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Abstract

Despite the promising capabilities of vision-language models (VLMs) in diverse tasks, re-
cent studies reveal that they struggle with the fundamental task of image classification.
In this study, we explore leveraging state-of-the-art task-specific classification models as
a foundation for VLMs, aiming to preserve strong classification performance. Specifi-
cally, we assess the impact of contrastive tuning to enable cross-modal retrieval capabil-
ities on a Vision Transformer (ViT) model trained for multi-label classification on nat-
ural images and a Hierarchical Vision Transformer (H-ViT) trained for prostate can-
cer grading in Whole-Slide Images (WSIs). Our results demonstrate that contrastive
fine-tuning creates a clear trade-off: classification accuracy rapidly deteriorates toward
zero as vision-text alignment improves. By balancing task-specific and contrastive objec-
tives in the loss function during fine-tuning, we achieve competitive slide-level retrieval
performance while maintaining classification accuracy. Our code is available on https:
//github.com/DIAGNijmegen/tradeoff_classification_alignment.git.

Keywords: Multi-task Learning, Vision-Language Models, Representation disentangle-
ment, Computational Pathology

1. Introduction

The field of computational pathology is seeing an increase in the development of foundation
models (FMs) (Vorontsov et al., 2023; Ikezogwo et al., 2023). Large-scale pretraining using
self-supervised learning (SSL) on thousands of histopathological slides spanning diverse
tissue types and diseases can provide foundation models with advantages over task-specific
models. They can serve as a general foundation for various downstream tasks in pathology,
such as cancer subtyping and prognostication (Wang et al., 2024; Chen et al., 2024).

Recently, vision-language models (VLMs), a subset of foundation models, have emerged
to leverage the inherently multimodal nature of medical data by integrating textual sources
such as pathology reports, educational materials, and PubMed, enabling them to learn
cross-modal associations (Lu et al., 2024). These studies have demonstrated strong po-
tential of VLMs in various medical imaging tasks, including zero-shot and few-shot cancer
classification and cancer subtyping (Lu et al., 2024; Shaikovski et al., 2024; Ahmed et al.,
2024; Zhang et al., 2022). Additionally, they have shown promising multi-modal capabilities
such as cross-modal retrieval (Lu et al., 2024), image captioning (Lu et al., 2024; Shaikovski
et al., 2024), and report generation (Tran et al., 2024).
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Despite their successes, recent computer vision research highlights VLMs’ critical lim-
itations. In particular, VLMs significantly underperform on standard image classification
benchmarks compared to state-of-the-art (SOTA) task-specific classification models (Lau-
rencon et al., 2024; Karamcheti et al., 2024; Zhang et al., 2024; Tong et al., 2024; Zhai
et al., 2023). Zhang et al. (2024) attribute this shortfall primarily to the limited availability
of classification-focused data during pretraining of VLMs. Zhai et al. (2023) demonstrate
that fine-tuning VLMs with classification-focused data enhances in-domain performance but
causes catastrophic forgetting, leading to reduced performance on out-of-domain datasets
and compromised generalizability.Catastrophic forgetting is a well-studied phenomenon in
multi-task learning (Kirkpatrick et al., 2017; Perkonigg et al., 2021; Bandi et al., 2023). Ex-
isting mitigation strategies include Elastic Weight Consolidation (Kirkpatrick et al., 2017),
dynamic architectures (Rusu et al., 2016), and rehearsal approaches (Rebuffi et al., 2017).
However, these studies primarily focus on catastrophic forgetting in single-modality multi-
task learning. To our knowledge cross-modal forgetting—where a model is adapted for a
novel task in a different modality—remains unexplored.

In high-stakes domains like medicine, where diagnosis guides treatment decisions and
directly impacts patient outcomes, even slight declines in classification performance can
have serious consequences. This raises a key question: can task-specific vision models be
adapted for multi-modal tasks without compromising their classification performance? How
much classification-specific information do we sacrifice in favor of cross-modal alignment?

To address this question, we begin with SOTA task-specific image classification models
and explore the impact of contrastive tuning for enabling cross-modal tasks like image-to-
text retrieval. Without any mitigation strategy, we hypothesize that the model will suffer
from catastrophic forgetting while adapting to the cross-modal task. To mitigate this, we
introduce a balancing parameter, A, which modulates the relative emphasis on classification
and vision-language alignment in the loss function. We summarize our contributions as
follows:

1. We show that contrastive fine-tuning without a classification objective leads to catas-
trophic forgetting, where classification accuracy deteriorates rapidly in favor of vision-
text alignment in general vision and the medical domain.

2. To address this trade-off, we propose fine-tuning with a dual-objective loss function
weighted by a balancing parameter, A, which controls the trade-off between classifi-
cation and contrastive objectives.

3. We show that A selection is task-specific and that we can achieve competitive re-
trieval performance through careful tuning while preserving classification accuracy on
a prostate cancer grading task.

2. Methods

2.1. Experimental setup

To demonstrate that our results are applicable and transferable to both natural and medical
images, we conduct experiments on two distinct datasets: the Microsoft Common Objects



BALANCING CLASSIFICATION AND RETRIEVAL IN CROSS-MODAL VISION MODELS

in Context (COCO) (Lin et al., 2014) dataset and a curated medical dataset of prostate
biopsies and corresponding pathology reports.

We start with a high-performing vision model for a specific classification task and a
frozen language encoder to test our hypothesis that classification performance is traded
away when fine-tuning for cross-modal performance. We then use a dual-objective loss
function that weights a classification and contrastive objective by a parameter A, defined
as follows:

['total = )\[fcontrastive + (]— - )\)['classiﬁcation

Thus, A of 0.0 implies disregarding the contrastive objective and continuing fine-tuning
for classification, while a 1.0 is equivalent to purely focusing on the contrastive objective.
We hypothesize that the higher the A\, the more classification performance you lose. Addi-
tionally, we assume that the optimal value for A is task or dataset-specific.

We analyze the trade-off between classification and cross-modal alignment by tracking
validation performance metrics over epochs for different lambda values during contrastive
tuning. To fully assess the tradeoff rather than maximize peak performance, we inten-
tionally avoided early stopping. Please refer to Table 1 for details on losses, tasks, and
implementation.

2.2. COCO Experiments

Dataset

We select 30,000 image-caption pairs from the 2014 MS COCO release for contrastive
tuning. Of these, 4,952 pairs are held out for independent testing, while the remaining
pairs are divided into five cross-validation folds. Figure 1A shows an example of an
image-caption pair.

Models

The COCO experiments use a ViT-Base architecture, google/vit-base-patchl6-224
(Wu et al., 2020) fine-tuned for multi-label classification on the 80 classes in the dataset.
Fine-tuning details are provided in Appendix A. We experimented with two publicly avail-
able SentenceTransformer models (Reimers and Gurevych, 2019) for the language encoder.
We report results using the RoBERTa base model (roberta-base-nli-stsb-mean-tokens,

Section 3.1) and the MPNet model architecture (multi-qa-mpnet-base-dot-v1, Appendix
C.1).

Evaluation Metrics We evaluate multi-label classification using mean average precision
(mAP) and vision-language alignment through image-to-text retrieval. Retrieval perfor-
mance is measured by RecallQK, where the top K captions are retrieved from 4,690
validation captions based on the cosine similarity between image and text embeddings. A
retrieval is considered correct if at least one of the K-retrieved captions matches any of the
five reference captions associated with the image.
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1. A large white plane is sitting at a terminal. 20
Truck .
i Pl 2. Large jet parked at a gate with service modules preparing plane. s
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:. 3. Alarge white airplane and a truck on a lot. o
= Person
4. A passenger jet that is at the terminal = 125
5
B 5. The airplane is being loaded at the airport. g™
75
WSI ISUP Grade Pathology report
- 50
? Microscopy: II: In the black-inked biopsy, there is adenocarcinoma present consisting mainly of
»
“f 2 well-described, small round glandular structures covered by one-layered epithelium with
p 0
b enlarged cell nuclei and prominent nucleoli. Focally also fusion/splitting into small ducts. There 0 2 3 4 5
f ISUP Grade
/;_ are several small nests, together accounting for about 50% but spread over a length of 10 mm.
5 Conclusion: Gleason score of 3+4=7, approximately 50% volume, tumor length of 10mm.

Figure 1: (A) An example case from the COCO dataset comprising a natural image, one
or multiple label(s), and five reference captions. (B) An example case from the
prostate biopsy data comprising a thumbnail of a WSI, its corresponding ISUP
grade, and the pathology report. (C) Label distribution of the prostate biopsy

data.
COCO Prostate Biopsies
Task Type
Classification Multi-label classification (80 classes) ISUP Grade (6 classes)
Cross-modal Alignment Image-to-Text Retrieval WSI-to-Report Retrieval
Losses
Lelassification Binary Cross-Entropy (BCE) Mean Squared Error (MSE)
Lecontrastive CLIP (Radford et al., 2021) TripletMarginLoss (Schroff et al., 2015)
Hyperparameters
Number of epochs 50 30
Learning rate le~4 le=®
LR scheduler - StepLR
Weight decay 0.001 0.001
Optimizer AdamW AdamW
Batch size 64 1
Gradient accumulation - 16

Table 1: Implementation Details for COCO and Prostate Biopsy Grading Experiments.
Full loss formulations per task are provided in Appendix D.

2.3. Prostate biopsy grading experiments

Dataset

We curated a dataset of 425 WSIs containing a single prostate biopsy together with the
corresponding ISUP grade and pathology report from the Radboud University Medical
Center in Nijmegen. Fach pathology report consists of a microscopy and conclusion
section. An example is shown in Figure 1B, and the label distribution of the dataset in
Figure 1C. We reserve 35 cases for independent testing and partition the remaining data
into five cross-validation folds, stratifying on ISUP grade.

Models
For the task-specific vision model, we leveraged 10,616 H& E-stained prostate WSIs from
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Figure 2: Validation performance metrics during contrastive tuning using A = 1.0 for the
COCO dataset in (A) and the prostate biopsy grading experiments in (B). Lines
represent the medians across five folds, with shaded areas indicating the interquar-
tile range.

the PANDA dataset (Bulten et al., 2022) to train a H-ViT (Grisi et al., 2023). This
model achieves state-of-the-art performance in multi-class ISUP grade classification with
a quadratic kappa score of 0.892 on the combined PANDA test set (938 cases). Given
the small tuning dataset size, we freeze the first two transformers and update only the
weights of the last transformer. For the language encoder, we report results in the main
paper using a model pretrained on Dutch clinical reports and fine-tuned for the task of
predicting the ISUP grade from microscopic sections of a pathology report (see Appendix
B for details) (Bosma et al., 2025). Additional results using the BioBERT model (Lee
et al., 2020), pretrained on English biomedical text are presented in the Appendix C.2 for
comparison.

Evaluation Metrics

We evaluate ISUP grade classification performance on prostate biopsies using the quadratic
kappa score (k2). For retrieval, we introduce a new metric, retrieval k%, to measure
WSI-level image-to-text retrieval. Retrieval k? assesses the agreement between each
slide’s original labels and the labels of the top-one retrieved report by calculating Cohen’s

quadratic kappa.

3. Results
3.1. COCO

Contrastive tuning without classification objective (A = 1.0)

We evaluate the most natural choice for the hyperparameter A, specifically A = 1.0 in Figure
2A. We observe a clear trade-off: classification performance declines immediately after the
first epoch, as reflected by a steep increase in classification loss. At the same time, alignment
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Figure 3: Impact of A on the classification-alignment trade-off for COCO with (A) X\ €
[0.1,0.9] and (B) X € [0.9,1.0).

improves significantly, as indicated by a moderate Recall @K achieved at around 25 epochs
of fine-tuning. Finally, the mAP reaches zero after approximately 30 epochs, reflecting
the complete loss in classification capabilities when tuning without a classification objective.

Balancing classification and alignment

Before contrastive tuning the vision model achieves a median mAP of 0.768 on the valida-
tion sets. To address the trade-off, we evaluate intermediate values of the hyperparameter
A to balance classification and contrastive objectives during tuning. Figure 3A shows the
results. The training classification loss decreases linearly across all values of A with lower
values of A (e.g., A = 0.1), achieving lower final loss as they prioritize the classification
compared to higher A values (e.g., A\ = 0.9) which favor vision-language alignment.
In contrast, the validation classification loss increases more rapidly for lower A values,
suggesting that the model starts overfitting on the classification task. The validation
contrastive loss converges quickly and displays similar trajectories across all A values,
highlighting that a stronger emphasis on classification does not severely hinder contrastive
learning performance.

Optimizing A to minimize catastrophic forgetting

In our third experiment, we redefine A as the range [0.9, 1.0) to isolate its impact from the
previously observed overtraining effect, as shown in Figure 3B. Selecting A\ closer to 1.0
should maximize multi-modal alignment, mitigating overfitting and identifying the point
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at which classification performance begins to decline. Indeed, classification loss increases,
but less sharply than when no mitigation is applied (A = 1.0), and this is accompanied
by a slight decline in mAP. Contrastive loss and retrieval performance remain largely
unaffected by the choice of A, stabilizing around 25 epochs. Importantly, lower values (e.g.,
0.9) achieve marginally better mAP compared to higher values like 0.98, indicating values
around, e.g., A = 0.9 may be ideal for this task as they maintain the highest classification
performance while obtaining similar retrieval performance.

3.2. Prostate biopsy grading

Contrastive tuning without classification objective (A = 1.0)

As illustrated in Figure 2B, we observe a rise in classification loss alongside continued
contrastive alignment optimization, confirming a similar trade-off for prostate cancer
grading as in COCO. Consistent with prior observations, fine-tuning with A = 1.0 results
in a complete loss of classification performance for prostate biopsies within 20 epochs,
trading it for a retrieval k? of approximately 0.8.

Balancing classification and alignment

Before contrastive tuning, the trained H-ViT model achieves a median x? = 0.839 across

five validation folds. Contrastive Tuning using A € [0.1,0.9] results in a consistent rise in

classification loss with minimal variation across A values as illustrated in Figure 4A.
However, after 30 epochs the classification loss stabilizes around 1.0, significantly lower

than the approximately 3.5 observed with A = 1.0 after 30 epochs. Both training and

validation classification losses exhibit higher variability compared to natural images.

Optimizing A to minimize catastrophic forgetting

Figure 4B displays results using A € [0.9,1.0). Regarding the losses for the two objectives,
there is no clear difference between the intermediate and higher ranges of A. Lower A
values, such as 0.9, appear more advantageous, achieving comparable retrieval performance
while maintaining higher classification accuracy. However, the high inter-fold variability
across folds complicates the precise interpretation of performance scores.

3.3. Test performances COCO and Prostate grading experiments

For both datasets, we conducted additional experiments with higher values of A, using
peak image-to-text retrieval performance as an early stopping criterion to assess the impact
on classification accuracy. As shown in Table 2 prioritizing retrieval in COCO results
ina 7— 10% drop in classification performance compared to the baseline, while gaining
competitive retrieval scores. In contrast, balancing objectives for multi-modal learning not
only preserves but also enhances classification performance in the medical task, improving
k2 by up to 2% while gaining a retrieval k? of 0.63.

4. Discussion

In the medical domain, where accurate classification underpins critical tasks such as clinical
decision-making and treatment planning, task-specific algorithms remain the standard for
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Figure 4: Impact of A on the classification-alignment trade-off for the prostate biopsy grad-
ing experiments with (A) A € [0.1,0.9] and (B) A € [0.9,1.0].

Table 2: Test performance on COCO (N = 4,690) and Prostate Biopsies (N = 35) with
early stopping at peak retrieval performance. A% denotes the relative change in
testset classification performance w.r.t the baseline for COCO (0.77) and Prostate
Biopsies (0.80). We report median values (Q1-Q3) across five folds.

CcOoCoO ‘ Prostate Biopsies

A mAP  Recall@5 Recall@10 A% mAP | k2 Retrieval £ A% k2

0.9 0.695 0.330 0.465 -7.5 0.800 0.633 0
(0.693-0.695) (0.326-0.335) (0.459-0.468) (0.788-0.818) (0.596-0.643)

0.92 0.688 0.335 0.470 -8.2 0.800 0.633 0
(0.687-0.691) (0.331-0.338) (0.460-0.463) (0.788-0.814) (0.584-0.635)

0.94 0.693 0.336 0.469 -7.7 0.814 0.633 +1.4
(0.690-0.710) (0.326-0.348) (0.455-0.474) (0.800-0.820) (0.602-0.644)

0.96 0.685 0.329 0.459 -8.5 0.820 0.633 +2.0
(0.682-0.685) (0.328-0.330) (0.454-0.459) (0.818-0.827) (0.622-0.644)

0.98 0.674 0.329 0.453 -9.6 0.814 0.648 +1.4
(0.674-0.681) (0.325-0.333) (0.453-0.459) (0.808-0.824) (0.613-0.650)

1.0 0.061 0.330 0.457 -70.9 0.760 0.650 -4.0
(0.060-0.062) (0.326-0.333) (0.454-0.458) (0.408-0.767) (0.584-0.650)
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AT systems implemented in the clinic. This paper explored whether task-specific classifica-
tion models can serve as a foundation for multi-modal systems, aligning novel cross-modal
objectives to vision models without sacrificing classification performance.

Our findings indicate that contrastive tuning of a task-specific vision model without
a classification objective results in catastrophic forgetting. The classification performance
declined to nearly zero within fewer than 30 epochs in both the COCO experiments and
the medical task as the model increasingly prioritized vision-text alignment. These findings
highlight that catastrophic forgetting also extends to cross-modal settings. They may also
explain why VLMs often fail to surpass SOTA vision classifiers in classification tasks.

We proposed a simple yet effective approach to address this trade-off by integrating a
classification objective into the loss function during contrastive tuning, similar to rehearsal
strategies for catastrophic forgetting, where past task examples are retained or generated
and interleaved with new data during training. Our test results show that by carefully tuning
the weighting factor A\, we effectively reduced the decline in classification performance from a
complete 70% drop (A = 1.0) to just 8% with A = 0.94, thus retaining approximately 92% of
the baseline mAP performance in COCO. Interestingly, balancing objectives in the medical
task improved classification accuracy by up to 2% while attaining a retrieval k? of 0.63,
suggesting that the classification performance can even benefit from cross-modal alignment.
The consistent trend is independent of the language encoder, as shown in Appendices C.1
and C.2.

Our study has some limitations. First, a single dataset per domain was used. Second,
although we propose a simple solution to mitigate the loss of classification performance,
a more thorough investigation and the development of more sophisticated methods could
improve and simplify the management of the trade-off between classification and retrieval.

To ensure effective loss balancing, we confirmed in our experiments that the gradient
magnitudes of Leontrastive and Lelassification are in the same order of magnitude. For instance,
if classification gradients were two orders of magnitude larger, even a high A favoring vision-
language alignment may not prevent the classification from dominating and thereby hin-
dering multi-modal learning. Therefore, if the gradient magnitudes differ significantly, the
range of A needs to be adjusted accordingly to successfully balance the two loss functions.
Additionally, our experiments show that the optimal value of \ varies across tasks and loss
functions. Therefore, tuning A per task while ensuring comparable gradient magnitudes is
crucial.

Third, our approach highlights catastrophic forgetting in cross-modal learning but lacks
a direct comparison with existing mitigation strategies. Future work should assess whether
single-modality mitigation strategies translate to cross-modal settings and benchmark our
method against them.

Fourth, while the variability in the prostate cancer grading dataset is relatively high,
we anticipate that this variability could be reduced and that higher overall retrieval perfor-
mance will be achieved with a larger dataset.

In summary, this study calls for a renewed focus on catastrophic forgetting as a critical
challenge in multi-task model development in the medical field. By developing strategies
that ensure that fundamental classification capabilities are preserved, we can pave the way
for building more robust models that are better suited for clinical implementation.
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Appendix A. Fine-tuning Details for the Task-specific Vision Encoder in
COCO

We utilize the MS COCO 2014 dataset, which consists of 123,287 images, each paired
with five reference captions (training 4 validation). For vision-only fine-tuning, we
randomly select 93,813 image-label pairs stratified across 80 classes, transforming the
google/vit-base-patch16-224 architecture into a task-specific multi-label classification
model. The remaining 29,474 image-caption pairs are reserved for the contrastive tuning
experiments in the main paper. The data is split into training, validation, and test sets
(80/10/10). Fine-tuning is performed for a maximum of 50 epochs using the binary cross-
entropy (BCE), with early stopping applied (patience = 10). Optimization is conducted
using the AdamW optimizer with a learning rate of le — 4, a weight decay of 0.001, and
a batch size of 64. The fine-tuned model achieves a mAP of 0.77 on the test set, and the
resulting weights are used as initialization for contrastive tuning.

Appendix B. Fine-Tuning Details for the Language Encoder Pretrained
on Dutch Medical Reports

We further fine-tuned the joeranbosma/dragon-bert-base-domain-specific (Bosma
et al., 2025) model for the task of predicting ISUP grade from the microscopic sections
of pathology reports. This fine-tuning ensures that the [CLS] token acts as a meaning-
ful sentence embedding of dimension 768, as it is not inherently optimized for this during
MLM pretraining. Additionally, fine-tuning was performed to meet the requirements of
contrastive learning, where the output dimensions of the vision and language encoders need
to be aligned.

13



LEFKES GRISI LITJENS

Appendix C. Impact of Language Encoder Choice: Results with
BioBERT and MPNet
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Figure 5: Validation performance metrics during contrastive tuning with A = 1.0. Panel
(A) presents classification loss, mAP, and Recall@5 for the COCO dataset, where
text embeddings are computed using the MPNet model. Panel (B) shows valida-
tion classification loss, x? and retrieval x? for prostate cancer grading exper-
iments, where report embeddings are derived from the BioBERT model. Both
panels illustrate a clear trade-off, where classification performance is sacrificed in
exchange for improved retrieval. In all figures, metrics are reported starting from
the first epoch of fine-tuning. Lines represent the median across five folds, with
shaded areas indicating the interquartile range (IQR).
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C.1. Contrastive Tuning Experiments on COCO using MPNet as a Language
Encoder
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Figure 6: Impact of A on the classification-alignment trade-off for COCO with (A)
A € [0.1,0.9] and (B) A € [0.9,1.0). We used the same Vit-Base model
for the vision encoder while generating text embeddings using the frozen
multi-ga-mpnet-base-dot-v1 model as the language encoder.
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C.2. Contrastive Tuning Experiments on the Prostate Biopsy Data using
BioBERT as a Language Encoder

For the experiments utilizing BioBERT, the original Dutch reports were translated into
English using the Nous-Hermes-2-Mistral-7B-DP0.Q4-0.gguf model and the GPT4ALL
python library as BioBERT is primarily trained on English biomedical text.
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Figure 7: Impact of A on the classification-alignment trade-off for the prostate cancer grad-
ing task with (A) A € [0.1,0.9] and (B) A € [0.9,1.0). We use the same H-ViT
model as the vision encoder while generating text embeddings with the frozen
BioBERT model as the language encoder.

Appendix D. Loss functions

D.1. COCO
Etotal = AEcontrastive + (1 - A)Eclassiﬁcation
Liotal = ALcrp + (1 — ) Lpcr
N . .
1 exp(sim(I;, T;) /T exp(sim(71;, I;) /T
o = 13" [iog oMU T/ expoimT /)
pal ijl exp(sim(Z;, T;)/7) Zj:1 exp(sim(73, 1;)/7)
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1 N

Locp =~ > lyilog(a(WIi + b)) + (1 — yi) log(1 — ((WI; + b))]
i=1

Where: N denotes the batch size. For each sample i, I; € R'*7%8 represents the image
embedding, and 7; is the corresponding text embedding. The function sim(/;, T;) computes
the cosine similarity between the i-th image embedding and the j-th text embedding.

The scalar 7 is a temperature parameter that scales the logits. In the Lpcg loss classi-
fication logits are produced using a weight matrix W € R30*%768 and a bias term b € R80.
The predicted probabilities are obtained via the sigmoid activation function, defined as

o(r) = g +i*w' Ground truth labels for each image are denoted by y; € {0,1}8.

D.2. Prostate biopsy grading experiments

Etotal = )\Econtrastive + (1 - )\)Eclassiﬁcation

Etotal = )\Etriplet + (1 - )‘)‘CMSE

N
1 _
ETriplet - AN z;max(o, ||IZ - ]ji-i_”? - ||Il - irz H2 + O{)
=

N
1 9
LvsE = N ;(yi — (WI; +b))

Where: N denotes the batch size, and y; is the ground truth value for the i-th sample.
The term I; represents the image embedding, while Ti+ and T~ correspond to the positive
(correct) and negative (incorrect) text embeddings for that image, respectively. The triplet
loss encourages the image embedding I; to be closer to its corresponding positive text
embedding T;r than to the negative one T, by at least a margin . The Euclidean distances
|7; — T;"||2 and ||I; — T, ||2 quantify the similarity in the embedding space. For the MSE
loss, the predicted output is computed as a linear transformation W I, 4+ b, where W is the
weight matrix and b is the bias term. This prediction is then compared to the true label y;.
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