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Abstract
With the advances of computational power, there has been a rapid development in complex
systems to predict certain outputs for industrial problems. Attributing outputs to input
features, or output changes to input or system changes has been a critical and challenging
problem in many real world applications. In industrial settings, a system could be a
chain of large scale models or simulators, or a combination of both that are black-box and
hard to interpret. The inputs to a system can change over time due to more information
becoming available, the system itself can also be updated as new models or simulators get
deployed or retrained. Understanding how system behaviours change provides invaluable
insights in the black-box systems and aids for critical downstream business decision making.
Attribution is the framework that tackles these problems. However, balancing explainability
versus accuracy remains a challenging problem. On one hand, attribution methods based
on black-box models are flexible enough to represent the systems but lack explainability;
simpler models such as linear regression are interpretable enough, however, they lack the
ability to represent the systems well. In this paper, we propose an explainable attribution
framework based on additive Gaussian processes that can be applied to three major types
of attribution tasks commonly seen in practice, where we demonstrate with a toy example
for each use case.

1. Introduction

Many science and engineering applications involve black-box systems that predict outputs
given multiple inputs. Such systems can be a complex combination of sub-systems that
consist of multiple large-scale machine learning models, simulators or engineering systems.
Given multiple sources of input features, the systems forecast predictions for the output
metrics. The predictions of the outputs change from time to time due to input changes
as new training data becomes available, or due to system updates which may involve new
model deployment, model re-training or engineering updates. Attributing the outputs to
inputs provides valuable insights in understanding how the complicated systems depend
on various sources of input features. Attributing the evolution of output changes provides
critical value in understanding the system behaviour, sensitivity of the system outputs to
input changes, and the impact of system updates, which are the foundation for the follow-up
decision making processes. Having an explainable attribution framework that is capable to
address these business challenges provides multiple benefits, including feature selection based
on attribution; anomaly detection; system trouble shooting when the learned input-output
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relationship is against experts’ domain knowledge; guiding system updates, such as model
reversion or deprecation when they contribute negatively to the desired system behaviour.

There exists a range of attribution methods among which a coalition game theoretical
methodology, namely Shapley values (Shapley et al., 1953), has become a popular method for
feature attribution in machine learning, due to its advantageous properties such as efficiency,
additivity, symmetry, dummy, etc. (Lundberg and Lee, 2017; Štrumbelj and Kononenko,
2014; Lundberg et al., 2019; Chau et al., 2022, 2023). The main idea behind it is to build an
underlying model to mimic the the systems (i.e., input-output relationships) and compute an
average of multiple counterfactual effects through keeping certain features in while leaving
out other features. While Shapley value is analytic when using linear models, for most
black-box models such as tree-based or deep learning models, Shapley values do not have a
closed-form solution. In such cases, it typically requires Monte Carlo sampling estimation
(Štrumbelj and Kononenko, 2014) where the computation time increases exponentially with
the number of features, limiting its usability for large or high-dimensional systems. On the
other hand, unlike supervised learning tasks, attribution usually does not have a ground
truth in real-world applications and verifying the attribution results is difficult. Providing
reliable and trustworthy attribution is a challenging problem, which motivates us to build
explainable attribution with insights into the internal mechanisms of the systems.

An explainable model that explains the system behaviour is one of the key factors in
attribution. Recently, Lu et al. (2022) proposed an explainable model based on Gaussian pro-
cesses with Orthogonal Additive Kernel (OAK) that provides low-dimensional parsimonious
representations while retaining competitive predictive performance. Given its explainability,
uncertainty quantification capability and efficient Shapley value calculation, we propose to
use OAK as the underlying model for 3 commonly seen attribution tasks: (1) attributing
output to inputs; (2) attributing output to inputs with system change; (3) attributing output
changes to input changes. Our contributions include: for (1) we propose to use Sobol’ indices
(Owen, 2014), and we provide closed-form expressions for the Sobol’ indices and Shapley
value under the OAK Gaussian process model. For (2) We propose to model the dataset
shift using an additional indicator input variable. We provide a kernel under the OAK
framework for handling this additional (binary) input variable in a way that is consistent
with continuous OAK kernels. For (3) we provide analytic expressions for Shapley values
under the OAK model to explains changes in the output. We also demonstrate how we
can leverage uncertainty quantification from first principle to provide confidence intervals of
attribution, which are essential in risk-aware decision making processes.

The paper is organised as follows: in Section 2 we briefly recap on the OAK model. We
link OAK with Shapley value attribution in Section 3. In Section 4 we discuss different types
of attribution tasks commonly seen in practice and demonstrate how we can address these
problems leveraging the OAK model. Finally we conclude in Section 5.

2. Orthogonal Additive Gaussian Processes Recap

We give a brief recap on the Gaussian processes with Orthogonal Additive Kernel (OAK)
(Lu et al., 2022). Suppose we have output y as a function of d-dimensional input features
x := (x1, · · ·xd), Duvenaud et al. (2011) considers building a GP model with the additive

2



Explainable Attribution using Additive Gaussian Processes

structure:

f(x) = f1(x1) + f2(x2) + · · ·+ f12(x1, x2) + · · ·+ f12...d(x1, x2, · · ·xd). (1)

Suppose the base kernel for each dimension i ∈ {1...d} is ki(xi, x′i), Lu et al. (2022)
constrained each functional component fi with a modified constrained kernel k̃i(xi, x′i), such
that:

∫
Xi
fi(xi)pi(xi)dxi = 0 for i ∈ [d], where [d] denotes all possible subsets of an index

set {1, . . . , d}, Xi and pi are the sample space and the density for input feature xi. The nth

order additive kernel in Duvenaud et al. (2011) are then replaced with the constrained kernel:

kaddn(x, x
′) = σ2n

∑
1≤i1≤i2≤···≤id≤d

[
n∏

l=1

k̃il(xil , x
′
il
)

]
. (2)

With this construction, Lu et al. (2022) demonstrated its competitive model predictive
performance, parsimonious and low-dimensional representation on a range of regression and
classification problems.

3. Sobol’ Index and Shapley Value

Sobol’ index, defined as Su := Vx[fu(x)] for feature set u, is a measure that quantifies the
contribution of each feature set u to the variance of the overall function. The Sobol’ index of
the OAK model is approximated by the best linear predictor which is the posterior mean of
the GP mu(x):

varx[fu(x)]

varx[f(x)]
≈ varx[mu(x)]

varx[m(x)]
(3)

where the variance in f is ignored. It has been proven that the Sobol’ index on the GP
posterior mean is analytic for the OAK model thanks to the construction of the constrained
kernels (see Section 4 of Lu et al. (2022)). Shapley value, as one of the most popular metrics
for attribution, is defined as

ϕj =
1

d

∑
u⊆[d]\{j}

(
d− 1

|u|

)−1

(ν(u ∪ {j})− ν(u)) (4)

for feature j, where ν is some value function. Owen (2014) showed that the Sobol’ index
Su derived from an ANOVA decomposition satisfies ϕj =

∑
u⊆[d],j∈u

Su
|u| where |u| is the

cardinality of set u. Intuitively, the Shapley value for an input j includes the variance
components of all factors where input j appears, with the weight inversely proportional to
the number of factors in a variance component. Since the functions in the OAK model are
precisely the components of the functional ANOVA decomposition, it follows that the OAK
model has an analytic form of the Shapley value where no Monte Carlo sampling is required.

4. Attribution

We describe a few commonly seen attribution tasks and illustrate with synthetic examples
how we can leverage the OAK model for attribution.
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Figure 1: True and learned functional decomposition. (a) f1; (b) f2; (c) true interaction
between x1 and x2; (d): learned interaction between x1 and x2. Note that the
constant gap between the truth and OAK in the first plot is expected and is
captured with the constant kernel.

4.1. Attributing Output to Inputs

This is one of the commonly seen attribution tasks where the goal is to explain the output
predictions to the input features. This can be used for e.g., gaining insights into the systems,
optimising for feature selections and quantifying the importance of features. We illustrate
with a two-dimensional problem where the inputs x1, x2 and output y are generated with

x1 ∼ N (0, 1), x2 ∼ N (0, 0.25), y = x21 + 2x2 − x1x2 + ϵ (5)

where ϵ ∼ N (0, 0.01). Fitting the OAK model with 1000 training data yields the learned
functional decomposition shown in Figure 1. We can observe that OAK is able to recover the
correct decomposition, which is a pre-requisite for accurate attribution tasks. The Shapley
value can be computed exactly as shown in Figure 2 (left). We observe that x1 has a bigger
impact on the output predictions, this is as expected since the quadratic form of f1 has
stronger impact than the linear form of f2.
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Figure 2: Shapley value attribution for the synthetic example, left: attributing output to
inputs; right: attributing output to inputs with mechanism change.

4.2. Attributing Output to Inputs with System Change

In practice, often not only the inputs affect the output, system updates can also have an
impact. System updates can be due to new model launches in certain components of the
systems, model re-training, and other engineering infrastructure updates that affect the
system output predictions. In this case, the underlying functional mechanism f that generates
the two set of outputs are different. To gain insights into how the system update affect the
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Figure 3: True and learned functional decomposition with mechanism change. (a) f1; (b) f2;
(c) interaction between x2 and w; (d): fw.

output, we introduce an additional binary feature ω to indicate whether the data is coming
from the old system (ω = 0) or the new system (ω = 1). Take the toy example above, for
any input feature (x1, x2, ω), we decompose the function as

f(x1, x2, ω) = f1(x1) + f2(x2) + fω(ω) + f12(x1, x2) + f1ω(x1, ω) + f2ω(x2, ω) + f12ω(x1, x2, ω).

Similarly as the input features x1, x2, we propose an orthogonal binary kernel to model the
indicator variable ω, whose Sobol’ index and Shapley value are also analytic (see details in
Appendix A). Importantly, one can examine and visualise fw and its interactions with the
input features f1ω(x1, ω), f2ω(x2, ω), f12ω(x1, x2, ω) to understand how the mechanism has
affected the output generating process through the inputs, offering deeper and insightful
explanation. For illustration, we modify the toy example with two different data generating
process through adding additional shift and interaction vis ω:

y = x21 + 2x2 − x1x2 + 4(ω − 0.5) + 2x2(w − 0.5) + ϵ, ω ∈ {0, 1} (6)

where ω changes the slope of f2 through interacting with x2 and shifts the output up or
down. We generate half of the data with ω = 0 and the other half with ω = 1. The learned
functional decomposition can be found in Figure 3, where we observe that OAK correctly
recovered the ground truth data generating process: similar f1 and f2 are learned compared
with Figure 1, except with bigger variance; the interaction between x2 and ω is correctly
learned where ω = 1 reduces the slope of x2 by 1 whereas ω = 0 increases it; the main effect of
ω is also correctly learned with a treatment effect of 2− (−2) = 4. Shapley value attribution
can be found in Figure 2 (right) where we observe x1 remains the main contributor.

4.3. Attributing Output Changes to Input Changes

Another typical attribution task is to attribute the evolution of output changes due to input
data updates. This is common when the systems take more recent input data to make
updated output predictions over time. The goal is to attribute the delta of the output to each
of the input features. Take a two-dimensional toy example with the following decomposition:

f(x1, x2) = f1(x1) + f2(x2) + f12(x1, x2) + Ex1,x2 [f(x1, x2)], (7)

let x1 := (x11, x
1
2) and x2 := (x21, x

2
2) be features for a single data point for datasets 1 and 2

respectively, where the superscripts represent different datasets and the subscripts represent
different features. Suppose the output f(x11, x12) has changed to f(x21, x22), we aim to attribute
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this change to each of its input feature, such that Shapley value efficiency is satisfied, i.e.,
ψ1(x

1,x2) + ψ2(x
1,x2) = f(x21, x

2
2)− f(x11, x

1
2), where ψ represent the Shapley values.

The Shapley value defined in Section 4.1 and 4.2 are based on the variance of each
functional component. For this particular attribution task, it is often desirable to have
attribution on the data point level granularity which can be used to deep dive system
evolution (i.e., explaining attribution of the delta in the output for each data point). Instead
of using the Sobol’ index as the value function as in Section 3, we propose to use

νx(u) =

∫
f(x1, x2, · · · , xd)dP−u (8)

where f takes the form of the OAK model. The value functions for each of the subset of
{1, 2} are therefore

νx({1}) = f1(x1), νx({2}) = f2(x2), νx({1, 2}) = f1(x1) + f2(x2) + f12(x1, x2). (9)

Let i ∈ {1, 2}, define δi(x1,x2) := fi(x
2
i )− fi(x

1
i ) and δ12(x1,x2) := f12(x

2
1, x

2
2)− f12(x

1
1, x

1
2),

the Shapley values ψ for the difference δ is: ψi(x
1,x2) = δi(x

1,x2) + 1
2δ12(x

1,x2). Note that
since f is a Gaussian process, the Shapley value defined above is a random variable. Denote
the posterior fu ∼ GP(µu, k̃u) for each u ⊆ {1, 2}, then the mean of the Shapley value is

E[ψi] = µi(x
2
i )− µi(x

1
i ) +

1

2

(
µ12(x

2
1, x

2
2)− µ12(x

1
1, x

1
2)
)
. (10)

One can then sum over the data points to get aggregated (coarser) level attribution. The
reasoning can be extended to the general cases with d > 2, see Appendix B for details.

Take the toy example in Section 4.1 for example. Suppose the input data x1 now follows
a different distribution x1 ∼ N (1, 0.25) that results in different outputs as shown in the left
two plots in Figure 4 (blue versus yellow), the Shapley value attributing the delta between
two output predictions can be found in Figure 4 (right) where we observe the output change
is almost all due to the first feature x1, aligning with our expectation. Not only is the mean of
Shapley value attribution analytic, the variance also has a closed form following uncertainty
propogation of Gaussian process models, see details in Appendix C and D. The confidence
interval of attribution with ±1 standard deviation is represented with the black horizontal
bar in Figure 4 (right), which captures the uncertainties from the OAK model and the noise
in the data generating process.

Figure 4: Data distributions for x1 (left) and output y (middle) for two datasets, represented
in blue and orange respectively. Shapley value attributing the changes of outputs
to changes in inputs (right).
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5. Conclusion

In this paper, we tackle multiple challenging attribution problems in industrial systems
through an explainable Gaussian process model. In particular, we extend the OAK model
to applications in various attribution tasks, including attributing output/output changes to
inputs/input changes and system change. We illustrate with toy examples on the benefits of
applying the OAK model to attribution tasks due to its explainability, efficient computation
and uncertainty quantification capability. Future work includes better experimental design
for downstream decision making processes, such as automatically selecting features, guiding
model development and active learning in picking most informative training data given
attribution results.
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Appendix A. Orthogonal Binary Kernel

We define the kernel of a binary feature x as

k(x, x′) =


a x = x′ = 0

b x = x′ = 1

c x ̸= x′
(11)

A Gaussian Process can be defined as f ∼ GP(0, k). Suppose the data distribution p(x =
0) = p0, p(x = 1) = p1, we say the kernel is orthogonal if

A :=
∑

x=0,x=1

f(x)p(x) = 0. (12)

Claim: let

k(x, x′) = σ2


p21 x = x′ = 0

p20 x = x′ = 1

−p0p1 x ̸= x′
(13)

where σ2 is the variance parameter, then f ∼ GP(0, k) is orthogonal. To see this, we need to
show that A :=

∑
x=0,x=1 f(x)p(x) = 0, this is equivalent to show

E[A] = V ar[A] = 0 (14)

Proof

E[A] =
∑

x=0,x=1

E[f(x)]p(x) = 0. (15)

V ar[A] = E[A2] =
∑

x=0,x=1

∑
y=0,y=1

E[f(x)f(y)]p(x)p(y)

=
∑

x=0,x=1

∑
y=0,y=1

k(x, y)p(x)p(y) (16)

= σ2(p21p
2
0 + p21p

2
0 − 2p21p

2
0) = 0.
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Appendix B. Shapley Value with d > 2.

Assuming the highest order of interaction to be 2. Then the Shapley value for feature 1 is

ϕ1 = δ1 +
1

2
δ12 +

1

2
δ13 + · · ·+ 1

2
δ1d. (17)

Its expectation is therefore

E[ϕ1] = µ1(x
2
1)− µ1(x

1
1) +

1

2

(
µ12(x

2
1, x

2
2)− µ12(x

1
1, x

1
2)
)
+

1

2

(
µ13(x

2
1, x

2
3)− µ13(x

1
1, x

1
3)
)

+
1

2

(
µ1d(x

2
1, x

2
d)− µ1d(x

1
1, x

1
d)
)
. (18)

The formula for other features have a similar form.

Appendix C. Uncertainties of Attribution

We can quantify uncertainties of the above Shapley value analytically using the covariance of
the posterior GP. Take ϕ1 for example, recall that var[X+Y ] = var[X]+var[Y ]+2cov[X,Y ],
we have

varf1 [ϕ1] = varf1 [δ1] +
1

4
varf12 [δ12] + covf1,f12 [δ1, δ12]. (19)

For each u ⊆ {1, 2},

varfu [δu] = Efu [(fu(x
2)− fu(x

1))2]−
(
Efu [x

2]− Efu [x
1]
)2 (20)

= Efu [(fu(x
2)2 + fu(x

1)2 − 2fu(x
1)fu(x

2))]−
(
µu(x

2)− µu(x
1)
)2 (21)

= k̃u(x
1,x1) + k̃u(x

2,x2)− 2k̃u(x
1,x2). (22)

For each u, v ⊆ {1, 2},

covfu,fv [du, dv] = covfu,fv [fu(x
2)− fu(x

1), fv(x
2)− fv(x

1)] (23)

= covfu,fv [fu(x
2), fv(x

2)]− covfu,fv [fu(x
2), fv(x

1)] (24)

− covfu,fv [fu(x
1), fv(x

2)] + covfu,fv [fu(x
1), fv(x

1)]. (25)

For each of the covariance term, note that fu and fv are independent GP a priori, but
the posterior GPs are no longer independent. Denote the prior GP of fu and fv to be
f0u ∼ GP(0, ku) and f0v ∼ GP(0, kv) respectively, the posterior covariance can be calculated
as

covfu,fv [fu(x
a), fv(x

b)] = covf0
u,f

0
v
[f0u(x

a), f0v (x
b)] (26)

− covf0
u
[f0v (x

a), f0u(X)](K + σ2I)−1covf0
v
[f0v (X), f0v (x

b)] (27)

=

{
−ku(xa, X)(K + σ2I)−1kv(X,x

b) u ̸= v

ku(x
a,xb)− ku(x

a, X)(K + σ2I)−1kv(X,x
b) u = v

(28)

for any a, b ∈ {1, 2}, where X is the training data and K =
∏

u⊆{1,2} ku(Xu, Xu) is the
training input covariance across all inputs. The analysis can be generalised for dimension
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d > 2, see details in Appendix C. The derivation can be extended to the aggregated level:
suppose one is interested in attributing the sum of N data points, we redefine δu as the sum
of the delta across the data points. For each u, v ⊆ {1, 2},

covfu,fv [δu, δv] = covfu,fv [
N∑

n=1

fu(x
2
n)−

N∑
n=1

fu(x
1
n),

N∑
n=1

fv(x
2
n)−

N∑
n=1

fv(x
1
n)] (29)

where

covfu,fv [
N∑

n=1

fu(x
a
n),

N∑
n=1

fv(x
b
n)] =

N∑
n=1

N∑
n′=1

covfu,fv [fu(x
a
n), fv(x

b
n′)] (30)

=

{
−
∑N

n,n′=1 ku(x
a
n, X)(K + σ2I)−1kv(X,x

b
n′) u ̸= v∑N

n,n′=1 ku(x
a
n,x

b
n′)−

∑N
n,n′=1 ku(x

a
n, X)(K + σ2I)−1kv(X,x

b
n′) u = v .

(31)

Appendix D. Uncertainties of Attribution for d > 2

var(ϕi) =
1

n2

∑
S⊆{x1,···xn}\{xi}

∑
T⊆{x1,···xn}\{xi}

(
n− 1

|S|

)−1(n− 1

|T |

)−1

× cov[v(S ∪ {i})− v(S), v(T ∪ {i})− v(T )] (32)

where

cov[v(S ∪ {i})− v(S), v(T ∪ {i})− v(T )] = cov[v(S ∪ {i})v(T ∪ {i})]
− cov[v(S ∪ {i}), v(T )]
− cov[v(S), v(T ∪ {i})] + cov[v(S), v(T )] (33)

and each of the term can be calculated as

cov[v(S), v(T )] = cov[
∑
u⊆S

δu,
∑
v⊆T

δv] =
∑
u⊆S

∑
v⊆T

cov[δu, δv] (34)

where each of the term in the summation can be computed by (25).
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