaining
29, 474 image-caption pairs are reserved for the contrastive tuning experiments in the main
paper. The data is split into training, validation, and test sets (80/10/10). Fine-tuning
is performed for a maximum of 50 epochs using the binary cross-entropy (BCE), with
early stopping applied (patience = 10). Optimization is conducted using the the AdamW
optimizer with a learning rate of 1e − 4, a weight decay of 0.001, and a batch size of 64.
The fine-tuned model achieves a mAP of 0.77 on the test set, and the resulting weights are
used as initialization for contrastive tuning.

Appendix B. Fine-Tuning Details for the Language Encoder Pretrained
on Dutch Medical Reports

We further fine-tuned the joeranbosma/dragon-bert-base-domain-specific (Bosma, 2024) model
for the task of predicting ISUP grade from the microscopic sections of pathology reports.
This fine-tuning ensures that the [CLS] token generates meaningful sentence embeddings of
dimension 768, as it is not inherently optimized for this during MLM pretraining. Addi-
tionally, fine-tuning was performed to meet the requirements of contrastive learning, where
the output dimensions of the vision and language encoders need to be aligned.
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Appendix C. Impact of Language Encoder Choice: Results with
BioBERT and MPNet

A

B

Figure 5: Validation performance metrics during contrastive tuning with λ = 1.0. Panel
(A) presents classification loss, mAP, and Recall@5 for the COCO dataset, where
text embeddings are computed using the MPNet model. Panel (B) shows val-
idation classification loss, retrieval κ2, and classification κ2 for prostate cancer
grading experiments, where report embeddings are derived from the BioBERT
model. Both panels illustrate a clear trade-off, where classification performance
is sacrificed in exchange for improved retrieval. In all figures, metrics are reported
starting from the first epoch of fine-tuning. Lines represent the median across
five folds, with shaded areas indicating the interquartile range (IQR).
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C.0.1. Contrastive Tuning Experiments on COCO using MPNet as a
Language Encoder

A

B

Figure 6: Impact of λ on the classification-alignment trade-off for COCO with (A) λ ∈
[0.1, 0.9] and (B) λ ∈ [0.9, 1.0]. We used the same Vit-Base model for the vision
encoder while generating text embeddings using the frozen multi-qa-mpnet-base-
dot-v1 model as the language encoder.
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C.0.2. Contrastive Tuning Experiments on the Prostate Biopsy Data using
BioBERT as a Language Encoder

For the experiments utilizing BioBERT, the original Dutch reports were translated into
English using the Nous-Hermes-2-Mistral-7B-DPO.Q4-0.gguf model and the GPT4ALL
python library as BioBERT is primarily trained on English biomedical text.

A

B

Figure 7: Impact of λ on the classification-alignment trade-off for the prostate cancer grad-
ing task with (A) λ ∈ [0.1, 0.9] and (B) λ ∈ [0.9, 1.0]. We use the same HIPT
model as the vision encoder while generating text embeddings with the frozen
BioBERT model as the language encoder.
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