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ABSTRACT

Graph neural networks (GNNs) have proven effective on homophilic graphs, where
connected nodes share similar features. However, real-world graphs often exhibit
mixed patterns including heterophily, where connected nodes differ significantly.
Traditional GNNs struggle with such cases due to their inherent smoothing op-
erations. To address this limitation, we propose SimPlex-GT, a novel Graph
Transformer (GT) model that synergizes homophilic and heterophilic patterns
by integrating local GNN message passing with a novel global node-to-cluster
(N2C) attention mechanism. Our approach disentangles node representations into
local and global components: local features model neighborhood similarity, while
global features attend to dynamic cluster prototypes learned on the fly. A learn-
able gating mechanism fuses these complementary views, and an orthogonality
constraint encourages representational diversity. SimPlex-GT is trained under a
self-supervised teacher–student architecture where the teacher sees the full graph
and the student learns from masked inputs, with alignment enforced in a joint
latent space. A dynamic masking strategy further emphasizes difficult nodes, based
on prediction discrepancies. Comprehensive theoretical analysis demonstrates its
strong capability, and extensive evaluations across 11 benchmark datasets show
that SimPlex-GT achieves state-of-the-art performance on heterophilic graphs and
remains highly competitive on homophilic graphs, all with superior computational
efficiency. Code will be released upon acceptance.

1 INTRODUCTION

Graph-structured data are ubiquitous, naturally arising in social networks, knowledge graphs, com-
munication networks, and beyond. Learning meaningful representations from graph-structured data
has become an active and influential research direction, underpinning a variety of fundamental graph
learning problems such as node classification, link prediction, and graph-level classification (Kipf
& Welling, 2016; Gasteiger et al., 2019; Veličković et al., 2017; Wu et al., 2019). These problems
arise across numerous application domains, including recommender systems, biological networks,
and transportation infrastructures (Tang et al., 2020; Sankar et al., 2021; Fout et al., 2017; Wu et al.,
2022b; Zhang et al., 2024). Among existing approaches, Graph Neural Networks (GNNs) have
emerged as the prevailing framework, providing expressive architectures for capturing both local
level patterns and global level structure (Hamilton, 2020; Gasteiger et al., 2018; Veličković et al.,
2017; Rampášek et al., 2022).
Although traditional GNNs have demonstrated strong potential on graph-structured data, they suffer
from inherent limitations. To capture long-range dependencies, they typically rely on stacking
multiple layers, which often leads to well-known issues such as over-smoothing and over-squashing.
More critically, their core inductive bias—message passing restricted to local neighborhoods—is
well-suited for homophilic graphs, where connected nodes tend to be similar, but it fundamentally
limits their effectiveness on heterophilic graphs, where connected nodes are often dissimilar. Recently,
Graph Transformers (GTs) (Dwivedi & Bresson, 2020; Rampášek et al., 2022) have emerged as a
promising alternative, mitigating over-smoothing and over-squashing through global attention that
enables interactions between all node pairs. Crucially, GTs can identify similarities among nodes
that are not directly connected, making them particularly effective for heterophilic graphs where
informative relationships extend beyond local neighborhoods. Empirical studies further demonstrate
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Figure 1: Illustration of our pro-
posed method of synergizing
homophily and heterophily in
graph representation learning.
We harness traditional GCN for
addressing homophily and our
proposed node-to-cluster atten-
tion for handling heterophily.
We present two methods for the
synergy. Top: Complementary
Filtering (CF) based synergy,
and Bottom: Cluster Smooth-
ing (CS) based synergy. See text
for details.

that GTs achieve strong performance on various graph learning tasks, underscoring their potential as
a versatile architecture for diverse graph learning scenarios.

However, Graph Transformers (GTs) have notable limitations. First, their uniform global attention
lacks the local inductive bias crucial for homophilic graphs, where nearby nodes with similar features
provide the most relevant signals—something GNNs naturally capture through message passing. This
makes GTs less effective on graphs with strong local structure or mixed homophily and heterophily, as
neither GTs nor GNNs alone can model such complexity well. Second, GTs incur high computational
costs due to their quadratic complexity O(N2), limiting scalability. While some works add GNN
branches to GTs for local context, this often leads to redundancy, training instability, and worse
generalization on label-scarce datasets, while further increasing the computational burden. We
provide a thorough review of related work in Appendix A.

To address those challenges, we propose a novel Graph Transformer architecture (Fig. 1) that
synergizes homophily and heterophily existing in complex graphs, enabling the model to effectively
handle complex structural patterns. We first propose a node-to-cluster (N2C) attention mechanism,
a highly efficient representatinally-dense-computationally-sparse GTs with near-linear complexity
that achieves SOTA performance on heterophilic graphs by its own. However, due to the lack of
graph structural awareness, such models underperform on homophilic graphs. To overcome this issue,
we introduce two novel designs to empower the N2C attention—complementary filtering (CF) and
cluster smoothing (CS) with an orthogonality regularization term and a lightweight GCN residual
pathway—which effectively fuse local and global information while providing enhanced training
stability, as theoretically proven under common assumptions. Our model is termed SimPlex-GT,
Simplifying the complexity of mixed patterns in graph representation learning with GT.

Since node features play a crucial role in mixed-pattern graphs and limited labels in common semi-
supervised setting often cause overfitting, we adopt an end-to-end self-supervised learning paradigm.
Specifically, we design a feature alignment task in a joint latent space with a teacher–student
architecture: the teacher processes the full graph while the student observes a partially masked graph.
This approach removes the need for complex negative sampling in contrastive learning and avoids the
space mismatch problem in generative learning. Finally, we propose an adaptive masking strategy
that dynamically selects difficult nodes, encouraging the model to focus on the most challenging parts
of the graph and thereby improving representation quality across diverse structural patterns.

Our Contributions. We make three main contributions: (i) Unified Modeling of Homophily and
Heterophily: We propose SimPlex-GT, a novel Graph Transformer framework that effectively
handles both homophilic and heterophilic structures by synergistically combining local GCN-based
message passing with global node-to-cluster (N2C) attention. (ii) Node-to-Cluster Attention
Mechanism: We introduce a sparse and learnable node-to-cluster attention module that replaces costly
node-to-node attention with efficient and scalable interactions through dynamic cluster prototypes.
This enables linear time complexity and improved robustness to structural noise in heterophilic graphs.
(iii) Comprehensive Theoretical Analysis and Strong Empirical Performance with Efficiency:
SimPlex-GT achieves state-of-the-art accuracy on heterophilic graphs and remains highly competitive
on homophilic graphs across 11 benchmark datasets, while offering superior memory and training
efficiency compared to prior Graph Transformers and specialized GNNs.
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2 METHOD

In this section, we first show Graph Transformers (GTs) are strong learners for addressing heterophily
in graph data, but GTs suffers from the quadratic complexity due to the node-to-node attention
(Section 2.1.1). We then address this issue by proposing node-to-cluster attention with an end-to-end
learnable clustering module (Section 2.1.2). However, this comes at the cost of sacrificing structural
awareness, which leads to degraded performance on homophilic graphs. We handle this limitation by
joint-forcing the node-to-cluster attention and GCN to harness the best of the two models to synergize
homophily and heterophily (Section 2.2). Our final model is an integrative two-branch lightweight
network. We train it under a self-supervised learning setting (Section 2.3).

2.1 GRAPH TRANSFORMERS ARE STRONG LEARNERS FOR HETEROPHILIC GRAPHS

Consider a graph G =< V, E > with a node set V and an edge set E . For each node v ∈ V ,
we have a node feature f(v) and a node label yv. The homophily ratio of G is defined by ρ =∣∣{(u,v)∈E|yu=yv}

∣∣
|E| . Typically, homophilic graphs have homophily ratios closer to 1, while heterophilic

graphs show homophily ratios closer to 0.

2.1.1 PRELIMINARY ANALYSIS

As introduced in Sec. 1, GTs leverage global self-attention to enable nodes to aggregate information
from semantically relevant but non-adjacent nodes, a property particularly beneficial for heterophilic
graphs. To further clarify this advantage, we provide both empirical and theoretical analyses.

Figure 2: Performance on heterophilic graphs

We first evaluate three GNN methods under super-
vised learning settings—GCN, GAT, and a vanilla GT
with node-to-node attention—on four heterophilic
graphs: Cornell, Texas, Wisconsin, and Actor, whose
homophily ratios are 0.30, 0.11, 0.21, and 0.22, re-
spectively.

As expected, we observe that vanilla GT signifi-
cantly outperform classical GNNs on heterophilic
graphs, particularly when the homophily ratio is low.
Next, we provide a theoretical explanation of this
phenomenon to support our claim that GTs are strong
learners on heterophilic graphs.

Theorem 1. Assume features align with labels in graphs: x(0)(i) = yie with ∥e∥ = 1. Let node-wise
ρi :=

|{j∈N (i): yj=yi}|
|N (i)| , Vhetero = {i : ρi < 1

2 , i ∈ V}, h(1)(i) is the node feature computed by a
model (GNN or GT).

• GNN. For a one-layer mean-aggregation (linearized) GNN without self-loop, ⟨h(1)(i), yie⟩ =
2ρi − 1 < 0 for all i ∈ Vhetero, so it misclassifies at least |Vhetero|/|V| nodes.

• GT. There exist parameters θ∗ such that: ⟨h(1)
θ∗ (i), yie⟩ > 0,∀i ∈ V , yielding zero error.

The proof is provided in Appendix B. This theorem demonstrates that GT’s capacity to learn global
patterns enables it to rely primarily on feature similarity, thereby overcoming the structural constraints
that lead to GNN failures in heterophilic settings. The key insight is that GTs can adaptively disregard
the original graph topology when it is uninformative for the task (e.g., node classification).

However, GTs face two major challenges. First, their quadratic complexity of O(N2), where N is the
number of nodes, makes it impractical to apply full node-to-node attention on large-scale graphs (see
the out-of-memory in Table 1). Second, node-to-node attention is an interaction-before-aggregation
computational mechanism, making the resulted node representation at each layer less meaningful if
there are hierarchical structures among nodes (which indeed often exist in real-world graph data).

2.1.2 OUR PROPOSED NODE-TO-CLUSTER ATTENTION

We rethink node-to-node (N2N) attention by reversing its interaction-before-aggregation mechanism.
We seek aggregation-before-interaction computing mechanisms. To be efficient and effective, we
resort to node clustering as the aggregation strategy to exploit hierarchical node structures. To
facilitate end-to-end training, we propose to directly learn a node-to-cluster module as to enable
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joint clustering-for-meaningful-attention and attention-for-compact-clustering in the resulted node-to-
cluster (N2C) attention model.

Following the terminology used in Transformers (Vaswani et al., 2017), denote by XN,d a sequence
of tokens in the d-dim embedding space, extracted from a graph, where N is the number of nodes,
and d the node feature dimensions. The core of node-to-node attention is,

N2N Attention: X ′
N,d = Softmax

(Q ·K⊤
√
d

)
N×N

· V, (1)

Q = XN,d ·W d×d
query, K = XN,d ·W d×d

key , V = XN,d ·W d×d
value , (2)

where we omit the (optional) bias terms in the linear transformations of computing the query, key and
value for notation simplicity. The quadratic complexity lies in QK⊤, which is of N ×N size.

In our proposed node-to-cluster attention, we keep the query unchanged, while computing the key
and value not directly from XN,d, but from a small predefined number M ≪ N of learned cluster
tokens, ZM,d (e.g., M = 5 ). More specifically, we have,

ZM,d = C⊤
N,M ·XN,d, (3)

CN,M = Softmaxalong N

(
XN,d ·W d×M

cluster

)
, (4)

K = ZM,d ·W d×d
key , V = ZM,d ·W d×d

value , (5)

where CN,M is the N2C probabilistic assignment learned via a simple linear transformation, W d×M
cluster .

Each of the cluster token Zm is thus a CN,m weighted sum of node tokens with the sum of weights
equal to 1 (

∑N
n=1 Cn,m = 1) due to the Softmax in Eqn. 4. Eqn. 1 can be rewritten as,

N2C Attention: X ′
N,d = Softmax

(Q ·K⊤
√
d

)
N×M

·V, (6)

which has linear complexity with respect to the number of nodes N .

In practice, we often use multi-head attention with QH,N,c = Reshape
(
QN,d

)
, KH,M,c =

Reshape
(
KM,d

)
and VH,M,c = Reshape

(
VM,d

)
, where H is the predefined number of heads,

and d = H × c. We have,

X ′
N,d = Reshape

(
X ′

H,N,c

)
, X ′

h,N,c = Softmax
(Qh,N,c ·K⊤

h,M,c√
c

)
N×M

·Vh,N,c. (7)

We use the proposed multi-head N2C attention in a GT block with post-norm in our experiments.

Noise Reduction Besides the advantage of linear complexity, our node-to-cluster attention allows
each node to selectively align to the most relevant cluster prototype learned on the fly. This enables
nodes to bypass local noise from inconsistent neighbors and directly attend to clusters that share
feature-level consistency. We provide theoretical analysis in Theorem 2 with proof in Appendix C:

Theorem 2 (Variance reduction: N2C vs N2N). Assume x(0)i = yie + εi with E[εi] = 0 and
Cov(εi) = Σ ⪯ σ2I . Let pi,c ∈ [0, 1] with

∑C
c=1 pi,c = 1 be soft cluster assignments, and cluster

prototypes pc =
∑N

i=1 pi,c x
(0)
i∑N

i=1 pi,c
. For any nonnegative attention weights summing to 1,:

Var
(∑

j

αi→j⟨x(0)j , e⟩
)

≤ σ2∥e∥2, Var
(∑

c

αi→c⟨pc, e⟩
)

≤ σ2∥e∥2
∑
c

αi→crc, (8)

where rc =
∑

i p
2
i,c

(
∑

i pi,c)2
≤ 1 and

∑
c αi→crc ≤ 1. The N2C bound doesn’t exceed the bound of N2N.

Remark 1. The variance reduction factor rc ≈ 1/neff where neff is the effective number of nodes in
cluster c. Thus N2C provides denoising proportional to cluster sizes, while N2N lacks such benefit.

2.1.3 IS GRAPH TRANSFORMER ENOUGH FOR HOMOPHILIY?

Both N2N and N2C GTs ignore structural information and treat all nodes equally during aggregation.
As a result, their performance on homophilic graphs remains unclear, since structural signals play
a much more important role in such settings. To investigate this, we conducted a preliminary
experiment to evaluate both N2N and N2C attention on different type of graphs. Specifically, we use
four heterophilic datasets, Cornell, Texas, Wisconsin and Actor, and three homophilic datasets,
Cora, Citeseer, and Pubmed under a supervised learning setup. The results are shown in Table 1.
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Table 1: Node classification accuracy (in percent ± standard deviation across 10 splits) under
Supervised Learning (SL). OOM stands for "Out of Memory".

Methods Heterophilic Homophilic

Cornell Texas Wisconsin Actor Cora Citeseer Pubmed

GCN 57.03±3.30 60.00±4.80 56.47±6.55 30.83±0.77 81.50±0.30 70.30±0.27 79.00±0.05
GAT 59.46±3.63 61.62±3.78 54.71±6.87 28.06±1.48 83.02±0.19 72.51±0.22 79.87±0.03
MLP 81.08±7.93 81.62±5.51 84.31±3.40 35.66±0.94 56.11±0.34 56.91±0.42 71.35±0.05

N2N GT (SL) 81.35±2.55 84.59±4.20 87.43 ±3.21 OOM 66.80±0.12 65.20±0.32 OOM

N2C GT (SL) 82.16±1.79 87.60±4.26 88.23±3.18 36.13±0.62 73.16±0.18 68.12±0.30 74.90±0.08

From the results, we observe that our proposed N2C attention demonstrates clear advantages on
heterophilic graphs, outperforming classical GNNs. Our N2C attention slightly outperforms N2N
attention on those heterophilic graphs, and can handle larger graphs for which N2N attention suffers
from OOM. However, both N2N and N2C attention substantially underperform on homophilic
graphs, as they completely ignores the important structural information, including the clustering
process in our N2C attention, which is consistent with our earlier claim. As highlighted in prior
literature (Rampášek et al., 2022), GNNs remain necessary for effectively capturing local structural
information, particularly when a graph exhibits mixed patterns of homophily and heterophily.

2.2 SYNERGIZING HOMOPHILY AND HETEROPHILY

As illustrated in Fig. 1, we present two novel designs: Complementary Filtering (CF) and Cluster
Smoothing (CS), by inducing graph structural awareness in either the input (via CF) or output (via
CS) of the node-to-cluster module.

Complementary Filtering (CF). In the graph spectral domain, low-frequency components cor-
respond to signals that vary slowly across neighboring nodes. In other words, the low-frequency
spectrum captures the overall trends shared within the same community or class of nodes. Such
patterns are smooth and noise-resistant, thus providing stable representations of node groups. Con-
sequently, low-frequency information is well suited to serve as prototypes (i.e., cluster centers).
In contrast, high-frequency components correspond to signals that exhibit sharp variations across
neighboring nodes in the graph spectral domain. These variations makes high-frequency information
highly discriminative. Therefore, high-frequency signals naturally serve as effective queries: they
emphasize the distinctive aspects of each node that guide the selection of the most relevant prototype.

To formalize this idea, we are motivated by complementary filtering and decompose the node features
f(v) into two complementary channels via a low-pass filter Flowpass which is implemented and
approximated by a single layer of GCN for simplicity:

Gb = Flowpass(G), Gf = G − Gb. (9)
As illustrated in Fig. 1 (top), we compute Query using Gf , and apply the node-to-cluster module
using Gb. We provide a Theorem 3 on the stability of our CF design with proof in Appendix D.

Theorem 3 (Stability). Let queries use high-pass features and keys/values use low-pass prototypes:
si,c =

1√
dk
⟨Q(x

(i)
f ),K(c

(c)
b )⟩, s⋆i,c =

1√
dk
⟨Q(h(i)),K(s(c))⟩. (10)

Assume Q,K are LQ, LK–Lipschitz and E∥K(c
(c)
b )∥2 ≤M2

K , E∥Q(h(i))∥2 ≤M2
Q. Then

E
[
(si,c − s⋆i,c)

2
]
≤ 2

dk

(
L2
QM

2
K E∥x(i)f − h(i)∥2 + L2

KM
2
Q E∥c(c)b − s(c)∥2

)
. (11)

Consequently, this yields strictly smaller logit MSE compared to using unsplit features whenever the
filters attenuate off-target spectra.

Cluster Smoothing (CS). Alternatively, we can compute Query and apply the node-to-cluster module,
both from the input graph, as illustrated in Fig. 1 (bottom). After obtaining clusters (Eqns. 3 and 4),
similar nodes are grouped according to their raw features. These grouped nodes can be viewed as
forming a new coarse graph, where each node corresponds to a cluster prototype. To incorporate
structural information, instead of performing message passing over all nodes in the original graph,
we smooth only the M cluster prototypes on a coarse graph induced by the original topology. Denote
by AN×N the adjacency matrix of the input graph. With the clustering assignment CN,M (Eqn. 4),
we compute the aggregated adjacency matrix Ac among clusters and then smooth the clusters ZM,d

(Eqn. 3) using Flowpass (e.g., 1-layer GCN) by,
Ac = C⊤AC, Z ′ = Flowpass(Z, Âc) (12)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where Âc is the normalized adjacency matrix of coarse graph Gc. We present the following theorem:
Theorem 4 (Variance reduction in CS). Assume unsmoothed prototype zc = µc + εc with E[εc] = 0,
Cov(εc) ⪯ σ2I . Let N (c) denote neighbors of c on the coarse graph Gc, c /∈ N (c), wcu ≥ 0, and
{εu} independent across clusters. Let

∑
u∈N (c) wcu = 1, and define one-step residual smoothing:

z̃c = (1− α) zc + α
∑

u∈N (c) wcu zu, where α ∈ (0, 1). Then for any unit direction e,

Var
(
⟨z̃c − µc, e⟩

)
= Var

(〈
(1− α)εc + α

∑
u
wcuεu, e

〉)
≤
(
(1− α)2 + α2

)
σ2 ≤ σ2, (13)

with strict inequality whenever 0 < α < 1.

See Appendix E for proof. It shows that a single low-pass smoothing reduces the directional variance
of each cluster prototype. Thus, smoothed prototypes are uniformly more stable than unsmoothed
ones, and the smoothing strength α provides a controllable variance–fidelity trade-off.

Our Final Block: SimPlex-GT with Orthogonality Regularization. To further induce graph
structural awareness for addressing the homophily in graphs, we introduce a one-layer GCN branch
as the residual pathway capturing those information, denoted by Ghomo, and integrate it to the
heterophily-targeted N2C output Ghetero. The final representation is,

Gfull = Ghomo + Ghetero, Ḡfull = LN
(
Gfull + MLP(Gfull)

)
. (14)

To prevent potential representation redundancy and interference in the simple sum of Ghomo and
Ghetero, e.g., the two branches may collapse onto similar subspaces or create scale/gradient com-
petition/confliction, diminishing complementary gains, we introduce an auxiliary orthogonality
regularization term that encourages the two branches to learn features reinforcing each other. We
minimize the node-wise cosine similarity between the two branches, which will be used as the
auxiliary loss in training with a tunable weight λorth > 0. Note that, similar to other baselines
(Rampášek et al., 2022), above designs can be viewed as a building block in our framework, and
multiple blocks can be easily stacked to enhance the model’s expressive power. In our experiments,
we retain a single block for simplicity.

2.3 SELF-SUPERVISED LEARNING OFFERS A ROBUST LEARNING PARADIGM

To reveal the full potential of our proposed SimPlex-GT, we adopt a self-supervised learning frame-
work, which yields more robust node representations by leveraging the synergistic two-branch
modeling power. We exploit masked node modeling as the primary proxy objective and employ a
teacher–student predictive architecture, as they have shown strong representational learning capability
in domains such as computer vision (Assran et al., 2023; 2025).

Given that graph data possesses unique structural connections that distinguish it from other sensory
data such as imagery, we enforce prediction between student and teacher models across all nodes,
rather than limiting it to masked nodes only. This design acknowledges the dependencies between
masked and unmasked nodes. Furthermore, to better tackle the mixed patterns in graph data, we
propose a node-difficulty–driven dynamic masking strategy that adaptively adjusts the masking
process, enabling the model to learn more robust and informative representations.

Masked Node Modeling with Teacher–Student SSL. Given a graph G and a node-wise mask M,
we divide the nodes into the masked set Vm = {v | M(v) = 1} and the unmasked set Vu = V \ Vm.
For v ∈ Vm, the raw features are replaced with random noise f(v) ∼ N (0, 1), yielding the partially
masked graph G = (Vu ∪ Vm, E). We adopt a teacher–student predictive framework: the student
S(·;ϕ) sees G, while the teacher T (·;ψ) sees the full graph G. Both share the same SimPlex-GT,
but the teacher is updated via exponential moving average (EMA) of the student parameters without
requiring gradients to ensure training stability (as commonly done in masked data modeling).

All-Node Latent Prediction. Instead of predicting only masked nodes, we enforce consistency over
the entire node set to capture local-global contextual adaptations. For each v ∈ V , the outputs of
student and teacher are S(v;ϕ), T (v;ψ) ∈ Rd, and the prediction loss is

L(ϕ) = 1

N

∑
v∈V

(
∥S(v;ϕ)− T (v;ψ)∥22 + λorth · Cos

(
fShomo(v), f

S
hetero(v)

))
, (15)

where Cos
(
fShomo(v), f

S
hetero(v)

)
is the auxiliary orthogonality regularization term using the cosine

similarity between the two branches in the student network, and λorth the trade-off parameter.

Node-Difficulty–Driven Dynamic Masking. Let R ∈ (0, 1) be the overall masking ratio, so that
M = ⌊N ·R⌋ nodes are masked per iteration. Training begins with random masking (as warm-up)

6
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Table 2: Node classification accuracy (%) reported as mean ± standard deviation across 10 data splits.
The best, runner-up and third best results for each dataset are highlighted.

Category Methods Heterophilic Datasets Homophilic Datasets
Cornell Texas Wisconsin Actor Cora CiteSeer PubMed Arxiv

Homo Ratio 0.30 0.11 0.21 0.22 0.81 0.74 0.80 0.66

Semi-Supervised Learning (SL)

G
N

N
s

GCN 57.03±3.30 60.00±4.80 56.47±6.55 30.83±0.77 81.50±0.30 70.30±0.27 79.00±0.05 71.74±0.27
GAT 59.46±3.63 61.62±3.78 54.71±6.87 28.06±1.48 83.02±0.19 72.51±0.22 79.87±0.03 71.92±0.17
MLP 81.08±7.93 81.62±5.51 84.31±3.40 35.66±0.94 56.11±0.34 56.91±0.42 71.35±0.05 55.50±0.23

WRGAT 81.62±3.90 83.62±5.50 86.98±3.78 36.53±0.77 81.97±1.50 70.85±1.98 80.86±0.55 —
H2GCN 82.16±4.80 84.86±6.77 86.67±4.69 35.86±1.03 81.76±1.55 70.53±2.01 80.26±0.56 —

G
T

s

GraphGPS 66.22±3.87 75.41±1.46 78.04±2.88 36.95±0.65 82.84±1.03 72.73±1.23 79.94±0.26 70.97±0.41
NAGphormer 56.22±8.08 63.51±6.53 62.55±6.22 34.33±0.94 82.12±1.18 71.47±1.30 79.73±0.28 70.13±0.55
Exphormer 54.05±4.41 77.84±2.21 69.94±3.33 35.77±0.45 82.77±1.38 71.63±1.19 79.46±0.35 72.44±0.28

‡ NodeFormer 65.77±4.59 69.37±2.55 73.86±4.33 35.11±1.13 82.20±0.90 72.50±1.10 79.90±1.00 59.90±0.42
‡ SGFormer 74.97±4.31 76.15±1.99 78.79±2.89 37.46±0.84 84.50±0.80 72.60±0.20 80.30±0.60 72.63±0.13

Self-Supervised Learning (SSL)

H
om

o

DGI 63.35±4.61 60.59±7.56 55.41±5.96 29.82±0.69 82.29±0.56 71.49±0.14 77.43±0.84 70.19±0.73
MVGRL 64.30±5.43 62.38±5.61 62.37±4.32 30.02±0.70 83.03±0.27 72.75±0.46 79.63±0.38 70.88±0.51
BGRL 57.30±5.51 59.19±5.85 52.35±4.12 29.86±0.75 81.08±0.17 71.59±0.42 79.97±0.36 71.24±0.35

GRACE 54.86±6.95 57.57±5.68 50.00±5.83 29.01±0.78 80.08±0.53 71.41±0.38 80.15±0.34 70.96±0.31
GraphMAE 61.93±4.59 67.80±3.37 58.25±4.87 31.48±0.56 84.20±0.40 73.20±0.39 81.10±0.34 71.75±0.17

H
et

er
o

DSSL 53.15±1.28 62.11±1.53 56.29±4.42 28.36±0.65 83.06±0.53 73.20±0.51 81.25±0.31 70.13±0.25
HGRL 77.62±3.25 77.69±2.42 77.51±4.03 36.66±0.35 80.66±0.43 68.56±1.10 80.35±0.58 68.55±0.38

⋆ S3GCL 81.27±3.67 86.12±3.91 84.56±2.71 36.88±0.34 ⋆— ⋆— ⋆— 71.36±0.60
†MUSE 82.00±3.42 83.98±2.81 88.24±3.19 36.15±1.21 82.22±0.21 71.14±0.40 82.90±0.40 70.98±0.32
GREET 73.51±3.15 83.80±2.91 82.94±5.69 35.79±1.04 83.84±0.71 73.25 ±1.14 80.29±1.00 71.09±0.43

Ours SimPlex-GT -CF 83.78±4.68 92.97±4.39 91.37±2.35 37.51±0.87 84.05±0.15 73.28±0.12 81.25±0.26 72.01±0.26
SimPlex-GT -CS 84.86±3.24 92.97±3.66 92.16±2.63 37.68±0.83 83.85±0.12 73.12±0.20 80.88±0.36 71.97±0.32

‡ Original papers report limited heterophilic results, we supplement them with our reproduction and those from (Tang et al., 2025).
† MUSE provides hyperparameters only for Cornell, with unreproducible results; we tuned the others ourselves.
⋆ As S3GCL’s code is under construction, we report published results except on Cora, CiteSeer, and PubMed, which use different splits

with higher label rates.

and then switches to an exploitation–exploration scheme: m = ⌊r ·M⌋ nodes are sampled based
on their prediction difficulty (exploitation), while the remaining (M −m) are sampled randomly
(exploration), where r ∈ (0, 1) is the exploitation ratio, and the difficulty level of a node v is simply
defined by τ(v) = ∥S(v;ϕ)− T (v;ψ)∥22. Overall, each node v is masked according to a Bernoulli
distribution with probability,

pv = p0 + δv, p0 = (1− r)R, δv =
τ(v)

τmax
· r ·R, (16)

where τmax = maxu∈V τ(u). Thus all nodes retain a base masking rate p0 to prevent biased sampling
from over-focusing on difficult nodes, while harder nodes are masked more frequently. This design
balances task difficulty with data diversity, encouraging robust representation learning.

3 EXPERIMENTS

Datasets. We evaluate our model on a diverse suite of 11 real-world benchmarks, comprising
four widely used homophilic graphs (Cora, CiteSeer, PubMed, and ArXiv) (Sen et al., 2008; Hu
et al., 2021) and seven heterophilic graphs (Cornell, Texas, Wisconsin, Actor, Chameleon, Squirrel,
and Roman-Empire) (Pei et al., 2020; Platonov et al., 2023). These datasets cover both small- and
large-scale networks and originate from different domains, ensuring a comprehensive evaluation. As
the original Chameleon and Squirrel datasets are known to present issues (Platonov et al., 2023), we
use their filtered versions to provide a more reliable assessment of model performance.

For clarity, we also report the homophily ratios of all datasets in the main results table, with full
dataset statistics summarized in Appendix G. To ensure fair comparisons, we follow the standard
data splits provided by either the original papers (Platonov et al., 2023) or PyG (Fey & Lenssen,
2019). Specifically, for heterophilic graphs we use all ten official splits, while for Cora, CiteSeer, and
PubMed we adopt PyG’s commonly used low-label split with 20 labeled nodes per class. For ArXiv,
we use the official PyG split and report results averaged over 10 runs.

Baselines. To ensure consistency with prior work, we adopt the widely used node classification
task as our primary downstream evaluation. We compare against two groups of baselines: (1)
semi-supervised learning methods, including traditional GNNs such as GCN (Kipf & Welling,
2016), GAT (Veličković et al., 2017), and a simple MLP; heterophily-oriented GNNs such as
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WRGAT (Suresh et al., 2021), H2GCN (Zhu et al., 2020a), GPR-GNN (Chien et al., 2020), and
FAGCN (Bo et al., 2021); and Graph Transformers including GraphGPS (Rampášek et al., 2022),
NAGphormer (Chen et al., 2022b), Exphormer (Shirzad et al., 2023), NodeFormer (Wu et al., 2022a),
and SGFormer (Wu et al., 2023); and (2) self-supervised learning methods, including general
SSL approaches such as DGI (Velickovic et al., 2019), MVGRL (Hassani & Khasahmadi, 2020),
BGRL (Thakoor et al., 2021), GRACE (Zhu et al., 2020b), and GraphMAE (Hou et al., 2022); as
well as SSL methods tailored for heterophilic graphs such as DSSL (Xiao et al., 2022), HGRL (Chen
et al., 2022a), S3GCL (Wan et al., 2024), GREET (Liu et al., 2022), and MUSE (Yuan et al., 2023).

Table 3: Node classification accuracy (%) on large het-
erophilic graphs

Methods Chameleon(filtered) Squirrel(filtered) Roman-Empire

Homo Ratio 0.24 0.21 0.05

Semi-Supervised Learning (SL)
GCN 40.89±4.12 39.47±1.47 73.69±0.74

GPR-GNN 39.93±3.30 38.95±1.99 64.85±0.27
FAGCN 41.90±2.72 41.08±2.27 65.22±0.56
H2GCN 26.75±3.64 35.10±1.15 60.11±0.52

GraphGPS 40.79±4.03 39.67±2.84 82.00±0.61
NodeFormer 34.73±4.14 38.52±1.57 64.49±0.73
SGFormer 44.93±3.91 41.80±2.27 79.10±0.32

Self-Supervised Learning (SSL)
DGI 32.61±2.92 38.78±2.34 43.16±0.78

BGRL 32.55±4.65 35.67±1.42 52.16±0.25
GRACE 35.39±3.58 36.21±2.81 51.58±0.98
MUSE 46.48±2.51 41.57±1.44 66.26±0.53
GREET 44.67±2.98 39.69±1.85 63.37±1.91

SimPlex-GT - CF 50.32±3.20 47.75±1.65 81.56±0.68
SimPlex-GT - CS 50.48±3.22 47.56±1.63 79.88±0.78

For evaluation, we adopt the commonly
used protocol in SSL studies (Yuan et al.,
2023), where the pretrained SSL model is
frozen and student model’s node embed-
dings are fed into a linear classifier for
downstream node classification. To en-
sure fairness, we reproduce the results of
representative baselines (Liu et al., 2022;
Hou et al., 2022; Yuan et al., 2023; Wu
et al., 2023; 2022a) using the hyperparam-
eters released in their official implementa-
tions, while keeping the data splits identi-
cal across all methods. For the remaining
baselines, we report numbers from their
original publications or from other bench-
mark studies (Yuan et al., 2023; Xiao et al.,
2024; Wan et al., 2024; Tang et al., 2025).
A complete list of hyperparameter search-
ing space is provided in Appendix H.

3.1 NODE CLASSIFICATION RESULTS ANALYSIS

Tables 2 and 3 show the results for node classification, from which we draw the following conclusions:

• Our SimPlex-GT significantly outperforms almost all supervised (both GNNs and GTs) and self-
supervised baselines across heterophilic graphs of varying scales, and achieves on-par performance
with the SOTA baselines on homophilic graphs. For example, our method outperforms the state-
of-the-art baselines by 6.85% on Texas, 4.00% on Chameleon, and 5.95% on Squirrel. These
gains stem from the effectiveness of our node-to-cluster attention design (also see Table 1) and the
synergy between local and global information.

• Regarding baselines, on heterophilic graphs, classical GNNs perform poorly, while heterophily-
oriented GNNs (e.g., H2GCN, WRGAT, FAGCN) achieve substantial improvements. GTs also
show competitive results on heterophilic datasets, even without explicit designs for heterophily. On
homophilic graphs, both classical GNNs and GTs perform competitively and GTs often achieve
better results.

• In terms of SSL, heterophily-oriented methods consistently outperform traditional SSL approaches
on heterophilic datasets, without sacrificing performance on homophilic graphs, and they even rival
or surpass supervised baselines—remarkably without using any labels.

Table 4: Computation and Memory Comparisons (Use SIMPLEX-GT (CF) for simplicity)
Datasets GPU MEMORY(MB) EPOCH TIME(S/EPOCH) TOTAL TIME(S)

NODEFORMER MUSE GREET SIMPLEX-GT NODEFORMER MUSE GREET SIMPLEX-GT NODEFORMER MUSE GREET SIMPLEX-GT

Actor 1157 8785 4318 1793 0.08 0.45 0.58 0.07 25.20 53.09 66.71 14.84
Roman 4048 34798 36433 6863 0.23 2.48 2.82 0.20 103.04 301.35 379.21 44.62

3.2 EFFICIENCY ANALYSIS

Besides the theoretical complexity analysis in Sec.2, we present the empirical comparisons of
computation and memory efficiency in Table 4. For this purpose, we include NodeFormer—a widely
used full-batch sparse Transformer—as well as two strong SSL baselines, MUSE and GREET, and
evaluate them on two large-scale datasets, Actor and Roman-Empire. The results with SSL baselines
show that our method achieves substantial advantages over MUSE and GREET in both memory
consumption and training speed. This improvement can be attributed to our novel node-to-cluster
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Table 5: Results on Ablating Three Components.
Methods Cornell Texas Wisconsin Actor Cora Citeseer Pubmed Arxiv
SimPlex-GT (CS) 84.86±3.24 92.97±3.66 92.16±2.63 37.68±0.83 83.85±0.12 73.12±0.20 80.88±0.36 71.97±0.32

w/o N2C 82.16±2.16 87.83±3.67 88.23±2.35 OOM 78.80±0.15 69.26±0.28 OOM OOM
w/o CS 82.70±2.48 88.92±4.26 88.56±2.77 36.57±0.88 83.80±0.10 72.70±0.18 80.00±0.33 70.98±0.28
w/o SSL 83.24±3.91 90.54±4.05 90.39±3.21 37.07±1.10 80.60±0.16 72.10±0.21 78.00±0.32 71.88±0.36

attention design. Compared with NodeFormer, our model incurs only a slight increase in memory
usage (e.g., about 0.6 GB more on Actor), yet it runs nearly twice as fast, while also delivering
significantly better accuracy (see Table 2).

3.3 ABLATION STUDY

Table 6: The effects of # cluster
# clusters Texas Roman Cora

2 91.89±3.46 79.56±0.62 83.80±0.18
5 92.97±4.39 80.86±0.59 84.05±0.15

10 92.13±3.91 81.23±0.56 83.98±0.12
15 91.12±4.06 81.56±0.68 83.20±0.20

Components of SimPlex-GT. In Table 5, we conduct abla-
tions on four homophilic graphs (Cora, CiteSeer, PubMed,
ArXiv) and four heterophilic graphs (Cornell, Texas, Wis-
consin, Actor) by modifying one component at a time: (i)
replacing N2C attention with full N2N attention, (ii) remov-
ing the CF/CS designs; (iii) replacing the SSL objective
with SL on labels.

• N2C plays the most critical role in overall performance. Without it, full node-to-node attention
often runs out of memory even on medium-scale datasets. On heterophilic graphs, N2C effectively
reduces structural noise (as shown in Table 1), while on homophilic graphs such as Cora and
CiteSeer—where the labeling rate is low and the datasets are small—full attention tends to overfit,
which can also be observed in Table 1. These limitations of N2N highlight the clear advantages of
our proposed N2C design.

• Eliminating cluster smoothing (CS) also degrades performance, as the proposed learnable clustering
process alone does not incorporate structural information. The cluster smoothing is essential for
obtaining stable clusters that accurately capture community patterns in graphs (see Theorem 4).

• Replacing the SSL objective with purely SL also leads to performance degradation, especially on
small datasets with limited labels such as Cora, CiteSeer, and PubMed. In these cases, the model
tends to overfit the scarce labels and fails to learn generalizable representations.

Table 7: The effects of r
Ratio r Texas Roman Cora

0 91.89±3.89 80.32±0.53 84.02±0.11
0.3 90.54±3.82 81.23±0.63 83.98±0.21
0.5 91.89±3.89 81.56±0.68 84.05±0.15
0.8 92.97±4.39 80.96±0.57 83.50±0.12
1 92.23±3.89 79.96±0.51 83.70±0.15

Number of Clusters. Table 6 shows the ablation study on
the number of clusters used in our proposed N2C attention.
We can see that our proposed method is not sensitive to
the number of clusters. Although the best setting for the
number of clusters varies across datasets, usually a small
number such as 5 is enough to achieve good performance
while maintaining good efficiency.

Dynamic Masking Ratio r (Eqn. 16). We further evaluate performance under different dynamic
masking ratios across datasets (Table 7). While the optimal ratio varies by dataset, dynamic masking
consistently outperforms pure random masking (r = 0), highlighting the necessity of our design.

Orthogonality Regularization An additional study on λorth is provided in Appendix F.

4 CONCLUSION

In this work, we presented SimPlex-GT, a novel and efficient Graph Transformer architecture that
addresses the challenges of learning on complex graphs exhibiting both homophily and heterophily.
By integrating a global node-to-cluster attention mechanism with a local GCN-based message passing
branch, SimPlex-GT effectively captures both coarse semantic patterns and fine-grained structural
dependencies. Two complementary fusion strategies—Complementary Filtering (CF) and Cluster
Smoothing (CS)—offer flexible ways to encode local-global synergies, while the orthogonality regu-
larization promote representational diversity. Unlike prior approaches that are often tailored to either
homophilic or heterophilic graphs, SimPlex-GT operates as a unified, modular framework that adapts
seamlessly to diverse structural regimes. Importantly, it achieves linear complexity via N2C attention,
making it scalable to large graphs without sacrificing accuracy. Empirical results on 11 benchmark
datasets demonstrate that SimPlex-GT achieves state-of-the-art performance on heterophilic graphs,
while remaining highly competitive on homophilic graphs. These gains are achieved with superior
training efficiency and memory usage compared to existing Graph Transformers and GNNs.
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A RELATED WORK

A.1 GRAPH TRANSFORMERS

The integration of Transformer architectures with graph-structured data has emerged as a promising
research direction, aiming to leverage the powerful representation learning capabilities of attention
mechanisms for graph neural networks. Graph Transformers (GTs) leverage pairwise attention across
all node pairs, rather than restricting message passing to directly connected nodes as in traditional
GNNs. In other words, global attention can be viewed as a generalization of GNN message passing
to a fully connected graph, enabling the model to naturally capture long-range dependencies and
potential unconnected links.

However, full node-to-node attention incurs quadratic complexity in the number of nodes (O(N2)),
which quickly becomes prohibitive on medium–large graphs. To improve scalability, recent work
introduces sparse GTs that approximate or restructure attention to sub-quadratic complexity while
retaining global receptive fields. For example, GraphGPS (Rampášek et al., 2022) proposes a hybrid
design that combines local message passing with a global sparse attention block and structural
encodings, which balances inductive bias but introduces complexity overhead and dependence on
positional encodings. NodeFormer (Wu et al., 2022a) employs random feature approximations to
compute kernelized attention in nearly linear time, offering scalability but at the cost of approximation
error and sensitivity to hyperparameters. Exphormer (Shirzad et al., 2023) leverages expander graphs
to enforce structured sparsity with constant-degree connections, achieving global reachability at
near-linear cost. GOAT (Kong et al., 2023) introduces adaptive tokenization to compress graphs into
a smaller set of latent tokens, reducing computation and enabling semantic abstraction, but potentially
losing information if tokenization is suboptimal. Similarly, SGFormer (Wu et al., 2023) exploits
spectral sparsification to approximate global interactions more efficiently, grounded in spectral theory
but sensitive to eigen-structure and costly on very large graphs. Finally, NAGphormer (Chen et al.,
2022b) constrains attention to neighborhood-aware patterns, which improves stability on small
datasets but may limit expressiveness by missing long-range dependencies.

Overall, sparse GTs vary in their strategies—ranging from kernel approximation and hybridization to
structured sparsity, tokenization, or spectral priors—but they share the strengths of scalability and
global context while facing challenges such as approximation bias, hyperparameter sensitivity, and
reliance on structural encodings, which can lead to suboptimal performance.

A.2 LEARNING ON HETEROPHILIC GRAPHS

Heterophilic graphs commonly arise in diverse real-world scenarios, including online fraud detection
networks (Pandit et al., 2007), dating platforms (Altenburger & Ugander, 2018), and molecular
interaction graphs (Zhu et al., 2020a). In such graphs, linked nodes often have dissimilar attributes
and may belong to different classes, posing challenges for conventional GNNs. This has led to
a growing body of research on developing architectures that can better capture and propagate
information in heterophilic settings.

One line of work explores aggregating signals from long-range or higher-order neighbors (Li et al.,
2022; Liu et al., 2021; Abu-El-Haija et al., 2019; Pei et al., 2020; Suresh et al., 2021). For example,
MixHop (Abu-El-Haija et al., 2019) collects and concatenates information from multiple hop distances
at each layer, while Geom-GCN (Pei et al., 2020) establishes neighborhood relationships in a
continuous latent space rather than the raw topology. Similarly, WRGAT (Suresh et al., 2021)
reconstructs computation graphs by reweighting and redefining edges across the entire network,
enabling information flow from more distant nodes.

Another strand focuses on rethinking the design of message passing in GNNs (Chen et al., 2020;
Chien et al., 2020; Yan et al., 2021; Zhu et al., 2020a). GPR-GNN (Chien et al., 2020), for instance,
leverages the Generalized PageRank formulation to assign learnable propagation weights across
layers, whereas H2GCN (Zhu et al., 2020a) explicitly removes self-loops and introduces non-mixing
mechanisms to better preserve ego-node representations.

A complementary direction builds on spectral graph analysis (Luan et al., 2021; Bo et al., 2021),
emphasizing that high-pass filtering can be advantageous under heterophily by amplifying differences
across neighbors and preserving high-frequency components in node signals.
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Despite these advances, most approaches still rely strongly on abundant labeled data, which is rarely
feasible in practice due to the cost of annotation and the difficulty of maintaining label quality.
Moreover, their reliance on supervision restricts their ability to autonomously extract structural and
feature patterns from the graph.

A.3 GRAPH REPRESENTATION LEARNING VIA SSL

Self-supervised learning (SSL) has recently become a dominant paradigm for graph representation
learning, generally categorized into contrastive and generative approaches.

Graph contrastive learning Contrastive methods learn node or graph representations by maximizing
the agreement between multiple graph views. Early approaches such as DGI (Veličković et al.,
2018) and MVGRL (Hassani & Khasahmadi, 2020) capture both local and global signals, while
GRACE (Zhu et al., 2020b) applies augmentation-based contrast at the node level. Among recent
advances on heterophilic graphs, HGRL (Chen et al., 2022a) reconstructs similarity matrices for
dual feature augmentations, S3GCL (Wan et al., 2024) employs spectral–spatial contrastive learning
to efficiently capture multi-scale graph signals, but it still relies on negative sampling and careful
design of spectral filters. GREET (Liu et al., 2022) separates homophilic and heterophilic edges for
low/high-pass filtering, and MUSE (Yuan et al., 2023) perturbs both topology and features with a
structure-based combiner. These heterophily-aware SSL methods consistently outperform traditional
contrastive approaches, though many still depend on careful negative sampling or alternating training
schemes, leading to high computational overhead and potential suboptimal performance.

Graph generative learning Generative methods instead reconstruct graph features or structures.
Classical approaches (e.g., GAE, VGAE, MGAE) mainly focus on topology reconstruction, while
GraphMAE (Hou et al., 2022) adopt masked feature modeling and have set strong baselines on
homophilic graphs. For heterophilic settings, DSSL (Xiao et al., 2022) decouples diverse structural
patterns. Despite these innovations, generative methods on heterophilic graphs still lag behind
state-of-the-art contrastive SSL methods (Hou et al., 2022).

B PROOF OF THEOREM 1

B.1 DEFINITION AND SETUP

Consider a node classification task on graph G = (V, E) with node features X ∈ Rn×d and labels
y ∈ {−1,+1}n.

Definition 1 (Node-level Homophily). For node i ∈ V , define its local homophily ratio as:

ρi =
|{j ∈ N (i) : yj = yi}|

|N (i)|
(17)

Node i is locally heterophilic if ρi < 0.5.

Definition 2 (Heterophilic Node Set). Define the set of heterophilic nodes as:
Vhetero = {i ∈ V : ρi < 0.5} (18)

B.2 MAIN THEOREM

Theorem 1. Suppose a graph with a significant portion of nodes are locally heterophilic, under the
assumption that initial features are perfectly aligned with labels (i.e., x(0)

i = yie for some unit vector
e), we have:

1. GNN: For any node i ∈ Vhetero:
⟨h(1)

i , yie⟩ = (2ρi − 1)||e||2 < 0 (19)

2. Graph Transformer: There exists parameters θ∗ such that:
⟨h(1)

i , yie⟩ > 0, ∀i ∈ V (20)

Proof. GNN:

14
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For a standard GNN with mean aggregation at node i:

h
(1)
i = σ

 1

|N (i)|
∑

j∈N (i)

W(0)x
(0)
j

 (21)

With linear activation and W(0) = I:

h
(1)
i =

1

|N (i)|
∑

j∈N (i)

yje (22)

Decomposing the neighborhood into same-class and different-class neighbors:

h
(1)
i =

1

|N (i)|

 ∑
j∈N (i):yj=yi

yie+
∑

j∈N (i):yj ̸=yi

(−yi)e

 (23)

=
1

|N (i)|
(ρi|N (i)| · yie+ (1− ρi)|N (i)| · (−yi)e) (24)

= yi(2ρi − 1)e (25)

Therefore:
⟨h(1)

i , yie⟩ = y2i (2ρi − 1)||e||2 = (2ρi − 1)||e||2 (26)

For heterophilic nodes where ρi < 0.5: (2ρi − 1) < 0, thus ⟨h(1)
i , yie⟩ < 0.

Graph Transformer: Set
WQ = WK = γ I, WV = I, γ > 0. (27)

Then

αij ∝ exp

(
(WQx

(0)
i )T (WKx

(0)
j )

√
d

)
= exp

(
γ2 (x

(0)
i )Tx

(0)
j√

d

)
= exp

(
γ2 yiyj ∥e∥2√

d

)
. (28)

Hence

αij ∝


exp

(
γ2∥e∥2√

d

)
if yi = yj ,

exp

(
−γ

2∥e∥2√
d

)
if yi ̸= yj .

(29)

Sharpening limit via γ. Split the normalizer into same/different-label parts and divide through by
exp(γ2∥e∥2/

√
d):

αij =



1

|{k : yk = yi}|+ |{k : yk ̸= yi}| exp
(
− 2γ2∥e∥2

√
d

) if yj = yi,

beginequation12pt]
exp
(
− 2γ2∥e∥2

√
d

)
|{k : yk = yi}|+ |{k : yk ̸= yi}| exp

(
− 2γ2∥e∥2

√
d

) if yj ̸= yi.

(30)
As γ → ∞ (effective sharpening increases), we have exp

(
− 2γ2∥e∥2

√
d

)
→ 0, and therefore

αij →


1

|{k : yk = yi}|
if yi = yj ,

0 if yi ̸= yj .
(31)

Consequently,
h
(1)
i =

∑
j∈V

αij x
(0)
j =

∑
j:yj=yi

αij yje = yie
∑

j:yj=yi

αij = yie, (32)

and thus
⟨h(1)

i , yie⟩ = ∥e∥2 > 0. (33)
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B.3 PERFORMANCE BOUNDS

Corollary 1. Define the heterophilic node set Vhetero = { i : ρi < 1
2 }. Under the conditions of

Theorem 1:

1. GNN: A one-layer mean-aggregation (linearized) GNN misclassifies every node with ρi < 1
2 ;

hence it misclassifies at least a |Vhetero|/|V| fraction of nodes.

2. Graph Transformer: With the attention in Theorem 1 (i.e., the sharpening limit), the
first-layer outputs satisfy ⟨h(1)

i , yie⟩ > 0 for all i, yielding zero classification error.

C PROOF OF THEOREM 2

Theorem 2 (Variance reduction via soft clusters). Assume x(0)i = yie + εi with E[εi] = 0 and
Cov(εi) = Σ ⪯ σ2I . Let the soft assignment matrix be pi,c ∈ (0, 1) with

∑C
c=1 pi,c = 1 for each

node i. Define the (soft) cluster mass and prototype by

sc ≜
N∑
i=1

pi,c, (34)

pc ≜
1

sc

N∑
i=1

pi,c x
(0)
i . (35)

Let the Node-to-Cluster (N2C) output be hN2C
i ≜

∑C
c=1 αi→c pc where αi→c ≥ 0 and

∑C
c=1 αi→c =

1. Then, along direction e, the following bounds hold (without assuming independence across
clusters):

Var
(
⟨pc, e⟩

)
≤ σ2∥e∥2 ·

∑N
i=1 p

2
i,c(∑N

i=1 pi,c

)2 , (36)

Var
(
⟨hN2C

i , e⟩
)

≤
C∑

c=1

αi→c σ
2∥e∥2 ·

∑N
i=1 p

2
i,c(∑N

i=1 pi,c

)2 . (37)

By contrast, a single-neighbor Node-to-Node readout satisfies
Var
(
⟨x(0)j , e⟩

)
= Var

(
⟨εj , e⟩

)
= e⊤Σe ≤ σ2∥e∥2. (38)

Proof. Step 1: Reweighting form of the prototype. Let wi,c ≜ pi,c/sc so that
∑N

i=1 wi,c = 1.
Then

pc =

N∑
i=1

wi,c x
(0)
i =

N∑
i=1

wi,c (yie+ εi), (39)

⟨pc, e⟩ =

N∑
i=1

wi,c

(
yi∥e∥2 + ⟨εi, e⟩

)
. (40)

The class-mean term
∑

i wi,cyi∥e∥2 is deterministic w.r.t. noise, hence

Var
(
⟨pc, e⟩

)
= Var

(
N∑
i=1

wi,c ⟨εi, e⟩

)
. (41)

Step 2: Bounding the prototype variance. Assuming independence across nodes and Cov(εi) =
Σ ⪯ σ2I ,

Var

(
N∑
i=1

wi,c ⟨εi, e⟩

)
=

N∑
i=1

w2
i,c Var

(
⟨εi, e⟩

)
=
(
e⊤Σe

) N∑
i=1

w2
i,c, (42)

Var
(
⟨pc, e⟩

)
≤ σ2∥e∥2

N∑
i=1

w2
i,c = σ2∥e∥2 ·

∑N
i=1 p

2
i,c(∑N

i=1 pi,c

)2 . (43)
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Step 3: N2C output as a convex combination (correlated clusters). We have

⟨hN2C
i , e⟩ =

C∑
c=1

αi→c ⟨pc, e⟩, αi→c ≥ 0,

C∑
c=1

αi→c = 1. (44)

Without assuming independence across ⟨pc, e⟩, expand and bound via Cauchy–Schwarz:

Var
( C∑

c=1

αi→c ⟨pc, e⟩
)

≤
( C∑

c=1

αi→c

√
Var(⟨pc, e⟩)

)2
. (45)

From Step 2 we already know

Var(⟨pc, e⟩) ≤ σ2∥e∥2 ·
∑

i p
2
i,c

(
∑

i pi,c)
2 . (46)

Substituting into the previous bound gives

Var
(
⟨hN2C

i , e⟩
)

≤

 C∑
c=1

αi→c σ∥e∥ ·

√∑
i p

2
i,c∑

i pi,c

2

. (47)

Using
√
Var(⟨pc, e⟩) ≤ σ∥e∥ ·

√∑N
i=1 p

2
i,c/

(∑N
i=1 pi,c

)
and Jensen/Cauchy–Schwarz with∑

c αi→c = 1, we obtain

Var
(
⟨hN2C

i , e⟩
)

≤
C∑

c=1

αi→c σ
2∥e∥2 ·

∑N
i=1 p

2
i,c(∑N

i=1 pi,c

)2 . (48)

Step 4: N2N (single neighbor) comparison. For any single-neighbor readout,
Var
(
⟨x(0)j , e⟩

)
= Var

(
⟨εj , e⟩

)
= e⊤Σe ≤ σ2∥e∥2. (49)

Let

R ≜
C∑

c=1

αi→c σ
2∥e∥2

∑N
j=1 p

2
j,c(∑N

j=1 pj,c

)2 = σ2∥e∥2
C∑

c=1

αi→c rc, rc ≜

∑
j p

2
j,c

s2c
, sc ≜

∑
j

pj,c.

(50)
Then R is the variance upper bound from Step 3. We now show why R ≤ σ2∥e∥2.

Bounds on rc. Define normalized weights wj,c =
pj,c

sc
. Then:

• wj,c ≥ 0 and
∑

j wj,c = 1 (forms a probability distribution)

• 0 ≤ wj,c ≤ 1 for all j (since pj,c ≤ sc always holds)

Therefore:

rc =

∑
j p

2
j,c

s2c
=
∑
j

(
pj,c
sc

)2

=
∑
j

w2
j,c (51)

Since 0 ≤ wj,c ≤ 1, we have w2
j,c ≤ wj,c, thus:

rc =
∑
j

w2
j,c ≤

∑
j

wj,c = 1 (52)

Convex combination. Since αi→c ≥ 0 and
∑

c αi→c = 1 (attention weights form a probability
distribution):

C∑
c=1

αi→c · rc ≤
C∑

c=1

αi→c · 1 = 1 (53)

Hence:
R = σ2∥e∥2

∑
c

αi→crc ≤ σ2∥e∥2 (54)
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The inequality rc < 1 is strict whenever at least two nodes contribute to cluster c

Remark 2. The variance reduction factor rc ≈ 1/neff where neff is the effective number of nodes in
cluster c. Thus N2C provides denoising proportional to cluster sizes, while N2N lacks such benefit.

Proof. Let sc :=
∑

i pi,c and wi,c := pi,c/sc so that
∑

i wi,c = 1. Then

rc =

∑
i p

2
i,c(∑

i pi,c
)2 =

∑
i

w2
i,c = 1/neff (55)

Hence:

Var
(
⟨pc, e⟩

)
≤ (e⊤Σe) rc ≤ σ2∥e∥2 1

neff
. (56)

Consequently,

Var
(∑

c

αi→c⟨pc, e⟩
)

≤ σ2∥e∥2
∑
c

αi→c rc = σ2∥e∥2
∑
c

αi→c
1

neff,c
. (57)

Thus N2C provides denoising proportional to cluster effective sizes (neff ), whereas N2N has no such
1/neff factor.

D PROOF OF THEOREM 3

Lemma 1 (Near-orthogonality in ℓ2). Let L = UΛU⊤ with U⊤U = I , and define G = U g(Λ)U⊤,
H = I−G = U (I−g(Λ))U⊤ for a response g : [0,∞) → [0, 1]. For x ∈ RN×d, write X̂ := U⊤x
(its k-th row is x̂⊤k ). Then

⟨xg, xf ⟩ := Tr(x⊤g xf ) =

N∑
k=1

g(λk)
(
1− g(λk)

)
∥x̂k∥22 ≤ ε ∥x∥2F , (58)

where ε := maxλ≥0 g(λ)(1− g(λ)) ≤ 1
4 , and equality ⟨xg, xf ⟩ = 0 holds if g(λ) ∈ {0, 1} for all λ

(spectral projector).

Proof. By definition xg = Gx = U g(Λ) X̂ and xf = Hx = U (I − g(Λ)) X̂ . Using U⊤U = I
and cyclicity of trace,

⟨xg, xf ⟩ = Tr
(
(Ug(Λ)X̂)⊤(U(I − g(Λ))X̂)

)
= Tr

(
X̂⊤g(Λ)(I − g(Λ))X̂

)
=

N∑
k=1

g(λk)
(
1− g(λk)

)
∥x̂k∥22,

(59)

since g(Λ) and I − g(Λ) are diagonal and multiply elementwise in the eigenbasis. Because 0 ≤
g(λ) ≤ 1, we have 0 ≤ g(λ)(1− g(λ)) ≤ ε ≤ 1

4 , hence

|⟨xg, xf ⟩| ≤ ε

N∑
k=1

∥x̂k∥22 = ε ∥x∥2F , (60)

using ∥x∥2F = ∥X̂∥2F (orthonormal U preserves the Frobenius norm). If g is a spectral projector,
each factor g(λk)(1− g(λk)) = 0, so ⟨xg, xf ⟩ = 0.

Lemma 2 (Variance reduction via contraction). Let η ∈ RN be a zero-mean random vector with
covariance Cov(η) ⪯ σ2I . For any unit e ∈ RN ,

Var
(
⟨Gη, e⟩

)
= e⊤GCov(η)G e ≤ σ2 e⊤G2e ≤ σ2 e⊤Ge ≤ σ2. (61)

The inequalities are strict whenever g(λ) ∈ (0, 1) on a set of eigenvalues with nonzero variance mass
along v. An analogous statement holds for H = I −G.

Proof. First, ⟨Gη, e⟩ = ⟨η,G⊤e⟩ and G is symmetric, so
Var(⟨Gη, e⟩) = Var(⟨η,Ge⟩) = (Ge)⊤Cov(η) (Ge) = e⊤GCov(η)G e. (62)

Using Cov(η) ⪯ σ2I gives v⊤GCov(η)Gv ≤ σ2 v⊤G2v.
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Now write G = U g(Λ)U⊤. Then

e⊤G2e = e⊤Ug(Λ)2U⊤e =

N∑
k=1

g(λk)
2 ξ2k, e⊤Ge =

N∑
k=1

g(λk) ξ
2
k, (63)

where ξ = U⊤e and
∑

k ξ
2
k = ∥e∥2 = 1. Since 0 ≤ g(λ) ≤ 1, we have g(λ)2 ≤ g(λ), hence

e⊤G2e ≤ e⊤Ge ≤
∑

k ξ
2
k = 1. Combining the steps yields the chain of inequalities.

Strictness: if there exists k with ξk ̸= 0, g(λk) ∈ (0, 1) and positive variance along that eigen-
direction (i.e., the bound Cov(η) ⪯ σ2I is not tight as zero there), then at least one inequality
becomes strict. The same argument applies to H = U(I − g(Λ))U⊤ since its eigenvalues lie in [0, 1]
and are 1− g(λ).

Theorem 3 (Stability of N2C attention logits). Let keys/values be computed from low-pass prototypes
and queries from high-pass features:

si,c :=
1√
dk

〈
Q(x

(i)
f ), K(c

(c)
b )
〉
, s⋆i,c :=

1√
dk

〈
Q(h(i)), K(s(c))

〉
, (64)

where h(i) is the high-frequency component of node i, and s(c) the low-frequency prototype of cluster
c. Assume Q and K are Lipschitz: ∥Q(a)−Q(b)∥ ≤ LQ∥a− b∥, ∥K(a)−K(b)∥ ≤ LK∥a− b∥,
and that E∥K(c

(c)
b )∥2 ≤M2

K , E∥Q(h(i))∥2 ≤M2
Q. Then

E
[
(si,c − s⋆i,c)

2
]
≤ 2

dk

(
L2
QM

2
K E∥x(i)f − h(i)∥2 + L2

KM
2
Q E∥c(c)b − s(c)∥2

)
. (65)

Consequently, by Lemma 2, both error terms on the right shrink under the contractions H and G,
yielding strictly smaller logit MSE than using unsplit features whenever the filters attenuate off-target
spectra.

Proof. Let a := Q(x
(i)
f ), a⋆ := Q(h(i)), b := K(c

(c)
b ), b⋆ := K(s(c)). Then

si,c − s⋆i,c =
1√
dk

(
⟨a, b⟩ − ⟨a⋆, b⋆⟩

)
(66)

=
1√
dk

(
⟨a, b⟩ − ⟨a⋆, b⟩︸ ︷︷ ︸

= ⟨a−a⋆, b⟩

+ ⟨a⋆, b⟩ − ⟨a⋆, b⋆⟩︸ ︷︷ ︸
= ⟨a⋆, b−b⋆⟩

)
(67)

=
1√
dk

(
⟨a− a⋆, b⟩+ ⟨a⋆, b− b⋆⟩

)
. (68)

By Cauchy–Schwarz,

|si,c − s⋆i,c| ≤
1√
dk

(
∥a− a⋆∥ ∥b∥+ ∥a⋆∥ ∥b− b⋆∥

)
. (69)

Square and use (u+ v)2 ≤ 2(u2 + v2):

(si,c − s⋆i,c)
2 ≤ 2

dk

(
∥a− a⋆∥2 ∥b∥2 + ∥a⋆∥2 ∥b− b⋆∥2

)
. (70)

Apply Lipschitz bounds ∥a − a⋆∥ ≤ LQ∥x(i)f − h(i)∥ and ∥b − b⋆∥ ≤ LK∥c(c)b − s(c)∥, then take
expectation and use E∥b∥2 ≤M2

K , E∥a⋆∥2 ≤M2
Q:

E(si,c − s⋆i,c)
2 ≤ 2

dk

(
L2
Q E∥x(i)f − h(i)∥2 E∥b∥2 + L2

K E∥c(c)b − s(c)∥2 E∥a⋆∥2
)
, (71)

which yields the stated bound. Finally, Lemma 2 (applied to H on x and to G on prototypes) implies
that both E∥x(i)f − h(i)∥2 and E∥c(c)b − s(c)∥2 strictly decrease whenever the corresponding filters
have eigenvalues strictly inside (0, 1) on nontrivial spectral mass, so the right-hand side is strictly
smaller than without complementary filtering.

E PROOF OF THEOREM 4

Theorem 4 (Variance reduction). Let C be the number of soft clusters. For each cluster c, where
c /∈ N (c), unsmoothed prototype zc ∈ Rd is written as zc = µc + εc, where µc is the cluster mean
and εc is a zero-mean random vector with E[εc] = 0 and Cov(εc) ⪯ σ2I . Let N (c) denote neighbors
of c on the cluster graph Gc (e.g., Ac = P⊤AP ). Let weights wcu ≥ 0 satisfy

∑
u∈N (c) wcu = 1.
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We consider one-step residual low-pass smoothing: z̃c = (1− α) zc + α
∑

u∈N (c) wcu zu, where
α ∈ (0, 1). and v ∈ Rd denotes any unit vector, i.e., ∥e∥ = 1. Assume that {εu}Cu=1 are independent
across clusters. Then, for any unit direction e,

Var
(
⟨z̃c − µc, e⟩

)
= Var

(〈
(1− α)εc + α

∑
u
wcuεu, e

〉)
≤
(
(1− α)2 + α2

)
σ2 ≤ σ2, (72)

with strict inequality whenever 0 < α < 1.

Proof. By the residual low-pass update and the noise model zc = µc + εc, zu = µu + εu,
z̃c − µc = (1− α)(µc + εc) + α

∑
u

wcu(µu + εu)− µc

= α
∑
u

wcu(µu − µc)︸ ︷︷ ︸
=: bc (structure bias)

+ (1− α)εc + α
∑
u

wcuεu︸ ︷︷ ︸
noise part

. (73)

Projecting onto an arbitrary unit direction e ∈ Rd turns vectors into scalars. Define
X := ⟨εc, e⟩, Y :=

〈∑
u

wcuεu, e
〉
, β := ⟨bc, e⟩ = α

∑
u

wcu ⟨µu − µc, e⟩. (74)

Then we have the exact decomposition
⟨z̃c − µc, e⟩ = (1− α)X + αY + β. (75)

Since β is a constant (given the means), it does not affect variance:
Var
(
⟨z̃c − µc, e⟩

)
= Var

(
(1− α)X + αY

)
. (76)

Using the variance decomposition formula gives
Var
(
(1− α)X + αY

)
= (1− α)2Var(X) + α2Var(Y ) + 2α(1− α)Cov(X,Y ). (77)

Cross term. Assume noises are independent across clusters; then X is independent of Y and
Cov(X,Y ) = 0.

Bounding each variance. From Cov(εc) ⪯ σ2I and ∥e∥ = 1,
Var(X) = Var(⟨εc, e⟩) = e⊤Cov(εc)e ≤ σ2. (78)

Independence across different u yields

Var(Y ) = Var
(∑

u

wcu⟨εu, e⟩
)
=
∑
u

w2
cu Var(⟨εu, e⟩) ≤ σ2

∑
u

w2
cu ≤ σ2

∑
u

wcu = σ2, (79)

where we used 0 ≤ wcu ≤ 1 and
∑

u wcu = 1.

Combine. Plugging the bounds into the decomposition (with Cov(X,Y ) = 0) gives
Var
(
⟨z̃c − µc, e⟩

)
≤
(
(1− α)2 + α2

)
σ2. (80)

Finally, if neighboring means are similar along v, the last (bias) term is negligible, and ((1− α)2 +
α2) = 1− 2α+ 2α2 < 1 for α ∈ (0, 1), which gives the stated reduction.

F ORTHOGONALITY REGULARIZATION λORTH (EQN. 15).

Table 8 shows the ablation of the trade-off parameter λorth, which controls the strength of the orthogo-
nality regularization. We can see that SimPlex-GT is not highly sensitive to this hyperparameter, but
when compared with the variant without it (first row), the results show that orthogonal regularization
still improves performance. This improvement can be attributed to its ability to reduce potential
representation redundancy and interference, as discussed in Sec. 2.

Table 8: The effects of λorth

λorth Texas Roman Cora
0 91.89±4.05 80.23±0.55 83.50±0.11

0.3 92.54±3.66 81.12±0.53 84.05±0.15
0.5 92.97±4.39 81.56±0.68 83.80±0.19
0.8 92.56±4.06 80.98±0.60 83.80±0.15
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Table 9: Dataset statistics. “Homo” denotes the homophily ratio.

Dataset Nodes Edges Features Classes Homo

Cornell 183 295 1,703 5 0.30
Texas 183 309 1,703 5 0.11
Wisconsin 251 499 1,703 5 0.21
Actor 7,600 29,926 932 5 0.22
Chameleon (Filtered) 890 17,708 2,325 5 0.24
Squirrel (Filtered) 2,223 93,996 2,089 5 0.21
Roman-Empire 22,662 32,927 300 18 0.05

Cora 2,708 10,556 1,433 7 0.81
CiteSeer 3,327 9,104 3,703 6 0.74
PubMed 19,717 88,648 500 3 0.80
Ogbn-Arxiv 169,343 1,166,243 128 40 0.66

G DATASET STATISTICS

We summarize the details of the datasets used in our experiments in Table 9.

H HYPERPARAMETERS

We provide the major hyperparameter search space:

• λorth: {0, 0.1, 0.3, 0.5, 0.8}.
• Learning rate for Encoder: {0.01, 0.005, 0.001}.
• Dropout for GCN: {0.1, 0.3, 0.5, 0.7, 0.8}.
• Dropout for Attention: {0.1, 0.3, 0.5, 0.7, 0.8}.
• Dimension of tokens: {128, 256, 512, 1024, 2048, 4096}.
• Total masking ratio: {0.9, 0.8, 0.5, 0.3, 0.1, 0}.
• Dynamic masking ratio: {0.9, 0.8, 0.5, 0.3, 0.1, 0}.
• Momentum: {0.9, 0.99, 0.999}.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) are used solely for polishing the writing.
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