Under review as a conference paper at ICLR 2026

THE AGENT’S MARATHON: PROBING THE LIMITS OF
ENDURANCE IN LONG-HORIZON TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model (LLM) agents, augmented with diverse tools, have shown
impressive progress in domains such as scientific discovery and enterprise automa-
tion. Yet they remain brittle in long-horizon tasks that require extended sequences
of interactions, where performance often deteriorates rapidly. Existing benchmarks
provide only partial coverage of this challenge: manual or crowdsourced tasks
are too short, tool-use benchmarks emphasize breadth over depth, and web-based
evaluations rely on emergent rather than controllable complexity. To fill this gap,
we introduce TaskWeaver, a rule-based, controllable platform for generating bench-
mark tasks with precisely adjustable difficulty and horizon length. At its core,
TaskWeaver abstracts all tool use as file-read operations. This design choice re-
moves superficial API complexities, allowing us to directly probe an agent’s core
ability to reason and integrate intermediate results over long, dependent sequences.
We instantiate the framework across three domains: document understanding and
navigation, multi-modal information integration, and executable code analysis.
Each domain probes a complementary aspect of agentic reasoning, and together
they form a unified benchmark, LORE (Long-horizon Reasoning Evaluation). Em-
pirical results show that even for the strongest models we tested, performance
degrades significantly as task length and per-step complexity increase. Specifically,
their accuracy approaches zero on tasks exceeding 120 steps, and on more challeng-
ing variants, performance collapses in fewer than 15 steps. These findings highlight
long-horizon robustness as a central open challenge for future agent development.

1 INTRODUCTION

Modern Large Language Model (LLM) agents, augmented with diverse tools, offer rich possibilities
for interacting with real-world data and systems, and they have already demonstrated success across
applications such as scientific discovery and enterprise automation (Schmidgall et al., 2025} [Luo
et al.,|2025). Despite this, agents face a critical challenge of performance degradation in long-horizon
tasks that require a high number of sequential interactions (Wang et al.| 2025bj [Erdogan et al.| [2025).
In such settings, failure often comes not only from poor planning but also from small execution
mistakes, which can add up and cause the whole task to fail (Sinha et al., [2025; | Zhou et al., [2025)).

However, existing benchmarks do not adequately evaluate an agent’s robustness to error accumulation
over long-horizon tasks. Specifically, mainstream agentic benchmarks fall into three categories. The
first class, represented by GAIA (Mialon et al., [2023)) and HLE (Phan et al.|[2025)), relies on tasks that
are manually designed or crowdsourced. The high cost of this annotation process inherently limits
the length and logical depth of the tasks. For instance, in GAIA, the majority of human-annotated
solution paths are concentrated within 10-20 steps. The second class, including AgentBench (Liu
et al., 2024), API-Bank (Li et al.| 2023) and ToolBench (Qin et al., 2024}, focuses more on the
breadth of tool use. Their design prioritizes evaluating an agent’s ability to handle diverse APIs or a
wide range of executable tools, rather than its performance on deep, sequential reasoning within a
single task. The third category, exemplified by WebArena (Zhou et al.,|2024) and Mind2Web (Deng
et al., 2023), tests an agent’s ability to decompose problems and execute actions within realistic
web environments. Although these benchmarks may contain tasks described as “long-horizon,”
their length and complexity are often emergent properties of intricate web Uls or complex API
combinations, rather than a controllable, arbitrarily extendable chain of logical dependencies.

Under review as a conference paper at ICLR 2026

140 Long-Horizon Controllable

Step

80 Tool-Use Multi-Domain

. ®

@ @ (2 Read v,% X, s5,: Number AT

X =S, + 5, +s3 || of pentagons return vf

GPT5 03 o1 GPT-40 Document Multi-modal Code

Figure 1: The challenge of long-horizon tasks for current Al agents and our benchmark LORE
designed to evaluate it. Left: Even state-of-the-art language models are brittle on tasks requiring long
sequences of reasoning. Their performance, measured by the number of successful steps (y-axis),
degrades sharply as the task horizon extends, highlighting the critical need to improve their long-
horizon robustness. Right: An overview of our proposed benchmark framework, which is designed to
be long-horizon and controllable. It integrates multi-domain tasks, including document understanding,
multi-modal reasoning, and code analysis, under a unified tool-use paradigm to precisely evaluate
and advance the core reasoning and planning capabilities of Al agents.

To address this gap, as illustrated in Figure[I} we introduce TaskWeaver, a rule-based, controllable
platform for generating benchmark tasks that probe the long-horizon reasoning of LLM agents.
TaskWeaver can produce an unlimited number of verifiable evaluation tasks whose difficulty and
horizon length are precisely controlled, and it naturally scales to new task schemas. At its core lies a
unifying abstraction: each tool call is treated as a file-read operation. This abstraction is natural for
two reasons. First, from the perspective of the agent, a tool invocation is essentially a black-box I/O:
given a query, the model receives a textual result that is appended to its context, much like retrieving
the contents of a file. Second, this view removes the superficial characteristics of diverse APIs while
preserving the essential property we aim to evaluate, namely the agent’s ability to track state, integrate
intermediate results, and reason across long sequences of dependent steps. By reducing tool use
to file reads, we retain the fundamental challenge of long-horizon reasoning without confounding
factors such as memorizing API syntax or handling heterogeneous interfaces.

Building upon this, we curate our benchmark called LORE (LOng-horizon Reasoning Evaluation)
across three domains: (1) a foundational text-based domain that tests an agent’s ability to synthesize
information from a multi-document system; (2) a multi-modal extension that requires the integrated
analysis of textual and visual data; and (3) a complex code analysis domain designed to stress-
test an agent’s advanced reasoning capabilities on intricate program logic and control flow. Our
evaluation across these domains reveals several limitations in current agent capabilities. First, the
performance of state-of-the-art LLMs degrades with task length, with accuracy approaching zero on
tasks exceeding around 120 steps. Second, this decay accelerates as per-step difficulty increases;
on our more challenging benchmark variants, agent performance collapses after fewer than 15
steps. These evaluation results indicate critical limitations in the long-horizon capabilities of current
state-of-the-art LLM agents.

2 RELATED WORK

2.1 LLM AGENT BENCHMARKS

The evaluation of LLM agents has spurred a variety of benchmarks, each with specific focuses
and limitations. For instance, GAIA (Mialon et al.| [2023) and HLE (Phan et al., [2025) uses real-
world questions, but its tasks are too short to effectively measure long-horizon planning (Erdogan
et al.| [2025). Benchmarks like AgentBench (Liu et al., 2024), WebArena (Zhou et al., 2024)
and Mind2Web (Deng et al.,|2023) immerse agents in complex, multi-turn environments, but their
emergent dependency structures prevent the controlled measurement of reasoning endurance. Another
line of work focuses on interaction dynamics. MINT (Wang et al.| [2023)) assesses the use of tools and
feedback, and AgentBoard (Chang et al., [2024) introduces new analytical metrics. These prioritize

Under review as a conference paper at ICLR 2026

the interactive process or evaluation methodology over designing tasks that specifically stress-test
an agent’s autonomous reasoning endurance. While ToolBench (Qin et al., 2024} and its successor
StableToolBench (Guo et al.,2024)) and API-Bank (Li et al., [2023)) test the use of many APIs, their
tasks require only simple tool compositions (Peng et al.,|2022; Huang et al., 2024;|Wang et al.,[2025a)),
falling short of the deeply nested dependency chains designed in LORE (Yao et al., 2024)).

2.2 SYNTHETIC AND PROCEDURAL BENCHMARK GENERATION

Our work is built upon the idea of automatic data generation, drawing from the established field
of Procedural Content Generation (PCG) and contrasting with recent efforts in automated agent
task generation (Maheshwari et al.| [2024} [Peper et al., 2025} [Long et al., [2024} |Wen et al.| 2024).
Procedural Content Generation (PCG) is a mature field, primarily from game development, that uses
algorithms to create content rather than manual creation (Khalifa et al.| 2025). The core principles of
PCQG, controllability, quality, and diversity, directly map to the design goals of TaskWeaver. Recent
work has also explored automating agent benchmark generation (Patel et al., 2025} [Butt et al., [2024;
Nathani et al., 2025} [Zhuge et al., 2024). TaskCraft (Shi et al.,|2025)) proposes a workflow that starts
with simple “atomic” single-tool tasks and increases complexity through “depth-based” (serial) and
“width-based” (parallel) extensions (Shi et al.,|2025). OdysseyBench (Wang et al., [2025b)) uses a
multi-agent framework to synthesize long-horizon workflows by simulating multi-day user-assistant
dialogues in office application environments (Wang et al.l 2025b)). TaskWeaver differs fundamentally
by employing a first-principles generative approach. It starts from a final answer (the root of a tree)
and works backward, applying formal operations to generate the entire dependency tree. This method
is uniquely suited for testing abstract, domain-agnostic reasoning by directly generating the formal
reasoning structures themselves.

3 TASKWEAVER FRAMEWORK

TaskWeaver introduces a procedural generation framework for constructing complex, long-horizon
tasks with controllable difficulty. At its core is a unifying abstraction that treats each tool use as
a single, analyzable file-read operation. Building on this abstraction, we construct a dependency
graph in tree form and iteratively expand it with a predefined set of formal operators, enabling the
creation of tasks of arbitrary length and logical complexity. In the following subsections, we first
define the key components of our framework, including the tool-call abstraction and operator set.
We then detail the iterative task generation process, which supports both bottom-up and top-down
construction. Finally, we show how this general framework instantiate benchmarks in three domains:
document understanding and navigation, multimodal information analysis, and code understanding.

3.1 PRELIMINARY CONCEPTS

Our TaskWeaver framework is built upon three core concepts: the abstraction of tool calls, the use of
a tree structure to represent dependencies, and a formal definition for generative operators.

Unified Tool Interaction Abstraction. We unify diverse tool interactions under a common abstrac-
tion: each tool call is treated as a file-read operation. Concretely, an agent provides information
to a tool and receives a textual output, much like reading the contents of a file given its identifier.
This view strips away the surface differences among APIs and instead emphasizes the essential
property we aim to evaluate, namely the agent’s ability to track and reason over long chains of stateful
dependencies. Throughout the framework, we therefore treat every tool call as a standardized file-read
operation, which serves as the basic unit for constructing the dependency tree.

Dependency Tree Representation. To represent the dependencies among tool calls, we organize
them into a tree 7 = (V, E), where V and F are the set of nodes and edges, respectively. Each
node corresponds to a single call, modeled as a “file” produced by the tool. A node v € V is
denoted as a tuple v = (id, ¢), where id is a unique tool identifier, ¢ is the raw content of the
tool’s output. The edges E capture dataflow dependencies: the content of a parent node can be
derived from the information in its children. This representation explicitly records how intermediate
results combine to form higher-level outputs, making long reasoning chains both verifiable and
analyzable. For example, given the query ‘What will the temperature be in New York tomorrow?’,
a call to WeatherAPI ("New York, tomorrow") can be represented as node v; with id =

Under review as a conference paper at ICLR 2026

Document Understanding Navigation Multi-modal Understanding Executable Code Reasoning

(©), Please find so. Begin by reading vea% ... vea% .. ves% (. v,%] @f\l’lcasc find so. Begin by reading ve,% ... ve2% ... ves% . %%] [Please return value of the main function in the main.py]

%3 —_—
B2 Ariimetic Operati = i)
B sos fanswer) rithmet Operadon sy Number of
- x triangles inport vo, v1, v2, v3
ef main():
if ve.main() > vi.main():
Image Operation return v2.main()
else:
e return v3.main()
0 »%
- £ tmage Toos
= Read v,%x, [Py M= o
- i B
- dme
= def main()] [x) def main():
return 50 return 8
vathl | [@ra%c. | [@va%i |
- 9 =
B oo | D -2 | D =6 | 0 v.% 0 ve% 0O vs% B3 vapy v3.py
o or o s1: Number 52 Number 53 Number 4 Gt main(): ot main():
2 siisabe | B s | [Z sismn | of circles of pentagons of ellipses return abe return vf
Bottom-up Generation Mode Top-Down Generation Mode

Figure 2: Concrete examples of tasks generated by TaskWeaver, showcasing the construction of
dependency trees in three domains. Document Understanding Navigation demonstrates tasks re-
quiring retrieval and calculation with either numbers or strings. Multi-modal Understanding shows
a task where reasoning requires extracting information from images. Executable Code Reasoning
presents a task where the agent must trace function calls and conditional logic across multiple files.
The structure of each task defines a verifiable reasoning path, which can be generated using either
a bottom-up approach (orange arrows) where content flows from leaves to the root, or a top-down
approach (green arrows) where the task is decomposed from the root to the leaves.

WeatherAPT and ¢ = the output. A second node vy, with id = ‘ExtractTemperature’ and ¢ = the
numeric value, depends on v;. Here id indicates the tool invoked, c the returned content, and the
edge captures their dependency.

Task Expansion Rules. The dependency tree grows through a pre-defined set of generative operators
O. Each operator o € O is a formal rule that specifies how to expand a single node into a new parent
with one or more children. An operator defines its arity (the number of children it can generate,
within a specified range), may enforce type constraints on the parent and child nodes, and provides
procedures for creating new children, generating the rule that links them, and executing that rule to
produce the parent’s content. This mechanism ensures that each expansion step is well-defined and
consistent, allowing tasks of arbitrary length and complexity to be generated in a systematic way.

For example, extending the weather query from above, the node v» that extracts the temperature
value can be further expanded by applying an operator ConvertUnits. This operator takes v as input
and generates a new parent node vs with id = “ConvertUnits” and ¢ = the temperature converted
from Fahrenheit to Celsius. Here, the operator formally specifies both the child instantiation (create a
numeric child node) and the rule execution (apply the conversion formula). The resulting tree makes
explicit that the Celsius value depends on the extracted Fahrenheit value, which in turn depends on
the raw API response.

3.2 TASK GENERATION PROCESS

Building on the preliminary concepts, we now describe the process for generating task instances
through the construction of a dependency tree. The generation begins with an empty root node and
proceeds in an iterative manner: at each step, a leaf node is selected and expanded using a randomly
chosen operator from the predefined set O. Each operator specifies how new child nodes are created,
how semantic content is assigned, and how parent—child dependencies are maintained. By repeatedly
applying this procedure, the framework incrementally grows a structured tree in which intermediate
values and dependencies define the agent’s reasoning path. To capture different reasoning paradigms,
we support two complementary modes for constructing the tree: a bottom-up mode that reflects
reasoning from evidence to conclusions, and a top-down mode that mirrors task decomposition from
goals to subgoals. We detail both modes below and illustrate them in Algorithm [I]

Bottom-Up Generation Mode. In the bottom-up mode, the dependency tree is constructed by
progressively defining parent nodes from the information of their children. At each iteration, a leaf
node is selected and expanded using a randomly chosen operator. The operator specifies how many
children to generate, and each new child is assigned unique content to ensure semantic diversity. The

Under review as a conference paper at ICLR 2026

operator’s rule then computes a value from these children, and this value becomes the identifier of the
parent node. In this way, the parent’s identity is grounded in the content of its descendants, and the
tree grows upward from concrete evidence to increasingly abstract variables. As indicated by the
orange arrows in Figure 2] under the bottom-up generation paradigm, the data generation proceeds by
first determining the content generated at the leaf nodes and subsequently assigning the IDs of their
parent nodes.

Top-Down Generation Mode. In the top-down mode, the dependency tree is generated by progres-
sively decomposing a parent node into its children. At each iteration, a leaf node is selected and
expanded using a randomly chosen operator. The operator assigns unique identifiers to the new child
nodes and then generates a rule that references these identifiers; this rule is stored as the content of
the parent node. Unlike the bottom-up process, where a parent’s identity is derived from the concrete
values of its children, here the parent’s content encodes a dependency that will only be resolved once
the children are instantiated with values. In this way, the tree grows downward from abstract goals
to concrete subgoals, mirroring a deductive reasoning process. As indicated by the green arrows
in Figure [2] under the top-down generation paradigm, the data-generation path proceeds by first
finalizing the content of the main module and then decomposing it into subordinate modules.

Leaf Consolidation. To manage the growth of the dependency tree, we introduce a consolidation
mechanism that controls branching width and encourages deeper chains of reasoning. Whenever the
number of leaf nodes exceeds a predefined threshold, a consolidation step may be probabilistically
triggered. This step reduces the number of active leaves by aggregating or redirecting them, thereby
preventing uncontrolled expansion of the tree. Although the purpose is the same across both modes,
the semantics differ. In the bottom-up setting, consolidation aggregates several leaves into a new node
whose content is defined as a list of their identifiers, effectively packaging multiple pieces of evidence
into a single representation. In the top-down setting, consolidation instead redirects several leaves to
reference a newly created node with a fresh identifier, enforcing a shared dependency among them. In
both cases, a potentially large set of leaves is replaced by a single node, narrowing the breadth of the
tree while extending its depth, and thus creating longer dependency chains for the agent to resolve.

Finalization and Task Definition. The construction continues until a fixed number of operations N
is reached, after which the tree is finalized into a complete task. In the bottom-up mode, this involves
assigning unique identifiers to all remaining leaves and instantiating the root with a random value, so
that the agent must infer the root value from the set of leaf identifiers via exploring the dependency
tree. In the top-down mode, each leaf is instead instantiated with a random value consistent with its
type, and the values of internal nodes, including the root, are recursively computed by applying the
stored rules; the agent’s task is to recover the variable contained in the root. This finalization ensures
that both modes yield well-posed reasoning problems with clearly defined inputs and a unique target
output, providing a systematic way to evaluate long-horizon reasoning under error accumulation.

3.3 CONSTRUCTING LORE BENCHMARK THROUGH TASKWEAVER INSTANTIATIONS

To demonstrate the flexibility of our framework and to construct a comprehensive benchmark, we
instantiate the task generation process in multiple domains. Each instantiation specifies how nodes are
represented, which operators are available, and what modalities are involved, while reusing the same
dependency-tree construction principles described earlier. By doing so, we obtain benchmark tasks
that capture complementary dimensions of long-horizon agentic reasoning: document understanding
and navigation, perception-reasoning integration in multi-modal settings, and structured logic under
execution constraints in code. These domain-specific instantiations provide diverse yet systematic
evaluation of an agent’s robustness to long-horizon reasoning. Illustrative examples from these
domains are shown in Figure 2] We also provide more detailed examples with their ground truth
solution trajectory in Appendix [B]

Document Understanding Navigation. In this instantiation, we simulate a structured document
system using the bottom-up generation mode. Each node corresponds to a document that stores either
numeric or string values, or a rule specifying how new values are derived from existing ones. The
operator set Oy, includes arithmetic operation (e.g., 0aqd, Osup) and string operations (e.g., Oconcat)»
and can be extended with more advanced functions in harder variants. A distinctive aspect of this
domain is that documents may contain both relevant and irrelevant fields. To succeed, the agent must
parse each document, identify which information contributes to the dependency chain, disregard

Under review as a conference paper at ICLR 2026

Algorithm 1 Task Generation Process in TaskWeaver

—_

: Input: Mode m € {‘bottom-up’, ‘top-down’ }, Target iterations N, Operator set O, Leaf thresh-
Old oIIIaX

2: Initialize tree 7 with a single root node ;o0

3: fori =1to N do

4: v, < RandomSelect(Leaves(7))

5: O < RandomSelect(Q)

6: k « RandomInt(O.nmin, O.Nmax)

7

8

Ve 0

: for j = 1to kdo
9: ve,; < O.CreateChild()
10: Ve = VeU{ug }
11: if m = ‘bottom-up’ then
12: v¢.c < GenerateUniqueContent ()
13: vp.id < O.ExecuteRule(O.GenerateRule(V,), {v.c for v € V.})
14: else if m = ‘top-down’ then
15: vc.1d < GenerateUniquelD()
16: vp.c < O.GenerateRule (V)

17: Add children V. to T under v,
18: if [Leaves(7T)| > Omax and RandomFloat() < peoliect then
19: ConsolidateLeaves(7, mode = m)

20: Finalize leaf IDs and root value for 7
21: Return 7

distractors, and compute expressions that resolve the identifiers of subsequent documents. This
recursive navigation continues until the target document is reached and its content is returned as the
answer. In this way, the instantiation distills the essence of document understanding: filtering and
integrating information across multiple records under long-horizon dependencies.

Multi-modal Understanding. This instantiation extends the document setting by introducing visual
inputs alongside symbolic content. Some nodes that originally store numerical are replaced with
images of objects, and the agent must infer the value by counting the objects in the image. Other nodes
are replaced with rendered formulas, requiring the agent to read and interpret symbolic expressions
from visual input. In both cases, the dependency chain now mixes perception with reasoning, rather
than relying solely on textual values. As illustrated in Figure[2] harder variants further increase the
complexity of the visual inputs. Images may include objects of different shapes and colors, and the
target value becomes the count of those matching a specified attribute combination. Formula images
may also be distorted by transformations such as scaling, rotation, or shearing, making them more
difficult to recognize. To succeed, the agent must apply image processing tools to extract the correct
information before integrating it into the reasoning process. This instantiation therefore evaluates an
agent’s ability to combine perception and symbolic reasoning under long-horizon dependencies.

Executable Code Reasoning. This instantiation employs the top-down generation mode, ensuring
that the constructed dependency tree corresponds to an executable program. In the basic setting,
operators include integer arithmetic and conditional statements, and the agent must reason about the
program’s output by following its control flow. To increase difficulty, we introduce an asynchronous
task operator that spawns multiple concurrent threads sharing a global variable. Each thread may read
and update this variable in an interleaved order, creating race conditions that make the final outcome
highly non-trivial to predict. While the program remains deterministic, correctly inferring its result
requires an understanding of concurrency and resource competition. This domain therefore stresses
the ability of agents to perform structured program reasoning under execution constraints.

4 EXPERIMENTS

In this section, we evaluate the performance of state-of-the-art LLMs on the LORE benchmarks
generated by TaskWeaver. Our experiments are designed to answer the following questions: (1) How
does the capability of state-of-the-art LLMs decay as the number of sequential, dependent tool calls

Under review as a conference paper at ICLR 2026

Accuracy vs Operation Count

Accuracy vs Operation Count Accuracy vs Operation Count
1. .

L0 03 0 —e— o1 ol

038 —— gpt5 0.8 03 08 03
- —— ol > —— gpt-5 > *— gpt-4o
[So6 ©0.6 —— gpt-5
©0.6 —— gpt-4o | ©O. —— gptdo | &
=1 3 o
S S .4
g 0.4 &) 0.4 éf 0

0.2 0.2 0.2

0.0 0.0 0.01

) 50 100 150 10 20 30 20 50 50 100 150 A200 250 300 350
Operation Count Operation Count Operation Count
Accuracy vs Tree Height Accuracy vs Tree Height Accuracy vs Tree Height
1.0 1.0
o3 0.8 —— ol

0.8 —e— gpt-5 >0,8 03
> —e— ol O —— 01 0.6 —e— gpt-40
206 —e— gpt-d4o go.e 03 8 —— gpt-5
=] =1
Soa Soa —e— gpt-5 o4
< —e— gpt-d40 | <

0.2 0.2 0.2 _,/‘

0.0 0.0 oolLe———

0

20 40 60 80 100 120 10 20 30 40 8 10 16

12 14
Tree Height Tree Height Tree Height

(a) Document Understanding (b) Multi-modal Understanding (c) Executable Code Reasoning
Figure 3: Model accuracy on LORE-Standard with respect to operation count (/V) and tree height,
evaluated across the document understanding navigation, multi-modal understanding, and executable
code reasoning domains. NV is increased until model performance degrades to an unacceptable level.

increases? (2) How does the complexity of individual operations affect this performance decay? (3)
What are the primary failure modes for LLMs on these long-horizon tasks?

4.1 EXPERIMENTAL SETUP

Models. We evaluate a suite of four powerful, proprietary models known for their strong reasoning
capabilities: GPT-40 (OpenAl, 2024), GPT-5 (OpenAl,2025a)), o1 (OpenAll, 2025b), and 03 (OpenAl,
2025c¢). This selection allows us to analyze performance across a spectrum of state-of-the-art models
and understand how advanced reasoning capabilities correlate with robustness on long-horizon tasks.

Benchmark Datasets. We generate all evaluation tasks using the TaskWeaver framework. First,
we establish a “standard” benchmark called LORE-Standard for each of our three domains: Doc-
ument Understanding Navigation, Multi-modal Understanding, and Executable Code Reasoning.
To specifically investigate how increased per-operation complexity affects the rate of performance
decay over long interaction sequences, we then introduce “hard” variants called LORE-Hard for
the Multi-modal and Code domains by incorporating more challenging operators, as detailed in
Section 3} For each benchmark configuration, we progressively increase the number of operations
(V) to generate tasks of increasing length, continuing until the accuracy of the evaluated models
degrades to an unacceptable level. This process resulted in a distribution of tasks with operation
counts ranging from 1 to 350, allowing for a fine-grained analysis of performance degradation across
statistically significant samples.

Evaluation Metrics. Our primary metric is Accuracy (Acc.), defined as the percentage of tasks where
the agent returns the exactly correct final answer. In addition, we analyze agent performance by
plotting accuracy against two key indicators of task complexity: the Operation Count (N), which
measures the total length of the reasoning chain, and the Tree Height, which measures the length of
the longest sequential dependency chain required to reach the solution.

Implementation Details. To ensure a fair comparison, all models are integrated into a standardized
agentic framework that follows a ReAct-style reasoning loop. The agent is provided with the
necessary tools for each domain and a domain-specific prompt, which can be found in Appendix [B]
For all experiments, we set the model’s temperature to 0.0 to ensure deterministic outputs. To avoid
artificially limiting the agent’s performance on complex, long-horizon tasks, we do not set an explicit
limit on the number of tokens per generation step. This ensures the model has sufficient capacity to
complete its reasoning process without being cut off. In addition, the evaluation is conducted in a
sandboxed environment to safely execute any generated code or tool calls. More implementation
details can be found in Appendix [C]

4.2 PERFORMANCE DECAY IN LONG-HORIZON REASONING

To evaluate how agent capabilities scale with task length, we conduct experiments on LORE-Standard.
The results, shown in Figure 3] yield three main findings.

Under review as a conference paper at ICLR 2026

Accuracy vs Operation Count Accuracy vs Tree Height Accuracy vs Operation Count Accuracy vs Tree Height

o
Y

—— ol

03
—— gpt-do
—— gpt-5

—— gpt-5

—— ol

—e— gpt-do
03

—— gpt-5

—— ol

—e— gpt-do
03

o
>

Accuracy
°
=
Accuracy
=
=

0.2
0.0 _‘

40 10

EN——

10

20 30 0 5 10 15 20 25 30 7 [3 T
Tree Height Operation Count Tree Height

(a) Multi-modal (b) Multi-modal (c) Code Reasoning (d) Code Reasoning

20 3
Operation Count

Figure 4: Model accuracy on LORE-Hard with respect to operation count (/V) and tree height,
evaluated in the Multi-modal Understanding and Executable Code Reasoning domains. [V is increased
until model performance degrades to an unacceptable level.

First, a clear distinction emerges between models with strong reasoning capabilities and those without.
Models such as ‘GPT-5’, ‘03’, and ‘o1’ demonstrate high accuracy on short-horizon tasks. In contrast,
‘GPT-40”s performance deteriorates rapidly even on tasks with very few steps, underscoring that
foundational reasoning ability is a prerequisite for tackling multi-step agentic workflows.

Second, model performance follows a consistent hierarchy. ‘GPT-5" achieves the highest accuracy,
followed by ‘03’ and ‘ol’, while ‘GPT-40’ lags significantly behind. This demonstrates that advances
in reasoning-oriented models translate directly into more reliable performance on long-horizon tasks.

Finally, all models display a performance ceiling beyond which accuracy collapses. Even the strongest
model, ‘GPT-5’, becomes unreliable as task length increases, with accuracy falling below 20% on
tasks involving roughly 120 operations in document understanding and navigation. The effect is even
more severe when measured by dependency depth: accuracy can collapse at tree heights under 80,
highlighting the brittleness of current agents in sustaining long logical chains.

4.3 IMPACT OF OPERATION COMPLEXITY ON LONG-HORIZON REASONING

To explore how performance decay is affected by increased per-operation complexity, we evaluate
the performance on LORE-Hard, including the Multi-modal and Code domains. These benchmarks
introduce more demanding operations, such as requiring agents to interpret transformed images (e.g.,
stretched or rotated) in the multi-modal domain, and to understand complex resource competition
in asynchronous code. We re-evaluated all models on these more challenging benchmarks, with the
results presented in Figure 4] The findings lead to two conclusions.

First, as per-step difficulty grows, the performance gap between moderately capable and weaker
models narrows sharply. On these harder tasks, models such as ‘01’ and ‘03’ are quickly overwhelmed,
and their performance collapses to nearly the same level as the non-reasoning baseline ‘GPT-40’,
which already fails on very short tasks. This indicates that effective reasoning ability is relative: once
the complexity of a single operation exceeds a model’s threshold, its ability to sustain multi-step
planning disintegrates and its behavior converges with that of weaker systems.

Second, the operational horizon of even the strongest model, ‘GPT-5’, shrinks dramatically. While it
remains competent on standard tasks with more than 100 operations, its accuracy on LORE-Hard
falls below reliability after only about 12 operations. This steep decline highlights a critical limitation
of current state-of-the-art agents: they are not yet capable of handling long-horizon reasoning when
individual steps involve complex, realistic operations.

4.4 ERROR ANALYSIS

Based on our experiments, we collected a large corpus of successful and failed agent trajectories on
long-horizon tasks. A qualitative analysis of these failures reveals several recurring patterns that are
not mutually exclusive but represent distinct cognitive bottlenecks in current agent architectures. We
summarize these into three primary categories:

Premature Halting due to Incomplete State Assessment. A frequent failure mode occurs when
an agent attempts to evaluate an expression or make a decision before acquiring all necessary
dependencies. For instance, as illustrated in Figure a), when tasked to compute ¢ = a + b, an
agent might have successfully retrieved the value for a and identified the document containing b
recently, but instead of reading the document, it resorts to guessing a value for b or treating it as

Under review as a conference paper at ICLR 2026

m S —— S ——
. . [Read d.. B — o — o — o [0} [0} 0]
FReadd, |[Fa=2 c—atp |[B p=09 T Read dy, d3 | [(2 Read dy, ds | | 1= Read dg, d; e B s I e
| do not know () Ok, I will read c=a+b=
1) e i |
a0 whatb is. b is I d, d7. Did I miss a 5+9=14
l ,\ undefined. h\ something? l‘h\
(@) (b))

Figure 5: Illustrative examples of three primary agent failure modes. (a) Premature halting due to
incomplete state assessment. (b) Information loss from ineffective working memory. (c) Degradation
of reasoning over extended contexts.

undefined. After a few failed attempts, the agent often concludes that the task is unsolvable with
the available information and halts, rather than re-evaluating its state and identifying the simple,
unexplored step of reading the document for b. This behavior reflects a breakdown in the agent’s
ability to monitor its own knowledge state when encountering an impasse. Addressing this failure
may require mechanisms that prompt the agent to consolidate what has been gathered and reassess its
plan, ensuring that simple unexplored steps are not prematurely overlooked.

Ineffective Working Memory and Information Triage. Our benchmark tasks, much like real-world
scenarios, involve highly uneven patterns of information discovery. At times, an agent may receive
a large batch of new leads (e.g., file IDs) to investigate. We observed that agents typically begin
exploring these leads sequentially, but, as shown in Figure [5[b), if another large batch arrives before
the first is fully processed, the earlier leads are often neglected. Because the agent’s attention and
context window are limited, these pending leads may be displaced from memory, never resurfacing
in the reasoning process. This premature loss of information is particularly damaging in long-
horizon settings, where seemingly minor omissions early in the trajectory can block access to critical
dependencies much later on, making the task unsolvable. These observations highlight the need for
robust working memory mechanisms that can triage, buffer, and prioritize information over extended
histories, ensuring that important but deferred leads are not forgotten as the interaction unfolds.

Degradation of Reasoning over Extended Contexts. In many failure cases, the agent successfully
collects all the information and dependencies needed for the final answer. However, as shown in
Figure5]c), these values and the rules for combining them are often scattered across a long and noisy
context history. When it comes time to synthesize the result, the agent fails at simple computation or
logical application, incorrectly retrieving or combining values that lie far apart in its context.

This challenge arises in two ways. Sometimes it is intrinsic to the task: critical components are only
discovered after many interactions, leaving them inherently distributed. Other times it is self-induced:
the agent may gather all necessary values within a few turns but fail to recognize that the expression is
already solvable. Instead of completing the computation, it continues exploring, pushing the relevant
information deeper into its growing history. What was once a localized sub-problem thus becomes a
retrieval challenge over a long and convoluted context.

This failure mode highlights the need for solutions beyond simply enlarging context windows. For
example, dedicated long-term memory modules or sub-agent architectures could allow discrete
computations to be offloaded to specialized agents with clean, isolated contexts.

5 CONCLUSION

In this paper, we introduced TaskWeaver, a controllable platform for generating benchmarks that
directly assess the long-horizon reasoning abilities of LLM agents. By abstracting tool use as file-read
operations, TaskWeaver isolates the core challenge of tracking state and integrating intermediate
results across extended interaction sequences. Building on this framework, we instantiated tasks
in document reasoning, multi-modal integration, and executable code analysis to construct LORE,
a benchmark with two variants: LORE-Standard and LORE-Hard. Our evaluation shows that the
state-of-the-art model performance of reasoning degrades substantially as task length and per-step
complexity increase. These findings highlight long-horizon robustness as a central open challenge for
advancing the next generation of agentic systems.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The authors of this paper have read and adhered to the ICLR Code of Ethics. Our work introduces
a framework for procedurally generating benchmark tasks for evaluating LLM agents. All data
generated and used in our experiments is synthetic and does not contain any personally identifiable
information (PII) or sensitive real-world data, thus avoiding privacy concerns. The tasks are designed
to be abstract reasoning challenges and do not simulate or encourage harmful behaviors. We believe
that by providing a controlled environment to study and measure the failure modes of agents in
long-horizon tasks, our work contributes positively to the responsible development of more robust,
reliable, and safer Al systems.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our research, we commit to making all relevant artifacts publicly
available upon publication. This includes the source code for the TaskWeaver generation framework,
all evaluation scripts, and the complete datasets used in our experiments. A detailed description
of our methodology, including the unified generation algorithm (Algorithm [I)) and domain-specific
instantiations, is provided in Section E} The experimental setup, including the models, frameworks,
and primary evaluation metrics, is described in Section 4 Further details, including comprehensive
task examples and specific agent prompts, will be provided in the Appendix [B]to allow for the full
replication of our results.

REFERENCES

Natasha Butt, Varun Chandrasekaran, Neel Joshi, Besmira Nushi, and Vidhisha Balachandran. Ben-
chagents: Automated benchmark creation with agent interaction. arXiv preprint arXiv:2410.22584,
2024.

Ma Chang, Junlei Zhang, Zhihao Zhu, Cheng Yang, Yujiu Yang, Yaohui Jin, Zhenzhong Lan,
Lingpeng Kong, and Junxian He. Agentboard: An analytical evaluation board of multi-turn Ilm
agents. Advances in neural information processing systems, 37:74325-74362, 2024.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su.
Mind2web: Towards a generalist agent for the web. Advances in Neural Information Processing
Systems, 36:28091-28114, 2023.

Lutfi Eren Erdogan, Nicholas Lee, Sehoon Kim, Suhong Moon, Hiroki Furuta, Gopala Anu-
manchipalli, Kurt Keutzer, and Amir Gholami. Plan-and-act: Improving planning of agents
for long-horizon tasks. arXiv preprint arXiv:2503.09572, 2025.

Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu, Maosong
Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on tool learning of
large language models. arXiv preprint arXiv:2403.07714, 2024.

Shijue Huang, Wanjun Zhong, Jianqiao Lu, Qi Zhu, Jiahui Gao, Weiwen Liu, Yutai Hou, Xingshan
Zeng, Yasheng Wang, Lifeng Shang, et al. Planning, creation, usage: Benchmarking llms for
comprehensive tool utilization in real-world complex scenarios. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 4363-4400, 2024.

Ahmed Khalifa, Roberto Gallotta, Matthew Barthet, Antonios Liapis, Julian Togelius, and Georgios N
Yannakakis. The procedural content generation benchmark: An open-source testbed for generative
challenges in games. In International Conference on the Foundations of Digital Games, 2025.

Minghao Li, Yingxiu Zhao, Bowen Yu, Feifan Song, Hangyu Li, Haiyang Yu, Zhoujun Li, Fei Huang,
and Yongbin Li. Api-bank: A comprehensive benchmark for tool-augmented llms. arXiv preprint
arXiv:2304.08244, 2023.

Xiao Liu, Hao Yu, Hanchen Zhang, Yaran Xu, Xin Xu, Yipei Jiang, Yifei Dou, Wanjun Wang, Zheng
Zhao, Min Wen, et al. Agentbench: Evaluating llms as agents. In International Conference on
Learning Representations, 2024.

10

Under review as a conference paper at ICLR 2026

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang. On
llms-driven synthetic data generation, curation, and evaluation: A survey. In Findings of the
Association for Computational Linguistics ACL 2024, pp. 11065-11082, 2024.

Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Bingi
Chen, Ziyue Qiao, Qingqing Long, et al. Large language model agent: A survey on methodology,
applications and challenges. arXiv preprint arXiv:2503.21460, 2025.

Gaurav Maheshwari, Dmitry Ivanov, and Kevin El Haddad. Efficacy of synthetic data as a benchmark.
arXiv preprint arXiv:2409.11968, 2024.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Deepak Nathani, Lovish Madaan, Nicholas Roberts, Nikolay Bashlykov, Ajay Menon, Vincent Moens,
Amar Budhiraja, Despoina Magka, Vladislav Vorotilov, Gaurav Chaurasia, et al. Mlgym: A new

framework and benchmark for advancing ai research agents. arXiv preprint arXiv:2502.14499,
2025.

OpenAl. Gpt-40 system card, 2024. https://openai.com/index/
gpt—-4o-system—-card/.

OpenAl Introducing gpt-5, 2025a. https://openai.com/index/
introducing—gpt—-5/.

OpenAl. Openai ol system card, 2025b. https://openai.com/index/
openai-ol-system-card/.

OpenAl Introducing 03 and o4-mini, 2025c. https://openai.com/index/
introducing-o3-and-o4-mini/\

Arkil Patel, Siva Reddy, and Dzmitry Bahdanau. How to get your llm to generate challenging
problems for evaluation. arXiv preprint arXiv:2502.14678, 2025.

Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenxuan Wang, Cuiyun Gao, and Michael R Lyu.
Revisiting, benchmarking and exploring api recommendation: How far are we? IEEE Transactions
on Software Engineering, 49(4):1876-1897, 2022.

Joseph J Peper, Wenzhao Qiu, Ali Payani, and Lu Wang. Mdbench: A synthetic multi-document
reasoning benchmark generated with knowledge guidance. arXiv preprint arXiv:2506.14927,
2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Yujia Qin, Shihao Liang, Yining Shen, et al. Toolllm: Facilitating large language models to master
16000+ real-world apis. In International Conference on Learning Representations, 2024.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
Michael Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research
assistants. arXiv preprint arXiv:2501.04227, 2025.

Dingfeng Shi, Jingyi Cao, Qianben Chen, Weichen Sun, Weizhen Li, Hongxuan Lu, Fangchen Dong,
Tianrui Qin, King Zhu, Minghao Liu, et al. Taskcraft: Automated generation of agentic tasks.
arXiv preprint arXiv:2506.10055, 2025.

Akshit Sinha, Arvindh Arun, Shashwat Goel, Steffen Staab, and Jonas Geiping. The illusion of
diminishing returns: Measuring long horizon execution in llms. arXiv preprint arXiv:2509.09677,
2025.

Hongru Wang, Wenyu Huang, Yufei Wang, Yuanhao Xi, Jiangiao Lu, Huan Zhang, Nan Hu, Zem-
ing Liu, Jeff Z Pan, and Kam-Fai Wong. Rethinking stateful tool use in multi-turn dialogues:
Benchmarks and challenges. arXiv preprint arXiv:2505.13328, 2025a.

11

https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/openai-o1-system-card/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

Under review as a conference paper at ICLR 2026

Weixuan Wang, Dongge Han, Daniel Madrigal Diaz, Jin Xu, Victor Riihle, and Saravan Rajmohan.
Odysseybench: Evaluating 1lm agents on long-horizon complex office application workflows.
arXiv preprint arXiv:2508.09124, 2025b.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji.
Mint: Evaluating llms in multi-turn interaction with tools and language feedback. arXiv preprint
arXiv:2309.10691, 2023.

Chao Wen, Jacqueline Staub, and Adish Singla. Program synthesis benchmark for visual programming
in xlogoonline environment. arXiv preprint arXiv:2406.11334, 2024.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. A benchmark for tool-agent-user
interaction in real-world domains. arXiv preprint arXiv:2406.12045, 2024.

Jingwen Zhou, Jieshan Chen, Qinghua Lu, Dehai Zhao, and Liming Zhu. Shielda: Structured
handling of exceptions in llm-driven agentic workflows. arXiv preprint arXiv:2508.07935, 2025.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building
autonomous agents. In International Conference on Learning Representations, 2024.

Mingchen Zhuge, Changsheng Zhao, Dylan Ashley, Wenyi Wang, Dmitrii Khizbullin, Yunyang Xiong,
Zechun Liu, Ernie Chang, Raghuraman Krishnamoorthi, Yuandong Tian, et al. Agent-as-a-judge:
Evaluate agents with agents. arXiv preprint arXiv:2410.10934, 2024.

A LLM USAGE FOR PAPER WRITING

We have used Large Language Models (LLMs) for the limited purpose of language polishing. The
core aspects of this paper, including the initial ideation, structural framework, and primary writing,
were completed entirely by human authors. All text polished by LLMs was subsequently reviewed,
edited, and, when necessary, rewritten by the human authors to ensure the accuracy and integrity of
the content. The human authors are fully responsible for the research design, experiments, analysis,
and the final version of this work.

B DETAILED TASK EXAMPLES

This appendix section offers detailed, step-by-step examples of generated tasks for each of the three
domains. Each example includes the full prompt, the available tools, the environment state (i.e.,
document contents), and a ground truth solution trajectory that illustrates the intended reasoning path.

B.1 DOCUMENT UNDERSTANDING NAVIGATION EXAMPLE
This task, generated using the bottom-up mode, requires the agent to navigate a web of interconnected

documents. The agent must parse information, perform calculations to derive the IDs of subsequent
documents, and follow the dependency chain to find the final answer.

B.1.1 TASK SPECIFICATION

The example is illustrated in Table[I]
B.1.2 AVAILABLE TOOLS

read_document (file_id: str) —> str This tool takes a string ‘file_id*‘ as input and
returns the raw text content of the corresponding document.

12

Under review as a conference paper at ICLR 2026

Table 1: A Document Understanding Navigation Example

Component Value

Prompt You are a research assistant working with a document database. Your task is
to find the value of varible 'vO’ by reading and analyzing the provided docu-
ments. Start by examining documents: v10%d, v11%U, v12%HxA, v13%Zcw,
v14%TqiU, v15%TeM, v16%OIFK, v17%QMXI. Use the read_document tool
to access each document and follow any references or calculations to find the
final answer.

Operation Count 2

Tree Height 2

Ground Truth XUyWgrar

B.1.3 ENVIRONMENT: DOCUMENT CONTENTS

v4%186: "v0: XUyWgrar."

vI9%kLVvGzgVbD: "Parameter vl is set to 44."

v10%d: "v2: 46."

v11%U: "v3: 96."

v12%HxA: "Read the document ’'v4%X’ for more information, where the X is
the value of the expression vl + v2 + v3. Note that you
should use the negative sign if X is negative, but do not
use the positive sign if X is positive or zero."

v13%Zcw: "Field v5 contains vGz."

v14%TgiU: "v6 = D."

v15%TeM: "Parameter v7 is set to kLV."

v16%0IFK: "v8 has value gVb."

v17%QMX1l: "Read the document ’v9%X’ for more information, where the X is
the value of the expression v7 + v5 + v8 + v6. Each variable
in the expression should be treated as a string and the
operator + is used to concatenate the strings."

B.1.4 GROUND TRUTH SOLUTION TRAJECTORY
An ideal agent would perform the following sequence of reasoning and actions:

1. Initial Analysis: The prompt provides eight starting document IDs. I will read all of them to
gather initial information and find rules for proceeding.

2. Action: Call ‘read_document® on all eight initial IDs: ‘v10%d‘, ‘v11%U*, ‘v12%HxA",
‘V13%Zcw*, ‘v14%TqiU*, ‘v15%TeM*, ‘v16%OIFK", ‘v17%QMXI‘.

3. Observation & Thought:

* Acquired Variables:
— From ‘v10%d’: ‘v2 =46’
— From ‘v11%U’: ‘v3 =96’
From ‘v13%Zcw’: ‘v5 ="vGz"
From ‘v14%TqiU’: ‘v6 ="D"™
From ‘v15%TeM’: ‘v7 ="kLV"™
From ‘v16%OIFK’: ‘v8 = "gVb"’
* Acquired Rules:
— From ‘v12%HxA’: (Rule 1) The ID for the next document is ‘v4%X’, where ‘X =v1 +
v2 +v3’.
— From ‘v17%QMX1’: (Rule 2) The ID for the next document is ‘v9%X’, where ‘X = v7 +
v5 + v8 4+ v6’ (string concatenation).
* Rule Computability Assessment:
— Rule 1 requires ‘v1’, ‘v2°, ‘v3’. T have ‘v2’ and ‘v3’, but ‘v1’ is missing. This rule is not
yet computable.

13

Under review as a conference paper at ICLR 2026

— Rule 2 requires ‘v7’, ‘v5’, ‘v8’, ‘v6’. I have all of these values. This rule is computable.
* Rule Execution: I will execute Rule 2.
— ‘X ="KLV" + "vGz" + "gVb" + "D" = "kLVvGzgVbD"’.
— The new document ID is ‘v9%kLVvGzgVbD’.
¢ Next Step: I will read document ‘v9%kLVvGzgVbD’ to find the value of ‘v1°.
4. Action: ‘read_document(doc_id="v9%kLVvGzgVbD’)’.
5. Observation & Thought:
* Acquired Variables:
— From ‘v9%kLVvGzgVbD’: ‘vl =44°.
¢ Acquired Rules: None from this read.
* Rule Computability Assessment: I will re-evaluate my known rules.

— Rule 1 requires ‘v1’, ‘v2°, ‘v3’. I now have all three values: ‘v1=44’, ‘v2=46’, ‘v3=96".
This rule is now computable.

¢ Rule Execution: I will execute Rule 1.
- ‘X=44+46 +96 = 186’.
— The new document ID is ‘v4%186°.
* Next Step: I will read document ‘v4%186’.
6. Action: ‘read_document(doc_id="v4%186”)‘.
7. Observation & Thought:

* Acquired Variables:
— From ‘v4%186’: ‘v0 = "XUyWqrar"’.
* Acquired Rules: None.
* Rule Computability Assessment: I have found the target variable ‘v0’. The task is complete.

8. Final Answer: The value of variable ‘v0’ is XUyWgrar.
B.2 MULTI-MODAL UNDERSTANDING EXAMPLE

This task asks an agent to traverse multimodal documents (text + images), extract variables and rules
from text, derive numeric values from images, and construct new document IDs. If images are dis-
torted, the agent uses transformation tools (rotate_image, flip_image, stretch_image)
to restore readability, then follows the dependency chain to reach the final answer.

B.2.1 TASK SPECIFICATION

The example is illustrated in Table[2]

Table 2: A Multi-modal Understanding Example

Component Value

Prompt You are a research assistant working with a document database. Your task is to
find the value of varible 'v0’ by reading and analyzing the provided documents.
Start by examining documents: v8%€Eiv, vO%R, v10%h, v11%VS, v12%ZId,
v13%a. Use the read_document tool to access each document and follow any
references or calculations to find the final answer.

Operation Count 2

Tree Height 2

Ground Truth SyVssiFG

B.2.2 AVAILABLE TOOLS

read_document (file_id: str) -> str The inputis file_id, which specifies the
target document. The output is the raw text content of that document as a str.

14

Under review as a conference paper at ICLR 2026

rotate_image_tool (doc_id: str, angle: float, documents: dict)
—> str The inputs are doc_id (a multimodal document ID), angle (in degrees), and
document s (the document store). The output is a description string containing the rotated
image encoded in base64.

flip_image_tool (doc_id: str, flip type: str, documents: dict)
—> str The inputs are doc_id (a multimodal document ID), flip_type
{horizontal, vertical}, and documents (the document store). The output
is a description string containing the flipped image encoded in base64.

stretch_image_tool (doc_id: str, width_factor: float,
height_factor: float, documents: dict) -> str The inputs are
doc_id (a multimodal document ID), width_factor and height_factor (positive
floats), and document s (the document store). The output is a description string containing
the scaled image encoded in base64.

B.2.3 ENVIRONMENT: MULTIMODAL DOCUMENT CONTENTS

v8%Eiv: "v1 has value VcL."

vI9%R: "v2: mQs."

v10%h: {
"text": "The value of v4 is the number of cyan circles in the image.",
"image_path": "complex_geo_0001.png"

}

v11%VS: {
"text": "The value of v5 is the number of brown squares in the image.",
"image_path": "complex_geo_0002.png"

}

v12%ZId: |
"text": "The value of v6 is the number of blue squares in the image.",
"image_path": "complex_geo_0003.png"

}

vli3%a: {
"text": "1. IDENTIFY the mathematical expression shown in the image

2. CALCULATE the numerical value of that expression

3. CONSTRUCT the document ID as ’'v7%X’ where X

is the calculated value

4. READ the ’'v7%X’ using the constructed ID

IMPORTANT: Use negative sign (-) for negative values,

no sign for positive/zero values.

NOTE: The current image may have been transformed.

If you find the formula in the image is unreadable

or distorted, you can directly call transformation tools
(rotate_image, flip_image, stretch_image) in the

next step to restore the image,

instead of using the read_document tool.

If the formula is clear and readable, you can directly use it.",

"image_path": "transformed_expr_0001.png"
}
v7%-7: "Read the document ’'v3%X’ for more information,

where the X is the value of the expression v2 + vl.

Each variable in the expression should be treated as

a string and the operator + is used to concatenate the strings."
v3%mQsVcL: "Value of v0 is SyVssiFG."

B.2.4 GROUND TRUTH SOLUTION TRAJECTORY

An ideal agent would perform the following sequence of reasoning and actions:

15

Under review as a conference paper at ICLR 2026

3 Oe o o
o®e R) ® A
Lu e 80 . ¥ x . ® i
o %% m & ¢ ° -
¥ o @ A ™ ®
e)]]
m, °* m,
2 O‘O * m B ¥ enm o u o N

(a) complex_geo 0001.png (b) complex_geo 0002.png (c) complex geo 0003.png (d) transformed_expr_0001.png

Figure 6: The pictures of the multimodal document example.

1. Initial Analysis: The prompt instructs me to find vO by reading multimodal documents and
following references. The starting IDs in this environment are: v8%Eiv, vO%R,v10%h, v11%VS,
v12%2Id, v13%a. I will read all six to collect variables and navigation rules.

2. Action: Call read_document on v8%Eiv, v9%R, v10%h, v11%VS,v12%72Id, vl3%a.
3. Observation & Thought:

¢ Acquired Variables (text nodes):

— From v8%Eiv: vl = "VcL".
— From v9%R: v2 = "mQs".

* Image-derived Variables:

— From v10%h: The value of v4 equals the number of cyan circles in the image
complex_geo_0001.png. I will inspect the image to count cyan circles.

— From v11%vS: The value of v5 equals the number of brown squares in
complex_geo_0002.png.

— From v12%7Id: The value of v6 equals the number of blue squares in
complex_geo_0003.png.

* Rule from the Expression Image:

— From vl13%a: Identify the mathematical expression shown in
transformed_expr_0001.png, compute its numeric value X, construct
document ID v7%X (negative with ’-’, non-negative without ’+’), and read it. The note
indicates the image may be transformed, so I must verify readability and, if needed,
restore it using rotate_image, f1ip_image, or stretch_image.

4. Action (Image Reading for Counts):
¢ Inspect complex_geo_0001.png for cyan circles and set v4 to the observed count.
* Inspect complex_geo_0002.png for brown squares and set v5 to the observed count.
¢ Inspect complex_geo_0003.png for blue squares and set v6 to the observed count.
5. Observation & Thought (Counts Outcome):
* The dataset’s intended counts yield: v4 = 8,v5 = 6,v6 = 7.

6. Action (Expression Image Readability Check): Inspect t ransformed_expr_0001.png.
The filename suggests a 180-degree rotation; if the formula appears upside down or unreadable:
e Call rotate_image_tool (doc_id=’'v13%a’,
restore the upright orientation.

e If further correction is needed, optionally apply flip_ image_tool or
stretch_image_tool minimally to improve readability.

angle=180, documents) to

7. Observation & Thought (Expression Identification):

* After restoring orientation, identify the numeric expression in the image and compute X . The
environment indicates that the computed value corresponds to the ID v7%-7,s0 X = —7.

e Thus, I should read v7%-7.
8. Action: read_document (doc_1id='v7%-7").

9. Observation & Thought (String Concatenation Rule):

16

Under review as a conference paper at ICLR 2026

e From v7%-7: Read document ' v3%X’ where X = v2 + vl, treating variables as strings
and using the ’+’ operator for concatenation.

e Thave v2 = "mQs" and vl = "VcL";therefore X = "mQ@s” +”Vel” = "mQsVcL".
¢ The next document ID is v3%$mQsVcL.

10. Action: read_document (doc_id='v3%mQsVcL’).
11. Observation & Thought (Final Variable):

e From v3%$mQsVcL: v0 = "SyVssiFG".
* The target variable has been found; the task is complete.

12. Final Answer: The value of variable v0 is SyVssiFG.

B.3 EXECUTABLE CODE REASONING EXAMPLE

This task, generated using the top-down mode, requires the agent to analyze a small codebase
distributed across multiple files. The agent must trace function calls and dependencies between files
to determine the final return value of the main program.

B.3.1 TASK SPECIFICATION

The example is illustrated in Table[3]

Table 3: An Executable Code Reasoning Example

Component

Value

Prompt

Operation Count
Tree Height
Ground Truth

You are a code analyst assistant working with a codebase. Your task is to deter-
mine the return value of the main function in the main.py. Use the read_document
tool to read the content of each python file and follow any references or calcu-
lations to find the final answer. For the async functions, you should treat all
operations as no-time-consuming except the sleep operation.

2

2

115

B.3.2 AVAILABLE TOOLS

read_document (file_id: str) -> str This tool takes a filename (e.g., ‘main.py’) as
input and returns the source code contained within that file.

B.3.3 ENVIRONMENT: CODEBASE CONTENTS

main.py
import vO
import vl

def main () :

return vO0.main() + vl.main ()

if name ==

! main_ ’:

print (main (), end=’")

vO0.py
def main() :
return 44

vli.py
import v3
import v4

17

Under review as a conference paper at ICLR 2026

import v2

def main() :

#

return v3.main() + v4.main() - v2.main ()

v2.py

def main () :

#

return 24

v3.py

def main () :

#

return 45

v .py

def main () :

return 50

B.3.4 GROUND TRUTH SOLUTION TRAJECTORY

An ideal agent would perform the following sequence of reasoning and actions:

1.

Initial Analysis: The goal is to find the return value of ‘main()’ in ‘main.py’. I will start by
reading ‘main.py’.

2. Action: ‘read_document(’main.py’)’.

4.
. Observation & Thought: The file ‘v0.py’ defines a ‘main’ function that returns the integer ‘44’.

. Observation & Thought: The code in ‘main.py’ shows that its ‘main’ function returns the sum

of ‘v0.main()’ and ‘vl.main()’. To solve this, I need to find the return values from ‘v0.py’ and
‘vl.py’.
Action: ‘read_document(’v0.py’)‘.

So, ‘vO0.main() = 44’. Now I need to determine the value of ‘vl.main()’.

6. Action: ‘read_document(’v1.py’)‘.

7. Observation & Thought: The file ‘v1.py’ shows that its ‘main’ function returns ‘v3.main() +

10.

11.
12.

C

v4.main() - v2.main()’. This introduces three new dependencies: ‘v2.py’, ‘v3.py’, and ‘v4.py’. I
need to read these files to find their return values.

. Action:

* ‘read_document(’v2.py’)’
* ‘read_document(’v3.py’)’
* ‘read_document('v4.py’)’

. Observation & Thought: From the files, I have found:

e ‘v2.main()’ returns ‘24’.
e ‘v3.main()’ returns ‘45°’.
e ‘v4.main()’ returns ‘50’.

Now I can calculate the return value of ‘vl.main()’: 45 + 50 — 24 = 71°.

Thought: I have both required values: ‘v0.main() =44’ and ‘vl.main() = 71’. I can now calculate
the final result from ‘main.py’.

Calculation: The final result is 44 + 71 = 115.
Final Answer: The return value of the main function is 115.

IMPLEMENTATION DETAILS

API and Model Configuration. All experiments were conducted using the Azure OpenAl
service. We accessed the four evaluated models, GPT-40, GPT-5, ol, and o3, via the
2025-01-01-preview API version. For the models that support it (GPT—40 and GPT-5), we

18

Under review as a conference paper at ICLR 2026

enabled the parallel tool calling feature to allow the agent to execute multiple tool calls concurrently
within a single turn.

Failure Handling and Loop Prevention. To prevent agents from becoming stuck in non-productive
loops, we implemented a failure-handling mechanism based on consecutive tool call failures. We
define a “failed tool call round” as a turn in which the agent attempts one or more tool calls, and every
single one of them fails (e.g., due to incorrect parameters or hallucinated tool names). We maintain a
counter for these consecutive failures. If a turn includes at least one successful tool call, this counter
is reset to zero. However, if an entire round of tool calls fails, the counter is incremented by one. In
our experiments, we allowed a maximum of two consecutive failed rounds. If an agent failed for a
third consecutive round, the task was terminated and marked as a failure. This mechanism ensures
that agents are given a fair chance to recover from transient errors while preventing infinite loops that
would consume excessive resources.

19

	Introduction
	Related Work
	LLM Agent Benchmarks
	Synthetic and Procedural Benchmark Generation

	TaskWeaver Framework
	Preliminary Concepts
	Task Generation Process
	Constructing LORE Benchmark through TaskWeaver Instantiations

	Experiments
	Experimental Setup
	Performance Decay in Long-Horizon Reasoning
	Impact of Operation Complexity on Long-Horizon Reasoning
	Error Analysis

	Conclusion
	LLM Usage For Paper Writing
	Detailed Task Examples
	Document Understanding Navigation Example
	Task Specification
	Available Tools
	Environment: Document Contents
	Ground Truth Solution Trajectory

	Multi-modal Understanding Example
	Task Specification
	Available Tools
	Environment: Multimodal Document Contents
	Ground Truth Solution Trajectory

	Executable Code Reasoning Example
	Task Specification
	Available Tools
	Environment: Codebase Contents
	Ground Truth Solution Trajectory

	Implementation Details

