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Abstract

A mechanism of effective communication is integral to human existence. An essential aspect
of a functional communication scheme among a rational human population involves an
efficient, unambiguous, adaptive, and coherent apparatus to convey one’s goal to others.
Such an effective macro characteristic can emerge in a finite population through incremental
learning via trial and error at the individual (micro) level, with nearly consistent individual
learning faculty and experience across the population. In this paper, we study minimal yet
pertinent aspects of glossogenetics, specifically primal human communication mechanisms,
through computational modeling. In particular, we model the process as a language game
within the fabric of a decentralized, multi-agent deep reinforcement learning setting, where
the agents with local learning and neural cognitive faculties interact through a series of
dialogues. Our model seeks to achieve the principle of least effort and overcome the poverty
of stimulus among homogeneous agents through mirror networks. In our examinations, we
observe the emergence of successful and efficient communication among static and dynamic
agent populations through consistent learning.

1 Introduction

Effective communication via signals is the key to success in a cooperative world, where the goal is to com-
plete the desired tasks by efficiently coordinating among themselves. A functional communication language
should be nearly unambiguous, efficient, easily acquirable (culturally transmitted) and rooted in the environ-
ment. Language Chomsky (2006); Montague et al. (1970); de Saussure (2011) is an autonomous, culturally
transmitted, complex adaptive system realised through multiple modalities - either vocal-auditory or manual-
visual which translate mental representations which are internal structures to utterances that represent the
surface structure. In many scenarios, a combination of these modalities is applied to express the context
unambiguously, which is primarily attributed to the complexity of the context and the environment. In
cooperative AI and cognitive science, language games Wittgenstein (1954); David (1969); Arrington (1954);
Steels (1997; 2003); Wagner et al. (2003) which was motivated by the picture theory of language Wittgen-
stein (1954) and operant conditioning theory Skinner (1986) are empirical computational models developed
to study the origin, evolution, and acquisition of human languages. The game setting involves a bottom-
up simulation model which usually consists of multiple artificial agents (neural or non-neural) equipped
with sufficient cognitive abilities and sometimes sensory-motor systems interacting in a shared environment
through vocal or non-vocal means and subsequently learning from the outcomes of the interactions. The
language structures that emerge in these settings are never equivalent to human languages, since human
languages are refined through millions of years of cultural evolution. However, language games can provide
deep insights into the emergence of various aspects of human language mechanisms, such as syntactic struc-
tures Garcia-Casademont & Steels (2016), compositionality, word order, generalization, brevity, stability,
statistical regularity, complexity, coherence, and linguistic divergence.

With the recent advancement in the field of deep learning Mnih et al. (2013) with respect to computational
tractability, one could observe rigorous applications of deep learning and deep reinforcement learning in-
volving multiple agents in the context of language games Lazaridou & Baroni (2020); Dafoe et al. (2020),
especially referential/discrimination games Lazaridou et al. (2017); Havrylov & Titov (2017), reconstruction
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games Kharitonov et al. (2020), navigation/action games Kajić et al. (2020); Mordatch & Abbeel (2018)
and visual communication games Qiu et al. (2022). A few of these focus on the emergence of coherent
communication protocols from scratch (tabula rasa) in a multi-deep-agent setup Sukhbaatar et al. (2016);
Foerster et al. (2016); Havrylov & Titov (2017); Lazaridou et al. (2017; 2018). A few others target the per-
tinent linguistic universals of natural languages, such as the symbolic grounding Mordatch & Abbeel (2018);
Kottur et al. (2017); Lin et al. (2021), compositionality Mordatch & Abbeel (2018); Kottur et al. (2017);
Li & Bowling (2019); Ren et al. (2020); Wang et al. (2016); Andreas (2018), generalization Baroni (2020);
Chaabouni et al. (2020), brevity regularity Rita et al. (2020); Kharitonov et al. (2020), the cultural and ar-
chitectural transmission Dagan et al. (2020); Ren et al. (2020), language structures through ease-of-teaching
pressure Li & Bowling (2019) and networked communication Gupta et al. (2020). Some of the recent works
also provide deeper analysis pertaining to the nature and factors affecting the semiotic dynamics underlying
the emergence of language and language constructs. Kottur et al. (2017); Resnick et al. (2020); Tucker et al.
(2022) delve into the factors and constraints such as selectionist criteria, utility, informativeness, memory
capacity, and learning capabilities that contribute to the development of compositionality and Graesser et al.
(2019); Eccles et al. (2019); Gaya et al. (2016) analyze conditions, inductive biases and intrinsic motivation
required for the emergence of a coherent language. Another direction in which language emergence is being
evaluated is along the dimension of scale Chaabouni et al. (2022); Rita et al. (2021), where the correla-
tion between language characteristics and system complexity, and population dynamics is examined, while
Lazaridou et al. (2020) incorporates pre-trained general language models to develop task-specific language
models. Choi et al. (2018) explores the obverter technique Batali (1998) which explores emergent communi-
cation among pseudo-homogeneuos agents, where the speaker is assumed to be always true, while the listener
calibrates its parameters to align itself with the speaker. Chaabouni et al. (2019) studies the existence of
inverse correlation of word length and input frequency which exists in natural human language.

1.1 Our Contribution

In this paper, we study the emergence of certain coherent properties of a language along with other key
factors effecting the language among a multi-agent population. We develop a game setup allowing significant
complexity compared to the existing Lewis signalling games settings in terms of combinatorial possibility of
mapping the words to a concept by listener for the novel words uttered by the speaker. Additionally, we
explored the notion of interchangeability property in the language which enables agents to simultaneously
synchronise the bidirectional mappings along with their active role (either listening or speaking) in the game
which ensures continuity and internal consistency. In this paper, we also introduce efficient communica-
tion through the principle of least effort, where the agents are encouraged to convey information in a way
that minimizes complexity or cognitive effort. Moreover, we study the emergent macro behaviour which
materializes through the micro dynamics involving all the above functionalities.

2 Problem Formulation

In this paper, our objective is to enable the emergence of coherent symbolic structures among a population
of deep neural agents through decentralized learning and self-organization in language games. Our setting
consists of N deep neural agents populated on a graph world G = (V,E) which is embedded on a bounded 2D
plane (flat earth) where V is the set of vertices and E is the set of edges. All the nodes are similar in shape.
However, they possess two relevant features, location and color which distinguish them from each other. The
location is unique for a node, although they can have the same color. Our agents are homogeneous in nature,
where they can perform both comprehension and reproduction of language. This property is referred to as
homogeneity/interchangeability which is one of the core properties of human language. Our language game
(illustrated in Figure 1) is as follows:

1. At each instant in the game, one agent is paired against another to initiate a semiotic cycle of
dialogue consisting of D conversations. In dialogue, one random agent takes the role of speaker,
while the other agent is the listener (step 1 in Figure 1).
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2. In a conversation, the speaker agent chooses a target node (the topic of conversation) uniformly at
random from the world (unknown to the listener) and it will try to communicate the target node
to the other agent by presenting the utterance using an appropriate conceptualization and vocal
language on a noise-free, face-to-face, discrete channel where everything said is heard (steps 2 to
5 ).

3. The listener attempts is to decipher the meaning of the utterance and correctly identify the target
node and thus accept the utterance by providing evidence of understanding. The interaction is sub-
sequently rewarded according to the interpretation outcome which is shared among the participating
agents (steps 6 to 8 ).

4. In case of failed communication, the speaker discloses the target node to the listener (step 9 ).
Learning occurs through the induction of hypotheses (the innate linguistic structure that is charac-
terized by neural networks) based on payoffs, and disclosures.

Figure 1: Semiotic pathway illustration of the guessing game

We formulate our setting using a multi-agent Markov game framework Littman (1994); Puterman (2014)
since we aim for the emergence of symbolic structures through interactions among agents who possess the
cognitive ability to extract and reinforce commonalities across multiple experiences. Here, we assume that
the agents only have a partial observation of the environment, which aligns with real human scenarios where
one can only be aware of his local surroundings and perceive the world in a coarse form. The state of the
environment at time step t is denoted by s(t) ∈ S, where S is the set of all the environment states. We let
o

(t)
i ∈ O be the partial observation of agent i, which is characterized by the function fi : S 7→ O, where

O is the set of all possible observations. At time instant t, agent i chooses a random action a
(t)
i which is

dependent on the current observation according to a parameterized stochastic policy πθi(·|o
(t)
i ) which is a

conditional probability mass function over A conditioned on the observation o
(t)
i . For agent i, each state

transition yields a random reward r
(t)
i according to the function R : S × A × S 7→ R. The system evolution

is stochastic in nature and characterized by the probability transition function P : S × A × S 7→ [0, 1],
where P(s, a, s′) = Pr(s(t+1) = s′|s(t) = s, a(t) = a) which is the conditional probability of next state is
s′ conditioned on the current state and action being s and a respectively. The collective goal of the agent
population is to collaboratively seek a policy πθ∗ = [πθ⋆1 , πθ⋆2 , . . . , πθ⋆N ] that maximizes the globally averaged
long-term return over the network based solely on local information, i.e.,

θ⋆i = arg max
θ∈Θ

Ji(θ), with Ji(θ) = Eπθ,µ

[
T−1∑
t=0

r(t)
i

]
. (1)
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where Eπθ,µ[·] is the expectation with respect to all T length trajectories generated using the stochastic
policy πθ with initial distribution µ and Θ ⊂ Rsv is a compact and convex set.

3 Domain Ontology

Figure 2: Agent Ontology

The ontology Guarino & Giaretta (1995); Mark et al. (2003) of the agent is the concept space C = H ∪ W ∪
B ∪ {⊥} which consists of a finite collection of segments H, sectors W, colors B and the NULL concept ⊥.
We let H̄ = H ∪ {⊥}, W̄ = W ∪ {⊥} and B̄ = B ∪ {⊥}. A segment is a strip of region in the 2D plane
encompassed by outer and inner concentric circles (Figure 2 (a)) centered at a certain point. A sector is
defined to be a part of a disc made of the arc of the disc centered at a certain point along with its two radii
extending to the boundary of the world. These are spatial deixis which are generally perceived relative to the
location of the central point. The segments and sectors provide a conceptualization of space that is grounded
in the sensory and physical interactions of the agents with the world and one can relate it to the concepts of
cardinal directions in the human discourse. In our setting, the space is conceptualized a priori as discrete and
categorical. Each node possesses the intensive property of color and we assume that the agents possess the
sensory mechanism to capture the hue range of colors. Hence, we also consider colors as concepts. Roughly,
C represents the hierarchical deep structure of concepts (semantic entities) where one can be either specific
(finer) or general (coarser), or disjoint than the other (Figure 2 (c)). The concept space C is equipped with
an operation < ·, · >: C × C → C′, where C′ is the set of derived concepts, which are concepts which can be
derived from the basis concepts Andreas (2018); Montague et al. (1970). In our setting, the operation <>
is set intersection since our concept space consists of regions and colors. Hence it is both commutative and
associative. An illustration is provided in Figure 2 (b). We also maintain a pred-defined injective encoder
Γ : C → Z which maps the abstract basis concepts in C to discrete integers. Given any topic node, the agent
can conceptualize the vertex in terms of the tuple <segment, sector,color> ∈ H̄ × W̄ × B̄ relative to the
current location of the agent. It’s important to note that there is an abuse of notation in this representation,
as <> typically denotes a binary operation, and in this case, it should be interpreted as <segment, <sector,
color>>. For a given vertex u ∈ V , we consider the function Cu : V → 2H̄×W̄×B̄ which maps vertices to
their corresponding conceptualizations relative to the source vertex u. For a given (source, topic) vertex pair
(u, x), one can have more than one conceptualization possible, i.e., Cu(x) ⊆ H̄×W̄ ×B̄. Hence our setting can
be categorized as “guessing game” (Section 1.3.2 of Steels (2012)). The complexity of the guessing game is
substantially high due to the inherent meaning ambiguity arising from the existence of more than one possible
distinct concept for a given unknown message. Meaning uncertainty arises because multiple concepts can
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possibly be associated to a novel word and the listener cannot, with only one exposure, determine which
meaning is intended by the speaker. The available information for learning or understanding is limited or
insufficient for the listener to comprehend. This complicates the construction of a shared vocabulary, as
aligning meanings through communication becomes more challenging. This is Quine’s “Gavagai” problem
also referred to as Poverty of stimulus Quine (1960).

Assumption: In this paper, we assume that the ontology possessed by all the agents is commensurable
and they all conform to the same ontological framework to avoid inconsistent perspectives and thus evade
the Tower of Babel situation Iliadis (2019); Mark et al. (2003). Also, we assume that each agent possesses
an episodic memory to hold the entire sequence.

4 Grounded Vocabulary Learning

The lexis (Ψ) of a language is a finite catalog of all q-letter words available a priori to an agent. A vocabulary
bidirectionally maps lexis (phonological entities) to meanings (semantic entities) where one is able to evoke
the other Ren et al. (2020). This symbolic association is referred to as the property of groundedness.
For a population of agents to successfully communicate, there should exist a shared, coherent vocabulary
among the population. This implies that the vocabulary possessed by the agents should hold the same
meaning for everyone to successfully communicate verbally among themselves. Ideally, the mapping should
be isomorphic. Apparently, in every realistic scenario, this is not the case, which transpires into various
language characteristics like homonyms and synonyms. Initially, there is no ex-ante meaning associated with
the words, and hence no coherence among the agents exists and we aim to foster common grounding among
agents incrementally, which is fully shaped by past linguistic experience. This is referred to as the symbol
grounding problem Steels (2012). We achieve this through verbal interactions between them, where they
extract and reinforce similarities across multiple episodes incrementally through evidence of understanding
which can be either positive or negative. This trial and error based calibration process shapes, reshapes,
and enforces the mental mapping, where the phonological expressions become more efficient and established
through repeated use Bisk et al. (2020); Arrington (1954), and eventually drives the system to a dissipative
structure Prigogine (1987) which enables common ground for expressing concepts.

Defintion (Emergent vocabulary): An emergent vocabulary M is a shared mapping (not necessarily
bijective) function between lexis Ψ and the concept space C, i.e., M : Ψ ↔ C collectively agreed upon by
all the agents in the population de Saussure (2011). Note that there are |C||Ψ| possible vocabularies for all
the agents to agree upon, which makes it unlikely for all agents to converge on the same vocabulary without
some mechanism for coordination and consensus.

Definition (Compositionality): A languange is compositional Andreas (2018); Montague et al. (1970)
if the utterance of each derived concept is determined by the utterances of its basis concepts. Formally,
for the derived concept c =< g, h, q >, we have M(c) = M(g)M(h)M(q), with the implicit operation of
concatenation connecting them.

Assumption: During each dialogue, the source and target vertices corresponding to each conversation
are chosen uniformly at random.

The probabilistic regular grammar corresponding to the language we consider here is the following:

D → C1C2C3 with probability 1
C1 → h, where h ∈ M(H) with probability µ(h|C1)
C1 → ϵ, with probability µ(ϵ|C1)
C2 → w, where w ∈ M(W) with probability µ(w|C2)
C2 → ϵ, with probability µ(ϵ|C2)
C3 → b, where b ∈ M(B) with probability µ(w|C3)
C3 → ϵ, with probability µ(ϵ|C3)
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Figure 3: Policy architecture of the semiotic pathway

Figure 4: Unfolded view of the respective LSTMs.Best viewed in color

The language is finite and regular and hence learnable in the limit (Gold sense, Theorem 2.6 of Niyogi
(2006)) under the above assumption. The speaker exhibits an inherent categorical bias, to structure messages
in a specific order (M(segment),M(sector),M(color)) reflecting the agent’s conceptualization process.
However, the listener module does not share this bias and instead treats each word as potentially belonging to
any category. This discrepancy in how the speaker and listener process information makes it more challenging
to establish a shared language, as the listener does not rely on the same categorical ordering as the speaker.

4.1 Policy Architecture

The policy architecture of the agent is modeled using stochastic neural networks. Each agent consists of
two modules: speaking (concept-selection and utterance) and listening. All the modules are implemented
using RNN (recurrent neural networks) to allow for continuous and sequential communication. Here θ, ψ,
and ϕ represent the parameters of the utterance network, concept-selection network, and listening network
respectively. All the modules of listener and speaker have to synchronize through trial and error for a
successful communication language to emerge. In our setting, we perform decentralized learning with decen-
tralized execution Foerster et al. (2016). Our agents are independent learners Tan (1993) and the channel
between speaker and listener is non-differentiable, which implies that the back-propagation of the listener
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does not transmit the gradient backward to the speaker. In our 2D environment, there are N agents and
M vertices. The state S of the game set consists of all relevant details that define the environment. The
state of the environment at time t is given by st =

[
x(1),...,(N), z(1),...,(N)

t ,q(1),...,(N),u(1),...,(N)
t

]⊤
∈ S, where

x(i) ∈ R2 is the location of the ith vertex in the world, z(i) ∈ {1, 2, . . . , N} is the current location of agent
i, q(i) ∈ R is the color of vertex i and u(i)

t is the utterance in the conversation involving agent i. The
agent i locally perceives the environment which characterizes the observation vector of the speaker agent

o(i)
t

fi=
[
z(i)
t ,g(i)

t ,u(i)
t ,q(g(i)

t ), DNN(d(1),...,(M) + ϵd,w(1),...,(M) + ϵw)
]⊤

, where ϵd ∼ N (0, 1) and ϵw ∼ N (0, 1)

are white Gaussian noises, g(i)
t ∈ {1, 2 . . .M} is the topic vertex, and d,w represent the distance and the

angle of vertices from the speaker’s current vertex respectively. Here DNN represents a deep neural network
which embeds the graph relative to the source vertex. The interaction pathway consists of multiple networks
across the speaker and listener agents operating sequentially. The concept-selection network πψ operates
in a one-to-many mode, where the initial hidden vector is obtained through a linear transformation of the
observation vector ot, and the output is fed back as input. This network outputs the conception-selection
bit-vector bt which is then passed through a differentiable channel to the speaking module πθ (many-many
mode) along with the spatial description ct of the topic vertex as ct

⊙
bt, where

⊙
is co-ordinate-wise vector

product. The network utters the message mt which is transmitted to the listener through a non-differentiable
(naive categorical sampling) noise-free channel. We use Gumbel-Softmax Jang et al. (2016); Maddison et al.
(2016) based sampling to enable differentiability of concept-selection to utterance channel allowing gradients
to flow through the sampling process. The Gumbel-Softmax distribution for a given the parameters p ∈ RK
is defined as follows:

G(log p)k = exp((log pk + ε)/τ)∑K
j=1 exp((log pj + ε)/τ)

, 1 ≤ k ≤ K,

where G(log p)k represents the kth element of the one-hot encoding sample G, ε ∼ Gumbel(0, 1), and τ ∈ R
is the temperature parameter.

The listening module πϕ in the listener agent operates in a many-to-many mode, which means it processes
the words in the generated message mt sequentially and generates a probability distribution πϕ(·|mt) over
the entire concept space C. This distribution represents the agent’s interpretation of the message in terms
of different concepts within the concept space. This distribution is further used to generate the listener
interpretation c′

t through categorical sampling. The complete architecture of the agents is depicted in
Figure 3.

5 Performance Measure

The objective function of our language game consists of three components: Regularized communication
feedback, description length loss, and mirror loss. Each component plays a specific role in shaping the
communication outcome and the characteristics of the emergent language.

5.1 Regularized, Guided Communication Feedback

Here, we consider the standard RL objective function (finite horizon cumulative reward) with an entropy
regularization term. The regularizer offers a few advantages that are conducive to language games. First,
entropy regularization encourages exploration and helps prevent early convergence to sub-optimal policies.
Second, the resulting policies can serve as a good initialization for fine-tuning to a more specific behavior.
Third, the maximum entropy framework provides a better exploration mechanism for seeking out the best
mode in a multimodal reward landscape. In the language game, we follow a stochastic, guided feedback
mechanism. During a failed interaction, the speaker plausibly guides the listener by pointing out the topic
vertex to the listener with a probability λ ∈ [0, 1]. This implies that the speaker may or may not provide
effective guidance with a certain probability. The speaker and listener subsequently reinforce with respect to
the spatial concept c′

t corresponding to the plausibly communicated topic vertex. This implies that during
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the interaction between the speaker A and listener B, the interpreted concept c′
t is taken as

c′
t ∼ λπϕB (·|mt) + (1 − λ)δct , where λ ∈ [0, 1] and for E ⊆ Rk, δx(E) =

{
1 if x ∈ E,

0 othewise.
(2)

Here δx is the Dirac measure at x which is a singular measure that places all its probability mass at the
single point x. In the case of effective guidance, a full reward is associated with the interaction.

5.2 Principle of Least Effort

According to the principle of least effort Zipf (2016); Cancho & Solé (2003), language evolves because
speakers of the language tend to simplify their speech in various ways in order to obtain a trade-off between
understanding and effort. When deciding how to express themselves in a language, speakers consider both
their present and future communication needs. This drives the speakers to consider linguistic constructs
that are effective in meeting their communication goals and efficient in optimizing their labour. A similar
hypothesis connecting the overarching fairness between cognitive load and language exposition is the principle
of the economy of thought Mach (1898). It suggests that the human mind, with its limited cognitive resources,
seeks to represent the infinite complexities of the world in a way that is efficient and economical. From these
arguments, we believe that languages tend to evolve in ways that promote the economy of least thought and
linguistic effort where the language users communicate using sentences that are relatively easy to produce
and comprehend. Hence, in the post-transient phase of language evolution, sentence length tends to decrease
Futrell et al. (2015).

5.3 Mirror Networks

To enable homogenity/interchangeability of the language, we consider mirror networks. A mirror neuron
Di Pellegrino et al. (1992); Rizzolatti et al. (1996), strictly defined, is a type of neuron that is fired both
when the individual executes certain actions and when it observes a strictly or broadly congruent set of
actions. In our setting, we want the speaking, listening, and concept selection networks of an agent to be
consistent with each other so that the information gained through the comprehension of the language is used
for its reproduction and vice versa. Since our networks represent stochastic policies, by consistency, we mean
in the Bayesian probabilistic sense (posterior distribution of the parameters conditioned on the message or
concept). By ensuring consistency between these policies, you’re seeking a coherent, bidirectional relationship
between how the agent generates its responses (speaking) and how it interprets and understands incoming
information (listening). This implies that the calibration pathway has to update and synchronize all the
relevant networks in the direction of consistency. Hence, we consider the following mirror loss:

E
[
α1DKL

(
πθA(·|m)

∥∥∥ πϕA(·|m)
)

︸ ︷︷ ︸
speaker congruence

+α2DKL

(
πϕB (·|c′)

∥∥∥ πθB (·|c′)
)

︸ ︷︷ ︸
listener congruence

+ α3 DKL

(
πϕB (·|m)

∥∥∥ πψB (·|o)
)

︸ ︷︷ ︸
concept selection congruence

]
, where α1...3 ≥ 0,

with DKL(p1∥p2) =
∑
x log p1(x) log p1(x)

log p2(x) is the Kullback-Leibler divergence. The above loss is used to
quantify the dissimilarity or error between the conditional probabilities of the mirror networks and the
corresponding active networks. Minimizing the mirror loss during calibration implies making the mirror
networks as similar as possible to the active networks resulting in bidirectional language use.

5.4 Poverty of Stimulus

The poverty of stimulus appears in guided feedback scenarios, where the speaker reveals the topic vertex
g (which is the tangible component) to the listener at the end of a failed conversation. However, the
conceptualization Cz(g) of the topic vertex g consists of more than one element which makes the novel
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message m of the conversation potentially ambiguous and uncertain. This uncertainty poses a challenge
for the listener. To address the meaning uncertainty inherent in the poverty of stimulus situation due to
insufficient information, the listener relies on contextual cues, where it distributes the message m across all
the possible conceptualizations Cz(g) of the topic vertex g with respect to the source vertex z and assign
different normalized weights or probabilities wb to each interpretation b based on some predispositions (the
factors could be prior knowledge and context):

log πϕB (c′|m) =
∑
b∈Cz(g) wb log πϕB (b|m)∑

b∈Cz(g) wb
, where wb ≥ 0. (3)

Over time, as the listener gains more exposure to the word and its usage in various contexts, the uncertainty
decreases, and the listener becomes more adept at determining the intended meaning based on the context
of its usage.

5.5 Objective function

The performance measure J(θ, ψ, ϕ) of the language game is defined as follows: Let EI [·] be the expectation
induced by the r.v.s. m ∼ πθA(·|c), c′ ∼ πϕB (·|m), s ∼ µ, o = fA(s), o → c and EIt [·] be the expectation
induced by the r.v.s. mt ∼ πθA(·|ct), bt ∼ πψA(·|ot), c′

t ∼ λ πϕB (·|mt) + (1 − λ)δct , st ∼ µ, ot = fA(st),
ot → ct.

Then J(θ, ϕ, ψ) = κ1L1(θ, ϕ, ψ) + κ2L2(θ, ϕ, ψ) + κ3L3(θ, ϕ, ψ),where κ1, κ2, κ3 ≥ 0,

L1(θ, ϕ, ψ) = EIt

[
T−1∑
t=0

rt + βH(πθA(·|ct)) + βH(πϕB (·|ot))
]

︸ ︷︷ ︸
Regularized cumulative reward

, β ≥ 0,

L2(θ, ϕ, ψ) = −EI
[
∥b∥2

2 + β′H(πψA(·|s))
]︸ ︷︷ ︸

Description length loss (Principle of least effort)

, β′ ≥ 0

L3(θ, ϕ, ψ) = EI

[
α1DKL

(
πθA(·|m)

∥∥∥ πϕA(·|m)
)

+ α2DKL

(
πϕB (·|c′)

∥∥∥ πθB (·|c′)
)

+

α3DKL

(
πϕB (·|m)

∥∥∥ πψB (·|o)
) ]

(Mirror loss),

with H(π(·|s)) = −
∑
a π(a | s) log π(a | s) is the entropy regularizer, where, H(π(·|s)) represents the entropy

of a policy π conditioned on state s. The entropy measures the uncertainty or randomness associated with
the actions chosen by that policy when in a particular state.

Further, we obtain the gradient of J as follows:

∇J(θ, ϕ, ψ) = κ1∇L1(θ, ϕ, ψ) + κ2∇L2(θ, ϕ, ψ) + κ3∇L3(θ, ϕ, ψ),

where

∇L1(θ, ϕ, ψ) = EI

[
(QI(s,m,b, c′) − β log πθA(m|c) − β log πϕB (c′|m) − β)(∇θA log πθA (m|c)

+ ∇ϕB log πϕB (c′|m))
]
, (4)

∇L2(θ, ϕ, ψ) = EI
[
(−β′ log πψA(b|o) − β′)∇ψA log πψA(b|o)

]
− E s∼µ,

o=fA(s)

[
∇ψAEb∼πψA (·|o)

[
∥b∥2

2
]]

and

∇L3(θ, ϕ, ψ) = E I,
c′→b′

[
− α1

P(c)
P(m)∇ϕA log πϕA(c|m) − α2

P(m)
P(c′) ∇θB log πθB (m|c′)

− α3
P(b′)
P(o) ∇ψB log πψB (b′|o)

]
, (5)
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where QI(s,m, b, c′) = EI

[∑T−1
t=0 r(t)

i |s,m, b, c′
]
. Here Equation (4) is obtained by appealing to soft policy

gradient theorem Shi et al. (2019) and multi-agent policy gradient theorem Zhang et al. (2018).

5.6 Reward Function

We follow a reward mechanism that balances exploration, cooperation, synchronization, accuracy, and ef-
ficiency in communication. Agents are trained using a shared reward mechanism by which they learn to
cooperate by forming a shared language. To encourage agent exploration, we offer partial and complete
rewards, motivating the agent to try different approaches and adapt themselves to make informed decisions
during training. Both agents receive a partial reward if the listener infers the right region where the topic
vertex is located but fails to identify the topic vertex. This acknowledges the successful transmission of
relevant information without complete understanding. A full reward is given if the listener can accurately
and unambiguously infer the exact topic vertex from the communicated information. This indicates a high
level of successful communication and concept selection. A penalty is given if communication fails in order
to discourage the respective concept-vocabulary mapping and to prevent incorrect or ineffective communica-
tion choices. The balance between partial and complete rewards, along with the penalty for communication
failure, encourages agents to refine their communication strategies over time.

rt =


ζ1 (∈ R), if gt = g′

t,

ζ2 (∈ R ∧ ζ2 < ζ1), if Czt(gt) ∩ Czt(g′
t) ̸= ∅,

ζ3 (ζ3 ≤ 0 ∧ ζ3 < ζ2), otherwise.
(6)

The concept-selection module of the speaker seeks to select the optional spatial description to refer to
the topic vertex by deactivating redundant concepts. The mechanism aims to ensure that the sentence
corresponding to the generated spatial description is of optimal length to convey the intended meaning
effectively. To support optimal word-order selection, we penalize the speaker for choosing a sub-optimal
sequence of concepts. In cases where a concept is de-activated, the agent chooses to remain silent at that
particular instant of the corresponding generated message. To enable this, the utterance module chooses a
“NULL” utterance C(⊥) to indicate silence. The concept of ⊥ utterance is significant since we do not explicitly
impose it a priori, rather it is learned through interactions. In order to promote consistency and coherence
in the use of the C(⊥) utterance across different word categories in a sentence, we employ a strategy to
positively reward r′ the speaker for the reuse of the same word for the ⊥ irrespective of its temporal position
in a sentence. This reward system encourages the emergence of a common word for the ⊥ across different
contexts, regardless of its temporal position in the message ut.

r′
t =

{
ζ ′

1 (∈ R), if |{M(a)|a ∈ ut ∧ a = ⊥}| = 1,
ζ ′

2 (ζ ′
2 < ζ ′

1), otherwise.
(7)

6 Experiments & Discussion

6.1 Experimental Setup

In all the experiments, we consider random initial values for the model parameters. The hyper-parameters
(learning rate, batch size, and regularization strength) are fine-tuned through iterative experimentation.
The feasible reward values for various scenarios are obtained through an exhaustive, yet rational search.
In this paper, we consider a 2D world consisting of a complete graph with 5 vertices whose positions are
randomly chosen. There are four agents in this world leading to a total of 12 unique speaker-listener pairs
which likely allows for a rich variety of interactions and communication scenarios. Each dialogue consists
of 100 conversations. The role switching (speaker to listener and listener to speaker) occurs after every
500 iterations through random selection. During every conversation in a dialogue, a random vertex (except
the source vertex) is chosen as the topic vertex. In this paper, we consider two-timescale networks Chung
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Figure 5: Concept space and the corresponding conceptualization of vertices

et al. (2018) to obtain synchronized convergence, where the utterance network is calibrated using a faster
timescale compared to the conception selection network. In this approach, the concept selection network can
be considered to be pseudo-stationary, while the utterance network converges with respect to the stationary
values of the concept selection network and this cycle repeats itself in the long run. To achieve this, we
employ the vanilla stochastic gradient algorithm with learning rates of the respective networks differing by
order of magnitude. This can be formalized as follows: Let {et} and {e′

t} be the learning rates of the concept
selection network and utterance network respectively. Then {et} and {e′

t} satisfy the following:

et, e
′
t ∈ (0, 1),

∑
t≥0

et =
∑
t≥0

e′
t = ∞,

∑
t≥0

e2
t + e′2

t < ∞, lim
t→∞

et
e′
t

= 0. (8)

The concept space C consists of 4 sectors, 3 segments and 4 colors. The concept space C is illustrated in
Figure 5. Since there are overlapping sectors (Sectors 1, 3, and 4) we have a poverty of stimulus situation.
The lexis size (|Ψ|) is 25. The speaking and listening module within the agent’s architecture utilizes an
LSTM cell. The observation vector ot by the speaker agent is transformed into a feature vector (∈ R25)
by passing it through a fully connected neural network. This feature vector forms the hidden input of the
concept selection module (ψ) whose hidden size is also taken as 25. The speaking and listening modules are
implemented as a single-layer LSTM cell with a hidden size 250. The LSTM networks output the sequence
of words or concepts with a maximum length of 3. For the continuous relaxation of categorical distribution
within the concept selection module τ of the Gumbel Softmax, a temperature parameter of 0.5 is utilized.
Gradients originating from all modules are clipped with a maximum value of 50. Additionally, successful
communication rewards both the speaker and listener with 100, and partial success merits a reward of 50.

The observations emerging from our language game can be summarized as follows:

We observe that the language reflects the complexity of the environment they describe. The emergent language
exhibits an inclination towards minimizing cognitive effort, reflected in the emergent word order, bifurcation
of concept space into active and dormant regions and the prevalence of a single-word representation for the
⊥ concept. This aspect of language can be seen as a reflection of cognitive economy, where speakers aim to
convey meaning using the least amount of cognitive effort. It also ties into the broader idea of communication
efficiency, where languages evolve to facilitate effective communication while minimizing the cognitive load
on speakers and listeners. The frequent convergence of guessing games is guided by the initial exploration in
the space of vocabulary-concept mappings during the transient phase, leading to coherence in a finite number
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Source Conceptualization
0 (3, 5) → {1, 2, 3}, (3,⊥) → {1, 2, 3}, (⊥, 5) → {1, 2, 3}, (2, 5) → {4}, (2,⊥) → {4}
2 (3, 7) → {0, 3, 4}, (3,⊥) → {0, 3, 4}, (⊥, 7) → {1, 3, 4, 0}, (3, 4) → {0, 3, 4},

(⊥, 4) → {1, 3, 4, 0}, (2, 7) → {1}, (2,⊥) → {1}, (2, 4) → {1}
1 (3, 4) → {0}, (3,⊥) → {0}, (⊥, 4) → {3, 4, 0}, (3, 7) → {0}, (⊥, 7) → {4, 0},

(2, 5) → {2}, (2,⊥) → {4, 2, 3}, (⊥, 5) → {2}, (2, 4) → {3, 4}, (2, 6) → {3},
(0, 6) → {3}, (2, 7) → {4}

3 (3, 7) → {0}, (3,⊥) → {2, 0}, (⊥, 7) → {0}, (3, 4) → {0}, (⊥, 4) → {0},
(2, 5) → {1, 4}, (2,⊥) → {1, 4}, (⊥, 5) → {2, 4, 1}, (3, 5) → {2}

4 (2, 7) → {0}, (2,⊥) → {3, 0, 1}, (⊥, 7) → {0}, (2, 4) → {0, 3}, (⊥, 4) → {0, 3},
(2, 5) → {1}, (⊥, 5) → {2, 1}, (3, 5) → {2}, (3,⊥) → {2}, (2, 6) → {3}, (0, 6) → {3}

Figure 6: The conceptualization of vertices with respect to each source vertex (referred to as source in the table).
The syntax followed in the table is as follows: For the source vertex v ∈ V (source column), the conceptualization
column contains (a, b) ∈ Γ(H) × Γ(W) → {u ∈ V |(a, b) ∈ Cv(u)}

of dialogues through reinforcing the successful, yet rare interactions within the dialogues. This coherence,
marked by a nearly 100% success ratio during dialogues eventually, signifies the establishment of a robust,
shared and grounded language, resilient to variations in agent roles. The synchronization of mirror networks
ensures continuity during learning and reproduction, while the emergence of dominating words and adherence
to Zipf’s law reveal structured emergence, shaping the evolving linguistic landscape. Thus in the intricate
tapestry of our decentralized guessing game involving multiple agents, diverse phenomena weave together,
depicting the emergence of a shared, grounded, structured and efficient communication system.

6.2 Convergence of Games

In our experiments, we observe that our decentralized guessing games are converging very often. The
vocabulary-concept mappings developed by the individual agents during the transient phase are random
which enables sufficient exploration to drive the evolution towards coherence in a finite number of dialogues.
Coherence implies a more consistent and meaningful use of language, where words and expressions convey
clear, grounded and shared meanings. This is corroborated by the convergence of loss functions and the
maximization of average reward (average of the rewards of the conversations in a dialogue) as illustrated in
Figures 11b and 8b. Note that we maximize the shared cumulative soft rewards by calibrating the policy
parameters in the direction of the policy gradient over a non-differentiable channel between the speaker and
listener. Positive rewards, attributed to successful communication events, are considered rare. When such
events occur, positive rewards are reinforced by policy gradient-based calibration operations. This is further
boosted by the guided feedback mechanism, where the listener uses the topic vertex information conveyed
by the speaker to calibrate his parameters to match the conceptualization of the topic vertex (possibly
ambiguous) with the utterance. These mechanisms help reinforce successful communication strategies. This
is observed in most of the trials (≈ 95%), however, in some cases this behaviour is not observed which is
primarily attributed to the lack of positive rewards which arises due to random initialization of the neural
network weights and the distribution bias of the source, topic vertices pair chosen for the conversations.
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Figure 7: Convergence of shared vocabularies among the population is depicted here. Each rectangle represents
the vocabulary of an agent, with each row (k, where 1 ≤ k ≤ 4) showing the evolution of agent k’s vocabulary. It is
notable that in the later stages of the process, all agents exhibit vocabularies that are nearly identical.

Guessing game achieves a 100% success ratio over time ⇒ Shared language emerges

The success ratio is defined as the frequency of conversations in a dialogue, where the listener is able to
identify the topic vertex. The evolution of this success ratio is depicted in Figure 8a over the course of
dialogues across the population. This implies that all the dialogue interactions in the conversation among
the agent population are successful after a finite number of steps which suggests that the participants are
able to achieve their communication objectives (identifying topic vertex) effectively through the medium of
language and this is independent of the nature of the agent executing the role of listener and speaker. As the
process unfolds, it becomes increasingly apparent that all agents converge towards possessing highly similar
vocabularies (Figure 7). The convergence towards near-identical vocabularies likely stems from the agents’
interactions and the need for effective communication. Through repeated interactions, agents gradually
align their linguistic representations, leading to a shared, grounded lexicon. This shared vocabulary not
only facilitates smoother communication but also indicates the agents’ ability to adapt and coordinate
their language use. In conclusion, the generated language is grounded and mostly unambiguous and the
communication model is robust and not heavily dependent on specific characteristics of individual agents.

6.3 Cognitive Economy

The agents involved in the language game have demonstrated a remarkable ability to grasp the essential
concepts required for effective communication through the application of the principle of least effort. We
observe that the order 101 which denotes <segment, ⊥, color>, is the emergent word order (Figure ??),
suggesting a common consensus among the agents that for every topic vertex, communicating two concepts
(segment, color) is adequate (Figure 12). The agents tend to communicate in a way that minimizes cognitive
effort. The language tend to adapt to be as efficient as possible, with speakers and listeners preferring forms
of expression that require the least amount of cognitive resources. This adaptation is driven by the principle
of least effort component of the learning dynamics. To corroborate this claim further, we consider cases
where the effect of principle of least effort is reduced significantly (Figure 9). For this purpose, consider
the scenarios where κ2, representing the weight associated with loss L2 that quantifies the principle of least
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] (a) (b)

(c) (d)

Figure 8: (a) Evolution of communication success ratio during dialogues over time (b) Trend of average reward over
interactions within a dialogue over time (c) Word usage across all the dialogues over time among the agent population
(d) Concept usage across all the dialogues over time among the agent population.

effort, takes on values of 1.1, 0.01, and 0.001 (with κ1 = 1 and κ3 = 1). For the case when κ2 = 1.1, we have
minimal conceptualization ( <segment, ⊥, color>), of the topic vertex, however for the remaining cases,
i.e., κ2 ∈ {0.01, 0.001}, we have maximal conceptualization ( <segment, sector, color>), of the topic
vertex which signifies that the principle of least effort is fundamentally attributed to the cognitive economy
exhibited by the agents, with higher weights for principle of least effort leading to simpler conceptualizations
and lower values prompting more detailed ones.

Figure 9: Sensitivity of principle of least effort on the cognitive economy
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Figure 10: In this setting, we have 4 agents with the same static concept space as before residing a graph world
with 50 vertices. Note that the world is too complex for the agents to perceive uniquely using their pre-defined
concept space. The conceptualization of the topic vertices seems to use as much concepts as possible (60% preferring
<segment, sector, color>, while 40% preferring <segment, ⊥, color>

To understand the nature of principle of least effort with respect to the complexity of the word, we consider a
setting with four agents having the same concept space as before, residing in a graph world of 50 vertices. This
world is notably complex, presenting a challenge for the agents to fully comprehend using their predefined
concepts. When it comes to conceptualizing the topic vertices, there is an intriguing trend. About 60% of
the agents prefer to describe vertices using a combination of segment, sector, and color. On the other hand,
the remaining 40% opt for a simpler approach, using segment, a placeholder for silence , and color. This
diversity in conceptualization approaches highlights the complexity of the world these agents are trying to
understand. Despite their efforts to adapt and communicate effectively, the intricate nature of the graph
world poses a significant challenge for the agents in establishing a shared understanding.

6.3.1 Bifurcation of Concept Space

Since the topic of conversation is a vertex that is conceptualized using sectors, segments, and colors, a few
sectors and segments rarely appear in the conversations due to the distribution of vertices in the 2D world.
They remain mostly dormant (inactive) and hence no dominating words for these less-discussed concepts
emerge. Contrary to the dormant concepts are the active concepts which are consistently used by the agents
to express the topic vertices and hence are alive in the population. This phenomenon suggests that certain
concepts may become dominant in communication due to their frequent usage, while others remain less
prominent. The above bifurcation of the concept space is highly sensitive to the nature of the graph world
and the distribution bias of the source-topic vertex pairs used during interactions. This is illustrated in
Figure 8d, where we allude to concepts 4, 5, 6 and 7 which are unused and concept 1, which sees minimal
usage (≈ 1.0%). Since each color appears once in the world, except for yellow (Γ(yellow) = 9) which occurs
twice and with the word order emerging as 101 (<segment, ⊥, color>), all the color concepts are active
with yellow being more salient in communication.

6.3.2 Context Free Expression of Silence

A shared word for expressing silence (NULL/⊥) emerges and it is the most popular word. The dynamics
of the game settle down to employing a single word to represent ⊥ concept irrespective of the position of
⊥ in the message, a phenomenon vividly illustrated in Figure 8c. As the communication game evolves, a
consensus emerges among the agents to use a single word to represent the ⊥ concept. This transformation
is additionally accompanied by a noteworthy reduction in the probabilities associated with other words,
underscoring the agents’ adaptability and the efficiency of their evolving communication system. There is a
clear and consistent way of representing the absence of a specific concept in a message. Since 101 (<segment,
⊥, color>) is the globally accepted word order in the population, a ⊥ concept is always present in every
conversation which makes its word the most popular word in the process.
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6.4 Continuity in Language Use (Homogenity/Interchangeability)

In our experiments, we observe that the mirror networks synchronize bidirectional mappings near completely
in the agent population. During the interactions, the individual agents calibrate their corresponding mirror
networks (listener network for the speaker and utterance network for the listener) with respect to their
corresponding active networks (utterance network for the speaker and listener network for the listener) which
ensures continuity during role switching. This is achieved by minimizing the mirror loss which converges to
0 as illustrated in Figure 11b. The continuity in learning (utterance comprehension and reproduction) is
exemplified in Figure 8a, where one can observe the dips in success ratio (due to role switching) eventually
vanish ensuring near continuity. The term “continuity in learning” implies that, over time, the system
gets better at maintaining a smooth flow of communication, even when the roles of the agent change from
speaker to listener or vice versa. The agents become more proficient at using language through practice
and experience, where the information gained during the comprehension of language is applied during its
reproduction and vice versa, resulting in effective bidirectional language use.

6.5 Emergent Language Characteristics

(a) (b)

Figure 11: (a) First,second and third word accuracy: These metrics measure the frequency of interactions in a
dialogue where the listener correctly interprets the first, second, and third words of a sentence, respectively across
the population. (b) The evolution of the mirror loss and description length loss across the event population with
respect to time

6.5.1 Emergence of Dominating Words

From Figure 7, one can observe that for each active concept ({0, 1, 2, 3, 8, 9, 10, 11} from Figure 8d) there
exists a dominating word (with probability one) except concept 11 (color red). In other words, for each
active concept being discussed (except red), there is a specific word that is always used when referring to
that concept. Further exploring the emergent language, one can observe certain intriguing patterns. For
example, the concepts 9 (yellow) and 3 (segment 3) are represented by the same word 23 (See Figure
7). Since yellow is categorized as color and segment 3 is categorized as segment, the two concepts take
different positions in the conceptualization, and hence the presence of the same word at different positions
of the message generates different concepts making them unambiguous. Thus the word 23 is a homonym.
A similar observation applies to another homonym, word 16, which is associated with concepts 1 (segment
1) and 8 (blue). It seems that for the red vertex, segment information is enough to deduce the vertex
and hence color red is not learnt. Hence one can observe (Figure 8c), the emergence of four dominating
words from the lexis (|Ψ| = 25) is mapped to the concept space (|C| = 12). The convergence towards an
unambiguous dominating word for each concept could be beneficial in fostering effective communication, as
it reduces ambiguity and promotes a shared understanding of the intended meanings behind specific terms.

6.5.2 Emergence of Compositionality

The economy of thought gradually transpires into compositionality in the emergent language since language
encapsulates thought. Hence one could observe the emergence of efficient communication strategies, where
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Figure 12: Cognitive economy: Evolution of the common word order among the population of agents. Here y-axis
is the probability of choosing the specific word order. All the agents converge to a common word order 101 which
represents <segment, ⊥, color>

shorter phrases are preferred over longer ones. In our setting, the language that emerged is two word
compositional, where it follows a word order which involves segment followed by color. More complex
scenarios can also arise. To illustrate compositionality more vividly, we consider a smaller graph with N = 3
vertices (Figure 13) and two homogeneous agents with the concept space as before (Figure 5). The outcomes
are depicted in Figures 13 and 14. Notably, no specific word order emerges in this scenario; instead, a blend
of word combinations dominates the discourse. It is noteworthy that, in this setup, the number of available
colors in the agents’ concept space is 4, which is more than the number of vertices. This implies that the
agents can communicate the topic vertices by just referring to the color alone. The same holds true for
sectors. However, the observed trend reveals that in the majority of conversations (50%), the agents opt for
the color alone (< ⊥, ⊥, color>), and in 14% of instances, it relies on the sector alone (< segment,⊥,⊥ >).
Interestingly, in (20%) of conversations, the agents prefer a combination of segment and color (<segment,
⊥, color >). The above mixture (dominated by an optimal concept selection) is a sub-optimal limiting
behaviour with respect to concept selection and this scenario arises due to the non-convex nature of the
objective function operating over a decentralized setting, as shown by the convergence to sub-optimal values
in Figure 13). However, the success ratio (Figure 13) Despite this, the success ratio is nearly 100% (Figure
13), and all agents have nearly identical vocabularies (Figure 15), indicating the emergence of an effective semi
non-compositional language among the population with 65% of the conversations being non-compositional
and 24% two word compositional. Similar sub-optimal behaviors can be expected in human scenarios.
Nevertheless, what stands out is that the agents employ one, sometimes two, and rarely three words or stays
silent during the dialogue, mirroring patterns observed in human interactions.

6.5.3 Adherence to Zipf’s Law

Zipf’s law is a linguistic phenomenon that describes the distribution of word frequencies within a language. It
states that the frequency of any word is inversely proportional to its rank. In other words, the most common
word occurs approximately twice as often as the second most common word, three times as often as the third
most common word, and so on. We see in the Figure 16 (world setting from Figure 13), the occurrence of the
word decreases exponentially for the lower rank words in the language emerged among agents. This aligns
with the characteristic pattern described by Zipf’s law. To further understand this relationship, we studied

17



Under review as submission to TMLR

Figure 13: Success ratio for the setting with N = 3 vertices and 2 homogeneous agents and the same concept space
as in the previous setting

Figure 14: Emergence of concept selection pattern for the setting with N = 3 vertices and 2 homogeneous agents
with the same concept space as in the previous setting. The plot illustrates the frequency ratio of the chosen concept
selection during the dialogue utterances. The continuity in the trajectories indicates that the distribution over the
concept selection space remains consistent across the agents.

the impact of the principle of least effort on the Zipfian characteristic of emerged languages. Specifically, we
looked at scenarios where the weight (represented by κ2) associated with the loss function that quantifies
the principle of least effort varied (Figure 9). When κ2 had higher values (1.1 in one case), the discrepancy
between the observed word usage frequency and the expected Zipf distribution is minimal. This indicates
that the sensitivity of the Zipfian characteristic to the weight of the principle of least effort. In other words,
higher weights lead to word frequencies that more closely follow an inverse relationship to their ranks, as
predicted by Zipf’s law.

6.6 Language emergence at scale

The agent population is upscaled to observe the emergent behaviour among large populations. We consider
complex settings with the number of different agent pairs equal to 12, 30 and 42. The emergence of a
shared language among a larger population is cumbersome which requires a large number of iterations. The
underlying policy gradient algorithm develops coherence by reinforcing successful interactions. However,
in the case of more agent pairs the probability of propagation of mappings involving successful interaction
among the population is minimal. This behaviour is illustrated in Figures 17. Hence at scale, language
emergence among larger populations proves challenging, necessitating numerous iterations to propagate
successful interactions and generate shared understanding.
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Figure 15: Success ratio for the setting with N = 3 vertices and 2 homogeneous agents and the same concept space
as before

Figure 16: The usage of a word reduces in accordance with their rank supporting the Zipf law.

(a) (b)

Figure 17: (a) Plot of success ratio with 30 pairs of agents and 5 vertices. (b) Plot of success ratio with 42 pairs of
agents and 5 vertices
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7 Conclusion

In this paper, we develop a computational language game framework to model the factors influencing lan-
guage dynamics involving a finite number of homogeneous deep neural agents in a guessing game setting.
We factored silence as a symbol for optimal communication, guided feedback scenario to consider poverty of
stimulus. We observe the successful emergence of grounded vocabulary and compositional language structure
among agents. Our experimentation involved varying the population, vocabulary and concepts sizes to sys-
tematically observe these emergent linguistic patterns. Notably, our findings align with natural phenomena,
demonstrating properties such as the principle of least effort, Zipf’s law, and the synchronization of inverse
mappings.
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