
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DYMIXOP: GUIDING NEURAL OPERATOR DESIGN
FOR PDES FROM A COMPLEX DYNAMICS PERSPEC-
TIVE WITH LOCAL-GLOBAL-MIXING

Anonymous authors
Paper under double-blind review

ABSTRACT

A primary challenge in using neural networks to approximate nonlinear dynamical
systems governed by partial differential equations (PDEs) is transforming these
systems into a suitable format, especially when dealing with non-linearizable dy-
namics or the need for infinite-dimensional spaces for linearization. This paper
introduces DyMixOp, a novel neural operator framework for PDEs that integrates
insights from complex dynamical systems to address this challenge. Grounded
in inertial manifold theory, DyMixOp transforms infinite-dimensional nonlinear
PDE dynamics into a finite-dimensional latent space, establishing a structured
foundation that maintains essential nonlinear interactions and enhances physical
interpretability. A key innovation is the Local-Global-Mixing (LGM) transforma-
tion, inspired by convection dynamics in turbulence. This transformation effec-
tively captures both fine-scale details and nonlinear interactions, while mitigating
spectral bias commonly found in existing neural operators. The framework is
further strengthened by a dynamics-informed architecture that connects multiple
LGM layers to approximate linear and nonlinear dynamics, reflecting the temporal
evolution of dynamical systems. Experimental results across diverse PDE bench-
marks demonstrate that DyMixOp achieves state-of-the-art performance, signifi-
cantly reducing prediction errors, particularly in convection-dominated scenarios
reaching up to 86.7%, while maintaining computational efficiency and scalability.

1 INTRODUCTION

Partial differential equations (PDEs) are the mathematical backbone for describing chaotic behav-
iors and understanding underlying mechanics in dynamical systems. They are distributed in various
fields including climate (Bi et al., 2023; Lam et al., 2023), molecular dynamics (Rapaport, 2004),
ecological modeling (Blasius et al., 1999), brain activity (Breakspear, 2017), chemistry (Jensen,
2017), heat transfer (Howell et al., 2020) and turbulent flows (Mukherjee et al., 2023). Predicting
the dynamics of complex systems by solving PDEs is crucial for scientific and engineering applica-
tions. As a result, a variety of numerical methods have been developed (Dennis Jr & Schnabel, 1996;
Moin & Mahesh, 1998), including the finite difference method (Smith, 1985), finite volume method
(Versteeg, 2007), lattice Boltzmann method (Succi, 2001) and finite element method (Zienkiewicz,
1971). Despite the high fidelity of simulations produced by traditional approaches, they become in-
efficient with frequent recalculations whenever initial conditions or equation parameters are altered.

In recent years, data-driven methods have thrived across various disciplines (Jordan & Mitchell,
2015). Among these approaches, neural networks have garnered significant attention from re-
searchers due to their excellent performance in other fields such as large language modeling (Bah-
danau, 2014), image recognition (Simonyan & Zisserman, 2014) and games (Mnih et al., 2015;
Vinyals et al., 2019). Therefore they are perceived as promising tools to overcome the limitations of
traditional methods and offer more possibilities for solving ill-defined problems. In terms of the ap-
proximation way whether the transformation of the neural layer spans the entire input domain, they
can be roughly classified into four kinds: the local transformation, the global transformation,
the local-global adding transformation (LGA), the local-local mixing transformation (LLM).
Due to the complete architecture complexity of neural networks, here we only focus on the single

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

neural layer. The general transformation of a neural layer can be defined in the form of

(Gθv) (x) =

∫
Dτ

gθ(x, τ)v(τ)dτ, x ∈ Dx (1)

where Gθ is a integral transformation parameterized by parameter sets θ ∈ Θ in neural networks,
gθ represents a integral kernel function parameterized by neural networks, Dτ and Dx are bounded
domains in Rd (d ∈ Z denotes the spatial dimension), τ ∈ Dτ and x ∈ Dx are variables in the input
and output domains respectively, and v is defined on Dτ . When Dτ is the partial domain Pτ ⊂ Rd, it
is the local transformation. When Dτ is the entire domain Eτ ⊂ Rd, it is the global transformation.
Mixing here means the element-wise product and adding means the element-wise addition between
transformations.

2 RELATED WORK

Models with Local Transformations. In the 1990s, Lagaris et al. (1998) trained a shallow FCNN to
solve PDEs. With the recent revival of deep learning (LeCun et al., 2015), Raissi et al. (2019) devel-
oped this idea based on modern techniques of deep learning and proposed physics-informed neural
networks (PINNs) to solve PDEs. Many efforts have been made to develop PINNs (Pang et al.,
2019; Lu et al., 2021b; Karniadakis et al., 2021). To avoid unaffordable computational cost, all of
the above studies limited input to only a few points at once and thus are the local transformation.
To address the curse of dimensionality in image inputs, plenty of works were performed to approxi-
mate the evolution operator using CNNs (Qu et al., 2022; Gao et al., 2021; List et al., 2022). Some
convolutional neural layer-based network architectures were also developed to solve PDE problems,
including generative adversarial networks for two-dimensional turbulence (Kim et al., 2024; 2021),
and autoencoder for three-dimensional turbulence (Xuan & Shen, 2023). Obviously, these convolu-
tional neural layer-based network architectures fall into the scope of the local transformation.

Models with Global Transformations. The self-attention blocks in Transformers model using
the composite matricial local-local mixing transformations belong to the global transformation
(Vaswani, 2017), and how the kernel function can be extended to the vanilla transformer formula
is detailed in (Kovachki et al., 2023). Some researches were performed to construct a transformer-
based framework to solve PDE problems (Cao, 2021; Li et al., 2022).

Models with LLM Transformations. More complex neural network architectures targeted at LLM
convolutional transformations for a more powerful nonlinear representation. Shi et al. (2015) com-
bined convolutional transformations with the classical long short-term memory networks (LSTMs),
where the cell state and latent state of LSTMs are obtained from element-wise products. Long
et al. (2018) combined the traditional numerical schemes with the LLM convolutional transforma-
tion to solve PDEs problems. Similarly, Rao et al. (2023) also developed a framework to encode
the physics and numerical schemes based on LLM convolutional transformation. However, the local
convolutional transformation heavily depends on mesh discretization, typically leading to a degraded
performance under changes in mesh discretization.

Models with LGA Transformations. To address mesh dependency in local convolutional trans-
formations, two approaches exist: constructing networks with mesh-independent discrete methods,
such as one-size convolutional kernels, or approximating the kernel in an auxiliary space. The graph
kernel network framework approximates the kernel in graph space using local convolutional and
graph transformations (Li et al., 2020b). To incorporate global information and improve efficiency,
spectral methods were introduced, representing complex patterns compactly (Trefethen, 2000). Li
et al. (2020a) developed the Fourier neural operator, replacing graph approximations with Fourier
layers to process entire domains. This inspired other spectral-based operators to transform kernels
into spectral spaces, such as wavelet (Tripura & Chakraborty, 2022) and Laplace neural operators
(Cao et al., 2024).

Other Models. It is worth mentioning that due to the variety of network variants and high-level
defined architectures, it is sometimes hard to directly classify their transformation. For example,
the concept of the neural operator was also presented by Lu et al. (2021a). . They developed the
DeepONet framework composed of the trunk network and branch network but transformations are
not explicitly defined.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 CHALLENGES AND METHODOLOGIES

Operator Definition. In this work, we focus on the form of neural operators due to their mesh
independence and generalization to unseen parameters. Here, we first outline the concept of operator
approximation. Given a spatial domain D ⊂ Rd with a spatial dimension d, an operator mapping
from the input space to the solution space is defined as:

G : I(D;Rdi) → U(D;Rdu), (2)
where I(D;Rdi) and U(D;Rdu) are Banach spaces representing the input and solution spaces,
respectively, and di, du ∈ N denote their corresponding dimensions. Specifically, it often involves
the evolution of the system in the context of PDEs and thus considers G an evolutionary operator.

Challenges in Nonlinear Dynamical System Approximation. To design a neural evolution oper-
ator that can effectively approximate autonomous dynamical systems, we first need to understand
the intrinsic connection between the original dynamical system and the dynamics expressed within
the neural network framework. This theoretical foundation is crucial for guiding us on how to sim-
plify the infinite-dimensional partial differential equation dynamics into a finite-dimensional and
expressive latent dynamics. The general form of an autonomous dynamical system is:

∂u(t)

∂t
= F (u), t ∈ [0, T] (3)

where u ∈ U(D;Rdu) is a solution of dynamical systems, and F : U(D;Rdu) → U(D;Rdu)
is an operator that acts on the solution u at each time t and represents the dynamics of u. The
operator F may consist of linear operators, nonlinear operators, and source terms, depending on the
specific dynamical system being modeled. Generally, nonlinear dynamical systems are addressed
by transforming the system into a (partially) linearized form or mapping it to a new representation
suitable for analysis and control utilizing a dimension-shifting operator T . After applying T :
U(D;Rdu) → V(D;Rdv), the solution u is transformed to a latent state v = T (u) in a latent space
V(D;Rdv), with its latent dynamics given by:

∂v(t)

∂t
= F̃ (v), t ∈ [0, T] (4)

where F̃ : V(D;Rdv) → V(D;Rdv) is an operator that acts on v and represents the dynamics
of v. Unfortunately, for known dynamical systems, the operator T is difficult to determine; for
unknown dynamical systems, even F (u) remains unresolved. These difficulties pose significant
challenges for solving arbitrary complex dynamical systems. Hopefully, machine learning methods
can approximate them in aid of data alone but often implicitly assume locally linearized dynamical
systems or globally linearizable nonlinear systems (Cenedese et al., 2022).

However, under this simplified assumption, two major challenges arise: (i) achieving linearization
for nonlinear systems often requires an infinite-dimensional latent space V (Brunton et al., 2022),
i.e. dv → ∞, making direct computation impossible, and (ii) some dynamical systems may possess
intrinsically non-linearizable dynamics, meaning F̃ retains nonlinear components even in an infinite-
dimensional V (Cenedese et al., 2022).

Inertial Manifold Theory for Dimensional Reduction. Fortunately, inertial manifold theory
(Foias et al., 1988) provides a rigorous framework for (i) reducing such systems to finite-dimensional
dynamics that capture the essential long-term behavior and (ii) remaining necessary nonlinearity.
This approach offers a principled foundation for developing physically interpretable models.

An inertial manifold M is a finite-dimensional, Lipschitz continuous manifold embedded within a
Hilbert space H. Any state v ∈ M can be uniquely decomposed into a low-mode component v̂ and
a high-mode component that is a function of the low-mode one v = v̂ + Φ(v̂). Here, v̂ = Pmv is
the projection of v onto the first dm eigenmodes, and Φ is a Lipschitz continuous function mapping
the low modes to the corresponding high modes in the orthogonal complement space.

Consider latent dynamics governed by ∂v
∂t = L(v)+N (v), where L and N are linear and nonlinear

operators, respectively. If the long-term dynamics are confined to an inertial manifold M, we can
project the governing equations onto the low-mode space Vr = PmV . Substituting v = v̂ + Φ(v̂)
into the dynamics and applying the projection Pm yields the exact reduced dynamics for v̂:

∂v̂

∂t
= PmL(v̂ +Φ(v̂)) + PmN (v̂ +Φ(v̂))

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Illustration of the DyMixOp model composed of the dimension-shifting layer and its
inverse, the projection layer and its inverse, and the LGM layers that adopt LGM transformations to
approximate dynamics within the dynamics-informed architecture.

Under the common assumption that the nonlinear interactions involving the slave high modes Φ(v̂)
can be modeled as a correction term, we can approximate the above as:

∂v̂

∂t
≈ Lv̂ + PmN (v̂) + PmR[N (v̂)] (5)

where R is a residual operator capturing the influence of the high-mode interactions. This derivation
offers a clear blueprint for constructing a reduced-order model and motivates the following design
principle of our neural operator by translating the latent state v̂ into the spectral coefficients c (further
derivation under additional assumptions see the Appendix).
Proposition 1. (Principled Architectural Design) Our proposed neural operator, G†, is constructed
as a direct functional analogue of the reduced dynamics dictated by inertial manifold theory. By
projecting Equation 5 onto a spectral basis to obtain dynamics for the reduced latent state c (by
acting Pm on v), the network is designed to approximate the evolution operator F (c) where

∂c(t)

∂t
= F (c) ≈ Lcc+A[Nc(c)] (6)

Specifically, the architecture G† is structured to explicitly model the components of F (c): (i) a
linear component approximates the linear operator Lc : C(D;Rdm) → C(D;Rdm), and (ii) a
nonlinear component approximates the operator A[Nc(·)], where Nc : C(D;Rdm) → C(D;Rdm)
is a nonlinear operator, A : C(D;Rdm) → C(D;Rdm) is an operator mapping the low-mode
component to the full-mode component.

This proposition formalizes the link between theory and method. Instead of being merely inspired by
the theory, our network architecture is a direct implementation of the mathematical structure that the
theory predicts. This provides a principled foundation for designing neural layers that approximate
arbitrary complex dynamics with enhanced physical interpretability and generalization capabilities.

Local-Global-Mixing Transformation. Inspired by the profound impact of complex physical sys-
tems on network design (Ho et al., 2020; Chen et al., 2018), particularly the multi-scale dynamics
of turbulence and the role of its convection term, we sought to create a transformation capable of
capturing similarly intricate dynamics. The convection term, defined by the product of a variable c
and its gradient ∂c

∂x , naturally embodies a form of local-global interaction. The variable c itself is
intrinsically localized, tied to its specific spatial position, suggesting the behavior of a local opera-
tion like convolution. In contrast, the computation of its gradient ∂c

∂x relies on information from the
wider domain, often requiring global approaches such as spectral methods. This inherent structure
within the convection term, where local state mixes with global gradient information, provides the
core inspiration for our novel LGM transformation. This architecture is designed to explicitly com-
bine the benefits of local and spectral global transformations, mirroring the essential mixing process

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

observed in convection to handle complex multi-scale features and mitigating the spectral bias in
existing neural operators, as follows:

Definition 1. (Local-Global-Mixing Transformation) The Local-Global-Mixing (LGM) transfor-
mation is defined as a parameterized operator that combines localized and global information from
the input state c in an element-wise multiplicative form. Specifically, it is given by:

Mθ

(
c
)
= L loc

θ

(
c
)
⊙ G glob

θ

(
c
)
=

(∫
Pτ

pθ(x, τ)c(τ)dτ

)
⊙

(∫
Eτ

eθ(x, τ)c(τ)dτ

)
, (7)

where L loc
θ is the local integral operator, G glob

θ is the global integral operator, c is the reduced latent
state. pθ(x, τ) : Dx × Pτ → R is the local kernel function, responsible for capturing fine-grained,
position-specific interactions. eθ(x, τ) : Dx × Eτ → R is the global kernel function, designed
to incorporate domain-wide information and relationships. They are parameterized by a set of
parameters θ. Pτ and Eτ are integration domains corresponding to local and global interactions,
respectively. ⊙ denotes the element-wise (Hadamard) product.

The transformation provides a versatile way to represent both linear and nonlinear dynamics. (i) For
linear dynamics, setting pθ(x, τ) = 1

Pτ c
or eθ(x, τ) = 1

Eτ c
makes Mθ a linear integral operator.

(ii) For nonlinear dynamics, parameterized kernels pθ(x, τ) and eθ(x, τ) turn Mθ into a nonlinear
operator. This flexibility allows the LGM transformation to model both types effectively, offering a
unified approach for complex dynamical systems.

Local-Global-Mixing Layers. Due to the flexibility of the LGM transformation in representing
both linear and nonlinear dynamics, we employ two separate LGM transformations to approximate
the linear component Lc and the nonlinear component Nc in the above design principle, with the
reduced latent state as input.

A primarily involves high-mode small quantities that emphasize local interactions. So we can use a
local transformation to approximate the operator A, facilitating the complexity of neural layers, as
follows:

Fθ(c) = ML
θ (c) + Hθ ◦ MN

θ (c), (8)

where ML
θ : C(D;Rdm) → C(D;Rdm), MN

θ : C(D;Rdm) → C(D;Rdm) indicate LGM trans-
formations approximating the linear dynamics Lcc and the nonlinear dynamics Nc(c), respectively,
and Hθ : C(D;Rdm) → C(D;Rdm) the local transformation. Sometimes dynamical systems may
involve composite operators, such as two higher-order derivatives in the Kuramoto-Sivashinsky sys-
tem, and one can utilize more transformations to finely approximate different components in opera-
tors. Finally, we can construct a LGM layer, which considers the reduced latent state c as input, to
represent the reduced latent dynamics with the definition as follows:

Definition 2. (Reduced Latent Dynamics Represented by Single LGM Layer) The reduced latent
dynamics represented by a single Local-Global-Mixing (LGM) neural layer is a sum of a local
transformation Hθ and multiple LGM transformations Mθ, each capturing distinct components or
scales of the system’s behavior. Specifically, the dynamics are formulated as:

Fθ(c) =

nl∑
a=1

MLa

θ (c) + Hθ

[nn∑
b=1

MN b

θ (c)
]
, (9)

where nl, nn are the numbers of the linear and nonlinear LGM transformation, respectively, and c
is the reduced latent state.

Dynamics-Informed Architecture. In deep learning, enhancing the representational capacity of
neural networks is often achieved by stacking multiple layers. To integrate this concept into the
DyMixOp framework, an architecture designed for connecting LGM layers is proposed based on the
evolution of dynamics. By introducing time transformations between each dynamics and learnable
evolutionary step (derivation see Appendix), we can get the following formula of the output:

cLd
= c0 +

Ld∑
l=1

∆tcθl Fθl(cl−1) (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where ∆tcθl is a parameterized evolutionary step and the input to each layer cl−1 is recursively
defined as cl−1 = cl−2 + Fθl−1

(cl−2), l = 2, ..., Ld.

DyMixOp. Here we can assemble the above components to propose a novel neural operator named
DyMixOp shown in Fig. 1. For clarity, let us assume k = 0 and then denote the temporal input
sequence [uti−k , . . . , uti] by ut. Given a depth Ld ∈ N, the DyMixOp takes the following composite
form:

G†(ut; θ) = T −1 ◦ P−1
m ◦ C ◦ Pm ◦ T (ut), (11)

where T : U(D;Rdu) → V(D;Rdv) is a neural operator (or neural layer in the context of neural
network) that shifts the channel dimension, transforming the original state ut into the latent state vt,
Pm : V(D;Rdv) → C(D;Rdm) is a neural operator that projects state onto a low-dimensional
space, transforming the latent state vt into the reduced latent state ct. T −1 : V(D;Rdv) →
U(D;Rdu) and P−1

m : C(D;Rdm) → V(D;Rdv) are neural operators that reverse the transfor-
mations of T and Pm, respectively.

At the heart of the DyMixOp is the composite nonlinear operator C : C(D;Rdm) → C(D;Rdm).
This comprises Ld LGM layers that are integrated within a dynamics-informed network architecture,
and are expressed as follows:

C (c) = c0 +

Ld∑
l=1

∆tcθl Fθl(cl−1), (12)

where ∆tcθl is a parameterized evolutionary step and the input cl−1 to each layer is recursively
defined as cl−1 = σ(cl−2 + Fθl−1

(cl−2)), l = 2, ..., Ld, where σ : Rdm → Rdm is a nonlinear
activation function applied element-wise, and the LGM layer Fθl is defined as

Fθ(c) =

nl∑
a=1

MLa

θ (c) + Hθ

[nn∑
b=1

MN b

θ (c)
]
, (13)

where MN b

θ : C(D;Rdm) → C(D;Rdm) and MLa

θ : C(D;Rdm) → C(D;Rdm) are nonlinear
and linear LGM transformations, respectively, nn, nl are the number of nonlinear and linear LGM
transformations, respectively, and Hθ : C(D;Rdm) → C(D;Rdm) is the local transformation. The
nonlinear LGM transformation MN

θ is defined as(
MN

θ c
)
(x) = (L loc

θ c)(x)⊙ (G glob
θ c)(x), (14)

where (L loc
θ c)(x) =

∫
Pτ

pθ(x, y)c(y) dy and (G glob
θ c)(x) =

∫
Eτ

eθ(x, y)c(y) dy are the local trans-
formation and the global transformation, respectively, where pθ : D×Pτ → R and eθ : D×Eτ → R
are kernel functions parameterized by θ, and the integrals are well-defined over the domain Pτ and
Eτ , ⊙ denotes the element-wise (Hadamard) product. The definition of linear operator ML

θ is
similar to the nonlinear one, but the global transformation or local transformation is specified as
an indicator function 1D(x) depending on cases. Consequently, this formulation ensures that the
DyMixOp captures both linear and nonlinear dynamics through local and global dependencies.

Detailed Implementation for DyMixOp. This work adopts key empirical insights from ML: local
convolutions often outperform global spectral transforms, and applying activation functions to out-
puts typically boosts network performance. Accordingly, the global kernel eθ in MLa

is fixed as
1

Eτ c
, effectively reducing it to an indicator function 1D(x). Activations are applied at each interme-

diate state cl−1. In the inertial manifold framework, T ideally maps to infinite dimensions but is
practically set to twice the dimension of Pm, whose optimal size remains a tunable hidden hyper-
parameter. For efficiency, T , Pm, and their inverses are implemented as local transforms—though
this is flexible per use case. All transformations—T , Pm, their inverses, Hθ, and local compo-
nents of MLa

θ and MN b

θ —use 1×1 convolutions to ensure mesh-invariance. Global components
in MN b

θ employ trainable truncated Fourier transforms, following FNO. For performance-critical
tasks, larger convolutional kernels may be used—1×1 is not mandatory.

Operator Approximation. Computationally, the operator G must be discretized on the physical
space and time. Given a discrete time sequence {ti}Ti=0 and states uti , uti+1 ∈ U(D;Rdu), sampled
from a probability distribution Pu over U(D;Rdu), their relationship is defined as uti+1 = G(uti)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

for i = 0, 1, . . . , T − 1. The objective is to approximate the operator G using the DyMixOp model
parameterized by θ ∈ Θ, where Θ denotes the parameter space with dimensionality determined
by the chosen architecture. Thus, the approximation of G using the DyMixOp is formulated as the
following optimization problem:

min
θ∈Θ

E(uti ,uti+1)∼Pu
||α[G†(uti ; θ)− uti+1] + β[T −1 ◦ P−1

m ◦ Pm ◦ T (uti)− uti]||U , (15)

where G†(uti ; θ) represents the DyMixOp’s prediction for uti+1 , ∥ · ∥U denotes the norm in the Ba-
nach space U(D;Rdu), and α, β are the weighted coefficients. The optimization target consists of
the reconstruction and consistency errors. Although the DyMixOp architecture is designed based on
the viewpoint of the evolution of dynamics, it presents a powerful capability to approximate the gen-
eral solution operator mapping parameters to solutions. This will be demonstrated in the following
experiments. In this work, we leverage data pairs of the form {[uti−k , . . . , uti], uti+1} to account
for temporal dependencies. The optimization problem is solved using empirical risk minimization,
approximating the expectation with a finite dataset to effectively train the neural evolutionary oper-
ator.

4 RESULTS

4.1 EXPERIMENT SETTINGS

Datasets. We conduct experiments on the following datasets across multiple domains and PDE
types: (i) 1D Kuramoto-Sivashinsky (KS), a one-dimensional parabolic PDE; (ii) 2D Burgers, a two-
dimensional parabolic PDE; (iii) 2D CE-CRP, a two-dimensional hyperbolic PDE; (iv) 2D Darcy
(Li et al., 2020a), a two-dimensional elliptic PDE; (v) 2D Navier-Stokes (NS), a two-dimensional
parabolic PDE; (vi) 3D Brusselator (Bru.), a three-dimensional parabolic PDE; (vii) 3D Shallow
Water (SW) (Cao et al., 2024), a three-dimensional hyperbolic PDE; More details on datasets can
be found in the Appendix.

Baselines. We compare our method with several well-known models equipped with different trans-
formations: (i) DeepONet (Lu et al., 2021a), a local-transformation-based architecture; (ii) GNOT
(Hao et al., 2023), a global-transformation-based architecture; (iii) FNO (Li et al., 2020a), a LGA-
transformation-based architecture; (iv) PeRCNN (Rao et al., 2023), a concise LLM-transformation-
based architecture; (v) ConvLSTM (Shi et al., 2015), a precise LLM-transformation-based architec-
ture. More details on baselines can be found in the Appendix.

Experiment Details. For the hyperparameters of the baselines and our methods, we assign different
configurations for all models. By thoroughly exploring a wide range of configurations, we can
comprehensively assess the models’ potential. For fair comparisons, all models are trained for 500
epochs using the learning rate of 1e − 3 and the AdamW optimizer (Loshchilov & Hutter, 2017)
with 0.97 gamma and 6 step size. StepLR scheduler is utilized to modify the learning rate and a
batch size 128 is used in the training on a single NVIDIA A100 GPU. More details about model
configurations and implementation refer to Appendices

Metrics. All datasets are normalized in min-max normalization. For all datasets, except the 2D
Darcy dataset, we adopt the mean squared error (MSE) as the reconstruction metric for training and
evaluation. The 2D Darcy dataset employs the relative MSE instead, aiming to address extremely
minimal solutions and prevent gradient vanishing.

4.2 MAIN COMPARISON RESULTS

The main experimental results for all datasets and methods are shown in Table 1. Based on these
results, we have the following observations.

An Excellent Performance and Generalization on Various PDE Types in the DyMixOp. Our
DyMixOp model consists of convection-inspired transformations and naturally embeds convection
features into the model, enabling it to effectively capture convection dynamics with satisfactory
performance. This perspective is validated by great gains in the 2D NS and 3D SW datasets, where
these dynamics involve the influence of the convection term. The reduction in prediction error
exceeds 75% in both cases. It can also be noted in Fig. 2 that the prediction accuracy of the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: For each model, the metric on each dataset is the best one among almost 16 model config-
urations. For each dataset, the optimal result among the models is in bold, and the suboptimal result
is underlined.

Model 1D KS 2D Burgers 2D CE-CRP 2D Darcy 2D NS 3D Bru. 3D SW

ConvLSTM 0.8235 0.0326 0.0578 1.9e-6 0.0023 0.4744 7.2e-4
PeRCNN 1.0954 0.0520 0.0947 1.8e-5 0.0311 1.5628 1.5e-3
GNOT 1.7231 0.0316 0.0637 1.7e-7 0.0109 0.2042 6.8e-4
DeepONet 1.7337 0.0402 0.0629 1.7e-6 0.0120 2.6432 1.9e-3
FNO 0.0204 0.0020 0.0239 5.2e-9 0.0013 0.0599 8.3e-5
DyMixOp 0.0139 0.0007 0.0185 3.7e-9 0.0003 0.0538 1.1e-5
Gain 31.9% 65.0% 22.6% 28.8% 76.9% 10.2% 86.7%

DyMixOp significantly improves as the model size increases. In contrast, other models show only
slight performance improvements with larger sizes. The DeepONet model may even perform worse
with a larger model size compared to a smaller one. Despite being inherently convection-inspired,
the DyMixOp still presents a good generalization to other diffusion-dominated datasets such as the
1D KS and the 2D Darcy dataset, achieving an improvement beyond 25%. Similarly, the DyMixOp
can reach better performances on these datasets as the model size increases.

Figure 2: The performance of all model configurations across all datasets is visualized in a plane
defined by training time per epoch and GPU memory usage. The size of each point indicates model
performance, quantified as 1000 divided by the test dataset loss.

Modest Training Time and Efficient GPU Memory Utilization in the DyMixOp. Fig. 3 shows
the GPU memory usage and training time of one epoch for all configurations of each model. For
the time consumption, our DyMixOp generally consumes modest training time compared to other
models of similar size, except for the 1D KS dataset. Due to the simplicity of the 1D case, the dif-
ferences in time consumption among models are not particularly significant. For the GPU memory
usage, the DeepONet and the PeRCNN models are restricted to their inherent architectures that are
difficult to effectively extend to large model sizes, such that they usually require the minimal GPU
memory usage. Instead, other models can readily cover kinds of model sizes. When the predic-
tion errors (indicated by point size) are comparable, the DyMixOp typically exhibits similar time
consumption and GPU memory usage as the DeepONet and PeRCNN models, and consumes less
of both resources compared to the FNO, GNOT and ConvLSTM models. As the model size con-
tinues to increase, the DyMixOp model outperforms all models. These observations suggest that
the DyMixOp model offers a compelling combination of high predictive accuracy, computational
efficiency, and scalability, positioning it as a promising candidate for PDE solving.

4.3 ABLATION AND SCALING EXPERIMENTS

In this section, we conduct ablation and scaling experiments on the 2D NS dataset.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: The illustration of scaling experiments for training samples and model sizes and ablation
experiments. ’W’ is the channel width and ’L’ is the number of layers.

Ablation Experiments. We conduct ablation studies (Fig. 3) on nonlinear LGM transformations,
LGM layers, and the dynamics-informed architecture, using standardized settings (e.g., 96-width
channels unless noted). First, replacing the DyMixOp’s nonlinear LGM transformations with purely
local or global counterparts degraded performance: local-only failed to capture long-range depen-
dencies, while global-only underperformed despite improvement, confirming that combining both
is essential for modeling complex dynamics. Second, isolating linear and nonlinear components
in LGM layers showed that linear-only performed poorly due to limited expressiveness, similar to
local-only. Nonlinear-only achieved better results but collapsed around 340 epochs from instability,
highlighting the need for a balanced integration of both transformation types. Lastly, testing the ar-
chitecture design revealed that hierarchical stacking caused error accumulation and instability, while
parallel stacking was stable but suboptimal. The combined parallel-hierarchical structure, guided by
dynamical principles, delivered superior performance. These results emphasize the importance of
integrating local and global features, balancing linear and nonlinear transformations, and adopting a
hybrid architecture for effective modeling of complex dynamical systems.

Scaling Experiments. We adapt the task to non-autoregressive prediction to test a range of model
sizes on a single NVIDIA A100 GPU. Eight configurations were examined, from W32L1 (0.3M pa-
rameters) to W256L8 (152.7M parameters), across data amounts of 10, 100, 500, and 1000 samples.
Performance improved with more data across all model sizes, with larger models (e.g., W128L6)
needing substantial data to optimize learning. Performance gains saturated around W128L6, par-
ticularly under data-rich regimes, highlighting the benefits of scaling. Spanning three orders of
magnitude in size and data, these trends suggest further scaling could yield greater gains, affirming
DyMixOp’s potential for complex dynamical systems.

5 CONCLUSION

In this work, we propose DyMixOp, a principled neural operator framework that draws inspiration
from complex dynamical systems to guide the architecture design for solving PDEs. Unlike prior
approaches that often rely on heuristic or architecture-driven construction, our method is grounded
in dynamical system theory, offering both theoretical rigor and empirical strength. The main con-
tributions are summarized as follows: (i) Theory-guided operator modeling: We leverage inertial
manifold theory to reduce infinite-dimensional nonlinear PDE dynamics into a finite-dimensional
latent space, preserving essential nonlinear interactions. This dimensionality reduction offers a
structured foundation for neural operator design with better physical interpretability and efficiency.
(ii) Convection-inspired Local-Global-Mixing (LGM) transformation: Motivated by the local-
global structure of convection terms in turbulence, we introduce a novel transformation that explic-
itly captures both local features and global interactions through element-wise mixing of local and
global kernels. This mitigates spectral bias and enhances the model’s expressiveness across scales.
(iii) Dynamics-informed architecture: We construct a multi-layer architecture that mirrors the
temporal evolution of dynamical systems in a hybrid variant. (iv) Unified framework for complex
PDEs: By integrating these insights, DyMixOp delivers state-of-the-art performance across a range
of PDE benchmarks, including convection-, diffusion-, and mixed-type equations.

This work demonstrates that embedding physical and dynamical priors into neural operator
design is not only feasible but also impactful, pointing toward a more systematic path for developing
generalizable and efficient neural solvers for complex PDE systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Dzmitry Bahdanau. Neural machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Accurate medium-
range global weather forecasting with 3d neural networks. Nature, 619(7970):533–538, 2023.

Bernd Blasius, Amit Huppert, and Lewi Stone. Complex dynamics and phase synchronization in
spatially extended ecological systems. Nature, 399(6734):354–359, 1999.

Michael Breakspear. Dynamic models of large-scale brain activity. Nature neuroscience, 20(3):
340–352, 2017.

Steven L Brunton, Marko Budišić, Eurika Kaiser, and J Nathan Kutz. Modern koopman theory for
dynamical systems. SIAM Review, 2022.

Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Laplace neural operator for solving
differential equations. Nature Machine Intelligence, 6(6):631–640, 2024.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information processing
systems, 34:24924–24940, 2021.

Mattia Cenedese, Joar Axås, Bastian Bäuerlein, Kerstin Avila, and George Haller. Data-driven
modeling and prediction of non-linearizable dynamics via spectral submanifolds. Nature commu-
nications, 13(1):872, 2022.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

John E Dennis Jr and Robert B Schnabel. Numerical methods for unconstrained optimization and
nonlinear equations. SIAM, 1996.

Ciprian Foias, George R Sell, and Roger Temam. Inertial manifolds for nonlinear evolutionary
equations. Journal of differential equations, 73(2):309–353, 1988.

Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-adaptive convo-
lutional neural networks for solving parameterized steady-state pdes on irregular domain. Journal
of Computational Physics, 428:110079, 2021.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu,
Ze Cheng, Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator
learning. In International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

John R Howell, M Pinar Mengüç, Kyle Daun, and Robert Siegel. Thermal radiation heat transfer.
CRC press, 2020.

Frank Jensen. Introduction to computational chemistry. John wiley & sons, 2017.

Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and prospects.
Science, 349(6245):255–260, 2015.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Hyojin Kim, Junhyuk Kim, Sungjin Won, and Changhoon Lee. Unsupervised deep learning for
super-resolution reconstruction of turbulence. Journal of Fluid Mechanics, 910:A29, 2021.

Jiyeon Kim, Junhyuk Kim, and Changhoon Lee. Prediction and control of two-dimensional decaying
turbulence using generative adversarial networks. Journal of Fluid Mechanics, 981:A19, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Fer-
ran Alet, Suman Ravuri, Timo Ewalds, Zach Eaton-Rosen, Weihua Hu, et al. Learning skillful
medium-range global weather forecasting. Science, pp. eadi2336, 2023.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. arXiv preprint arXiv:2205.13671, 2022.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020b.

Björn List, Li-Wei Chen, and Nils Thuerey. Learned turbulence modelling with differentiable fluid
solvers: physics-based loss functions and optimisation horizons. Journal of Fluid Mechanics,
949:A25, 2022.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In
International conference on machine learning, pp. 3208–3216. PMLR, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021a.

Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and Steven G Johnson.
Physics-informed neural networks with hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Parviz Moin and Krishnan Mahesh. Direct numerical simulation: a tool in turbulence research.
Annual review of fluid mechanics, 30(1):539–578, 1998.

Siddhartha Mukherjee, Rahul K Singh, Martin James, and Samriddhi Sankar Ray. Intermittency,
fluctuations and maximal chaos in an emergent universal state of active turbulence. Nature
Physics, pp. 1–7, 2023.

Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-informed neural
networks. SIAM Journal on Scientific Computing, 41(4):A2603–A2626, 2019.

Jiagang Qu, Weihua Cai, and Yijun Zhao. Learning time-dependent pdes with a linear and nonlinear
separate convolutional neural network. Journal of Computational Physics, 453:110928, 2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chengping Rao, Pu Ren, Qi Wang, Oral Buyukozturk, Hao Sun, and Yang Liu. Encoding physics
to learn reaction–diffusion processes. Nature Machine Intelligence, 5(7):765–779, 2023.

Dennis C Rapaport. The art of molecular dynamics simulation. Cambridge university press, 2004.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo.
Convolutional lstm network: A machine learning approach for precipitation nowcasting. Ad-
vances in neural information processing systems, 28, 2015.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Gordon D Smith. Numerical solution of partial differential equations: finite difference methods.
Oxford university press, 1985.

S Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press,
2001.

Lloyd N Trefethen. Spectral methods in MATLAB. SIAM, 2000.

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator: a neural operator for parametric
partial differential equations. arXiv preprint arXiv:2205.02191, 2022.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Henk Kaarle Versteeg. An introduction to computational fluid dynamics the finite volume method,
2/E. Pearson Education India, 2007.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Anqing Xuan and Lian Shen. Reconstruction of three-dimensional turbulent flow structures using
surface measurements for free-surface flows based on a convolutional neural network. Journal of
Fluid Mechanics, 959:A34, 2023.

OC Zienkiewicz. The finite element method in engineering science, 1971.

12

	Introduction
	Related Work
	Challenges and Methodologies
	Results
	Experiment Settings
	Main Comparison Results
	Ablation and Scaling Experiments

	Conclusion

