
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PARAMETER-EFFICIENT INSTRUCTION TUNING CODE
LARGE LANGUAGE MODELS: AN EMPIRICAL STUDY

Anonymous authors
Paper under double-blind review

ABSTRACT

The high cost of full-parameter fine-tuning (FFT) of Large Language Models
(LLMs) has led to a series of parameter-efficient fine-tuning (PEFT) methods.
However, it remains unclear which methods provide the best cost-performance
trade-off at different model scales. We introduce ASTRAIOS, a fully permissive
suite of 28 instruction-tuned Code LLMs using 7 tuning methods and 4 model sizes
up to 16 billion parameters. Through investigations across 5 tasks and 8 different
datasets encompassing both code comprehension and code generation tasks, we
find that FFT generally leads to the best downstream performance across all scales,
and PEFT methods differ significantly in their efficacy based on the model scale.
LoRA usually offers the most favorable trade-off between cost and performance.
Further investigation into the effects of these methods on both model robustness
and code security reveals that larger models tend to demonstrate reduced robustness
and less security. Finally, we explore the relationships between updated parameters
and task performance. We find that the tuning effectiveness observed in small
models generalizes well to larger models, and the validation loss in instruction
tuning can be a reliable indicator of overall downstream performance. We believe
that our findings of PEFT can generalize to other decoder-only LLMs1.

1B 3B 7B 16B0

5

10

15

20

25

30 (IA)3

 0.01%
 LoRA
 0.21%

P Tuning
 0.82%
AdapterP

 1.46%

Parallel
 1.52%
AdapterH

 2.87%

 FFT
 100%

Figure 1: Mean task performance of ASTRAIOS models across 5 representative tasks and 8 datasets.
We indicate the average percentage of total parameters updated for each PEFT method.

1 INTRODUCTION

Large language models (LLMs) (Zhao et al., 2023) trained on Code (Code LLMs) have shown
strong performance on various software engineering tasks (Hou et al., 2023). There are three main
model paradigms: (A) Code LLMs for code completion (Nijkamp et al., 2022; Fried et al., 2022; Li
et al., 2023); (B) Task-specific fine-tuned Code LLMs for a single task (Hou et al., 2023); and (C)

1The codebase (under Apache-2.0 license) and models (under BigCode OpenRAIL-M license) will be
publicly available.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Instruction-tuned (Ouyang et al., 2022) Code LLMs that excel at following human instructions and
generalizing well on unseen tasks (Wang et al., 2023b; Muennighoff et al., 2023b). Recent instruction-
tuned Code LLMs, including WizardCoder (Luo et al., 2023) and OctoCoder (Muennighoff et al.,
2024), have achieved state-of-the-art performance on various tasks without task-specific fine-tuning.
However, with the increasing parameters of Code LLMs, it becomes more expensive to perform full-
parameter fine-tuning (FFT) to obtain instruction-tuned models. In practise, to save computational
cost, parameter-efficient fine-tuning (PEFT) have been applied to instruct-tuned LLMs (Liu et al.,
2022; Zadouri et al., 2023; Hu et al., 2023a; Gao et al., 2023; Muennighoff et al., 2024). This training
strategy aims to achieve comparable performance to FFT by updating fewer parameters. While there
are many PEFT methods (Ding et al., 2022), the predominant PEFT method is still LoRA, which is
proposed in 2021 (Hu et al., 2021). However, there is no empirical evidence showing LoRA remains
the best for instruction-tuned code LLMs. In this paper, we investigate instruction-tuned code LLMs
with the following research question: what are the best PEFT methods for Code LLMs?

Existing analysis on PEFT methods presents several opportunities for further exploration: (1) Beyond
Task-Specific LLMs. Most prior works (Zhou et al., 2022; Ding et al., 2023) only focus on the
model paradigm (B), where the selected base models are fine-tuned on specific downstream tasks.
While these studies provide insights into PEFT methods on task-specific LLMs, the transferability
of their findings to the instruction tuning paradigm is unclear. (2) Diverse Domains. Studies on
PEFT methods tend to evaluate in the predominant domains like vision (Sung et al., 2022; He et al.,
2023; Hu et al., 2023b) and text (Houlsby et al., 2019; He et al., 2021), leaving other domains like
code underexplored. (3) Inclusive PEFT Methods. Prior investigations on PEFT mainly consider
a limited number of methods, such as adapter-based tuning (Houlsby et al., 2019) or reparametric
tuning (Aghajanyan et al., 2021), which does not capture the full breadth of available methods. (4)
Multidimensional Evaluation. Previous works only consider limited evaluation on representative
downstream tasks (Chen et al., 2022; Fu et al., 2023; Ding et al., 2023). We argue that other evaluation
dimensions like model robustness (Han et al., 2021) and output code safety (Weidinger et al., 2021;
Zhuo et al., 2023b; Pearce et al., 2022; Dakhel et al., 2023) are also important, especially in the era
of LLM agents (Ouyang et al., 2022; Xie et al., 2023). (5) Scalability. Most prior PEFT work has
only explored LLMs with insufficient scales of model sizes and training time, which makes their
scalability questionable (Lester et al., 2021; Chen et al., 2022; Hu et al., 2023a).

To explore these identified opportunities further, we introduce ASTRAIOS, a fully permissive
suite of 28 instruction-tuned Code LLMs, which are fine-tuned with 7 tuning methods based on
the StarCoder (Li et al., 2023) base models (1B, 3B, 7B, 16B). We instruction-tune the models
based on the open-source dataset, CommitPackFT from OctoPack (Muennighoff et al., 2024), to
balance their downstream capabilities. We utilize PEFT configurations with Hugging Face’s best
practices (Mangrulkar et al., 2022) and integrate a few PEFT methods from recent frameworks (Hu
et al., 2023a). We first inspect the scalability of different tuning methods through the lens of cross-
entropy loss during instruction tuning. Specifically, we assess the scales of model size and training
time. Our main evaluation focuses on 5 representative code tasks, including clone detection (Svajlenko
& Roy, 2021), defect detection (Zhou et al., 2019), code synthesis (Muennighoff et al., 2024), code
repair Muennighoff et al. (2024), and code explain (Muennighoff et al., 2024). We further study the
tuning methods from two aspects: model robustness (Wang et al., 2023a) and code security (Pearce
et al., 2022). We assess how well models can generate code based on the perturbed examples and
how vulnerable the generated code can be.

The main experimental results can be found in Figure 1, where we observe that FFT generally leads
to the best downstream performance across all scales. In addition, we find that PEFT methods differ
significantly in their efficacy depending on the model scale. At 16B parameters, Parallel Adapter (He
et al., 2021) and LoRA (Hu et al., 2021) are the most competitive methods with FFT. Meanwhile, at
1B parameters, they are both slightly outperformed by P-Tuning and (IA)3. Thus, the choice of the
PEFT method should be considered along with the model scale at hand. Nevertheless, LoRA usually
offers the most favourable trade-off between cost and performance.

Meanwhile, we also observe that larger PEFT Code LLMs perform better on code generation tasks
while they do not show such patterns on code comprehension tasks like clone detection and defect
detection. In addition, increasing model size improves generation task performance but exhibits
vulnerabilities to adversarial examples and biases towards insecure code. Additionally, we investigate
the relationships among updated parameters, cross-entropy loss, and task performance. We find that
the final loss of small PEFT models can be extrapolated to the larger ones. We also observe strong

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1B 3B 7B 16B

(IA)3

LoRA

P-Tuning

AdapterP

Parallel

AdapterH

0.0221 0.0170 0.0119 0.0080

0.3145 0.2417 0.1699 0.1144

1.1002 0.7786 0.6840 0.7258

2.1650 1.6769 1.1878 0.8044

2.2972 1.7518 1.2245 0.8210

4.2383 3.2985 2.3477 1.5959 0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Up
da

te
d

Pa
ra

m
et

er
 R

at
io

Figure 2: Percentage (%) of total parameters updated for each PEFT method in ASTRAIOS models.

correlations between final loss and overall downstream task performance. Although the instruction
dataset we choose is general and is not directly correlated with the benchmark downstream tasks,
we suggest that the performance on such general data can serve as a proxy for the downstream
performance.

2 THE ASTRAIOS SUITE AND BENCHMARK

In this section, we document our model choices, training configurations, and evaluations in detail for
easy reproducing our experimental results in this paper.

2.1 MODEL

Base Model There are many Code LLMs available that could be a suitable base model. However,
most of them are not fully permissive such as Code-Llama (Roziere et al., 2023), and their training
data is always closed-source. To maximize transparency, we select the StarCoder series as our base
models, with the best permissive license. Concretely, four model scales including 1B, 3B, 7B and
16B parameters are selected.

PEFT Model We focus on three kinds of PEFT methods (Ding et al., 2022): (1) Adapter-based
Tuning (Houlsby et al., 2019): An early approach, which injects small-scale neural modules as
adapters to LLMs and only tune these adapters for model adaptation. (2) Prompt-based Tuning (Li
& Liang, 2021): It wraps the original input with additional context introducing virtual task-specific
tokens without adding layers of modules like adapters. (3) Intrinsic-rank-based Tuning (Aghajanyan
et al., 2021): A representative method is LoRA, which assumes that the change of weights during
model tuning has a low rank and thus low-rank changes to the matrices suffice. For all methods,
we utilize the implementations in the open-source PEFT library2 (Mangrulkar et al., 2022) and the
LLM-Adapters work (Hu et al., 2023a) built on top of it. We benchmark 6 PEFT methods, including
4 adapter-based, 1 prompt-based, and 1 intrinsic-rank-based tuning methods as shown in Figure 2.

2.2 INSTRUCTION TUNING

Dataset Following previous work, we select the dataset CommitPackFT+OASST from Oc-
toPack (Muennighoff et al., 2024) as the instruction tuning dataset, which helps StarCoder to achieve
superior performance. We note that there could be other choices by utilizing other datasets (e.g., the
publicly available dataset CodeAlpaca (Chaudhary, 2023)) . However, they usually focus on a certain
aspect of code-related tasks and lack generality to different tasks.

Configuration We train all models with a sequence length of 2048 tokens, with the batch size as 1,
the warm-up step as 12, and the global steps as 200. We set the learning rate as 1× 10−4 for PEFT

2https://github.com/huggingface/peft

3

https://github.com/huggingface/peft

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

models and 1× 10−6 FFT models with a cosine scheduler in both cases. For PEFT methods, we use
8-bit-quantized models during training (Dettmers et al., 2022). The training details and cross-entropy
loss are documented in Appendix D.

2.3 EVALUATION

Code Comprehension To evaluate code comprehension, we select two representative tasks: clone
detection and defect detection. Clone detection aims to identify segments of code that are either exact
duplicates or structurally similar with variations in identifiers, literals, types, layout, and comments,
or even more broadly similar in terms of functionality. Defect detection targets for identifying bugs,
vulnerabilities, or antipatterns in code. We select two widely-used datasets from CodeXGLUE
benchmark Lu et al. (2021): BigCloneBench (Svajlenko & Roy, 2021) and Devign (Zhou et al.,
2019). As the original BigCloneBench and Devign are designed to evaluate classification models, we
prepend additional instructions to prompt the instruction-tuned models to complete such tasks. We
follow the evaluation settings of CodeXGLUE and use F1 and Accuracy for BigClone and Devign,
respectively. Due to the non-trivial number of test examples in these two datasets, we sample 2,000
from each to save costs. As BigCloneBench and Devign are in the binary classification tasks, we use
temperature 0 for model inference to get deterministic outputs.

Code Generation We use HumanEvalPack (Muennighoff et al., 2024), a benchmark recently
proposed that enables easy evaluation of instruction-tuned Code LLMs. The benchmark is structured
around three core tasks in code generation, each designed to test different capabilities of the model.
The first task, Code Synthesis, involves the model in synthesizing functional code given a function
with a docstring detailing the desired code behavior. The second task, Code Repair, challenges the
model to identify and fix a subtle bug in an otherwise correct code function, using provided unit tests
as a guide. The third and final task, Code Explanation, requires the model to generate a clear and
concise explanation for a correctly written code function. For the evaluation on HumanEvalPack, we
use its Python and Java splits and compute Pass@1 for each task. We use temperature 0.2 and sample
20 outputs per test example.

Model Robustness Evaluating the robustness of code generation models is crucial in understanding
their real-world applicability and reliability. Models that can maintain high-performance levels
despite variations and perturbations in input data are more likely to be effective in diverse and
dynamic coding environments (Bielik & Vechev, 2020; Henkel et al., 2022; Wang et al., 2023a).
Motivated by such model behaviors, we utilize ReCode (Wang et al., 2023a), a benchmark framework
designed to assess the robustness of Code LLMs. We use HumanEval (Chen et al., 2021) as the
base dataset and curated it to mimic natural variations while preserving the semantic integrity of
the original inputs. The perturbations cover a range of transformations (Zhuo et al., 2023c) on code
format, function, variable names, code syntax, and docstrings. These transformations are not arbitrary
but represent changes occurring naturally in coding practices. The quality of the perturbed data in
ReCode is verified through human evaluation and objective similarity scores, ensuring the relevance
and reliability of the dataset for robustness assessment. We use temperature 0.2 and 20 samples per
test example for the generation. To compute the level of model robustness, we adopt Robust Pass@k
(RP@k) from ReCode and also compute Robust Change@k (RC@k) as follows:

RP@k := Ex

[
1− n− rcs(x)(

n
k

)]
(1)

RC@k := |Pass@k −Robust Pass@k| (2)

Code Security One limitation of Code LLMs is their tendency to generate code with potential
security vulnerabilities, as various studies have highlighted (Dakhel et al., 2023; Asare et al., 2023).
In our work, we aim to empirically examine how PEFT methods can influence the security aspects
of Code LLM outputs. We utilize the “Asleep at the Keyboard” (AATK) benchmark (Pearce et al.,
2022), which includes 89 security-centric scenarios, to provide a comprehensive evaluation across
three distinct dimensions: Diversity of Weakness (DoW), encompassing 18 unique vulnerability
classes from the MITRE Common Weakness Enumeration (CWE) taxonomy, sourced from the 2021
CWE Top 25 Most Dangerous Software Weaknesses; Diversity of Prompt (DoP), assessing responses

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

to different prompts within the SQL injection vulnerability class; and Diversity of Domain (DoD),
involving scenarios in Verilog, a hardware description language. Our analysis predominantly focuses
on the DoW axis, comprising 54 scenarios–25 in C and 29 in Python–covering 18 CWEs. This focus
is due to the automatic evaluation challenges associated with the other two dimensions. After filtering
out scenarios that lack an automated test, we thoroughly examine 40 scenarios, including 23 in C and
17 in Python. We use temperature 0.2 and 20 samples per test example for the generation.

3 MAIN RESULTS: TASK PERFORMANCE

1B 3B 7B 16B
Model Size

10

20

30

40

50

Ac
cu

ra
cy

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

Figure 3: Accuracy results of ASTRAIOS models
on Defect Detection.

1B 3B 7B 16B
Model Size

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5

F1
(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

Figure 4: F1 results of ASTRAIOS models on
Clone Detection.

We seek to examine how well selective PEFT methods contribute to task performance in this section.
To benchmark the performance, we leverage the representative code downstream tasks: (1) Defect
Detection, (2) Code Clone, (3) Code Synthesis, (4) Code Repair and (5) Code Explanation. For
the first two code comprehension tasks, there is no existing study stating that the larger code LLMs
result in a better understanding of code. We are the first to study this aspect when varying the model
sizes. Regarding the latter three code generation tasks, previous power-law studies (Kaplan et al.,
2020; Hoffmann et al., 2022) have shown that increasing model sizes can also lead to better task
performance on generation tasks. We further validate this finding on the PEFT settings.

Code Comprehension Surprisingly, as shown in Figures 3 and 4, the results of both tasks are not
well aligned with the patterns we observe on code generation tasks. All tuning methods consistently
behave like the inverse scaling, which has been discussed in McKenzie et al. (2023). We hypothesize
that Code LLMs have not seen enough task-specific training data and cannot generalize to those
unseen tasks (Yadlowsky et al., 2023). As ASTRAIOS models are pre-trained on various source
code from GitHub repositories for next token prediction and fine-tuned on GitHub commits for code
refinement, they may not have a profound understanding of defects and cloned code. We also show
the results of the two code comprehension tasks when varying the model sizes in Appendix G.

Code Generation Table 1 demonstrates the performance on three different code generation tasks
on the Python and Java splits in HumanEvalPack. Over the six benchmarks, we first observe that FFT
results in consistent gains when the model parameters increase. When examining the PEFT methods,
We find they can also provide reasonable performance scalability similar to FFT. Therefore, the lower
test loss may lead to better performance across various downstream generation tasks for Code LLMs.
However, we notice that the benefit of base model sizes may also differ from tasks and languages.
For instance, 1B and 3B models typically underperform in code repair compared to code synthesis.
When the model parameters expand to 7B and 16B, their performance across these tasks becomes
more comparable.

Overall Performance To compare the overall task performance of different tuning methods, we
compute the mean cumulative scores for each tuning method per model size. We present the rankings
in Figure 1. We show that FFT remains the best regarding overall task performance, while LoRA and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Pass@1 results of ASTRAIOS models on HumanEvalPack Python and Java splits. The best
performance is highlighted in bold. The second best performance is underlined.

Method Code Synthesis Code Repair Code Explanation
1B 3B 7B 16B 1B 3B 7B 16B 1B 3B 7B 16B

Py
th

on
LoRA 17.26 25.37 32.01 38.08 3.29 11.16 21.74 27.50 20.49 22.53 25.34 30.52
P-Tuning 15.79 24.33 29.39 35.58 1.86 13.69 20.34 18.72 9.48 11.92 14.60 15.43
AdapterH 15.70 23.87 28.26 33.29 3.14 15.55 22.50 22.28 17.77 22.35 24.24 26.07
AdapterP 17.04 24.76 30.67 34.97 3.69 12.87 19.54 26.46 16.07 24.05 22.87 30.67
Parallel 15.98 26.65 28.81 35.88 4.91 8.11 16.13 26.43 19.70 23.14 23.93 31.10
(IA)3 16.13 25.34 30.52 36.80 2.01 14.05 17.07 23.60 9.51 11.86 14.30 16.19

FFT 16.95 25.21 32.38 38.47 3.26 14.45 21.40 29.88 15.37 23.45 26.13 30.85

Ja
va

LoRA 2.84 16.52 24.27 40.33 3.72 5.06 13.60 30.35 7.07 14.33 14.70 16.86
P-Tuning 10.67 14.73 20.73 37.19 0.00 7.53 11.74 22.25 6.07 9.79 17.32 13.02
AdapterH 8.99 13.45 17.53 33.41 0.12 6.89 14.70 24.91 6.74 9.57 13.99 14.85
AdapterP 10.46 16.77 21.28 33.68 3.66 6.52 15.40 32.07 6.65 11.62 14.15 16.28
Parallel 9.60 15.91 21.59 38.56 0.49 5.09 8.87 29.39 7.62 12.16 14.51 17.93
(IA)3 10.34 16.46 21.95 39.91 2.87 4.54 13.02 25.30 6.13 13.99 17.04 15.85

FFT 10.18 17.04 23.87 41.16 0.00 5.61 16.10 32.47 7.16 13.60 15.12 16.62

Parallel Adapter are comparable to FFT. However, there is still a huge performance gap between most
PEFT methods and FFT, suggesting that they cannot guarantee optimal performance. Regarding the
tuning efficiency, we use updated parameters as the metric to summarize two more findings. Firstly,
(IA)3 is efficient enough to perform reasonably by updating much fewer parameters than the other
PEFT methods. Secondly, we notice that AdapterP always performs better than AdapterH , even
though AdapterH updates more model parameters. The counter-intuitive observation indicates that
AdapterH may not be worth deploying in real-world practice.

4 FURTHER ANALYSIS

In this section, we further study two aspects of Code LLMs beyond task performance. Specifically, we
highlight the importance of model robustness and generated code security, which indicate real-world
practicality. We tend to understand the trend of model behavior across tuning methods and model
sizes.

4.1 MODEL ROBUSTNESS

While the performance on downstream tasks is essential, we argue that the evaluation of model
robustness is also necessary to characterize different tuning methods systematically. We therefore
consider benchmarking the robustness of code synthesis, one of the most representative downstream
tasks of source code.

We compute each tuning method’s worst-case RP@1 and RC@1 of each perturbation category.
Among the four types of perturbation, all models perform the worst on syntax transformation,
confirming the findings in Wang et al. (2023a). Furthermore, RP@1 per tuning method increases
when the model size is scaled up, indicating the generation capability is consistently improved. We
noticed that FFT may not perform better than other PEFT methods on smaller models, such as 1B and
3B. However, it results in the best RP@1 on larger models like 16B. By comparing different model
sizes, we observe that RC@1 consistently increases when the model gets bigger, indicating that larger
models will be less robust. To rank among the tuning methods through the lens of robustness, we
compute the mean RC@1 similar to Section 3 and illustrate in Figure 5. We observe that FFT and
LoRA do not show strong robustness. Instead, adapter-based tuning seems more robust while having
comparable performance to FFT, which is similar to what Han et al. (2021) have found in NLP tasks.
We reports all RP@1 and RC@1 of each perturbation category in Appendix J.

4.2 CODE SECURITY

Previous studies (Dakhel et al., 2023; Asare et al., 2023). have shown that Code LLMs can generate
code with security vulnerabilities, which can be exploited by malicious users. However, few studies

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1B 3B 7B 16B0

10

20

30

40

50

M
ea

n
RC

@
1

AdapterH

 2.87%
Parallel
 1.52%

AdapterP

 1.46%
P Tuning
 0.82%

 LoRA
 0.21%
 (IA)3

 0.01%

 FFT
 100%

Figure 5: Mean RC@1 of ASTRAIOS on ReCode. Lower RC@1 indicates better robustness. We
indicate the percentage of total parameters updated for each PEFT method.

Table 2: Valid and Insecure rates of ASTRAIOS models on AATK benchmark. We note that the
insecure rate is calculated based on the valid programs. The best performance is highlighted in bold.
The second best performance is underlined.

Method Valid% (↑) Insecure% (↓)
1B 3B 7B 16B 1B 3B 7B 16B

LoRA 85.9 89.1 75.9 87.1 23.1 26.2 20.9 35.0
P-Tuning 70.1 68.6 86.8 82.0 32.8 25.9 28.1 34.5
AdapterH 84.5 90.9 87.5 86.8 29.0 26.0 31.9 34.1
AdapterP 83.9 92.1 82.8 86.3 31.7 25.2 26.6 37.8
Parallel 88.9 94.1 70.0 86.0 30.2 19.3 22.3 32.6
(IA)3 78.0 62.1 77.4 86.6 34.8 25.2 23.1 30.4
FFT 82.9 93.6 80.1 84.1 22.6 27.4 21.2 38.3

have studied different tuning methods from the output security perspective. In this experiment, we
intend to understand how tuning methods affect the capability to generate secure code on AATK
benchmark.

We follow the original setting in Pearce et al. (2022) and compute the valid and insecure rates, which
are illustrated in Table 2. When comparing the valid rate of PEFT methods, it does not show better
performance when the model size increases, indicating that current models may not learn the program
validity intrinsically. However, we observe that the changes in the insecure rate show that larger
models are more likely to generate insecure code. This observation suggests that the growth of
learning capability can result in learning more data, including insecure programs. The study on the
insecure rate among tuning methods further shows that FFT and LoRA are still better than the other
tuning methods regarding the security level. While the other methods have a similar insecure rate,
P-Tuning may have more chances to generate less secure programs, which may not be suitable for
deploying in security-sensitive scenarios.

5 DISCUSSION

In this section, we seek to conduct a preliminary analysis of the performance of Code LLMs through
the lens of updated parameters. Specifically, we ask two questions: (1) What is the relationship
between the updated parameters and cross-entropy loss?; and (2) Can we utilize the performance of
loss to predict the task performance of Code LLMs?.

Loss of small models can be projected to larger ones. The relationship between the updated
parameters of ASTRAIOS models and their final loss is analyzed in Figure 6. Our analysis does not
reveal a consistent pattern across different model sizes when it comes to the correlation between

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

106 107 108 109 1010

Number of Updated Parameters

1.0

1.1

1.2

1.3

1.4

Fin
al

 Tr
ai

n
Lo

ss

1B
3B
7B
16B

AdapterH

AdapterP

(IA)3

LoRA

Parallel
P-Tuning
FFT

106 107 108 109 1010

Number of Updated Parameters

1.1

1.2

1.3

1.4

1.5

Fin
al

 Te
st

 L
os

s

1B
3B
7B
16B

AdapterH

AdapterP

(IA)3

LoRA

Parallel
P-Tuning
FFT

Figure 6: Relationships between cross-entropy loss and the number of updated parameters. Lower
loss indicates the bigger models, as shown in Appendix D.

model loss and updated parameters. However, an interesting finding is the consistency in relative loss
performance across different model sizes when comparing various tuning methods. This consistency
suggests that the improvements achieved by each tuning method are likely to be similar regardless of
the model’s size. Therefore, the loss observed in smaller models, when tuned with different methods,
can be a useful predictor for the performance of the larger models.

12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
Task Performance

1.0

1.1

1.2

1.3

1.4

Fin
al

 Tr
ai

n
Lo

ss

AdapterH

AdapterP

(IA)3

LoRA
Parallel

P-Tuning
FFT

12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0
Task Performance

1.1

1.2

1.3

1.4

1.5

Fin
al

 Te
st

 L
os

s

AdapterH

AdapterP

(IA)3

LoRA
Parallel

P-Tuning
FFT

Figure 7: Relationships between cross-entropy loss and overall task performance.

Instruct-tuning loss is a strong predictor of downstream performance. Assuming that the model
has been instruction-tuned already but not yet done for the evaluation, we seek to understand if we
can utilize such loss to predict its performance on downstream tasks. Despite our instruction data
being derived from general sources like GitHub commits and broad NLP domains, which are not
directly aligned with the downstream tasks discussed in Section 3, we find some strong correlations.
Motivated by the aforementioned scenario, we aggregate all the data points of mean task performance
and their corresponding final loss in Figure 7. We observe that the models with lower loss generally
have better overall performance on downstream tasks. Specifically, the pattern is stronger on test loss
than on train loss. We explain this by the fact that the models do not learn to fit the test split and can
present a more accurate determination of their actual performance. Our observation suggests that
general instruction data can work as a good proxy of downstream tasks in Code LLMs, similar to the
prior findings in NLP (Anil et al., 2023; Wei et al., 2023).

6 RELATED WORK

Code Large Language Models Many base Code LLMs have been proposed recently (Chen et al.,
2021; Nijkamp et al., 2022; Fried et al., 2022; Allal et al., 2023; Zheng et al., 2023; Li et al., 2023;

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Roziere et al., 2023) mostly targeting code completion. With the help of these base Code LLMs, there
have been extensive studies fine-tuning task-specific Code LLMs to perform software engineering
tasks Hou et al. (2023). Later, a series of works has been proposed for instruction-tuning the base
Code LLMs (Luo et al., 2023; Shen et al., 2023; Muennighoff et al., 2024; Bai et al., 2023), aiming
to enhance the generalization capabilities of these models on diverse tasks. As fine-tuning Code
LLMs with full parameters is costly, most models have been tuned with LoRA (Hu et al., 2021), a
parameter-efficient tuning method. In this work, we seek to answer how good LoRA is and if there
are other comparable tuning methods.

Model Analysis Across Scales Understanding why and how neural models behave is crucial
for developing more advanced ones. Existing studies have investigated predictable patterns in the
behavior of trained language models across scales (Kaplan et al., 2020; Henighan et al., 2020;
Hernandez et al., 2021; Hoffmann et al., 2022; Wei et al., 2022; Muennighoff et al., 2023a; Xia et al.,
2023) and their learning dynamics (McGrath et al., 2022; Tirumala et al., 2022; Biderman et al.,
2023). However, they either focus on pre-training or task-specific full-parameter fine-tuning. There is
no attempt to understand the mechanism of parameter-efficient instruction tuning. In this paper, we
work on this perspective and analyze Code LLMs (Wan et al., 2022; Troshin & Chirkova, 2022; Zhuo
et al., 2023a).

7 LIMITATIONS AND CONCLUSION

Experiment Noise We observe that our empirical results are based solely on a single run of each
task, due to budget constraints that prevent us from tuning and evaluating the same Code LLMs
multiple times. Although the single evaluation approach limits the breadth of our results and may
introduce unexpected experiment noise, it provides a preliminary insight into the performance and
potential of PEFT in different scenarios. Future investigations with multiple runs are necessary to
establish more robust conclusions and understand the variance and reliability of our results.

Fair Evaluation To compare different PEFT strategies fairly, we have used the same training
configurations described in Section 2.2. However, as we find that some PEFT strategies like Prompt
Tuning may be sensitive to the training hyperparameters in Section D, the consistent configurations
can be unfair. On the other hand, finding the optimal hyperparameters for each PEFT strategy is
impractical and can cost more than training with FFT. A more efficient approach is to reuse the
hyperparameters in previous work, which motivates us to adopt the default settings in the PEFT
library and LLM-Adapter framework. Meanwhile, we believe there may be other practical approaches
to benchmark PEFT strategies, encouraging the community to investigate further.

PEFT Strategy We notice that there are many more PEFT strategies (Karimi Mahabadi et al., 2021;
Zaken et al., 2022; Wang et al., 2022; Edalati et al., 2022) have been proposed recently. Due to the
limited computation budget, we do not include them all in our ASTRAIOS model suite. However, we
have publicly made all our source code, data, and models available. We encourage future development
in analyzing PEFT strategies on Code LLMs, which helps design more efficient PEFT strategies.

Data Scaling One limitation of our work is that we do not verify the validity of data scaling on
PEFT strategies. However, this factor has been well-studied in various works (Kaplan et al., 2020;
Hoffmann et al., 2022; Muennighoff et al., 2023a) for model pre-training and fine-tuning. As we find
that the performance of PEFT on Code LLMs monotonically increases when scaling up the model
size and training time, these selected PEFT strategies are likely aligned with the previous findings of
data scaling. We recommend further verification on this aspect.

Conclusion This work empirically studies the parameter-efficient instruction-tuning of Code LLMs.
We introduce a model suite consisting of 28 instruction-tuned OctoCoder across scales and PEFT
methods. We characterize the tuning methods on representative downstream tasks, model robustness,
and output security, highlighting the importance of understanding these models via comprehensive
evaluation. We also discuss the relationships between updated parameters and task performance. We
hope these analyses will inspire further follow-up work on understanding the mechanism of tuning
methods and developing new approaches. We share a more detailed analysis in the Appendix.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Armen Aghajanyan, Sonal Gupta, and Luke Zettlemoyer. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 7319–7328, 2021.

Armen Aghajanyan, Lili Yu, Alexis Conneau, Wei-Ning Hsu, Karen Hambardzumyan, Susan Zhang,
Stephen Roller, Naman Goyal, Omer Levy, and Luke Zettlemoyer. Scaling laws for generative
mixed-modal language models. arXiv preprint arXiv:2301.03728, 2023.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988, 2023.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Owura Asare, Meiyappan Nagappan, and N Asokan. Is github’s copilot as bad as humans at
introducing vulnerabilities in code? Empirical Software Engineering, 28(6):1–24, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Loubna Ben Allal, Niklas Muennighoff, Logesh Kumar Umapathi, Ben Lipkin, and Leandro von
Werra. A framework for the evaluation of code generation models. https://github.com/
bigcode-project/bigcode-evaluation-harness, 2022.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Pavol Bielik and Martin Vechev. Adversarial robustness for code. In International Conference on
Machine Learning, pp. 896–907. PMLR, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https:
//github.com/sahil280114/codealpaca, 2023.

Guanzheng Chen, Fangyu Liu, Zaiqiao Meng, and Shangsong Liang. Revisiting parameter-efficient
tuning: Are we really there yet? In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pp. 2612–2626, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. arXiv preprint arXiv:2210.11416, 2022.

Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh, Michel C Desmarais,
and Zhen Ming Jack Jiang. Github copilot ai pair programmer: Asset or liability? Journal of
Systems and Software, 203:111734, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

10

https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904, 2022.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi Nia, James J Clark, and Mehdi
Rezagholizadeh. Krona: Parameter efficient tuning with kronecker adapter. arXiv preprint
arXiv:2212.10650, 2022.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
synthesis. In The Eleventh International Conference on Learning Representations, 2022.

Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and Nigel Collier. On
the effectiveness of parameter-efficient fine-tuning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 12799–12807, 2023.

Peng Gao, Jiaming Han, Renrui Zhang, Ziyi Lin, Shijie Geng, Aojun Zhou, Wei Zhang, Pan Lu,
Conghui He, Xiangyu Yue, et al. Llama-adapter v2: Parameter-efficient visual instruction model.
arXiv preprint arXiv:2304.15010, 2023.

Wenjuan Han, Bo Pang, and Ying Nian Wu. Robust transfer learning with pretrained language
models through adapters. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pp. 854–861, 2021.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2021.

Xuehai He, Chunyuan Li, Pengchuan Zhang, Jianwei Yang, and Xin Eric Wang. Parameter-efficient
model adaptation for vision transformers. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 817–825, 2023.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Jordan Henkel, Goutham Ramakrishnan, Zi Wang, Aws Albarghouthi, Somesh Jha, and Thomas
Reps. Semantic robustness of models of source code. In 2022 IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER), pp. 526–537. IEEE, 2022.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic literature
review. arXiv preprint arXiv:2308.10620, 2023.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong Bing, Xing Xu, Soujanya
Poria, and Roy Ka-Wei Lee. Llm-adapters: An adapter family for parameter-efficient fine-tuning
of large language models. In The 2023 Conference on Empirical Methods in Natural Language
Processing, 2023a.

Zi-Yuan Hu, Yanyang Li, Michael R Lyu, and Liwei Wang. Vl-pet: Vision-and-language parameter-
efficient tuning via granularity control. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 3010–3020, 2023b.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022–1035,
2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, 2021.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965, 2022.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding, Yujie Qian, Zhilin Yang, and Jie Tang. Gpt
understands, too. AI Open, 2023.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.com/
huggingface/peft, 2022.

Thomas McGrath, Andrei Kapishnikov, Nenad Tomašev, Adam Pearce, Martin Wattenberg, Demis
Hassabis, Been Kim, Ulrich Paquet, and Vladimir Kramnik. Acquisition of chess knowledge in
alphazero. Proceedings of the National Academy of Sciences, 119(47):e2206625119, 2022.

Ian R McKenzie, Alexander Lyzhov, Michael Pieler, Alicia Parrish, Aaron Mueller, Ameya Prabhu,
Euan McLean, Aaron Kirtland, Alexis Ross, Alisa Liu, et al. Inverse scaling: When bigger isn’t
better. arXiv preprint arXiv:2306.09479, 2023.

Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane
Tazi, Sampo Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language models.
arXiv preprint arXiv:2305.16264, 2023a.

12

https://github.com/huggingface/peft
https://github.com/huggingface/peft

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Niklas Muennighoff, Thomas Wang, Lintang Sutawika, Adam Roberts, Stella Biderman, Teven
Le Scao, M Saiful Bari, Sheng Shen, Zheng Xin Yong, Hailey Schoelkopf, Xiangru Tang, Dragomir
Radev, Alham Fikri Aji, Khalid Almubarak, Samuel Albanie, Zaid Alyafeai, Albert Webson,
Edward Raff, and Colin Raffel. Crosslingual generalization through multitask finetuning. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 15991–16111,
Toronto, Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-long.891. URL https://aclanthology.org/2023.acl-long.891.

Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue
Zhuo, Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne Longpre. Octopack:
Instruction tuning code large language models. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=mw1PWNSWZP.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. Asleep
at the keyboard? assessing the security of github copilot’s code contributions. In 2022 IEEE
Symposium on Security and Privacy (SP), pp. 754–768. IEEE, 2022.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
Advances in Neural Information Processing Systems, 34:11054–11070, 2021.

Jonas Pfeiffer, Ivan Vulić, Iryna Gurevych, and Sebastian Ruder. Mad-x: An adapter-based framework
for multi-task cross-lingual transfer. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 7654–7673, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan Zeng, Ailun Yu,
Jichuan Ji, Jingyang Zhao, et al. Pangu-coder2: Boosting large language models for code with
ranking feedback. arXiv preprint arXiv:2307.14936, 2023.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter: Parameter-efficient transfer learning for
vision-and-language tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5227–5237, 2022.

Jeffrey Svajlenko and Chanchal K Roy. Bigclonebench. Code Clone Analysis: Research, Tools, and
Practices, pp. 93–105, 2021.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. Advances in
Neural Information Processing Systems, 35:38274–38290, 2022.

Sergey Troshin and Nadezhda Chirkova. Probing pretrained models of source codes. In Proceedings
of the Fifth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP,
pp. 371–383, 2022.

Yao Wan, Wei Zhao, Hongyu Zhang, Yulei Sui, Guandong Xu, and Hai Jin. What do they capture?
a structural analysis of pre-trained language models for source code. In Proceedings of the 44th
International Conference on Software Engineering, pp. 2377–2388, 2022.

13

https://aclanthology.org/2023.acl-long.891
https://openreview.net/forum?id=mw1PWNSWZP

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shiqi Wang, Zheng Li, Haifeng Qian, Chenghao Yang, Zijian Wang, Mingyue Shang, Varun Kumar,
Samson Tan, Baishakhi Ray, Parminder Bhatia, Ramesh Nallapati, Murali Krishna Ramanathan,
Dan Roth, and Bing Xiang. ReCode: Robustness evaluation of code generation models. In Anna
Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 13818–13843,
Toronto, Canada, July 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.
acl-long.773. URL https://aclanthology.org/2023.acl-long.773.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Proceedings of the
2021 Conference on Empirical Methods in Natural Language Processing, pp. 8696–8708, 2021.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
Codet5+: Open code large language models for code understanding and generation. arXiv preprint
arXiv:2305.07922, 2023b.

Zhen Wang, Rameswar Panda, Leonid Karlinsky, Rogerio Feris, Huan Sun, and Yoon Kim. Mul-
titask prompt tuning enables parameter-efficient transfer learning. In The Eleventh International
Conference on Learning Representations, 2022.

Jason Wei, Najoung Kim, Yi Tay, and Quoc V Le. Inverse scaling can become u-shaped. arXiv
preprint arXiv:2211.02011, 2022.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu, Lijie Wang, Haihua Yang, Biye Li, Cheng Cheng,
Weiwei Lü, Rui Hu, et al. Skywork: A more open bilingual foundation model. arXiv preprint
arXiv:2310.19341, 2023.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359, 2021.

Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Victoria Lin, Ramakanth Pasunuru, Danqi
Chen, Luke Zettlemoyer, and Veselin Stoyanov. Training trajectories of language models across
scales. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 13711–13738, Toronto, Canada, July 2023. Association for Computational Linguistics. doi:
10.18653/v1/2023.acl-long.767. URL https://aclanthology.org/2023.acl-long.767.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua,
Junning Zhao, Qian Liu, Che Liu, Leo Z. Liu, Yiheng Xu, Hongjin Su, Dongchan Shin, Caiming
Xiong, and Tao Yu. Openagents: An open platform for language agents in the wild. CoRR,
abs/2310.10634, 2023. doi: 10.48550/ARXIV.2310.10634. URL https://doi.org/10.48550/
arXiv.2310.10634.

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni. Pretraining data mixtures enable narrow
model selection capabilities in transformer models. arXiv preprint arXiv:2311.00871, 2023.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermis, Acyr Locatelli, and Sara Hooker. Pushing
mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning. In The
Twelfth International Conference on Learning Representations, 2023.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9, 2022.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen,
and Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh
International Conference on Learning Representations, 2022a.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022b.

14

https://aclanthology.org/2023.acl-long.773
https://aclanthology.org/2023.acl-long.767
https://doi.org/10.48550/arXiv.2310.10634
https://doi.org/10.48550/arXiv.2310.10634

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Lei Shen, Zihan Wang, Andi
Wang, Yang Li, et al. Codegeex: A pre-trained model for code generation with multilingual bench-
marking on humaneval-x. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 5673–5684, 2023.

Xin Zhou, Ruotian Ma, Yicheng Zou, Xuanting Chen, Tao Gui, Qi Zhang, Xuan-Jing Huang,
Rui Xie, and Wei Wu. Making parameter-efficient tuning more efficient: A unified framework
for classification tasks. In Proceedings of the 29th International Conference on Computational
Linguistics, pp. 7053–7064, 2022.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulner-
ability identification by learning comprehensive program semantics via graph neural networks.
Advances in neural information processing systems, 32, 2019.

Terry Yue Zhuo, Xiaoning Du, Zhenchang Xing, Jiamou Sun, Haowei Quan, Li Li, and Liming Zhu.
Pop quiz! do pre-trained code models possess knowledge of correct api names? arXiv preprint
arXiv:2309.07804, 2023a.

Terry Yue Zhuo, Yujin Huang, Chunyang Chen, and Zhenchang Xing. Red teaming chatgpt via
jailbreaking: Bias, robustness, reliability and toxicity. arXiv preprint arXiv:2301.12867, pp. 12–2,
2023b.

Terry Yue Zhuo, Zhou Yang, Zhensu Sun, Yufei Wang, Li Li, Xiaoning Du, Zhenchang Xing, and
David Lo. Data augmentation approaches for source code models: A survey. arXiv preprint
arXiv:2305.19915, 2023c.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

APPENDIX

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A WHAT IS ASTRAIOS?

ASTRAIOS is a suite of 28 instruction-tuned StarCoder models, employing 7 different PEFT methods
across 4 model sizes, with up to 16B parameters. Named after the Greek Titan god of the stars,
ASTRAIOS, this model collection represents a vast array of “stars”, each model illuminating a path
to understanding the cost-performance trade-offs in Code LLMs. Through extensive testing across
various tasks and datasets, ASTRAIOS evaluates the efficacy of fine-tuning methods with an emphasis
on understanding their performance implications at different model scales, robustness, and security
aspects. The suite serves as a celestial guide in the Code LLM universe, helping to chart the most
efficient and effective methods for model fine-tuning.

B ARTIFACTS

Name Public Link

Base Models

StarCoderBase 1B https://huggingface.co/bigcode/starcoderbase-1b
StarCoderBase 3B https://huggingface.co/bigcode/starcoderbase-3b
StarCoderBase 7B https://huggingface.co/bigcode/starcoderbase-7b
StarCoderBase https://huggingface.co/bigcode/starcoderbase

Instruction Tuning Data

CommitPackFT + OASST https://huggingface.co/datasets/bigcode/guanaco-commits

Original PEFT Implementation

LoRA https://github.com/huggingface/peft
P-Tuning https://github.com/huggingface/peft
AdapterH https://github.com/AGI-Edgerunners/LLM-Adapters
AdapterP https://github.com/AGI-Edgerunners/LLM-Adapters
Parallel https://github.com/AGI-Edgerunners/LLM-Adapters
(IA)3 https://github.com/huggingface/peft
Prompt https://github.com/huggingface/peft
AdaLoRA https://github.com/huggingface/peft

Evaluation Framework

Code Generation LM Evaluation Harness https://github.com/bigcode-project/bigcode-evaluation-harness

Astraios Models

Astraios LoRA 1B REDACTED
Astraios P-Tuning 1B REDACTED
Astraios AdapterH 1B REDACTED
Astraios AdapterP 1B REDACTED
Astraios Parallel 1B REDACTED
Astraios (IA)3 1B REDACTED
Astraios LoRA 3B REDACTED
Astraios P-Tuning 3B REDACTED
Astraios AdapterH 3B REDACTED
Astraios AdapterP 3B REDACTED
Astraios Parallel 3B REDACTED
Astraios (IA)3 3B REDACTED
Astraios LoRA 7B REDACTED
Astraios P-Tuning 7B REDACTED
Astraios AdapterH 7B REDACTED
Astraios AdapterP 7B REDACTED
Astraios Parallel 7B REDACTED
Astraios (IA)3 7B REDACTED
Astraios LoRA 16B REDACTED
Astraios P-Tuning 16B REDACTED
Astraios AdapterH 16B REDACTED
Astraios AdapterP 16B REDACTED
Astraios Parallel 16B REDACTED
Astraios (IA)3 16B REDACTED

Table 3: Used and produced artifacts.

17

https://huggingface.co/bigcode/starcoderbase-1b
https://huggingface.co/bigcode/starcoderbase-3b
https://huggingface.co/bigcode/starcoderbase-7b
https://huggingface.co/bigcode/starcoderbase
https://huggingface.co/datasets/bigcode/guanaco-commits
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/AGI-Edgerunners/LLM-Adapters
https://github.com/AGI-Edgerunners/LLM-Adapters
https://github.com/AGI-Edgerunners/LLM-Adapters
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/huggingface/peft
https://github.com/bigcode-project/bigcode-evaluation-harness

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 4: Summary of tuning methods and the trainable parameters of different model scales.

Type Name 1B 3B 7B 16B
Low-Rank LoRA (Hu et al., 2021) 3,588,096 7,372,800 12,472,320 17,776,640

Prompt P-Tuning (Liu et al., 2023) 12,650,496 23,882,496 50,466,816 113,448,960

Adapter

(IA)3 (Liu et al., 2022) 251,904 516,096 870,912 1,239,040
AdapterH (Houlsby et al., 2019) 50,331,648 103,809,024 176,160,768 251,658,240
AdapterP (Pfeiffer et al., 2020) 25,165,824 51,904,512 88,080,384 125,829,120
Parallel (He et al., 2021) 26,738,688 54,263,808 90,832,896 128,450,560

FFT FFT 1,137,207,296 3,043,311,104 7,327,263,232 15,517,456,384

C INSTRUCTION TUNING

All the instruction tuning experiments have been conducted on A100 80G GPUs. For all PEFT
strategies, we use the 8-bit quantized base models for training. For FFT, we use the original base
models without quantization.

LoRA We use the attention dimension of 8, the alpha parameter of 16, dropout probability of 0.05,
and target modules of "[c_proj, c_attn, q_attn]". We keep the other hyperparameters as default.

P-Tuning We use the 30 virtual tokens and remain the other hyperparameters as default.

AdapterH We use target modules of "[c_fc, mlp.c_proj]". We keep the other hyperparameters as
default.

AdapterP We use target modules of " [mlp.c_proj]". We keep the other hyperparameters as default.

Parallel We use target modules of "[c_fc, mlp.c_proj]". We keep the other hyperparameters as
default.

(IA)3 We target modules of "c_attn, mlp.c_proj]" and feedforward modules of " [mlp.c_proj]".

Prompt (Lester et al., 2021) We use the 30 virtual tokens and keep the other hyperparameters as
default.

AdaLoRA (Zhang et al., 2022a) We use the target average rank of the incremental matrix of 8, the
initial rank for each incremental matrix of 12, 200 steps of initial fine-tuning warmup, 1000 step of
final fine-tuning, the alpha parameter of 16, dropout probability of 0.05, the time interval between two
budget allocations of 10, EMA for sensitivity smoothing of 0.85, EMA for uncertainty quantification
of 0.85, and target modules of "[c_proj, c_attn, q_attn]". We keep the other hyperparameters as
default.

D PRELIMINARY STUDY: CROSS-ENTROPY LOSS

Cross-entropy loss has been used as the principal performance metric in training LLMs for NLP
tasks (Brown et al., 2020; Hernandez et al., 2021; Zhang et al., 2022b). Most studies on modeling
loss focus on either pre-training (Kaplan et al., 2020) or FFT (Chung et al., 2022). Previous studies
have consistent findings on loss (Kaplan et al., 2020; Hoffmann et al., 2022; Aghajanyan et al., 2023):
The final loss tends to decrease when the training computation (e.g., model sizes, training data and
training time) increases. These observations indicate that more training time and more trainable
model parameters can lead to better alignment with the tuning data. However, there is no systematic
investigation for PEFT, especially for Code LLMs. Based on the updated parameters for each tuning
method in Table 4, we hypothesize that each PEFT method has a similar trend to previous findings of
loss. Inspired by Kaplan et al. (2020), we study the loss change for instruction tuning Code LLMs,
varying two factors: (1) Model Size (1B - 16B); and (2) Training Time (measured in global step,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

maximum 200 steps). Due to the limited budget, We do not study how the amount of training data
may affect the loss.

1B 3B 7B 16B
Model Size

0.9

1.5
Tr

ai
n

Lo
ss

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

1B 3B 7B 16B
Model Size

1

1.5

Te
st

 L
os

s

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

Figure 8: Final loss across model sizes. We note that y-axis is in the logarithmic scale.

Model Size Scaling We present the results of final loss in Figure 8 when varying the model size
from 1B to 16B. Our first observation is that train and test loss are well aligned, indicating that
the models trained on the selected tuning methods are not overfitted. The second observation is
that both train and test loss also strictly decrease when the model size increases. Although these
observations are aligned with the aforementioned observations (Kaplan et al., 2020; Hoffmann et al.,
2022), they show the different scales of loss change, suggesting different tuning methods may require
different levels of power. Compared to other tuning methods, FFT demonstrates a slightly better loss
performance than PEFT methods like LoRA and Parallel Adapter. As we notice that heavier PEFT
methods (which update more parameters) tend to have a better final loss, we hypothesize that more
trainable parameters in the model may result in a smaller loss, regardless of how the parameters are
updated during training.

Training Time Scaling We show the changes in test loss on the ASTRAIOS when varying the
training time in Figure 9. We notice that the loss continues decreasing when the model is trained
longer. Although the loss changes of (IA)3 are consistently insignificant. Notably, the loss of P-
Tuning decreases drastically to 50 steps but behaves similarly to other prompt-based methods. In
terms of tuning stability, we observe that P-tuning is more unstable than other methods, where the
loss change appears to be a non-monotonic pattern. When comparing FFT against PEFT methods, we
find that FFT tends to decrease even after 200 steps, while PEFT methods do not show a decreasing
trend clearly. We hypothesize that it may be due to the number of updated parameters, where FFT
updates the full parameters in the model.

E EVALUATION SETUP

Devign We generate the outputs with a max length of 512 tokens in the style of greedy decoding.
All other parameters are defaulted in Ben Allal et al. (2022). For the one-shot example, we randomly
sample from the train set.

BigCloneBench We generate the outputs with a max length of 512 tokens in the style of greedy
decoding. All other parameters are defaulted in Ben Allal et al. (2022). For the one-shot example, we
randomly sample from the train set.

HumanEvalPack We generate 20 outputs per example with a max length of 2048 tokens and a
temperature of 0.2. All other parameters are defaulted in Ben Allal et al. (2022).

ReCode We generate the outputs with a max length of 1024 tokens in the style of greedy decoding.
All other parameters are defaulted in Ben Allal et al. (2022).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

25 50 75 100 125 150 175 200
Global Step

1.4

2

Te
st

 L
os

s

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

1B ASTRAIOS models.

25 50 75 100 125 150 175 200
Global Step

1.4

2

Te
st

 L
os

s

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

3B ASTRAIOS models.

25 50 75 100 125 150 175 200
Global Step

1.2

6

Te
st

 L
os

s

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

7B ASTRAIOS models.

25 50 75 100 125 150 175 200
Global Step

1.2

5

Te
st

 L
os

s

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

16B ASTRAIOS models.

Figure 9: Test loss of ASTRAIOS models across training time measured by Global Step. We note that
y-axis is in the logarithmic scale.

Asleep At The Keyboard We generate 20 outputs per example with a max length of 1024 tokens
and a temperature of 0.2. All other parameters are defaulted in Ben Allal et al. (2022).

F FAILURE OF SCALING

25 50 75 100 125 150 175 200
Global Step

1.4

2

Te
st

 L
os

s

AdaLoRA
AdaLoRA-Ablation

Prompt
Prompt-Ablation

1B model.

25 50 75 100 125 150 175 200
Global Step

1.4

2

Te
st

 L
os

s

AdaLoRA
AdaLoRA-Ablation

Prompt
Prompt-Ablation

3B models.

Figure 10: Test loss of selected models across training time measured by Global Step. We note that
y-axis is in the logarithmic scale.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1B 3B
Model Size

1

2

Tr
ai

n
Lo

ss

AdaLoRA
AdaLoRA-Ablation

Prompt
Prompt-Ablation

1B 3B
Model Size

1

2

Te
st

 L
os

s

AdaLoRA
AdaLoRA-Ablation

Prompt
Prompt-Ablation

Figure 11: Final loss across model sizes. We note that y-axis is in the logarithmic scale.

During the initial experiment, we also train the models with Prompt Tuning (Lester et al., 2021) and
AdaLoRA (Zhang et al., 2022a). Although the loss continues decreasing when the training time
increases, we observe the phenomenon of model size scales in contrast to Section 2.2. As shown
in Figure 11, the final loss of these two tuning strategies consistently increases as the model size
increases, which is contrary to what we observe for other PEFT methods. In the new version of
LLM-Adapter (Hu et al., 2023a), we notice that the learning rate has been specifically mentioned. For
Prompt Tuning, the authors use 3× 10−2 instead of 3× 10−4, which is used in their other selected
PEFT strategies. Therefore, we hypothesize that some tuning strategies may require a much higher
learning rate to achieve optimal performance. We further try a few learning rates on training 1B
and 3B StarCoderBase models and find that 3× 10−2 works well for Prompt Tuning. In addition,
3 × 10−2 and 1 × 10−3 also work much better for AdaLoRA. With the new set of learning rates,
we find that these tuning strategies are aligned with our findings in Section D. Different from the
conclusion of Kaplan et al. (2020) that the choice of learning rate schedule is mostly irrelevant in
language model pre-training, we suggest that hyperparameters of learning rate schedule may matter a
lot for scaling parameter-efficient language model on fine-tuning.

G CODE COMPREHENSION

We present the detailed results on Defect Detection and Clone Detection in Table 5.

Table 5: Results of ASTRAIOS models on Defect Detection and Clone Detection. The best perfor-
mance is highlighted in bold. The second best performance is underlined.

Method Defect Detection Clone Detection
1B 3B 7B 16B 1B 3B 7B 16B

LoRA 44.15 44.90 49.05 31.95 9.30 12.05 14.10 8.80
P-Tuning 53.70 27.75 40.55 11.00 19.27 23.52 13.35 3.24
AdapterH 45.75 45.80 46.25 41.75 8.59 8.17 12.05 8.18
AdapterP 45.55 46.05 46.85 27.35 8.88 8.63 12.05 9.00
Parallel 34.50 33.50 52.55 42.30 9.55 8.94 10.16 17.21
(IA)3 53.90 33.55 37.20 23.70 8.28 11.76 23.19 8.13

FFT 50.80 44.20 48.30 43.65 8.34 12.68 8.04 12.62

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

H VISUALIZATION ON HUMANEVALPACK

1B 3B 7B 16B
Model Size

15

20

25

30

35

Pa
ss

@
1

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

Python Code Synthesize

1B 3B 7B 16B
Model Size

5
10
15
20
25
30
35
40

Pa
ss

@
1

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

Java Code Synthesize

1B 3B 7B 16B
Model Size

5

10

15

20

25

30

Pa
ss

@
1

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

Python Code Repair

1B 3B 7B 16B
Model Size

0

5

10

15

20

25

30

Pa
ss

@
1

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

Java Code Repair

1B 3B 7B 16B
Model Size

10

15

20

25

30

Pa
ss

@
1

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

Python Code Explain

1B 3B 7B 16B
Model Size

6

8

10

12

14

16

18

Pa
ss

@
1

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

Java Code Explain

Figure 12: Pass@1 results of ASTRAIOS models on HumanEvalPack.

I SIGNIFICANCE OF INVERSE SCALING AND ITS MITIGATION

To understand the significance of the observed inverse-scaling patterns in the code comprehension
tasks, we train the models with selected PEFT methods with multiple seeds and conduct the same
evaluation. As shown in Table 6 and Table 6, there is not much variance across multiple runs with the
same hyperparamaters. The standard deviation (S.D.) is only 0-1% for the 27 evaluation sets, which
is small. Additionally, (IA)3 is the most stable PEFT method compared to LoRA and P-Tuning.
The trends in Figure 3 and Figure 4 in the paper align with the average score patterns in the tables,
validating our previous findings on inverse scaling.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 6: Defect Detection Measured by Accuracy for (IA)3, LoRA, and P-Tuning

Model Size (IA)3 LoRA P-Tuning
1 2 3 Avg. S.D. 1 2 3 Avg. S.D. 1 2 3 Avg. S.D.

1B 53.7% 53.7% 53.7% 53.7% 0.0% 42.8% 44.4% 42.6% 43.2% 1.0% 47.8% 50.7% 50.7% 49.7% 1.7%
3B 33.5% 33.5% 33.5% 33.5% 0.0% 45.2% 45.0% 45.0% 45.1% 0.1% 27.9% 27.9% 26.2% 27.3% 1.0%
7B 39.2% 39.2% 39.2% 39.2% 0.0% 48.5% 51.5% 48.6% 49.5% 1.7% 43.2% 43.2% 41.2% 42.5% 1.2%

Table 7: Clone Detection Measured by F1 Score for (IA)3, LoRA, and P-Tuning

Model Size (IA)3 LoRA P-Tuning
1 2 3 Avg. S.D. 1 2 3 Avg. S.D. 1 2 3 Avg. S.D.

1B 8.4% 8.4% 8.4% 8.4% 0.0% 9.9% 9.4% 9.3% 9.5% 0.4% 16.8% 16.8% 13.8% 15.8% 0.35%
3B 12.5% 12.5% 12.5% 12.5% 0.0% 12.1% 12.1% 13.8% 12.7% 1.0% 19.5% 16.8% 19.5% 18.6% 1.56%
7B 23.1% 23.1% 23.1% 23.1% 0.0% 13.2% 15.4% 13.8% 14.1% 1.1% 14.8% 14.2% 14.8% 14.6% 1.73%

1B 3B 7B 16B
Model Size

30

35

40

45

50

55

Ac
cu

ra
cy

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

Figure 13: Results on Defect Detection with
1-shot demonstration.

1B 3B 7B 16B
Model Size

0

5

10

15

20

25

Ac
cu

ra
cy

(IA)3

AdapterH

AdapterP

FFT
LoRA

P-Tuning
Parallel

Figure 14: Results on Clone Detection with
1-shot demonstration.

In addition, we have attempted to see if the inverse-scaling-like patterns in code comprehension
tasks can be mitigated and more aligned with scaling laws. As Wei et al. (2022) have shown that
1-shot demonstrations can make all inverse scaling tasks U-shaped or flat, we try to see if 1-shot
examples can help with defection detection and clone detection. To select the 1-shot examples, we
randomly sample a fixed sample from the train set of each benchmark. We re-evaluate all ASTRAIOS
models on the two tasks and present the results in Figures 13 and 14. For defect detection, all PEFT
strategies become flatter than the previous patterns, which is similar to what Wei et al. (2022) observe.
However, for clone detection, the patterns of some tuning strategies like LoRA and FFT do not turn
flat. Although the performances of LoRA and FFT have been scaling up to 7B, they decrease at 15B.
We hypothesize that our size scaling is still not significant enough to represent an increasing pattern
after 15B for LoRA and FFT with 1-shot demonstrations.

J MODEL ROBUSTNESS

We present the detailed results on ReCode in Table 8.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 8: RP@1 and RC@1 results of ASTRAIOS models on ReCode. The best performance is
highlighted in bold. The second best performance is underlined.

Method
Format Function Syntax Docstring

1B 3B 7B 16B 1B 3B 7B 16B 1B 3B 7B 16B 1B 3B 7B 16B

R
ob

us
tP

as
s

LoRA 28.05 35.98 43.29 51.22 12.80 15.24 23.78 29.27 8.54 13.41 15.85 18.29 10.98 15.24 17.68 20.73
P-Tuning 18.29 29.88 39.63 48.78 7.32 15.85 21.34 23.78 6.71 11.59 14.02 17.68 6.71 14.63 18.29 21.34
AdapterH 10.98 34.15 40.24 46.95 4.88 14.02 17.07 23.78 7.32 11.59 12.20 15.85 6.10 12.80 14.63 17.68
AdapterP 9.76 35.37 43.90 50.00 1.22 15.85 21.34 26.22 4.88 12.20 14.63 18.29 3.05 15.24 19.51 20.12
Parallel 26.22 32.32 42.68 50.00 10.37 11.59 21.95 26.83 7.93 12.80 14.63 17.07 8.54 15.24 17.68 21.95
(IA)3 26.83 33.54 42.07 50.61 12.80 17.07 21.34 26.83 7.93 12.20 14.63 17.07 10.37 15.85 18.90 22.56
FFT 20.12 35.37 45.73 53.05 5.49 15.85 21.34 30.49 7.32 14.63 15.85 19.51 6.10 14.02 18.90 22.56

R
ob

us
tC

ha
ng

e LoRA 10.98 14.63 15.24 15.85 4.27 6.10 4.27 6.10 8.54 7.93 12.20 17.07 6.10 6.10 10.37 14.63
P-Tuning 6.10 9.76 12.80 17.68 4.88 4.27 5.49 7.32 5.49 8.54 12.80 13.41 5.49 5.49 8.54 9.76
AdapterH 0.61 15.85 15.85 15.85 5.49 4.27 7.32 7.32 3.05 6.71 12.20 15.24 4.27 5.49 9.76 13.41
AdapterP 3.66 14.63 17.68 15.85 4.88 4.88 4.88 7.93 1.22 8.54 11.59 15.85 3.05 5.49 6.71 14.02
Parallel 12.20 11.59 15.85 15.24 3.66 9.15 4.88 7.93 6.10 7.93 12.20 17.68 5.49 5.49 9.15 12.80
(IA)3 10.98 12.80 14.02 14.63 3.05 3.66 6.71 9.15 7.93 8.54 13.41 18.90 5.49 4.88 9.15 13.41

FFT 7.32 14.02 17.68 15.24 7.32 5.49 6.71 7.32 5.49 6.71 12.20 18.29 6.71 7.32 9.15 15.24

K FURTHER DISCUSSION

We further measure the correlations among final loss in Section D, overall task performance in
Section 3, and numbers of updated parameters via three metrics, Kendall (τ), Pearson (rp), and
Spearman (rs) coefficients. Kendall coefficient measures the ordinal association and is robust against
outliers, making it useful for non-normal data distributions. Pearson’s coefficient assesses linear
correlation, which is ideal for normal data distributions with expected linear relationships. Spearman’s
coefficient, like Kendall coefficient, is a non-parametric measure that assesses rank correlation, useful
for identifying monotonic but non-linear relationships.

Table 9: Correlations between trainable parameters and final loss. p-values are provided in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B .4286 .3113 .6071 .3333 .3358 .4643
3B .5238 .3433 .7143 .2381 .3835 .4286
7B .5238 .3555 .7143 .2381 .4091 .4286
16B .5238 .3524 .7143 .2381 .3986 .4286

Overall .4339 (.00) .3328 (.08) .5616 (.00) .3598 (.01) .3308 (.09) .4953 (.01)

We compute the correlations between updated parameters of ASTRAIOS models and the final loss
of corresponding models in Table 9. From the table, we first observe that the updated parameters
are more correlated to the final train loss than the test loss. However, they all imply that there is a
moderated correlation, which can be used for cross-entropy loss in model training. We also observe
that when we aggregate all statistics across model sizes, the correlations may slightly decrease.

Table 10: Correlations between final loss and overall task performance. p-values are provided in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B -.2381 -.4319 -.285 .04 -.4328 -.0357
3B .5238 .7819 .7143 .8095 .7859 .9286
7B .5238 .7165 .6786 .8095 .8230 .9286
16B .3333 .8096 .5000 .8095 .9211 .8929

Overall .7302 (.00) .9027 (.00) .9201 (.00) .8466 (.00) .9277 (.00) .9579 (.00)

We compute the correlations between the model loss and their mean downstream scores calculated in
Section 3. We show the results in Table 10, where we compute correlations for each model size and
the final aggregated statistics. Our observation on the size-level correlations indicates that the task
performance of 1B models is hard to align with the final loss, while bigger models tend to be much
more correlated to both train and test loss. We explain the hypothesis that 1B models do not have

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

enough capability to learn instructions. When aggregating the data points, we find that correlations
are much stronger than the size-level prediction. The strong correlations imply that model loss on
the general instruction data can work as a good proxy of downstream tasks in Code LLMs. When
comparing the correlations on train loss to the test loss, we observe the correlations are stronger
on the latter one. This can be explained by the fact that models tend to FFT on the training data,
where the loss on the train split can not generalize well on the unseen tasks and data. Moreover,
we also ask: What is the relationship between the downstream task performance and the updated
parameters? Therefore, We investigate the correlation between tuned parameters and cumulative
scores. The correlations are 0.3016 (.02), 0.4128 (.03) and 0.4138 (.03) for Kendall, Pearson and
Spearman correlations, respectively. We draw the conclusion – Possible.

L BREAKDOWN RESULTS OF EACH TASK

Based on Table 10, we also present the breakdown results of each downstream task. Interestingly, we
observe that the cross-entropy loss is more correlated to overall downstream performance, compared
to any individual code-specific tasks. The finding suggests that the cross-entropy of instruction tuning
can reflect the comprehensive capability of Code LLMs.

Table 11: Correlations between final loss and Defect Detection performance. p-values are provided
in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B -0.1429 -0.5728 -0.3571 -0.2381 -0.6089 -0.3929
3B .6190 .8856 .7857 .3333 .8396 .5000
7B .0476 .8040 .2857 .5238 .8782 .7143
16B .5238 .8497 .6786 .6190 .7928 .7143

Overall -0.1005 (.47) -0.1394 (.48) -0.1429 (.47) -0.1217 (.38) -0.2031 (.30) -0.2074 (.29)

Table 12: Correlations between final loss and Clone Detection performance. p-values are provided in
gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B -0.3333 -0.6446 -0.3571 -0.2381 -0.6206 -0.3214
3B -0.4286 -0.7587 -0.5357 .0476 -0.7293 .0000
7B -0.3904 -0.6541 -0.5406 -0.3904 -0.6541 -0.5045

16B .3333 .5725 .4286 .6190 .6900 .7500

Overall -0.0452 (.74) -0.1378 (.48) -0.0942 (.63) .0133 (.92) -0.0965 (.63) -0.0049 (.98)

Table 13: Correlations between final loss and Python Code Synthesis performance. p-values are
provided in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B .1429 .4799 .1071 .4286 .5474 .6429
3B -0.2381 .0568 -0.3214 .2381 .2300 .3571
7B .1429 .1659 .1071 .6190 .3790 .7143
16B -0.0476 -0.0567 -0.1429 .4286 .2544 .5357

Overall .6402 (.00) .8621 (.00) .8314 (.00) .7778 (.00) .9134 (.00) .9091 (.00)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 14: Correlations between final loss and Python Code Repair performance. p-values are provided
in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B .2381 .7109 .3929 .4286 .5474 .6429
3B .4286 -0.0824 .4643 .2381 .2300 .3571
7B .4286 .3619 .6071 .6190 .3790 .7143
16B .4286 .6983 .4286 .4286 .2544 .5357

Overall .7354 (.00) .8902 (.00) .8933 (.00) .7672 (.00) .9182 (.00) .9119 (.00)

Table 15: Correlations between final loss and Python Code Explanation performance. p-values are
provided in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B .4286 .8526 .4643 .3333 .8828 .5000
3B .3333 .9679 .5357 .6190 .9782 .7857
7B .5238 .9569 .7143 .6190 .9658 .8214
16B .3333 .9187 .4286 .6190 .9890 .7500

Overall .6772 (.00) .8576 (.00) .8604 (.00) .6667 (.00) .8291 (.00) .8380 (.00)

Table 16: Correlations between final loss and Java Code Synthesis performance. p-values are provided
in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B -0.3333 -0.3385 -0.4286 -0.4286 -0.3917 -0.5000
3B .3333 .1205 .2143 .6190 .2911 .7857
7B -0.0476 .0164 -0.0714 .4286 .3270 .6429
16B -0.0476 -0.2200 -0.1429 .4286 .0676 .5357

Overall .6349 (.00) .7552 (.00) .8331 (.00) .7407 (.00) .8050 (.00) .9015 (.00)

Table 17: Correlations between final loss and Java Code Repair performance. p-values are provided
in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B .0976 .0725 .1441 .1952 .0954 .2162
3B .2381 -0.0867 .1786 -0.2381 -0.2260 -0.2857
7B .6190 .4203 .7857 .5238 .3140 .6429
16B .5238 .7295 .4643 .8095 .8971 .9286

Overall .7232 (.00) .8011 (.00) .8751 (.00) .7550 (.00) .8273 (.00) .9136 (.00)

Table 18: Correlations between final loss and Java Code Explanation performance. p-values are
provided in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B .2381 .7219 .3571 .5238 .7811 .6071
3B -0.1429 .1024 -0.2143 .3333 .2680 .4643
7B -0.6190 -0.9510 -0.7500 -0.1429 -0.8729 -0.3214
16B .0476 .5829 .1429 .5238 .7734 .7143

Overall .5536 (.00) .8202 (.00) .7374 (.00) .6808 (.00) .8760 (.00) .8064 (.00)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

M MORE LIMITATIONS AND FUTURE WORK

Model Architecture Another limitation of our study is that we do not vary the model architecture
of Code LLMs. It is possible that some findings may not generalize to other encoder-decoder Code
LLMs like CodeT5 (Wang et al., 2021) and CodeT5+ (Wang et al., 2023b). However, as StarCoder is
built upon the enhanced GPT-2 (Radford et al.) architecture, we believe that our observations can be
transferred to other GPT-based LLMs.

Scaling Parameter-Constrained Language Models Although we demonstrate the possibility of
predicting the final loss based on the updated parameters and vice versa, we note that a scaling law
generally needs more than 100 models and their final loss. Ideally, the training experiments should
be consistent with different PEFT strategies, meaning that training hundreds of models is needed.
Furthermore, task performance is hard to predict, as there is much more noise in the downstream
tasks than the final loss. We foresee that predicting such overall performance is very challenging.

N PROMPTS

The prompting format can significantly impact performance. In the spirit of true few-shot learn-
ing (Perez et al., 2021), we do not optimize prompts and go with the format provided by the respective
model authors or the most intuitive format if none is provided. For each task not designed for
evaluating instruction-tuned Code LLMs, we define an instruction. The instruction is to ensure that
models behave correctly and that their outputs can be parsed effortlessly.

Question: {context}
Is there a defect in the Code, and respond to YES or NO.

Answer:

Figure 15: Prompt for Devign.

Question: Code 1: {context_1}
.
Code 2: {context_2}
Is there a clone relation between the Code1 and Code2, and respond to YES or NO.

Answer:

Figure 16: Prompt for BigCloneBench.

Question: {instruction}
{context}

Answer:
{function_start}

Figure 17: Prompt for HumanEvalPack.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Question: Create a Python script for this problem.

Answer: {function_start}

Figure 18: Prompt for Code Completion on ReCode.

Question: Create a script for this problem.

Answer: {function_start}

Figure 19: Prompt for Asleep At The Keyboard.

28

	Introduction
	The Astraios Suite and Benchmark
	Model
	Instruction Tuning
	Evaluation

	Main Results: Task Performance
	Further Analysis
	Model Robustness
	Code Security

	Discussion
	Related Work
	Limitations and Conclusion
	
	What is Astraios?
	Artifacts
	Instruction Tuning
	Preliminary Study: Cross-Entropy Loss
	Evaluation Setup
	Failure of Scaling
	Code Comprehension
	Visualization on HumanEvalPack
	Significance of Inverse Scaling and Its Mitigation
	Model Robustness
	Further Discussion
	Breakdown Results of Each Task
	More Limitations and Future Work
	Prompts

