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ABSTRACT

The high cost of full-parameter fine-tuning (FFT) of Large Language Models
(LLMs) has led to a series of parameter-efficient fine-tuning (PEFT) methods.
However, it remains unclear which methods provide the best cost-performance
trade-off at different model scales. We introduce ASTRAIOS, a fully permissive
suite of 28 instruction-tuned Code LLMs using 7 tuning methods and 4 model sizes
up to 16 billion parameters. Through investigations across 5 tasks and 8 different
datasets encompassing both code comprehension and code generation tasks, we
find that FFT generally leads to the best downstream performance across all scales,
and PEFT methods differ significantly in their efficacy based on the model scale.
LoRA usually offers the most favorable trade-off between cost and performance.
Further investigation into the effects of these methods on both model robustness
and code security reveals that larger models tend to demonstrate reduced robustness
and less security. Finally, we explore the relationships between updated parameters
and task performance. We find that the tuning effectiveness observed in small
models generalizes well to larger models, and the validation loss in instruction
tuning can be a reliable indicator of overall downstream performance. We believe
that our findings of PEFT can generalize to other decoder-only LLMs1.
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Figure 1: Mean task performance of ASTRAIOS models across 5 representative tasks and 8 datasets.
We indicate the average percentage of total parameters updated for each PEFT method.

1 INTRODUCTION

Large language models (LLMs) (Zhao et al., 2023) trained on Code (Code LLMs) have shown
strong performance on various software engineering tasks (Hou et al., 2023). There are three main
model paradigms: (A) Code LLMs for code completion (Nijkamp et al., 2022; Fried et al., 2022; Li
et al., 2023); (B) Task-specific fine-tuned Code LLMs for a single task (Hou et al., 2023); and (C)

1The codebase (under Apache-2.0 license) and models (under BigCode OpenRAIL-M license) will be
publicly available.
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Instruction-tuned (Ouyang et al., 2022) Code LLMs that excel at following human instructions and
generalizing well on unseen tasks (Wang et al., 2023b; Muennighoff et al., 2023b). Recent instruction-
tuned Code LLMs, including WizardCoder (Luo et al., 2023) and OctoCoder (Muennighoff et al.,
2024), have achieved state-of-the-art performance on various tasks without task-specific fine-tuning.
However, with the increasing parameters of Code LLMs, it becomes more expensive to perform full-
parameter fine-tuning (FFT) to obtain instruction-tuned models. In practise, to save computational
cost, parameter-efficient fine-tuning (PEFT) have been applied to instruct-tuned LLMs (Liu et al.,
2022; Zadouri et al., 2023; Hu et al., 2023a; Gao et al., 2023; Muennighoff et al., 2024). This training
strategy aims to achieve comparable performance to FFT by updating fewer parameters. While there
are many PEFT methods (Ding et al., 2022), the predominant PEFT method is still LoRA, which is
proposed in 2021 (Hu et al., 2021). However, there is no empirical evidence showing LoRA remains
the best for instruction-tuned code LLMs. In this paper, we investigate instruction-tuned code LLMs
with the following research question: what are the best PEFT methods for Code LLMs?

Existing analysis on PEFT methods presents several opportunities for further exploration: (1) Beyond
Task-Specific LLMs. Most prior works (Zhou et al., 2022; Ding et al., 2023) only focus on the
model paradigm (B), where the selected base models are fine-tuned on specific downstream tasks.
While these studies provide insights into PEFT methods on task-specific LLMs, the transferability
of their findings to the instruction tuning paradigm is unclear. (2) Diverse Domains. Studies on
PEFT methods tend to evaluate in the predominant domains like vision (Sung et al., 2022; He et al.,
2023; Hu et al., 2023b) and text (Houlsby et al., 2019; He et al., 2021), leaving other domains like
code underexplored. (3) Inclusive PEFT Methods. Prior investigations on PEFT mainly consider
a limited number of methods, such as adapter-based tuning (Houlsby et al., 2019) or reparametric
tuning (Aghajanyan et al., 2021), which does not capture the full breadth of available methods. (4)
Multidimensional Evaluation. Previous works only consider limited evaluation on representative
downstream tasks (Chen et al., 2022; Fu et al., 2023; Ding et al., 2023). We argue that other evaluation
dimensions like model robustness (Han et al., 2021) and output code safety (Weidinger et al., 2021;
Zhuo et al., 2023b; Pearce et al., 2022; Dakhel et al., 2023) are also important, especially in the era
of LLM agents (Ouyang et al., 2022; Xie et al., 2023). (5) Scalability. Most prior PEFT work has
only explored LLMs with insufficient scales of model sizes and training time, which makes their
scalability questionable (Lester et al., 2021; Chen et al., 2022; Hu et al., 2023a).

To explore these identified opportunities further, we introduce ASTRAIOS, a fully permissive
suite of 28 instruction-tuned Code LLMs, which are fine-tuned with 7 tuning methods based on
the StarCoder (Li et al., 2023) base models (1B, 3B, 7B, 16B). We instruction-tune the models
based on the open-source dataset, CommitPackFT from OctoPack (Muennighoff et al., 2024), to
balance their downstream capabilities. We utilize PEFT configurations with Hugging Face’s best
practices (Mangrulkar et al., 2022) and integrate a few PEFT methods from recent frameworks (Hu
et al., 2023a). We first inspect the scalability of different tuning methods through the lens of cross-
entropy loss during instruction tuning. Specifically, we assess the scales of model size and training
time. Our main evaluation focuses on 5 representative code tasks, including clone detection (Svajlenko
& Roy, 2021), defect detection (Zhou et al., 2019), code synthesis (Muennighoff et al., 2024), code
repair Muennighoff et al. (2024), and code explain (Muennighoff et al., 2024). We further study the
tuning methods from two aspects: model robustness (Wang et al., 2023a) and code security (Pearce
et al., 2022). We assess how well models can generate code based on the perturbed examples and
how vulnerable the generated code can be.

The main experimental results can be found in Figure 1, where we observe that FFT generally leads
to the best downstream performance across all scales. In addition, we find that PEFT methods differ
significantly in their efficacy depending on the model scale. At 16B parameters, Parallel Adapter (He
et al., 2021) and LoRA (Hu et al., 2021) are the most competitive methods with FFT. Meanwhile, at
1B parameters, they are both slightly outperformed by P-Tuning and (IA)3. Thus, the choice of the
PEFT method should be considered along with the model scale at hand. Nevertheless, LoRA usually
offers the most favourable trade-off between cost and performance.

Meanwhile, we also observe that larger PEFT Code LLMs perform better on code generation tasks
while they do not show such patterns on code comprehension tasks like clone detection and defect
detection. In addition, increasing model size improves generation task performance but exhibits
vulnerabilities to adversarial examples and biases towards insecure code. Additionally, we investigate
the relationships among updated parameters, cross-entropy loss, and task performance. We find that
the final loss of small PEFT models can be extrapolated to the larger ones. We also observe strong
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Figure 2: Percentage (%) of total parameters updated for each PEFT method in ASTRAIOS models.

correlations between final loss and overall downstream task performance. Although the instruction
dataset we choose is general and is not directly correlated with the benchmark downstream tasks,
we suggest that the performance on such general data can serve as a proxy for the downstream
performance.

2 THE ASTRAIOS SUITE AND BENCHMARK

In this section, we document our model choices, training configurations, and evaluations in detail for
easy reproducing our experimental results in this paper.

2.1 MODEL

Base Model There are many Code LLMs available that could be a suitable base model. However,
most of them are not fully permissive such as Code-Llama (Roziere et al., 2023), and their training
data is always closed-source. To maximize transparency, we select the StarCoder series as our base
models, with the best permissive license. Concretely, four model scales including 1B, 3B, 7B and
16B parameters are selected.

PEFT Model We focus on three kinds of PEFT methods (Ding et al., 2022): (1) Adapter-based
Tuning (Houlsby et al., 2019): An early approach, which injects small-scale neural modules as
adapters to LLMs and only tune these adapters for model adaptation. (2) Prompt-based Tuning (Li
& Liang, 2021): It wraps the original input with additional context introducing virtual task-specific
tokens without adding layers of modules like adapters. (3) Intrinsic-rank-based Tuning (Aghajanyan
et al., 2021): A representative method is LoRA, which assumes that the change of weights during
model tuning has a low rank and thus low-rank changes to the matrices suffice. For all methods,
we utilize the implementations in the open-source PEFT library2 (Mangrulkar et al., 2022) and the
LLM-Adapters work (Hu et al., 2023a) built on top of it. We benchmark 6 PEFT methods, including
4 adapter-based, 1 prompt-based, and 1 intrinsic-rank-based tuning methods as shown in Figure 2.

2.2 INSTRUCTION TUNING

Dataset Following previous work, we select the dataset CommitPackFT+OASST from Oc-
toPack (Muennighoff et al., 2024) as the instruction tuning dataset, which helps StarCoder to achieve
superior performance. We note that there could be other choices by utilizing other datasets (e.g., the
publicly available dataset CodeAlpaca (Chaudhary, 2023)) . However, they usually focus on a certain
aspect of code-related tasks and lack generality to different tasks.

Configuration We train all models with a sequence length of 2048 tokens, with the batch size as 1,
the warm-up step as 12, and the global steps as 200. We set the learning rate as 1× 10−4 for PEFT

2https://github.com/huggingface/peft
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models and 1× 10−6 FFT models with a cosine scheduler in both cases. For PEFT methods, we use
8-bit-quantized models during training (Dettmers et al., 2022). The training details and cross-entropy
loss are documented in Appendix D.

2.3 EVALUATION

Code Comprehension To evaluate code comprehension, we select two representative tasks: clone
detection and defect detection. Clone detection aims to identify segments of code that are either exact
duplicates or structurally similar with variations in identifiers, literals, types, layout, and comments,
or even more broadly similar in terms of functionality. Defect detection targets for identifying bugs,
vulnerabilities, or antipatterns in code. We select two widely-used datasets from CodeXGLUE
benchmark Lu et al. (2021): BigCloneBench (Svajlenko & Roy, 2021) and Devign (Zhou et al.,
2019). As the original BigCloneBench and Devign are designed to evaluate classification models, we
prepend additional instructions to prompt the instruction-tuned models to complete such tasks. We
follow the evaluation settings of CodeXGLUE and use F1 and Accuracy for BigClone and Devign,
respectively. Due to the non-trivial number of test examples in these two datasets, we sample 2,000
from each to save costs. As BigCloneBench and Devign are in the binary classification tasks, we use
temperature 0 for model inference to get deterministic outputs.

Code Generation We use HumanEvalPack (Muennighoff et al., 2024), a benchmark recently
proposed that enables easy evaluation of instruction-tuned Code LLMs. The benchmark is structured
around three core tasks in code generation, each designed to test different capabilities of the model.
The first task, Code Synthesis, involves the model in synthesizing functional code given a function
with a docstring detailing the desired code behavior. The second task, Code Repair, challenges the
model to identify and fix a subtle bug in an otherwise correct code function, using provided unit tests
as a guide. The third and final task, Code Explanation, requires the model to generate a clear and
concise explanation for a correctly written code function. For the evaluation on HumanEvalPack, we
use its Python and Java splits and compute Pass@1 for each task. We use temperature 0.2 and sample
20 outputs per test example.

Model Robustness Evaluating the robustness of code generation models is crucial in understanding
their real-world applicability and reliability. Models that can maintain high-performance levels
despite variations and perturbations in input data are more likely to be effective in diverse and
dynamic coding environments (Bielik & Vechev, 2020; Henkel et al., 2022; Wang et al., 2023a).
Motivated by such model behaviors, we utilize ReCode (Wang et al., 2023a), a benchmark framework
designed to assess the robustness of Code LLMs. We use HumanEval (Chen et al., 2021) as the
base dataset and curated it to mimic natural variations while preserving the semantic integrity of
the original inputs. The perturbations cover a range of transformations (Zhuo et al., 2023c) on code
format, function, variable names, code syntax, and docstrings. These transformations are not arbitrary
but represent changes occurring naturally in coding practices. The quality of the perturbed data in
ReCode is verified through human evaluation and objective similarity scores, ensuring the relevance
and reliability of the dataset for robustness assessment. We use temperature 0.2 and 20 samples per
test example for the generation. To compute the level of model robustness, we adopt Robust Pass@k
(RP@k) from ReCode and also compute Robust Change@k (RC@k) as follows:

RP@k := Ex

[
1− n− rcs(x)(

n
k

) ]
(1)

RC@k := |Pass@k −Robust Pass@k| (2)

Code Security One limitation of Code LLMs is their tendency to generate code with potential
security vulnerabilities, as various studies have highlighted (Dakhel et al., 2023; Asare et al., 2023).
In our work, we aim to empirically examine how PEFT methods can influence the security aspects
of Code LLM outputs. We utilize the “Asleep at the Keyboard” (AATK) benchmark (Pearce et al.,
2022), which includes 89 security-centric scenarios, to provide a comprehensive evaluation across
three distinct dimensions: Diversity of Weakness (DoW), encompassing 18 unique vulnerability
classes from the MITRE Common Weakness Enumeration (CWE) taxonomy, sourced from the 2021
CWE Top 25 Most Dangerous Software Weaknesses; Diversity of Prompt (DoP), assessing responses
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to different prompts within the SQL injection vulnerability class; and Diversity of Domain (DoD),
involving scenarios in Verilog, a hardware description language. Our analysis predominantly focuses
on the DoW axis, comprising 54 scenarios–25 in C and 29 in Python–covering 18 CWEs. This focus
is due to the automatic evaluation challenges associated with the other two dimensions. After filtering
out scenarios that lack an automated test, we thoroughly examine 40 scenarios, including 23 in C and
17 in Python. We use temperature 0.2 and 20 samples per test example for the generation.

3 MAIN RESULTS: TASK PERFORMANCE
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Figure 3: Accuracy results of ASTRAIOS models
on Defect Detection.
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Figure 4: F1 results of ASTRAIOS models on
Clone Detection.

We seek to examine how well selective PEFT methods contribute to task performance in this section.
To benchmark the performance, we leverage the representative code downstream tasks: (1) Defect
Detection, (2) Code Clone, (3) Code Synthesis, (4) Code Repair and (5) Code Explanation. For
the first two code comprehension tasks, there is no existing study stating that the larger code LLMs
result in a better understanding of code. We are the first to study this aspect when varying the model
sizes. Regarding the latter three code generation tasks, previous power-law studies (Kaplan et al.,
2020; Hoffmann et al., 2022) have shown that increasing model sizes can also lead to better task
performance on generation tasks. We further validate this finding on the PEFT settings.

Code Comprehension Surprisingly, as shown in Figures 3 and 4, the results of both tasks are not
well aligned with the patterns we observe on code generation tasks. All tuning methods consistently
behave like the inverse scaling, which has been discussed in McKenzie et al. (2023). We hypothesize
that Code LLMs have not seen enough task-specific training data and cannot generalize to those
unseen tasks (Yadlowsky et al., 2023). As ASTRAIOS models are pre-trained on various source
code from GitHub repositories for next token prediction and fine-tuned on GitHub commits for code
refinement, they may not have a profound understanding of defects and cloned code. We also show
the results of the two code comprehension tasks when varying the model sizes in Appendix G.

Code Generation Table 1 demonstrates the performance on three different code generation tasks
on the Python and Java splits in HumanEvalPack. Over the six benchmarks, we first observe that FFT
results in consistent gains when the model parameters increase. When examining the PEFT methods,
We find they can also provide reasonable performance scalability similar to FFT. Therefore, the lower
test loss may lead to better performance across various downstream generation tasks for Code LLMs.
However, we notice that the benefit of base model sizes may also differ from tasks and languages.
For instance, 1B and 3B models typically underperform in code repair compared to code synthesis.
When the model parameters expand to 7B and 16B, their performance across these tasks becomes
more comparable.

Overall Performance To compare the overall task performance of different tuning methods, we
compute the mean cumulative scores for each tuning method per model size. We present the rankings
in Figure 1. We show that FFT remains the best regarding overall task performance, while LoRA and
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Table 1: Pass@1 results of ASTRAIOS models on HumanEvalPack Python and Java splits. The best
performance is highlighted in bold. The second best performance is underlined.

Method Code Synthesis Code Repair Code Explanation
1B 3B 7B 16B 1B 3B 7B 16B 1B 3B 7B 16B

Py
th

on
LoRA 17.26 25.37 32.01 38.08 3.29 11.16 21.74 27.50 20.49 22.53 25.34 30.52
P-Tuning 15.79 24.33 29.39 35.58 1.86 13.69 20.34 18.72 9.48 11.92 14.60 15.43
AdapterH 15.70 23.87 28.26 33.29 3.14 15.55 22.50 22.28 17.77 22.35 24.24 26.07
AdapterP 17.04 24.76 30.67 34.97 3.69 12.87 19.54 26.46 16.07 24.05 22.87 30.67
Parallel 15.98 26.65 28.81 35.88 4.91 8.11 16.13 26.43 19.70 23.14 23.93 31.10
(IA)3 16.13 25.34 30.52 36.80 2.01 14.05 17.07 23.60 9.51 11.86 14.30 16.19

FFT 16.95 25.21 32.38 38.47 3.26 14.45 21.40 29.88 15.37 23.45 26.13 30.85

Ja
va

LoRA 2.84 16.52 24.27 40.33 3.72 5.06 13.60 30.35 7.07 14.33 14.70 16.86
P-Tuning 10.67 14.73 20.73 37.19 0.00 7.53 11.74 22.25 6.07 9.79 17.32 13.02
AdapterH 8.99 13.45 17.53 33.41 0.12 6.89 14.70 24.91 6.74 9.57 13.99 14.85
AdapterP 10.46 16.77 21.28 33.68 3.66 6.52 15.40 32.07 6.65 11.62 14.15 16.28
Parallel 9.60 15.91 21.59 38.56 0.49 5.09 8.87 29.39 7.62 12.16 14.51 17.93
(IA)3 10.34 16.46 21.95 39.91 2.87 4.54 13.02 25.30 6.13 13.99 17.04 15.85

FFT 10.18 17.04 23.87 41.16 0.00 5.61 16.10 32.47 7.16 13.60 15.12 16.62

Parallel Adapter are comparable to FFT. However, there is still a huge performance gap between most
PEFT methods and FFT, suggesting that they cannot guarantee optimal performance. Regarding the
tuning efficiency, we use updated parameters as the metric to summarize two more findings. Firstly,
(IA)3 is efficient enough to perform reasonably by updating much fewer parameters than the other
PEFT methods. Secondly, we notice that AdapterP always performs better than AdapterH , even
though AdapterH updates more model parameters. The counter-intuitive observation indicates that
AdapterH may not be worth deploying in real-world practice.

4 FURTHER ANALYSIS

In this section, we further study two aspects of Code LLMs beyond task performance. Specifically, we
highlight the importance of model robustness and generated code security, which indicate real-world
practicality. We tend to understand the trend of model behavior across tuning methods and model
sizes.

4.1 MODEL ROBUSTNESS

While the performance on downstream tasks is essential, we argue that the evaluation of model
robustness is also necessary to characterize different tuning methods systematically. We therefore
consider benchmarking the robustness of code synthesis, one of the most representative downstream
tasks of source code.

We compute each tuning method’s worst-case RP@1 and RC@1 of each perturbation category.
Among the four types of perturbation, all models perform the worst on syntax transformation,
confirming the findings in Wang et al. (2023a). Furthermore, RP@1 per tuning method increases
when the model size is scaled up, indicating the generation capability is consistently improved. We
noticed that FFT may not perform better than other PEFT methods on smaller models, such as 1B and
3B. However, it results in the best RP@1 on larger models like 16B. By comparing different model
sizes, we observe that RC@1 consistently increases when the model gets bigger, indicating that larger
models will be less robust. To rank among the tuning methods through the lens of robustness, we
compute the mean RC@1 similar to Section 3 and illustrate in Figure 5. We observe that FFT and
LoRA do not show strong robustness. Instead, adapter-based tuning seems more robust while having
comparable performance to FFT, which is similar to what Han et al. (2021) have found in NLP tasks.
We reports all RP@1 and RC@1 of each perturbation category in Appendix J.

4.2 CODE SECURITY

Previous studies (Dakhel et al., 2023; Asare et al., 2023). have shown that Code LLMs can generate
code with security vulnerabilities, which can be exploited by malicious users. However, few studies
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Figure 5: Mean RC@1 of ASTRAIOS on ReCode. Lower RC@1 indicates better robustness. We
indicate the percentage of total parameters updated for each PEFT method.

Table 2: Valid and Insecure rates of ASTRAIOS models on AATK benchmark. We note that the
insecure rate is calculated based on the valid programs. The best performance is highlighted in bold.
The second best performance is underlined.

Method Valid% (↑) Insecure% (↓)
1B 3B 7B 16B 1B 3B 7B 16B

LoRA 85.9 89.1 75.9 87.1 23.1 26.2 20.9 35.0
P-Tuning 70.1 68.6 86.8 82.0 32.8 25.9 28.1 34.5
AdapterH 84.5 90.9 87.5 86.8 29.0 26.0 31.9 34.1
AdapterP 83.9 92.1 82.8 86.3 31.7 25.2 26.6 37.8
Parallel 88.9 94.1 70.0 86.0 30.2 19.3 22.3 32.6
(IA)3 78.0 62.1 77.4 86.6 34.8 25.2 23.1 30.4
FFT 82.9 93.6 80.1 84.1 22.6 27.4 21.2 38.3

have studied different tuning methods from the output security perspective. In this experiment, we
intend to understand how tuning methods affect the capability to generate secure code on AATK
benchmark.

We follow the original setting in Pearce et al. (2022) and compute the valid and insecure rates, which
are illustrated in Table 2. When comparing the valid rate of PEFT methods, it does not show better
performance when the model size increases, indicating that current models may not learn the program
validity intrinsically. However, we observe that the changes in the insecure rate show that larger
models are more likely to generate insecure code. This observation suggests that the growth of
learning capability can result in learning more data, including insecure programs. The study on the
insecure rate among tuning methods further shows that FFT and LoRA are still better than the other
tuning methods regarding the security level. While the other methods have a similar insecure rate,
P-Tuning may have more chances to generate less secure programs, which may not be suitable for
deploying in security-sensitive scenarios.

5 DISCUSSION

In this section, we seek to conduct a preliminary analysis of the performance of Code LLMs through
the lens of updated parameters. Specifically, we ask two questions: (1) What is the relationship
between the updated parameters and cross-entropy loss?; and (2) Can we utilize the performance of
loss to predict the task performance of Code LLMs?.

Loss of small models can be projected to larger ones. The relationship between the updated
parameters of ASTRAIOS models and their final loss is analyzed in Figure 6. Our analysis does not
reveal a consistent pattern across different model sizes when it comes to the correlation between

7
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Figure 6: Relationships between cross-entropy loss and the number of updated parameters. Lower
loss indicates the bigger models, as shown in Appendix D.

model loss and updated parameters. However, an interesting finding is the consistency in relative loss
performance across different model sizes when comparing various tuning methods. This consistency
suggests that the improvements achieved by each tuning method are likely to be similar regardless of
the model’s size. Therefore, the loss observed in smaller models, when tuned with different methods,
can be a useful predictor for the performance of the larger models.
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Figure 7: Relationships between cross-entropy loss and overall task performance.

Instruct-tuning loss is a strong predictor of downstream performance. Assuming that the model
has been instruction-tuned already but not yet done for the evaluation, we seek to understand if we
can utilize such loss to predict its performance on downstream tasks. Despite our instruction data
being derived from general sources like GitHub commits and broad NLP domains, which are not
directly aligned with the downstream tasks discussed in Section 3, we find some strong correlations.
Motivated by the aforementioned scenario, we aggregate all the data points of mean task performance
and their corresponding final loss in Figure 7. We observe that the models with lower loss generally
have better overall performance on downstream tasks. Specifically, the pattern is stronger on test loss
than on train loss. We explain this by the fact that the models do not learn to fit the test split and can
present a more accurate determination of their actual performance. Our observation suggests that
general instruction data can work as a good proxy of downstream tasks in Code LLMs, similar to the
prior findings in NLP (Anil et al., 2023; Wei et al., 2023).

6 RELATED WORK

Code Large Language Models Many base Code LLMs have been proposed recently (Chen et al.,
2021; Nijkamp et al., 2022; Fried et al., 2022; Allal et al., 2023; Zheng et al., 2023; Li et al., 2023;
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Roziere et al., 2023) mostly targeting code completion. With the help of these base Code LLMs, there
have been extensive studies fine-tuning task-specific Code LLMs to perform software engineering
tasks Hou et al. (2023). Later, a series of works has been proposed for instruction-tuning the base
Code LLMs (Luo et al., 2023; Shen et al., 2023; Muennighoff et al., 2024; Bai et al., 2023), aiming
to enhance the generalization capabilities of these models on diverse tasks. As fine-tuning Code
LLMs with full parameters is costly, most models have been tuned with LoRA (Hu et al., 2021), a
parameter-efficient tuning method. In this work, we seek to answer how good LoRA is and if there
are other comparable tuning methods.

Model Analysis Across Scales Understanding why and how neural models behave is crucial
for developing more advanced ones. Existing studies have investigated predictable patterns in the
behavior of trained language models across scales (Kaplan et al., 2020; Henighan et al., 2020;
Hernandez et al., 2021; Hoffmann et al., 2022; Wei et al., 2022; Muennighoff et al., 2023a; Xia et al.,
2023) and their learning dynamics (McGrath et al., 2022; Tirumala et al., 2022; Biderman et al.,
2023). However, they either focus on pre-training or task-specific full-parameter fine-tuning. There is
no attempt to understand the mechanism of parameter-efficient instruction tuning. In this paper, we
work on this perspective and analyze Code LLMs (Wan et al., 2022; Troshin & Chirkova, 2022; Zhuo
et al., 2023a).

7 LIMITATIONS AND CONCLUSION

Experiment Noise We observe that our empirical results are based solely on a single run of each
task, due to budget constraints that prevent us from tuning and evaluating the same Code LLMs
multiple times. Although the single evaluation approach limits the breadth of our results and may
introduce unexpected experiment noise, it provides a preliminary insight into the performance and
potential of PEFT in different scenarios. Future investigations with multiple runs are necessary to
establish more robust conclusions and understand the variance and reliability of our results.

Fair Evaluation To compare different PEFT strategies fairly, we have used the same training
configurations described in Section 2.2. However, as we find that some PEFT strategies like Prompt
Tuning may be sensitive to the training hyperparameters in Section D, the consistent configurations
can be unfair. On the other hand, finding the optimal hyperparameters for each PEFT strategy is
impractical and can cost more than training with FFT. A more efficient approach is to reuse the
hyperparameters in previous work, which motivates us to adopt the default settings in the PEFT
library and LLM-Adapter framework. Meanwhile, we believe there may be other practical approaches
to benchmark PEFT strategies, encouraging the community to investigate further.

PEFT Strategy We notice that there are many more PEFT strategies (Karimi Mahabadi et al., 2021;
Zaken et al., 2022; Wang et al., 2022; Edalati et al., 2022) have been proposed recently. Due to the
limited computation budget, we do not include them all in our ASTRAIOS model suite. However, we
have publicly made all our source code, data, and models available. We encourage future development
in analyzing PEFT strategies on Code LLMs, which helps design more efficient PEFT strategies.

Data Scaling One limitation of our work is that we do not verify the validity of data scaling on
PEFT strategies. However, this factor has been well-studied in various works (Kaplan et al., 2020;
Hoffmann et al., 2022; Muennighoff et al., 2023a) for model pre-training and fine-tuning. As we find
that the performance of PEFT on Code LLMs monotonically increases when scaling up the model
size and training time, these selected PEFT strategies are likely aligned with the previous findings of
data scaling. We recommend further verification on this aspect.

Conclusion This work empirically studies the parameter-efficient instruction-tuning of Code LLMs.
We introduce a model suite consisting of 28 instruction-tuned OctoCoder across scales and PEFT
methods. We characterize the tuning methods on representative downstream tasks, model robustness,
and output security, highlighting the importance of understanding these models via comprehensive
evaluation. We also discuss the relationships between updated parameters and task performance. We
hope these analyses will inspire further follow-up work on understanding the mechanism of tuning
methods and developing new approaches. We share a more detailed analysis in the Appendix.
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A WHAT IS ASTRAIOS?

ASTRAIOS is a suite of 28 instruction-tuned StarCoder models, employing 7 different PEFT methods
across 4 model sizes, with up to 16B parameters. Named after the Greek Titan god of the stars,
ASTRAIOS, this model collection represents a vast array of “stars”, each model illuminating a path
to understanding the cost-performance trade-offs in Code LLMs. Through extensive testing across
various tasks and datasets, ASTRAIOS evaluates the efficacy of fine-tuning methods with an emphasis
on understanding their performance implications at different model scales, robustness, and security
aspects. The suite serves as a celestial guide in the Code LLM universe, helping to chart the most
efficient and effective methods for model fine-tuning.

B ARTIFACTS

Name Public Link

Base Models

StarCoderBase 1B https://huggingface.co/bigcode/starcoderbase-1b
StarCoderBase 3B https://huggingface.co/bigcode/starcoderbase-3b
StarCoderBase 7B https://huggingface.co/bigcode/starcoderbase-7b
StarCoderBase https://huggingface.co/bigcode/starcoderbase

Instruction Tuning Data

CommitPackFT + OASST https://huggingface.co/datasets/bigcode/guanaco-commits

Original PEFT Implementation

LoRA https://github.com/huggingface/peft
P-Tuning https://github.com/huggingface/peft
AdapterH https://github.com/AGI-Edgerunners/LLM-Adapters
AdapterP https://github.com/AGI-Edgerunners/LLM-Adapters
Parallel https://github.com/AGI-Edgerunners/LLM-Adapters
(IA)3 https://github.com/huggingface/peft
Prompt https://github.com/huggingface/peft
AdaLoRA https://github.com/huggingface/peft

Evaluation Framework

Code Generation LM Evaluation Harness https://github.com/bigcode-project/bigcode-evaluation-harness

Astraios Models

Astraios LoRA 1B REDACTED
Astraios P-Tuning 1B REDACTED
Astraios AdapterH 1B REDACTED
Astraios AdapterP 1B REDACTED
Astraios Parallel 1B REDACTED
Astraios (IA)3 1B REDACTED
Astraios LoRA 3B REDACTED
Astraios P-Tuning 3B REDACTED
Astraios AdapterH 3B REDACTED
Astraios AdapterP 3B REDACTED
Astraios Parallel 3B REDACTED
Astraios (IA)3 3B REDACTED
Astraios LoRA 7B REDACTED
Astraios P-Tuning 7B REDACTED
Astraios AdapterH 7B REDACTED
Astraios AdapterP 7B REDACTED
Astraios Parallel 7B REDACTED
Astraios (IA)3 7B REDACTED
Astraios LoRA 16B REDACTED
Astraios P-Tuning 16B REDACTED
Astraios AdapterH 16B REDACTED
Astraios AdapterP 16B REDACTED
Astraios Parallel 16B REDACTED
Astraios (IA)3 16B REDACTED

Table 3: Used and produced artifacts.
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Table 4: Summary of tuning methods and the trainable parameters of different model scales.

Type Name 1B 3B 7B 16B
Low-Rank LoRA (Hu et al., 2021) 3,588,096 7,372,800 12,472,320 17,776,640

Prompt P-Tuning (Liu et al., 2023) 12,650,496 23,882,496 50,466,816 113,448,960

Adapter

(IA)3 (Liu et al., 2022) 251,904 516,096 870,912 1,239,040
AdapterH (Houlsby et al., 2019) 50,331,648 103,809,024 176,160,768 251,658,240
AdapterP (Pfeiffer et al., 2020) 25,165,824 51,904,512 88,080,384 125,829,120
Parallel (He et al., 2021) 26,738,688 54,263,808 90,832,896 128,450,560

FFT FFT 1,137,207,296 3,043,311,104 7,327,263,232 15,517,456,384

C INSTRUCTION TUNING

All the instruction tuning experiments have been conducted on A100 80G GPUs. For all PEFT
strategies, we use the 8-bit quantized base models for training. For FFT, we use the original base
models without quantization.

LoRA We use the attention dimension of 8, the alpha parameter of 16, dropout probability of 0.05,
and target modules of "[c_proj, c_attn, q_attn]". We keep the other hyperparameters as default.

P-Tuning We use the 30 virtual tokens and remain the other hyperparameters as default.

AdapterH We use target modules of "[c_fc, mlp.c_proj]". We keep the other hyperparameters as
default.

AdapterP We use target modules of " [mlp.c_proj]". We keep the other hyperparameters as default.

Parallel We use target modules of "[c_fc, mlp.c_proj]". We keep the other hyperparameters as
default.

(IA)3 We target modules of "c_attn, mlp.c_proj]" and feedforward modules of " [mlp.c_proj]".

Prompt (Lester et al., 2021) We use the 30 virtual tokens and keep the other hyperparameters as
default.

AdaLoRA (Zhang et al., 2022a) We use the target average rank of the incremental matrix of 8, the
initial rank for each incremental matrix of 12, 200 steps of initial fine-tuning warmup, 1000 step of
final fine-tuning, the alpha parameter of 16, dropout probability of 0.05, the time interval between two
budget allocations of 10, EMA for sensitivity smoothing of 0.85, EMA for uncertainty quantification
of 0.85, and target modules of "[c_proj, c_attn, q_attn]". We keep the other hyperparameters as
default.

D PRELIMINARY STUDY: CROSS-ENTROPY LOSS

Cross-entropy loss has been used as the principal performance metric in training LLMs for NLP
tasks (Brown et al., 2020; Hernandez et al., 2021; Zhang et al., 2022b). Most studies on modeling
loss focus on either pre-training (Kaplan et al., 2020) or FFT (Chung et al., 2022). Previous studies
have consistent findings on loss (Kaplan et al., 2020; Hoffmann et al., 2022; Aghajanyan et al., 2023):
The final loss tends to decrease when the training computation (e.g., model sizes, training data and
training time) increases. These observations indicate that more training time and more trainable
model parameters can lead to better alignment with the tuning data. However, there is no systematic
investigation for PEFT, especially for Code LLMs. Based on the updated parameters for each tuning
method in Table 4, we hypothesize that each PEFT method has a similar trend to previous findings of
loss. Inspired by Kaplan et al. (2020), we study the loss change for instruction tuning Code LLMs,
varying two factors: (1) Model Size (1B - 16B); and (2) Training Time (measured in global step,
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maximum 200 steps). Due to the limited budget, We do not study how the amount of training data
may affect the loss.
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Figure 8: Final loss across model sizes. We note that y-axis is in the logarithmic scale.

Model Size Scaling We present the results of final loss in Figure 8 when varying the model size
from 1B to 16B. Our first observation is that train and test loss are well aligned, indicating that
the models trained on the selected tuning methods are not overfitted. The second observation is
that both train and test loss also strictly decrease when the model size increases. Although these
observations are aligned with the aforementioned observations (Kaplan et al., 2020; Hoffmann et al.,
2022), they show the different scales of loss change, suggesting different tuning methods may require
different levels of power. Compared to other tuning methods, FFT demonstrates a slightly better loss
performance than PEFT methods like LoRA and Parallel Adapter. As we notice that heavier PEFT
methods (which update more parameters) tend to have a better final loss, we hypothesize that more
trainable parameters in the model may result in a smaller loss, regardless of how the parameters are
updated during training.

Training Time Scaling We show the changes in test loss on the ASTRAIOS when varying the
training time in Figure 9. We notice that the loss continues decreasing when the model is trained
longer. Although the loss changes of (IA)3 are consistently insignificant. Notably, the loss of P-
Tuning decreases drastically to 50 steps but behaves similarly to other prompt-based methods. In
terms of tuning stability, we observe that P-tuning is more unstable than other methods, where the
loss change appears to be a non-monotonic pattern. When comparing FFT against PEFT methods, we
find that FFT tends to decrease even after 200 steps, while PEFT methods do not show a decreasing
trend clearly. We hypothesize that it may be due to the number of updated parameters, where FFT
updates the full parameters in the model.

E EVALUATION SETUP

Devign We generate the outputs with a max length of 512 tokens in the style of greedy decoding.
All other parameters are defaulted in Ben Allal et al. (2022). For the one-shot example, we randomly
sample from the train set.

BigCloneBench We generate the outputs with a max length of 512 tokens in the style of greedy
decoding. All other parameters are defaulted in Ben Allal et al. (2022). For the one-shot example, we
randomly sample from the train set.

HumanEvalPack We generate 20 outputs per example with a max length of 2048 tokens and a
temperature of 0.2. All other parameters are defaulted in Ben Allal et al. (2022).

ReCode We generate the outputs with a max length of 1024 tokens in the style of greedy decoding.
All other parameters are defaulted in Ben Allal et al. (2022).
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Figure 9: Test loss of ASTRAIOS models across training time measured by Global Step. We note that
y-axis is in the logarithmic scale.

Asleep At The Keyboard We generate 20 outputs per example with a max length of 1024 tokens
and a temperature of 0.2. All other parameters are defaulted in Ben Allal et al. (2022).

F FAILURE OF SCALING
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Figure 10: Test loss of selected models across training time measured by Global Step. We note that
y-axis is in the logarithmic scale.
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Figure 11: Final loss across model sizes. We note that y-axis is in the logarithmic scale.

During the initial experiment, we also train the models with Prompt Tuning (Lester et al., 2021) and
AdaLoRA (Zhang et al., 2022a). Although the loss continues decreasing when the training time
increases, we observe the phenomenon of model size scales in contrast to Section 2.2. As shown
in Figure 11, the final loss of these two tuning strategies consistently increases as the model size
increases, which is contrary to what we observe for other PEFT methods. In the new version of
LLM-Adapter (Hu et al., 2023a), we notice that the learning rate has been specifically mentioned. For
Prompt Tuning, the authors use 3× 10−2 instead of 3× 10−4, which is used in their other selected
PEFT strategies. Therefore, we hypothesize that some tuning strategies may require a much higher
learning rate to achieve optimal performance. We further try a few learning rates on training 1B
and 3B StarCoderBase models and find that 3× 10−2 works well for Prompt Tuning. In addition,
3 × 10−2 and 1 × 10−3 also work much better for AdaLoRA. With the new set of learning rates,
we find that these tuning strategies are aligned with our findings in Section D. Different from the
conclusion of Kaplan et al. (2020) that the choice of learning rate schedule is mostly irrelevant in
language model pre-training, we suggest that hyperparameters of learning rate schedule may matter a
lot for scaling parameter-efficient language model on fine-tuning.

G CODE COMPREHENSION

We present the detailed results on Defect Detection and Clone Detection in Table 5.

Table 5: Results of ASTRAIOS models on Defect Detection and Clone Detection. The best perfor-
mance is highlighted in bold. The second best performance is underlined.

Method Defect Detection Clone Detection
1B 3B 7B 16B 1B 3B 7B 16B

LoRA 44.15 44.90 49.05 31.95 9.30 12.05 14.10 8.80
P-Tuning 53.70 27.75 40.55 11.00 19.27 23.52 13.35 3.24
AdapterH 45.75 45.80 46.25 41.75 8.59 8.17 12.05 8.18
AdapterP 45.55 46.05 46.85 27.35 8.88 8.63 12.05 9.00
Parallel 34.50 33.50 52.55 42.30 9.55 8.94 10.16 17.21
(IA)3 53.90 33.55 37.20 23.70 8.28 11.76 23.19 8.13

FFT 50.80 44.20 48.30 43.65 8.34 12.68 8.04 12.62
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H VISUALIZATION ON HUMANEVALPACK
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Figure 12: Pass@1 results of ASTRAIOS models on HumanEvalPack.

I SIGNIFICANCE OF INVERSE SCALING AND ITS MITIGATION

To understand the significance of the observed inverse-scaling patterns in the code comprehension
tasks, we train the models with selected PEFT methods with multiple seeds and conduct the same
evaluation. As shown in Table 6 and Table 6, there is not much variance across multiple runs with the
same hyperparamaters. The standard deviation (S.D.) is only 0-1% for the 27 evaluation sets, which
is small. Additionally, (IA)3 is the most stable PEFT method compared to LoRA and P-Tuning.
The trends in Figure 3 and Figure 4 in the paper align with the average score patterns in the tables,
validating our previous findings on inverse scaling.
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Table 6: Defect Detection Measured by Accuracy for (IA)3, LoRA, and P-Tuning

Model Size (IA)3 LoRA P-Tuning
1 2 3 Avg. S.D. 1 2 3 Avg. S.D. 1 2 3 Avg. S.D.

1B 53.7% 53.7% 53.7% 53.7% 0.0% 42.8% 44.4% 42.6% 43.2% 1.0% 47.8% 50.7% 50.7% 49.7% 1.7%
3B 33.5% 33.5% 33.5% 33.5% 0.0% 45.2% 45.0% 45.0% 45.1% 0.1% 27.9% 27.9% 26.2% 27.3% 1.0%
7B 39.2% 39.2% 39.2% 39.2% 0.0% 48.5% 51.5% 48.6% 49.5% 1.7% 43.2% 43.2% 41.2% 42.5% 1.2%

Table 7: Clone Detection Measured by F1 Score for (IA)3, LoRA, and P-Tuning

Model Size (IA)3 LoRA P-Tuning
1 2 3 Avg. S.D. 1 2 3 Avg. S.D. 1 2 3 Avg. S.D.

1B 8.4% 8.4% 8.4% 8.4% 0.0% 9.9% 9.4% 9.3% 9.5% 0.4% 16.8% 16.8% 13.8% 15.8% 0.35%
3B 12.5% 12.5% 12.5% 12.5% 0.0% 12.1% 12.1% 13.8% 12.7% 1.0% 19.5% 16.8% 19.5% 18.6% 1.56%
7B 23.1% 23.1% 23.1% 23.1% 0.0% 13.2% 15.4% 13.8% 14.1% 1.1% 14.8% 14.2% 14.8% 14.6% 1.73%
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Figure 13: Results on Defect Detection with
1-shot demonstration.
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Figure 14: Results on Clone Detection with
1-shot demonstration.

In addition, we have attempted to see if the inverse-scaling-like patterns in code comprehension
tasks can be mitigated and more aligned with scaling laws. As Wei et al. (2022) have shown that
1-shot demonstrations can make all inverse scaling tasks U-shaped or flat, we try to see if 1-shot
examples can help with defection detection and clone detection. To select the 1-shot examples, we
randomly sample a fixed sample from the train set of each benchmark. We re-evaluate all ASTRAIOS
models on the two tasks and present the results in Figures 13 and 14. For defect detection, all PEFT
strategies become flatter than the previous patterns, which is similar to what Wei et al. (2022) observe.
However, for clone detection, the patterns of some tuning strategies like LoRA and FFT do not turn
flat. Although the performances of LoRA and FFT have been scaling up to 7B, they decrease at 15B.
We hypothesize that our size scaling is still not significant enough to represent an increasing pattern
after 15B for LoRA and FFT with 1-shot demonstrations.

J MODEL ROBUSTNESS

We present the detailed results on ReCode in Table 8.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 8: RP@1 and RC@1 results of ASTRAIOS models on ReCode. The best performance is
highlighted in bold. The second best performance is underlined.

Method
Format Function Syntax Docstring

1B 3B 7B 16B 1B 3B 7B 16B 1B 3B 7B 16B 1B 3B 7B 16B

R
ob

us
tP

as
s

LoRA 28.05 35.98 43.29 51.22 12.80 15.24 23.78 29.27 8.54 13.41 15.85 18.29 10.98 15.24 17.68 20.73
P-Tuning 18.29 29.88 39.63 48.78 7.32 15.85 21.34 23.78 6.71 11.59 14.02 17.68 6.71 14.63 18.29 21.34
AdapterH 10.98 34.15 40.24 46.95 4.88 14.02 17.07 23.78 7.32 11.59 12.20 15.85 6.10 12.80 14.63 17.68
AdapterP 9.76 35.37 43.90 50.00 1.22 15.85 21.34 26.22 4.88 12.20 14.63 18.29 3.05 15.24 19.51 20.12
Parallel 26.22 32.32 42.68 50.00 10.37 11.59 21.95 26.83 7.93 12.80 14.63 17.07 8.54 15.24 17.68 21.95
(IA)3 26.83 33.54 42.07 50.61 12.80 17.07 21.34 26.83 7.93 12.20 14.63 17.07 10.37 15.85 18.90 22.56
FFT 20.12 35.37 45.73 53.05 5.49 15.85 21.34 30.49 7.32 14.63 15.85 19.51 6.10 14.02 18.90 22.56

R
ob

us
tC

ha
ng

e LoRA 10.98 14.63 15.24 15.85 4.27 6.10 4.27 6.10 8.54 7.93 12.20 17.07 6.10 6.10 10.37 14.63
P-Tuning 6.10 9.76 12.80 17.68 4.88 4.27 5.49 7.32 5.49 8.54 12.80 13.41 5.49 5.49 8.54 9.76
AdapterH 0.61 15.85 15.85 15.85 5.49 4.27 7.32 7.32 3.05 6.71 12.20 15.24 4.27 5.49 9.76 13.41
AdapterP 3.66 14.63 17.68 15.85 4.88 4.88 4.88 7.93 1.22 8.54 11.59 15.85 3.05 5.49 6.71 14.02
Parallel 12.20 11.59 15.85 15.24 3.66 9.15 4.88 7.93 6.10 7.93 12.20 17.68 5.49 5.49 9.15 12.80
(IA)3 10.98 12.80 14.02 14.63 3.05 3.66 6.71 9.15 7.93 8.54 13.41 18.90 5.49 4.88 9.15 13.41

FFT 7.32 14.02 17.68 15.24 7.32 5.49 6.71 7.32 5.49 6.71 12.20 18.29 6.71 7.32 9.15 15.24

K FURTHER DISCUSSION

We further measure the correlations among final loss in Section D, overall task performance in
Section 3, and numbers of updated parameters via three metrics, Kendall (τ ), Pearson (rp), and
Spearman (rs) coefficients. Kendall coefficient measures the ordinal association and is robust against
outliers, making it useful for non-normal data distributions. Pearson’s coefficient assesses linear
correlation, which is ideal for normal data distributions with expected linear relationships. Spearman’s
coefficient, like Kendall coefficient, is a non-parametric measure that assesses rank correlation, useful
for identifying monotonic but non-linear relationships.

Table 9: Correlations between trainable parameters and final loss. p-values are provided in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B .4286 .3113 .6071 .3333 .3358 .4643
3B .5238 .3433 .7143 .2381 .3835 .4286
7B .5238 .3555 .7143 .2381 .4091 .4286
16B .5238 .3524 .7143 .2381 .3986 .4286

Overall .4339 (.00) .3328 (.08) .5616 (.00) .3598 (.01) .3308 (.09) .4953 (.01)

We compute the correlations between updated parameters of ASTRAIOS models and the final loss
of corresponding models in Table 9. From the table, we first observe that the updated parameters
are more correlated to the final train loss than the test loss. However, they all imply that there is a
moderated correlation, which can be used for cross-entropy loss in model training. We also observe
that when we aggregate all statistics across model sizes, the correlations may slightly decrease.

Table 10: Correlations between final loss and overall task performance. p-values are provided in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B -.2381 -.4319 -.285 .04 -.4328 -.0357
3B .5238 .7819 .7143 .8095 .7859 .9286
7B .5238 .7165 .6786 .8095 .8230 .9286
16B .3333 .8096 .5000 .8095 .9211 .8929

Overall .7302 (.00) .9027 (.00) .9201 (.00) .8466 (.00) .9277 (.00) .9579 (.00)

We compute the correlations between the model loss and their mean downstream scores calculated in
Section 3. We show the results in Table 10, where we compute correlations for each model size and
the final aggregated statistics. Our observation on the size-level correlations indicates that the task
performance of 1B models is hard to align with the final loss, while bigger models tend to be much
more correlated to both train and test loss. We explain the hypothesis that 1B models do not have
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enough capability to learn instructions. When aggregating the data points, we find that correlations
are much stronger than the size-level prediction. The strong correlations imply that model loss on
the general instruction data can work as a good proxy of downstream tasks in Code LLMs. When
comparing the correlations on train loss to the test loss, we observe the correlations are stronger
on the latter one. This can be explained by the fact that models tend to FFT on the training data,
where the loss on the train split can not generalize well on the unseen tasks and data. Moreover,
we also ask: What is the relationship between the downstream task performance and the updated
parameters? Therefore, We investigate the correlation between tuned parameters and cumulative
scores. The correlations are 0.3016 (.02), 0.4128 (.03) and 0.4138 (.03) for Kendall, Pearson and
Spearman correlations, respectively. We draw the conclusion – Possible.

L BREAKDOWN RESULTS OF EACH TASK

Based on Table 10, we also present the breakdown results of each downstream task. Interestingly, we
observe that the cross-entropy loss is more correlated to overall downstream performance, compared
to any individual code-specific tasks. The finding suggests that the cross-entropy of instruction tuning
can reflect the comprehensive capability of Code LLMs.

Table 11: Correlations between final loss and Defect Detection performance. p-values are provided
in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B -0.1429 -0.5728 -0.3571 -0.2381 -0.6089 -0.3929
3B .6190 .8856 .7857 .3333 .8396 .5000
7B .0476 .8040 .2857 .5238 .8782 .7143
16B .5238 .8497 .6786 .6190 .7928 .7143

Overall -0.1005 (.47) -0.1394 (.48) -0.1429 (.47) -0.1217 (.38) -0.2031 (.30) -0.2074 (.29)

Table 12: Correlations between final loss and Clone Detection performance. p-values are provided in
gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B -0.3333 -0.6446 -0.3571 -0.2381 -0.6206 -0.3214
3B -0.4286 -0.7587 -0.5357 .0476 -0.7293 .0000
7B -0.3904 -0.6541 -0.5406 -0.3904 -0.6541 -0.5045

16B .3333 .5725 .4286 .6190 .6900 .7500

Overall -0.0452 (.74) -0.1378 (.48) -0.0942 (.63) .0133 (.92) -0.0965 (.63) -0.0049 (.98)

Table 13: Correlations between final loss and Python Code Synthesis performance. p-values are
provided in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B .1429 .4799 .1071 .4286 .5474 .6429
3B -0.2381 .0568 -0.3214 .2381 .2300 .3571
7B .1429 .1659 .1071 .6190 .3790 .7143
16B -0.0476 -0.0567 -0.1429 .4286 .2544 .5357

Overall .6402 (.00) .8621 (.00) .8314 (.00) .7778 (.00) .9134 (.00) .9091 (.00)
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Table 14: Correlations between final loss and Python Code Repair performance. p-values are provided
in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B .2381 .7109 .3929 .4286 .5474 .6429
3B .4286 -0.0824 .4643 .2381 .2300 .3571
7B .4286 .3619 .6071 .6190 .3790 .7143
16B .4286 .6983 .4286 .4286 .2544 .5357

Overall .7354 (.00) .8902 (.00) .8933 (.00) .7672 (.00) .9182 (.00) .9119 (.00)

Table 15: Correlations between final loss and Python Code Explanation performance. p-values are
provided in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B .4286 .8526 .4643 .3333 .8828 .5000
3B .3333 .9679 .5357 .6190 .9782 .7857
7B .5238 .9569 .7143 .6190 .9658 .8214
16B .3333 .9187 .4286 .6190 .9890 .7500

Overall .6772 (.00) .8576 (.00) .8604 (.00) .6667 (.00) .8291 (.00) .8380 (.00)

Table 16: Correlations between final loss and Java Code Synthesis performance. p-values are provided
in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B -0.3333 -0.3385 -0.4286 -0.4286 -0.3917 -0.5000
3B .3333 .1205 .2143 .6190 .2911 .7857
7B -0.0476 .0164 -0.0714 .4286 .3270 .6429
16B -0.0476 -0.2200 -0.1429 .4286 .0676 .5357

Overall .6349 (.00) .7552 (.00) .8331 (.00) .7407 (.00) .8050 (.00) .9015 (.00)

Table 17: Correlations between final loss and Java Code Repair performance. p-values are provided
in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B .0976 .0725 .1441 .1952 .0954 .2162
3B .2381 -0.0867 .1786 -0.2381 -0.2260 -0.2857
7B .6190 .4203 .7857 .5238 .3140 .6429
16B .5238 .7295 .4643 .8095 .8971 .9286

Overall .7232 (.00) .8011 (.00) .8751 (.00) .7550 (.00) .8273 (.00) .9136 (.00)

Table 18: Correlations between final loss and Java Code Explanation performance. p-values are
provided in gray.

Model Size Train Loss Test Loss
τ rp rs τ rp rs

1B .2381 .7219 .3571 .5238 .7811 .6071
3B -0.1429 .1024 -0.2143 .3333 .2680 .4643
7B -0.6190 -0.9510 -0.7500 -0.1429 -0.8729 -0.3214
16B .0476 .5829 .1429 .5238 .7734 .7143

Overall .5536 (.00) .8202 (.00) .7374 (.00) .6808 (.00) .8760 (.00) .8064 (.00)
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M MORE LIMITATIONS AND FUTURE WORK

Model Architecture Another limitation of our study is that we do not vary the model architecture
of Code LLMs. It is possible that some findings may not generalize to other encoder-decoder Code
LLMs like CodeT5 (Wang et al., 2021) and CodeT5+ (Wang et al., 2023b). However, as StarCoder is
built upon the enhanced GPT-2 (Radford et al.) architecture, we believe that our observations can be
transferred to other GPT-based LLMs.

Scaling Parameter-Constrained Language Models Although we demonstrate the possibility of
predicting the final loss based on the updated parameters and vice versa, we note that a scaling law
generally needs more than 100 models and their final loss. Ideally, the training experiments should
be consistent with different PEFT strategies, meaning that training hundreds of models is needed.
Furthermore, task performance is hard to predict, as there is much more noise in the downstream
tasks than the final loss. We foresee that predicting such overall performance is very challenging.

N PROMPTS

The prompting format can significantly impact performance. In the spirit of true few-shot learn-
ing (Perez et al., 2021), we do not optimize prompts and go with the format provided by the respective
model authors or the most intuitive format if none is provided. For each task not designed for
evaluating instruction-tuned Code LLMs, we define an instruction. The instruction is to ensure that
models behave correctly and that their outputs can be parsed effortlessly.

Question: {context}
Is there a defect in the Code, and respond to YES or NO.

Answer:

Figure 15: Prompt for Devign.

Question: Code 1: {context_1}
.
Code 2: {context_2}
Is there a clone relation between the Code1 and Code2, and respond to YES or NO.

Answer:

Figure 16: Prompt for BigCloneBench.

Question: {instruction}
{context}

Answer:
{function_start}

Figure 17: Prompt for HumanEvalPack.
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Question: Create a Python script for this problem.

Answer: {function_start}

Figure 18: Prompt for Code Completion on ReCode.

Question: Create a script for this problem.

Answer: {function_start}

Figure 19: Prompt for Asleep At The Keyboard.
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