SEEA-R1: Tree-Structured Reinforcement
Fine-Tuning for Self-Evolving Embodied Agents

Wanxin Tian'>* Shijie Zhang'*, Kevin Zhang>*, Xiaowei Chi?, Chun-Kai Fan?, Junyu Lu',
Yulin Luo?, Qiang Zhou', Yiming Zhao', Ning Liu', Siyu Lin?, Zhiyuan Qin’,
Xiaozhu Ju'', Shanghang Zhang®*, Jian Tang!-*

Beijing Innovation Center of Humanoid Robotics
2State Key Laboratory of Multimedia Information Processing, School of Computer Science, Peking University

Environment

7 Action Space:
Pick:

Clean:

Heat:

SEEA-R1

Pick2: °
&
“l‘
.- o
o
-—w

Soo o ik

Failed Leaf Nodes Goal

Reasoning

Task: heat some and putitin sink basin.

Looking quickly around you, you see a countertop, a cabinet, a
[sink, a cabinet, a microwave, a table, a drawer, a sink basin, ...

Agent Reward Model
= B

1. Reason: To solve the task, | need to find and take a Continue,
tomato, then heat it with microwave, then put itin sink

basin. First, | need to find a tomato. A tomato is more likely

to appear in fridge, countertop, dining table, etc. | can start

with countertop

2. Action: go to countertop 1, go to countertop 2. Continue,
3. Reason: Two tomatoes found, | will pick up one and Continue,
heat it with a microwave.

4. Action: go to microwave, heat tomato 2 with microwave. Continue,
5. Reason: Need to open microwave and go to sinkbasin. Continue,
6. Action: go to sink basin, put tomato in sink basin Done!

Figure 1: SEEA-RI1 self-evolves by reasoning over its environment with perception-grounded
planning. The agent explores task solutions using tree-based search guided by a reward model,
iteratively refining actions to achieve complex goals. Given a high-level instruction, it explores, plans,

and executes actions in an embodied environment.

Abstract

Self-evolution, the ability of agents to autonomously improve their reasoning and
behavior, is essential for the embodied domain with long-horizon, real-world tasks.
Despite current advancements in reinforcement fine-tuning (RFT) showing strong
performance in enhancing reasoning in LLMs, its potential to enable self-evolving
embodied intelligence with multi-modal interactions remains largely unexplored.
Specifically, reinforcement fine-tuning faces two fundamental obstacles in embod-
ied settings: (i) the lack of accessible intermediate rewards in multi-step reasoning
tasks limits effective learning signals, and (ii) reliance on hand-crafted reward
functions restricts generalization to novel tasks and environments. To address these
challenges, we present Self-Evolving Embodied Agents-R1, SEEA-R1, the first
RFT framework designed for enabling the self-evolving capabilities of embodied
agents. Specifically, to convert sparse delayed rewards into denser intermediate
signals that improve multi-step reasoning, we propose Tree-based Group Relative
Policy Optimization (Tree-GRPO) integrates Monte Carlo Tree Search into GRPO.
To generalize reward estimation across tasks and scenes, supporting unsupervised

“Equal Contribution, t Project Leader, I Corresponding Authors

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

adaptation and reward-driven self-evolution, we further introduce the Multi-modal
Generative Reward Model (MGRM). To holistically evaluate the effectiveness of
SEEA-R1, we evaluate on the ALFWorld benchmark, surpassing state-of-the-art
methods with scores of 85.07% (textual) and 46.27% (multi-modal), outperform-
ing prior models including GPT-40. SEEA-R1 also achieves scores of 80.3%
(textual) and 44.03% (multi-modal) without ground truth reward, surpassing all
open-source baselines and highlighting its scalability as a self-evolving embodied
agent. Additional experiments and qualitative analysis further support the potential
of SEEA-R1 for future research in scalable embodied intelligence. Project page is
athttps://seea-rl.github.io/.

1 Introduction

Embodied agents commonly operate in complex, long-horizon environments that require not only
low-level perception and motor control, but also high-level reasoning, planning, and decision-making
capabilities. Despite recent advances in large language models (LLMs) [} 2} 3] and multi-modal
LLMs (MLLMs) [4, 5, 16 [7] have greatly improved agents’ abstract reasoning and perception,
extending these abilities to open-ended embodied settings remains a fundamental challenge. Since
embodied agents often operate interactively over long-horizon tasks, constantly perceiving visual
feedback to produce actions, existing LLMs and MLLMs fall short: LLMs often lack perceptual
grounding [8]], while MLLMs continue to struggle with structured multi-step planning, maintaining
long-term coherence, and adapting to dynamic environments [[6, 9].

To tackle general-purpose embodied intelligence, we argue that agents must acquire self-
evolution—the capacity to self-generate training signals and refine reasoning through closed-loop
learning. By continuously interacting with the environment and learning from their own experiences,
self-evolving embodied agents can bridge the gap between perception and cognition, generalize to
novel tasks, and develop long-horizon planning capabilities that transcend the limitations of static,
supervised learning paradigms.

In this context, reinforcement fine-tuning (RFT) |1} 2] has emerged as a promising paradigm: By
providing reward-based feedback, RFT enables agents to learn from trial-and-error trajectories
and gradually refine their decision-making policies. However, bridging RFT to embodied agents
introduces unique challenges that are absent in symbolic domains such as mathematics or code
generation. In this work, we identify two major challenges for reinforcement fine-tuning agents in
embodied environments: 1) Lack of intermediate feedback in multi-step reasoning tasks: in embodied
tasks with long horizons and delayed sparse rewards, it is difficult to assign credit to intermediate
decisions, making it hard for RFT to guide policy learning effectively. 2) Poor generalization of
handcrafted reward functions: existing RFT pipelines typically rely on simulator-specific or task-
specific reward signals that do not generalize to novel environments, harming agents’ abilities to
self-improve across diverse tasks.

To address these challenges, we introduce SEEA-R1 (Self-Evolving Embodied Agents), the first
framework to adopt RFT for training embodied agents capable of long-horizon reasoning and
autonomous self-evolution. SEEA-R1 integrates two key components. 1) Tree-GRPO (Tree-based
Group Relative Policy Optimization): we extend Group Relative Policy Optimization with Monte
Carlo Tree Search (MCTS), enabling agents to explore alternative trajectories and convert sparse
outcome rewards into structured, step-wise process signals. This improves credit assignment and
facilitates reasoning over extended action sequences. 2) MGRM (Multi-modal Generative Reward
Model): To eliminate the reliance on handcrafted or environment-specific reward functions, we
introduce MGRM—a reward model trained from multi-modal, multi-turn trajectories. MGRM
provides task-agnostic reward estimation, supporting generalization and self-improvement across
diverse embodied scenarios. Moreover, SEEA-R1 utilizes a novel joint training paradigm: better
MLLM reasoning enhances MGRM accuracy, while refined MGRM rewards further advance MLLM
policy learning, achieving human-free, self-evolving embodied intelligence.

We evaluate SEEA-R1 on the ALFWorld benchmark, which rigorously tests an agent’s planning and
reasoning capabilities by requiring it to map abstract goals to visually grounded action sequences.
Our proposed method achieves state-of-the-art success rates of 85.07% and 46.27 % on textual and
multi-modal tasks, respectively, outperforming previous models including Qwen2.5-VL and GPT-4o.

https://seea-r1.github.io/

To further evaluate self-evolution in a realistic yet challenging setting, we replace ground-truth
rewards with MGRM-based self-supervised signals; SEEA-R1 still achieves 80.30% and 44.03 %
on textual and multi-modal tasks, respectively, surpassing all open-source baselines. These results
highlight the effectiveness and scalability of SEEA-R1 as a self-evolving embodied agent.

Our main contributions are as follows: (1) We propose SEEA-RI1, the first reinforcement
fine-tuning framework designed to support self-evolving capabilities in embodied agents. (2) By
introducing Tree-GRPO, we augment GRPO with MCTS to enable dense and interpretable credit
assignment across multi-step trajectories, (3) We replace handcrafted reward signals with MGRM, a
multi-modal generative reward model that rewards task completion. (4) We achieve new state-of-the-
art performance on the ALFWorld benchmark under both supervised and self-supervised settings,
demonstrating strong planning, reasoning, adaptability, and generalization. (5) To facilitate future
research and applications in the embodied intelligence community, we will open-source our full
framework and modular components—including our reward model MGRM, and training pipelines.

2 Related Works

2.1 Self-Evolution Learning

Recent research has explored how large language and vision-language models can self-evolve through
mechanisms such as self-play, reinforcement learning, and trajectory refinement[10]. Welcome to
the Era of Experience [[L1] highlights the importance of learning from experience and real-world
interactions, emphasizing two key components: reward mechanism for environmental interaction
and long-horizon perception-action task loop. SPC [12] utilizes an adversarial self-play environment
to enhance reasoning, while rStar-Math [13]] and Agent-Q [14]] demonstrates that small models can
improve using MCTS with reward modeling. Dreamsmooth [[15]] and R2I [16]] incorporate planning
and prediction modeling into reward design to address long-horizon tasks. RAGEN [17] introduces
a modular system to enhance LLM reasoning capabilities in multi-turn interactive environments.
Building on these foundations, our approach integrates MCTS into the self-evolution loop, enabling
action rollout, trajectory filtering, and policy-reward co-refinement.

2.2 Planning for Embodied Agent

LLM-Planner [18], LLM+P [19], and RegionFocus [20] have demonstrated that large language and
vision-language models can significantly enhance task performance. Planning is also critical for
embodied agents to make sequential decisions and achieve long-term goals. Training-free approaches
such as PIVOT [21] and ECoT [22] leverage the spatial reasoning capabilities of VLMs to plan effec-
tively, leading to improved task success rates in embodied agents. In contrast, training-based methods
like VIPER [9] and MPO [23]] combine vision-language perception with LLM-based reasoning or
meta-planning, but often depend on predefined modules or expert-designed strategies. ARMAP [24]]
and LS-Imagine [25]] show that incorporating the planning module into the reward assignment process
during training can significantly improve long-horizon task performance in web search and Minecraft
environments. Wang et al. [26]] combines tree search with preference optimization to improve state
prediction and action selection, boosting embodied planning performance.

2.3 Reinforcement Fine-Tuning

DeepSeek-R1 [I1] [27] shows that RL with formatting and result-only rewards can steer LLMs
toward humanlike, complex chain-of-thought reasoning, boosting performance on challenging tasks.
Subsequently, Search-R1 [3]], TORL [28] explored extending the LLM-R1 approach to tool use, and
AlphaLLM-CPL [29] utilizes MCTS for self-improving preference learning. The R1 approaches
have also achieved success in the visual domain. Vision-R1 [6], Visual-RFT [4]], and Video-R1 [3]]
improve visual grounding through reward-based reinforcement fine-tuning, while R1-OneVision [30]
and Perception-R1 [7]] formalize visual input into language for structured reasoning. In the embodied
Al domain, robotxR1 [31] transforms visual information into textual descriptions to train LLMs,
enhancing their robotic scenario decision-making capabilities. Embodied-R [32] further extends
to spatial reasoning. However, these methods are not trained as multimodal models and still rely
on task-specific priors. To address these limitations, we developed the first general embodied RL

framework SEEA-R1, which integrates a vision-grounded reward model with MCTS-based planning
to enable self-supervised policy optimization without handcrafted rewards.

So Initial state S, /
“L B l :
84 > |
' 1
! 1
' 1
1 1
1
Task description: 1 -- :
- ! 1
put some spray 'Reward Model Reward Model !
bottle on toilet : 1
b :
g Goal !
Input Data | _ 1 o,
Evolution
D={(sa,Qr74)..} A Updated Policy Model and Reward Model
Model
~_GRPO L Evolution :
— T | =
Answer: continue &) @ | ?
s =, 033 o 5
. |
Answer: success Relative eI, Relative
- | Advantage | d‘1 sb M)’ Advantage
- Computation | & J Computation
Answer: failure @) |
Amver e @ © |
|
Reward Model Ground Truth Reward Advantage | Poilcy Model

Figure 2: SEEA-R1 framework. The framework drives continuous improvement through an
iterative loop of two core cycles as follows: 1.Data Evolution: The Policy Model interacts with
the environment via MCTS from an initial state to generate the experience dataset, containing
trajectories with derived Q-values, ground truth rewards from the environment, and rewards from the
current Reward Model. 2.Model Evolution: The collected data is used to update both models: (a)
Policy Model to predict actions and (b) Reward Model to predict categorical outcomes. Refined
models from Model Evolution then drive the next Data Evolution iteration, enabling continuous
self-evolution.

3 Methods

In this section, we first formulate the Embodied Agent, the Self-Evolving Embodied Agent, and
Multi-round Interaction Embodied Scenario. Then, we briefly introduce the MCTS [33] algorithm.
Next, we present SEEA-R1, detailing how data evolution and model evolution are implemented.
Finally, we summarize the overall self-evolution loop.

3.1 Preliminaries

Embodied Agent in our methods is defined as a 4-tuple (s, at, r¢, 0¢) at timestep ¢. It interacts
with the environment by receiving observations o, and taking actions a; in each step, with state
s¢ maintaining the full interaction history, and reward r, reflecting task progress. Further details
can be found in Appendix |C} A Self-Evolving Embodied Agent is defined to satisfy three core
conditions: automated data synthesis, iterative capability improvement, and closed-loop reasoning
system [34]. Multi-round Interaction Embodied Scenario is modeled as a Partially Observable
Markov Decision Process (POMDP) [35] [36]], formalized as a 7-tuple (S, A, T, R, O, ,~). Here, S
denotes the partially observable state space, s; € S; A is the action space, a; € A; T'(s¢41]5¢t, at)
represents the transition probability; r; is the reward function, 7, € R; O is the observation space,
ot € O; Q(0¢41]st, at) is the observation probability; and - is the discount factor.

Monte Carlo Tree Search (MCTS) [33] is a heuristic algorithm for decision-making in large state
spaces widely used in planning, games, and embodied reasoning tasks. After initialization, MCTS
iteratively performs four steps: Selection: Starting from the root, the agent selects child nodes with
the highest UCT scores until reaching a leaf node; Expansion: The agent executes the selected
action ay, to obtain observation oy, constructs a new node sy 11 = {sr, (ar,0r)}, and expands it

with a set of candidate natural language actions {ar11,;}$,; Simulation: From sz, multiple

rollouts are simulated until termination, giving up, or reaching the depth limit, yielding trajectories

50 =t sgz), Backup: Rollout results are used to update visit counts N (s, a;), cumulative

rewards R\ (s, a;), and action values Q(s;, a;) along each path back to the root. Further details are
provided in Appendix

3.2 Self-Evolving Emodied Agent-R1

As illustrated in Figure 2, SEEA-R1 continuously improves the agent through two iterative cycles:
Data Evolution, where the agent to interact with the environment via MCTS to generate experiential
data, and Model Evolution, where both the Policy Model and Reward Model are updated using
this data. The evolved models are then used for the subsequent Data Evolution, forming a closed
self-improvement loop. The details of each phase are provided below.

3.2.1 Data Evolution: Experience Generation via MCTS

(a) Selection (b) Expansion () Simulation (d) Backup
fae? (@)) (]

ma wer) g\j‘ ‘ Q

Goto >mktnsm 1 Gn to cabmcl 1 Go to sinkbasi m 1 Go to cabmcl 1 Go to sinkbasin I~ Go to cabinet 1 Go to sinkbasin 1 Go to cabinet 1
[m/ o \

N

max(UCT) P
4

Open cabinet I Go to cabinet 2 Open cabmcll Go to cabinet 2 Open cabiriet 1 Go to cabinet 2

- -

[i !
| ﬁ
’ * Rollodt
Take 1 Close cabinet 1

Task: put some spraybottle on toilet i from cabinet 1 Put SPrayboye 1 on toilet 1
! o

sl Sclected action

Unselected action

Go to cabinet 2

r

T > Past action

Figure 3: Monte Carlo Tree Search (MCTS) in SEEA-R1. (a) Selection Traverse tree via UCT
until reaching a leaf. (b) Expansion Execute action, observe result, and expand with new actions. (c)
Simulation Roll out from new node to termination or depth limit, collecting reward . (d) Backup
Propagate rewards to update action values () using the formulation in Equation (3).

To convert sparse outcome rewards into dense process rewards for multi-step reasoning, SEEA-R1
employs Monte Carlo Tree Search (MCTS) for experience generation. MCTS estimates action-values,
Q(s¢, at,;)—the expected future reward for action a ; in state s,—which serve as process rewards.
This provides immediate, step-by-step feedback from otherwise sparse environmental signals. The
precision of these Q-values and therefore the quality of the rewards of the process improves as
MCTS performs more simulations (Figure[3) exploring a wider range of trajectories. This progressive
refinement of MCTS-generated experiential data is how SEEA-R1 implements *Data Evolution’,
leading to increasingly reliable learning guidance for the agent.

3.2.2 Model Evolution: Co-refining Policy Model and Reward Model

Multi-modal Generative Reward Model (MGRM) Training. To improve the generalizability of
the reward function, we adopt a learned reward model as an alternative to handcrafted reward. We
design the reward model with several key properties: multi-modal for perception, multi-round
for sequential interactions, and high interpretability. Specifically, our reward model is built
upon a Multi-modal Large Language Model (MLLM). It takes the historical context s; as input and
predicts one of three categorical outcomes: success, continue, or failure, whose prompt is in
Appendix|[N.4] This allows us to leverage the DeepSeek-R1-Zero [1] training paradigm to employ the
GRPO [2] for reinforcement learning , supporting two training paradigms tailored to scenarios with
or without ground truth (GT) rewards.

With GT (Supervised Paradigm): MGRM first undergoes supervised fine-tuning (SFT) on GT-
aligned trajectories (e.g., ALFWorld task completion/step validity signals), minimizing cross-entropy
loss between predicted outcomes and GT labels to achieve sufficient performance and eliminate
initial biases. During co-training with the policy, MGRM continues supervised training by calibrating
against GT every 500 episodes—preventing drift and keeping judgments aligned with the simulator’s
objective truth.

Without GT (Self-supervised Paradigm): In GT-free scenarios (e.g., real-world environments),
MGRM relies on Test test Reinforcement Learning (TTRL) [37] and GRPO: the policy generates K
(set 10 in environments) diverse trajectories per initial state so (via MCTS exploration), and MGRM’s
majority-voted predictions across these trajectories form pseudo-GT for sg. MGRM is then trained
via GRPO (reward = +1 for matching pseudo-GT, 0 otherwise).

Embodied Agent Policy Update through Tree-GRPO. Considering the Embodied Agent as a
parameterized model 7p (¢ |s;) with parameters 6, which generates a set of available actions {a;;}
based on the current state sy, the GRPO [2]] loss can be reused for this group of actions at each node
of the tree-structured experiential data:

j(e) :ESt"’S’{at,i}iG 1779,
G lagil

Z Z min (g, i (0) A ik, clip(pr,i,k(0),1 — €low, 1 + €high>At7i,k)
Zz 1|at il i=1 k=1

ota (Alst)

— Bk [mo (-] s¢) | meet (+]5¢)] (1)
_ mo(at,ik|St.at,i,<k) 2 _ pre,i—mean({pr Yv}vG:)
where prik(0) = 2t o Atik = T i e

Here, a; ; ;. denotes the k-th token of the i-th action a, ; at timestep ¢, and a; ; <} denotes the tokens
preceding token £ in action a; ;. 7 is the current Embodied Agent, m,,, is the old Embodied Agent
that collected the experiential data, and 7, is the initial Embodied Agent. p; ;, (0) represents the

importance sampling ratio. At,i, % is the advantage function for the k-th token of the i-th action at

timestep ¢. €nign and €joy, are from the Clip-Higher strategy of DAPO [38]. Dxr, [mo(-|s¢)||7rer (-] 5¢)]
is the k3 estimator of KL divergence between 7y and m,¢¢. The coefficient S controls its weight.

3.2.3 Iterative Self-Evolution Loop

The SEEA-R1 framework iteratively alternates between Data Evolution and Model Evolution. In
each cycle, the updated Embodied Agent and MGRM from the Model Evolution phase are deployed
in the subsequent Data Evolution phase. This iterative evolution process allows the SEEA-R1 agent
to progressively enhance its reasoning, reward understanding, and task execution capabilities over
time.

4 Experiments

This section presents an experimental evaluation of the effectiveness of our proposed framework
on embodied tasks. The section is structured as follows. We begin by outlining the experimental
setup and implementation details. Then, we demonstrate our experimental results comparisons with
existing baselines, followed by an in-depth analysis and ablation studies to examine the effects of
different training algorithms and our self-evolution reward design.

4.1 Experimental Setup
4.1.1 Environment, Dataset and Evaluation

ALFWorld. We train and evaluate our approach on ALFWorld [39], an interactive simulation
environment and a widely used benchmark for evaluating embodied agents on complex, long-horizon
tasks in simulated household environments. We leverage this interactive benchmark to collect data
for model training, using the rewards provided by ALFWorld as our ground truth (GT) rewards.
ALFWorld provides two types of observations: textual descriptions and raw visual inputs (images),

Table 1: Comparison of MLLM methods on unseen tasks (x-reported in previous work. This
convention is also used for other tables.). Success rate (0-100 scale) is shown per task and overall.

Model Parameter Size Optimization Policy ALFWorld Unseen Avg

Pick Clean Heat Cool Look Pick2

GPT-4o [43] - - 44 22 29 27 7 23 24
Florence-2* [44] 0.77B SFT 0 0 0 0 6 0 1
Idefics-2* [45] 8B SFT 4 0 0 0 6 0 2
MiniGPT-4* [46] 7B SFT 4 0 19 17 17 16 16
InstructBLIP* [47] 7B SFT 50 26 23 6 6 0 22
Qwen2.5-VL [48] 7B SFT + DPO 6 21 11 22 5 4 11
RL4VLM* [49] 7B PPO 47 10 14 18 14 18 21
SEEA-R1 (w/o GT reward) 7B Tree-GRPO 44 60 73 58 26 26 44
SEEA-R1 (w/ GT reward) 7B Tree-GRPO 43 42 60 41 29 40 46

enabling evaluation in both language-only and vision-language settings. Further details on the dataset
and expert trajectory collection can be found in Appendix [Fland [H.

EmbodiedEval. To evaluate the generalization ability of SEEA-R1 beyond the training environment,
we introduce EmbodiedEval [40]] as an out-of-distribution benchmark. EmbodiedEval tests MLLMs
as embodied agents across diverse tasks, including Attribute Question Answering (AttrQA), Spatial
Question Answering (SpatialQA), Navigation, Object Interaction (Obj), and Social Interaction
(Social), within 125 realistic 3D scenes. It provides a comprehensive assessment of agent capabilities
in previously unseen scenarios. This setup enables us to measure generalization under significant
domain shifts compared to the ALFWorld environment. We analyze the impact of different control
strategies on performance, using key metrics such as overall accuracy, which reflects the percentage
of fully completed tasks.

Real-World. To evaluate SEEA-R1’s real-world performance and analyze the sim2real gap impact
on embodied planning, we conducted physical experiments using a dual-arm ARX LIFT 2 with
Mobile ALOHA-style teleoperation [41]. Following RoboVQA [42]’s protocol, agents received
long-horizon instructions and visual observations (front-view camera) to generate real-time actions
for human-teleoperated and single-trajectory execution. We tested 3 task types (Pick & Place, Pick
Two & Place, Clean) across 6 environments: apartment, reception room, tea room, family living
room, children’s room, and kitchen. Each environment contained 12 test cases.

Evaluation. To ensure experimental reproducibility, we set the decoding temperature to zero. When
generating task completion trajectories, we include a one-shot in-context example for each task.
Detailed prompts are provided in Appendix [N| Our primary evaluation metric is the Average Success
Rate, which calculates the mean Success Rate across all test set task instances.

4.1.2 Implementation Details

Monte Carlo Tree Search (MCTS) We uses two-level pruning to reduce complexity of MCTS:
Probabilistic Expansion (50% chance to expand all K actions per node, reducing redundancy) and
Strict Path Budget (hard limit L=>5 on full K-expansions per path, constraining search space). Each
MCTS runs 30 iterations with max simulation depth 30.

Training Setting. We use the Qwen2.5-VL-7B-Instruct [48] as the base model to build our embod-
ied agents. Since experience learning in our framework consists of two stages—trajectory sampling
and model training—we define each iteration as one complete cycle of these two steps. To ensure fair
comparison across different training paradigms (SFT, DPO and GRPO), we use consistent sample
data sizes and training hyperparameters. For each iteration, the model is trained on newly collected
data for one epoch as steps is 4. The total number of iterations is not fixed and proceeds until
convergence. Specifically, for Tree-GRPO, model updates are performed after collecting 512 valid
samples (i.e., with non-zero advantage values). For SFT, 512 trajectories with positive advantages are
used. For DPO, 512 positive-negative trajectories pairs are sampled from the same parent node in the
MCST. When training the multimodal generative reward model (MGRM) via GRPO, the group size
is set to 10, which equals to the vote num using TTRL). All training adopt the same hyperparameters:
a cosine annealing learning rate schedule (initial LR: 1e-6, warmup ratio: 0.05), batch size of 128,

and KL divergence coefficient S of 0.0. Experiments are conducted on § NVIDIA A100 80GB GPUs
using the ms-swift framework [50]].

4.2 Experimental Results

4.2.1 Overall Performance Comparison

Our proposed SEEA-R1 method, utilizing Qwen2.5-VL-7B-Instruct and Qwen2.5-7B-Instruct as
respective base models, was evaluated against strong baselines on ALFWorld test set. As reported in
Tables[T]and[7] SEEA-R1 was tested in two settings: text+visual (MLLM), with image observations,
and text-only (LLM), with textual descriptions. In the more challenging MLLM setting requiring
direct visual perception, SEEA-R1 achieved a 46.27% success rate, substantially outperforming
GPT-40 and other leading open-source models, and demonstrated superior efficiency (23.37 vs. 25.10
average steps for GPT-40). Furthermore, in the text-only (LLM) setting, SEEA-R1 attained an 84.3%
success rate, with average completion steps (14.75) on par with GPT-4o.

4.2.2 Real World Results

User: put the clothes into the 1. Assistant: Thought: | need to 2. Assistant: Action: take cloth 3. Assistant: Action: go to the
washing machine first locate the clothes and then from the sofa washing machine
take them to the washing machine. Observation: Observation:

From the image, the clothes
appear to be on the sofa on the left.
Action: go to the sofa

Observation:

Y 3 %
4. Assistant: Action: put clothin/ 5. Assistant: Thought: Since the 6. Assistant: Action: put clothin/ 7. Assistant: Action: close the

on the washing machine clothes have not been placed into on the washing machine washing machine
(Action execution failed) the washing machine,. I need to Observation: Observation:
Observation: check whether the washing

machine door has been opened. 8. Assistant: Action: done

Action: open the washing machine

Figure 4: Visualization of SEEA-R1 executing the "put clothes into the washing machine" task in
real-world settings, which demonstrates reflection-correction capability.

We evaluated SEEA-R1 via single-trajectory execution against the Qwen2.5-VL-7B-Instruct baseline
in physical real-world scenarios. As shown in Figure [, SEEA-R1 exhibits striking reflection and
correction abilities: when an action fails (e.g., attempting to place clothes into a closed washing
machine), it actively identifies the error, adjusts its behavior, and re-executes successfully—an ability
fostered by our MCTS-based self-evolution training framework. Quantitatively, Table [2 reveals
that SEEA-R1 achieves a 34.72% absolute improvement in overall success rate across all tasks and
scenarios, with particularly notable gains in complex environments like kitchens (9/12 vs. 1/12) and
children’s rooms (10/12 vs. 4/12). This performance leap stems from the robust feature learning
enabled by MCTS during training: even without simulation-specific advantages (e.g., rewinds), the
model generalizes its ability to anticipate long-term consequences to real-world dynamics. These
results confirm that our approach not only transfers effectively to physical robot settings but also
empowers models with enhanced adaptive decision-making through strengthened reflection-correction
mechanisms.

Table 2: Performance Comparison on Real-World Tasks and Scenarios

Model Living Room Guest Room Apartment Children’s Room Kitchen TeaRoom Overall
Qwen2.5-VL-7B-Instruct 583 50.0 25.0 333 8.3 25.0 333
SEEA-R1-7B (w/ GT reward) 83.3 58.3 58.3 83.3 75.0 50.0 68.1

4.2.3 Comparative Study of Training Algorithms

To validate our proposed Tree-GRPO, we compared it against MCTS combined with DPO and SFT
on ALFWorld. As shown in Figure E, Tree-GRPO (blue line) consistently achieves superior task
success rates (Figure [5a) and greater efficiency with fewer average steps (Figure [5b) than MCTS
+ DPO (purple line) and MCTS + SFT (red line). This demonstrates the enhanced performance of
integrating GRPO within our MCTS-driven self-evolving framework for long-horizon embodied
tasks.

4.2.4 Efficiency Analysis

Our method achieves higher success rates with lower computational cost (especially in inference
token usage) via training-stage algorithmic optimization and lightweight inference design.

Search Algorithm Optimization. Standard MCTS has complexity O(T - D - K) (where T =
training steps, D = search tree depth, K = actions per node). We reduce this to O(T' - max (D, K))
via MCTS pruning as mentioned in Section#.1.2]

Inference Efficiency. MCTS is only used during training. At test time, SEEA-R1 uses fast ReAct-
style single-path sampling (no MCTS overhead). As shown in Table 4, this achieves 3.1x higher
success rate with 38.8% fewer tokens, confirming efficient inference.

—o— Tree-GRPO —e— Tree-GRPO
30 ~—#— MCTS + DPO —=— MCTS + DPO
—+#— MCTS + SFT —+#— MCTS + SFT
28
2 A.27
5 5
4 72
» ©
§ cgczs
g2 5}
a z
25
24
10 -
5 10) 5 10
Iteration Iteration
(a) Variation of Success Rate over Iterations (b) Variation of Step Count over Iterations

Figure 5: Performance comparison of SEEA-R1 using different optimization algorithms on the
multi-modal scenario of ALFWorld Benchmark over training iterations, more detailed figures are

provided in Appendix

4.2.5 Ablation Study: Self-Evolution with Different Rewards

We conducted an ablation study to demonstrate that our SEEA-R1 can achieve sustained performance
improvement by leveraging its internally trained Multi-Modal Generative Reward Model (MGRM),
thereby reducing reliance on ground truth rewards from the simulator. We compared three critical
configurations with results shown in Figure [6}

The key finding from Figure [6 is that SEEA-R1, when utilizing its self-trained MGRM (both
in supervised and self-supervised paradigms), can effectively learn and enhance its policy. In
the supervised paradigm (Figure [6(a)), the supervised MGRM enables steady performance that
approaches the upper bound set by GT rewards. In the self-supervised paradigm, the self-supervised
MGRM drives continuous success rate improvements, even outperforming the GT reward baseline in
later iterations. This highlights the MGRM'’s capability to provide reliable internal reward signals,
enabling robust self-evolution and continuous performance gains without persistent dependence on
external GT environment rewards.

—e— SEEA-R1 (GT reward) —e— SEEA-R1 (GT-reward)

0.45 SEEA-R1 (frozen MGRM) SEEA-R1 (self-supervised MGRM)
—®— SEEA-R1 (supervised MGRM) ~=- GPT-40 (0.24)
0.40 0.4 W

Success Rate
°
e
b
uccess Rate

0 1 2 3 4 5 6 7 8 0 5 10 15 20 25 30 35 40 45
Iteration Iteration

(a) Comparison for Supervised Paradigm (b) Comparison for Self-Supervised Paradigm

Figure 6: Comparison of success rates of SEEA-R1 under different reward and training paradigms.
(a) Analyzes the supervised paradigm, contrasting performance with GT reward, frozen MGRM,
and supervised MGRM. (b) Examines the self-supervised paradigm, comparing GT reward, self-
supervised MGRM, and the GPT-40 baseline.

4.2.6 Generalization on Out-of-Distribution Embodied Benchmark

To assess the generalization capabilities of proposed SEEA-R1, we conducted evaluations on the
EmbodiedEval benchmark, an out-of-distribution (OOD) multi-modal embodied simulation test set.
The success rates are reported in Table [3. Notably, our SEEA-R1 method, when fine-tuned with
Tree-GRPO, demonstrates significantly improved performance after training. It achieves an overall
success rate of 19.88%, which not only shows an uplift compared to the base model (Qwen2.5-
VL-7B-Instruct at 18.29%) but also markedly outperforms models fine-tuned with SFT (16.77%)
and DPO (16.77%). These results underscore the strong generalization performance of Tree-GRPO
approach on this challenging, unseen benchmark.

Table 3: Success Rate in EmbodiedEval benchmark. Tasks include Attribute Question Answering
(AttrQA), Spatial Question Answering (SpatialQA), Navigation, Object Interaction (Obj), and Social
Interaction (Social).

Model AttrQA Navigation Obj Social SpatialQA Overall
GPT-40* [43] 35.79 31.03 10.11 11.76 32.69 25.00
Vision-R1-7B [5] - - - - - 8.54
Ocean-R1 [51] - - - - - 15.85
Qwen2.5-VL-7B* 34.74 18.97 5.62 0.00 21.15 18.29
Qwen-VL-Max* [52] 37.89 24.14 2491 8.82 17.31 21.04
LLaVA-NEXT-72B* [53] 23.16 12.07 7.83 0.00 5.77 10.67
LLaVA-OneVision-72B* [53] 26.32 10.34 1.12 0.00 19.23 12.80
Qwen2.5-VL-7B + MCTS + SFT 28.42 20.69 4.49 5.88 19.23 16.77
Qwen2.5-VL-7B + MCTS + DPO 27.37 17.24 5.62 5.88 23.08 16.77
SEEA-R1 (w/ GT reward) 30.85 21.05 4.60 6.25 32.69 19.88

5 Conclusion

We introduced SEEA-R1, the first framework to adapt reinforcement fine-tuning (RFT) for training
self-evolving embodied agents. To address the challenges of sparse rewards and limited generaliza-
tion for embodied domains, SEEA-R1 integrates Tree-GRPO, which leverages MCTS to densify
reward signals, and MGRM, a multi-modal reward model that generalizes across tasks and environ-
ments. SEEA-R1 achieves new state-of-the-art performance on ALFWorld, outperforming previous
models, including GPT-40, and demonstrates strong generalization in self-learning settings. These
results demonstrate the potential of SEEA-R1 as a scalable framework for embodied reasoning and
autonomous learning. Further discussions on the limitations of this work are in Appendix [M]

10

6 Acknowledgments

This work was supported by the National Natural Science Foundation of China (62476011).

References

(1]

2

—

3

—

[4

—

(3]

(6]

[7

—

(8]

[9

—

(10]

(11]
(12]

(13]

(14]

[15]

(16]

(17]

(18]

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and Jiawei
Han. Search-rl: Training llms to reason and leverage search engines with reinforcement learning. arXiv
preprint arXiv:2503.09516, 2025.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang.
Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785, 2025.

Yufei Zhan, Yousong Zhu, Shurong Zheng, Hongyin Zhao, Fan Yang, Ming Tang, and Jinqiao Wang.
Vision-r1: Evolving human-free alignment in large vision-language models via vision-guided reinforcement
learning. arXiv preprint arXiv:2503.18013, 2025.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and
Shaohui Lin. Vision-rl: Incentivizing reasoning capability in multimodal large language models. arXiv
preprint arXiv:2503.06749, 2025.

En Yu, Kangheng Lin, Liang Zhao, Jisheng Yin, Yana Wei, Yuang Peng, Haoran Wei, Jianjian Sun, Chunrui
Han, Zheng Ge, et al. Perception-rl: Pioneering perception policy with reinforcement learning. arXiv
preprint arXiv:2504.07954, 2025.

Wengqi Zhang, Mengna Wang, Gangao Liu, Xu Huixin, Yiwei Jiang, Yongliang Shen, Guiyang Hou, Zhe
Zheng, Hang Zhang, Xin Li, Weiming Lu, Peng Li, and Yueting Zhuang. Embodied-reasoner: Synergizing
visual search, reasoning, and action for embodied interactive tasks, 2025.

Mohamed Salim Aissi, Clemence Grislain, Mohamed Chetouani, Olivier Sigaud, Laure Soulier, and
Nicolas Thome. Viper: Visual perception and explainable reasoning for sequential decision-making. arXiv
e-prints, pages arXiv—2503, 2025.

Zhiyuan Xu, Kun Wu, Junjie Wen, Jinming Li, Ning Liu, Zhengping Che, and Jian Tang. A survey on
robotics with foundation models: toward embodied ai. arXiv preprint arXiv:2402.02385, 2024.

David Silver and Richard S Sutton. Welcome to the era of experience. Google Al, 2025.

Jiagi Chen, Bang Zhang, Ruotian Ma, Peisong Wang, Xiaodan Liang, Zhaopeng Tu, Xiaolong Li, and
Kwan-Yee K. Wong. Spc: Evolving self-play critic via adversarial games for llm reasoning, 2025.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519, 2025.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and Rafael
Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents, 2024.

Vint Lee, Pieter Abbeel, and Youngwoon Lee. Dreamsmooth: Improving model-based reinforcement
learning via reward smoothing. arXiv preprint arXiv:2311.01450, 2023.

Mohammad Reza Samsami, Artem Zholus, Janarthanan Rajendran, and Sarath Chandar. Mastering memory
tasks with world models. arXiv preprint arXiv:2403.04253, 2024.

Zihan Wang, Kangrui Wang, Qineng Wang, Pingyue Zhang, Linjie Li, Zhengyuan Yang, Kefan Yu,
Minh Nhat Nguyen, Licheng Liu, Eli Gottlieb, et al. Ragen: Understanding self-evolution in Ilm agents via
multi-turn reinforcement learning. arXiv preprint arXiv:2504.20073, 2025.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su. Llm-planner:
Few-shot grounded planning for embodied agents with large language models. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 2998-3009, 2023.

11

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(371

Bo Liu, Yugian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone. LIm+ p:
Empowering large language models with optimal planning proficiency. arXiv preprint arXiv:2304.11477,
2023.

Tiange Luo, Lajanugen Logeswaran, Justin Johnson, and Honglak Lee. Visual test-time scaling for gui
agent grounding, 2025.

Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky Liang, Ishita Dasgupta, Annie Xie, Danny Driess,
Ayzaan Wahid, Zhuo Xu, Quan Vuong, Tingnan Zhang, Tsang-Wei Edward Lee, Kuang-Huei Lee, Peng
Xu, Sean Kirmani, Yuke Zhu, Andy Zeng, Karol Hausman, Nicolas Heess, Chelsea Finn, Sergey Levine,
and Brian Ichter. Pivot: Iterative visual prompting elicits actionable knowledge for vims, 2024.

Michat Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
control via embodied chain-of-thought reasoning. arXiv preprint arXiv:2407.08693, 2024.

Weimin Xiong, Yifan Song, Qingxiu Dong, Bingchan Zhao, Feifan Song, Xun Wang, and Sujian Li. Mpo:
Boosting 1lm agents with meta plan optimization. arXiv preprint arXiv:2503.02682, 2025.

Zhenfang Chen, Delin Chen, Rui Sun, Wenjun Liu, and Chuang Gan. Scaling autonomous agents via
automatic reward modeling and planning. arXiv preprint arXiv:2502.12130, 2025.

Jiajian Li, Qi Wang, Yunbo Wang, Xin Jin, Yang Li, Wenjun Zeng, and Xiaokang Yang. Open-world
reinforcement learning over long short-term imagination. arXiv preprint arXiv:2410.03618, 2024.

Siyin Wang, Zhaoye Fei, Qinyuan Cheng, Shiduo Zhang, Panpan Cai, Jinlan Fu, and Xipeng Qiu. World
modeling makes a better planner: Dual preference optimization for embodied task planning. In Annual
Meeting of the Association for Computational Linguistics, 2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple test-time scaling,
2025.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl. arXiv preprint
arXiv:2503.23383, 2025.

Xiyao Wang, Linfeng Song, Ye Tian, Dian Yu, Baolin Peng, Haitao Mi, Furong Huang, and Dong Yu.
Towards self-improvement of llms via mcts: Leveraging stepwise knowledge with curriculum preference
learning, 2024.

Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng Yin,
Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized multimodal reasoning through
cross-modal formalization. arXiv preprint arXiv:2503.10615, 2025.

Liam Boyle, Nicolas Baumann, Paviththiren Sivasothilingam, Michele Magno, and Luca Benini. Robotxr1:
Enabling embodied robotic intelligence on large language models through closed-loop reinforcement
learning. arXiv preprint arXiv:2505.03238, 2025.

Baining Zhao, Ziyou Wang, Jianjie Fang, Chen Gao, Fanhang Man, Jingiang Cui, Xin Wang, Xinlei Chen,
Yong Li, and Wenwu Zhu. Embodied-r: Collaborative framework for activating embodied spatial reasoning
in foundation models via reinforcement learning. arXiv preprint arXiv:2504.12680, 2025.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pages 72—83. Springer, 2006.

Tao He, Hao Li, Jingchang Chen, Runxuan Liu, Yixin Cao, Lizi Liao, Zihao Zheng, Zheng Chu, Jiafeng
Liang, Ming Liu, et al. A survey on complex reasoning of large language models through the lens of
self-evolution, 2025.

Alvin W Drake. Observation of a Markov process through a noisy channel. PhD thesis, Massachusetts
Institute of Technology, 1962.

Karl Johan Astrom. Optimal control of markov processes with incomplete state information i. Journal of
mathematical analysis and applications, 10:174-205, 1965.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Yuchen Zhang, Biqing Qi, Youbang Sun,

Ganqu Cui, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. ArXiv, abs/2504.16084,
2025.

12

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, et al. Dapo: An open-source llm reinforcement learning system at scale. arXiv
preprint arXiv:2503.14476, 2025.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv preprint
arXiv:2010.03768, 2020.

Zhili Cheng, Yuge Tu, Ran Li, Shiqi Dai, Jinyi Hu, Shengding Hu, Jiahao Li, Yang Shi, Tianyu Yu,
Weize Chen, et al. Embodiedeval: Evaluate multimodal llms as embodied agents. arXiv preprint
arXiv:2501.11858, 2025.

Zipeng Fu, Tony Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. ArXiv, abs/2401.02117, 2024.

Pierre Sermanet, Tianli Ding, Jeffrey Zhao, Fei Xia, Debidatta Dwibedi, Keerthana Gopalakrishnan,
Christine Chan, Gabriel Dulac-Arnold, Sharath Maddineni, Nikhil J. Joshi, Pete Florence, Wei Han, Robert
Baruch, Yao Lu, Suvir Mirchandani, Peng Xu, Pannag R. Sanketi, Karol Hausman, Izhak Shafran, Brian
Ichter, and Yuan Cao. Robovga: Multimodal long-horizon reasoning for robotics. 2024 IEEE International
Conference on Robotics and Automation (ICRA), pages 645-652, 2023.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv
preprint arXiv:2303.08774, 2023.

Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu, and
Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4818—4829, 2024.

Hugo Laurengon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building vision-
language models? Advances in Neural Information Processing Systems, 37:87874-87907, 2024.

Deyao Zhu, Jun Chen, Xiaoqgian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
vision-language understanding with advanced large language models. arXiv preprint arXiv:2304.10592,
2023.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang, Boyang
Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models with
instruction tuning, 2023.

Qwen Team. Qwen2.5-vl, January 2025.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann
LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via reinforcement
learning. Advances in neural information processing systems, 37:110935-110971, 2024.

Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang, Zhikai
Wau, Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda Chen. Swift:a scalable lightweight infrastructure
for fine-tuning, 2024.

Lingfeng Ming, Yadong Li, Song Chen, Jianhua Xu, Zenan Zhou, and Weipeng Chen. Ocean-r1: An open
and generalizable large vision-language model enhanced by reinforcement learning. https://github.
com/VLM-RL/Ocean-R1, 2025.

J Bai, S Bai, S Yang, S Wang, S Tan, P Wang, J Lin, C Zhou, and J] Qwen-VL Zhou. A versatile vision-
language model for understanding, localization, text reading, and beyond. arXiv preprint arXiv:2308.12966,
2023.

Y Zhang, B Li, H Liu, Y Lee, L Gui, D Fu, J Feng, Z Liu, and C Li. Llava-next: A strong zero-shot video
understanding model. 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. Re-

act: Synergizing reasoning and acting in language models. In International Conference on Learning
Representations (ICLR), 2023.

13

https://github.com/VLM-RL/Ocean-R1
https://github.com/VLM-RL/Ocean-R1

[55]

(561

(571

(58]

(591

(60]

[61]

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao Zhang, Yunyang Wan, Yuqi Liu, Zeyu
Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and Zekun Wang. Qwen2.5 technical report. ArXiv,
abs/2412.15115, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. Agenttuning:
Enabling generalized agent abilities for llms. arXiv preprint arXiv:2310.12823, 2023.

Yifan Song, Da Yin, Xiang Yue, Jie Huang, Sujian Li, and Bill Yuchen Lin. Trial and error: Exploration-
based trajectory optimization for llm agents. arXiv preprint arXiv:2403.02502, 2024.

Yugqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, Shiwei Lyu, Yue Shen, Lei Liang, Jinjie Gu, Huajun
Chen, and Ningyu Zhang. Knowagent: Knowledge-augmented planning for llm-based agents. arXiv
preprint arXiv:2403.03101, 2024.

Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang, Pengjun
Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model. Advances in Neural
Information Processing Systems, 37:114843—-114871, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles,
2023.

14

A Appendix Overview

This appendix provides detailed supplementary material to complement our main paper. It is organized
as follows:

* Appendix[B} Algorithm Details
We outline the overall training procedure of our Self-Evolving Embodied Agent (SEEA-R1),
as detailed in Algorithm I}

* Appendix|[C: Embodied Agent Formulation
We describe the formalization of the embodied agent’s interaction with the environment as a
Partially Observable Markov Decision Process (POMDP), detailing the observation, action,
state, and reward components.

* Appendix[D: MCTS Implementation
We elaborate on the Monte Carlo Tree Search (MCTS) mechanism, a core component of our
SEEA-R1, covering its initialization, selection, expansion, simulation, and backup phases.

* Appendix [E; Exploration of World Model as Environmental Feedback
We present our findings from exploring the use of a state-of-the-art world model (Kling) as
environmental feedback in the self-evolving agent, discussing the challenges encountered
such as visual hallucinations, limited instruction understanding, and generation inefficiency.

* Appendix[F: Dataset Details
We describe the ALFWorld dataset used in our experiments, including its structure, eval-
uation splits, and the rationale behind focusing on the test-unseen setting to assess out-of-
distribution generalization.

* Appendix |G} Extended Experimental Results
This section presents comprehensive experimental results, including:

— Evaluation on the General Multimodal Benchmark (MMBench) with a detailed break-
down of reasoning and perception capabilities.

— Comparative performance across diverse multimodal benchmarks (MMStar, MMMU,
HallusionBench, AI2D, and OCRBench).

— An ablation study investigating the impact of sample size and batch size on training
stability and success rate.

— An algorithmic comparison demonstrating the superiority of our proposed Tree-GRPO
over baselines like MCTS+DPO and MCTS+SFT.

— Analysis of the long-term performance of Tree-GRPO over extended training iterations.

— Investigation into the impact of iterative self-evolution on MCTS performance and
generated data quality, including evaluations using Supervised Fine-Tuning (SFT).

* Appendix[H; Case Studies on ALFWorld Tasks
We present representative execution trajectories across various ALFWorld task categories
(e.g., pick-and-place, look, clean, heat, cool) to highlight the SEEA-R1 agent’s capabilities.
Visualizations of policy and reward model interactions are also included.

« Appendix[I; Qualitative Analysis of Reasoning Traces
We analyze the evolution of reasoning capabilities by comparing the ReAct "Thought-Action-
Observation" traces of the baseline (Qwen-2.5-VL-7B-Instruct) and SEEA-R1 (Iterations
5/10), focusing on the task "find two CDs and put them in the safe".

* Appendix[J} Detailed Real-World Tasks
We detail all of tasks for each scenario in the real-world experiment.

* Appendix [K: Reward Model Accuracy Analysis
We compare the task state judgment accuracy of the frozen MGRM (untrained Qwen-2.5-
VL-7B-Instruct) and the GRPO-trained MGRM across "Success/Continue/Failure" states,
with supporting data in Table (]

* Appendix[L} Training Cost and Efficiency Analysis
We specify the experimental hardware (8 NVIDIA A100 80GB GPUs) and frameworks
(MS-Swift for training, vLLM for inference), quantify SEEA-R1’s time costs (sampling,
policy training, total) under "with/without GT reward" configurations, and analyze efficiency
trade-offs, with details in Table

15

* AppendixM: Limitations
We discuss the limitations of SEEA-R1: like current embodied Al it fails to fully address
complexities in highly dynamic and unpredictable real-world environments (a major field-
wide challenge). We also propose future directions, such as scaling experiments with more
diverse environments, larger sample sizes, and bigger models to enhance its adaptability to
dynamic settings.

* Appendix[N: Prompts Used
We provide the full prompts used for both policy and reward models across different datasets
(ALFWorld and EmbodiedEval), ensuring the reproducibility of our instruction-tuning
pipeline.

B Algorithm Details

The overall training procedure of the Self-Evolving Embodied Agent is as follows (Algorithm |T).

Algorithm 1: Self-Evolving Framework Training Loop

1: Initialize: Embodied Agent 7y, < Tyer, MCTS parameters, Tree-GRPO hyperparameters
2: for iteration I = 1,2,...do
// Data Evolution: Experience Generation via MCTS
Collect tree-structured experience data Dy_,, = (.
for each episode do
Generate MCTS-tree using the current agent 7, .
Extract triple set (s, at_’i,prtyi)iczl from MCTS-tree, and add to Dy
end for
9: // Model Evolution: Co-refining Policy Model and Reward Model
10: Update reward model parameters by using the GRPO algorithm using Dy_,,:
11: Update agent parameters 6 by optimizing the Tree-GRPO objective 7 (6) using Dy
12: 6 < Tree-GRPO_Update(0o1a, Do, J , Tret)
13: Oo1q < 0
14: end for
15: Return: Optimized Embodied Agent g

w

old*

A A

old*

C Embodied Agent Formulation

We model the long-horizon decision-making, multi-turn interaction embodied scenario as a Partially
Observable Markov Decision Process (POMDP), formalized as a 7-tuple (S, A, T, R, O, (2, 7). Here,
S denotes the partially observable state space of the environment; A is the action space; T'(s¢11|s¢, at)
represents the conditional transition probability; R(s;, a;) is the reward function or reward model;
O is the observation space; (0¢41]8¢, a¢) is the conditional observation probability; and 7 is the
discount factor. The main components of the Embodied Agent are described below:

Embodied Agent Observation o; € O is the observation received from the environment at timestep
t after the agent takes action a; in state s;. In pure text-based scenarios, the observation is a natural
language string, e.g., "Observation: The drawer 1 is closed.". In multimodal scenarios,
the observation is an image representing the visual content of the environment from the current
perspective.

Embodied Agent Action a; € A is the action taken by the agent to interact with the envi-
ronment. It is a natural language string generated by the agent, following the ReAct [54]] for-
mat, e.g., "Thought: The drawer is closed, so I need to open it first to look
inside.\nAction: open drawer 1" or "Action: open drawer 1". The "Thought" part
represents the model’s reasoning process, while the "Action" part is the specific command executed
in the environment. The environment executes the action a; generated by the Embodied Agent and
returns an observation o;, forming an interaction loop.

Embodied Agent State s; € S is the partially observable environment state, derived from the
agent’s historical exploration. It includes the entire history of interactions from the beginning of the
task up to the current timestep, formalized as s; = {so, (a0, 00), (a1,01),...,(at—1,0t—1)}. The

16

complete context s; carries clues about the environment state and preserves the reasoning trajectory,
enabling the Embodied Agent to maintain task context memory and perform multi-turn reasoning
and actions in partially observable scenarios. In ALFWorld, state s; includes initial state sg (system
prompt describing environment rules and background; user prompt describing the current task goal
and providing few-shot examples) and alternating actions a; and observations o; (agent-generated
thoughts and actions, and environment-returned observations).

Embodied Agent Reward r, € R is the reward received by the agent at timestep ¢ for taking action
a; in state sy. It can be provided by a reward model or a predefined reward function.

D MCTS

MCTS is a crucial component of SEEA-R1, comprising four core steps: selection, expansion,
simulation, and backup.

Initialization: The initial state sg is set as the root node of the search tree.

Selection: Starting from the root node, the Embodied Agent traverses down the tree. At state sy, it
selects the child node with the maximum Upper Confidence Bound for Trees (UCT) value:

lnN(Stlaatl)‘|

1+ N(St, atﬂ;) (2)

a; = arg max [Q(Sta ar;) +c

Qt

where c is the exploration constant, Q (s, a,;) is the action value, N (s, a;) is the visit count for
the action, and ay ; is the i-th available action at the current timestep ¢.

Expansion: After continuous selection reaches a leaf node (sr,, ar), the agent first executes this
action to obtain an observation oy, from the environment. Then, it creates a new non-leaf node
sp+1 = {sr, (ar,or)}. Finally, it simultaneously samples multiple natural language text segments
to expand the new non-leaf node sy, 1, obtaining a set of available actions {a L+1,¢}iG:1-

Simulation: From the new leaf node sy, 1, the Embodied Agent performs multiple rollouts until
termination—either the task is completed, the agent gives up, or the maximum search depth is reached.
The complete trajectory of the j-th rollout is formalized as sg — s — -+ — Sp4+1 — s(LJiQ —
o s,

Backup: The results of multiple rollouts are used to update the visit counts N (s;,a;), returns

RU)(s4, ay), and action values Q(s;, a;) along the trajectory, starting from the terminal node and
moving upwards. The update formulas are as follows:

N(st,at) < N(st,at) +1 (3)
(4) _ () (4) o T—t—1 (4)
RV (s4,a¢) = T(5t+1) + ’YT(St+2) + +y r(sp’) @
Z;V:(f“at) RO (s, ay)

Q(st,a1) = Egpmrmy (Als) [R(5t,a1)] = 6))

]V(St7 at)

D.1 Training and Efficiency Analysis

Training Cost. SEEA-R1 was trained for 36 hours on 8 x A100 GPUs, a modest budget considering
its performance surpasses proprietary models such as GPT-40. For comparison, Qwen2.5 fine-tuning
required 24 hours and PPO training took 48 hours under similar hardware settings.

Algorithmic Optimization. Standard MCTS scales as O(b?) with branching factor b and depth d.
To improve scalability, SEEA-R1 introduces a pruning strategy combining probabilistic expansion
and a path budget, effectively reducing complexity to O(pLk). Each node expands its k actions
with 50% probability, and full k-expansions are limited to L = 5 per path.

Inference Efficiency. MCTS is used only during training. At inference time, SEEA-R1 performs

lightweight single-path (ReAct-style) reasoning without search overhead, yielding 3.1x higher
success while using 38.8% fewer tokens.

17

1. Hallucination in World Model

ﬁm’ m& S
Task: Pick up the red

apple and put it on o ~f-§0 fﬁ 153 ;fiw
the blue plate. “ﬂihﬂhﬂm
e ke
—
2. Misinterpretation on instruction understandlng
Task: Move the Y] A M M

e mew

wooden rack to
the blue tray

ws the right and leftrob backand forth.",

Video Reflection Agent|

Y ﬁ'}tr P —
R T

L i

n how robotic arm can

Figure 7: Pipeline of the experiment for the World Model as environmental feedback in Self-evolving
Agent

Table 4: Inference Efficiency of SEEA-R1 on ALFWorld.

Model Success (%) Avg. Steps Total Tokens (Test)
Qwen2.5-VL-7B 11.57 28.10 10,701,255
SEEA-R1 36.19 23.37 6,554,090

E Exploration of World Model as environmental feedback in Self-evolving
Agent

In a self-evolving agent, environmental feedback is critical and can take many forms—such as a
simulated environment, a world model, or the real world. Recent research increasingly trains world
models on large-scale data so that they can emulate reality. To test whether updated world models are
sufficiently capable of serving as environmental feedback, we intend to train a self-evolving agent not
only in a simulator but also within a world-model environment. For short, we use kling, a sota world
model, as a world simulator in our experiment setting.

During this data-collection phase we found that when the agent relies on a world model for feedback,
obtaining a single accurate and complete trajectory is extremely difficult. This suggests that current
world models are still far from being fully reliable world simulators and have a long way to go.

We have identified the following aspects that require improvement in world models:

1. Frequent visual hallucinations in predicted videos. Hallucinations in the video-based world
model are clichéd problems, and there have been many previous studies on how to solve them.
In our data collection phase, even when we supply detailed prompts—and likewise with simpler
prompts—to the sota world model, we often encounter hallucinations. Typical failures include
physically impossible dynamics, objects that suddenly warp or vanish, or the spontaneous appearance
of extra robot arms and other artifacts. Repeated tests confirm that the current generation of world
models cannot reliably prevent such hallucinations; therefore, the resulting videos frequently fail to
meet our requirements and make the model unsuitable as a dependable world simulator.

2. Limited understanding of task instructions. Misinterpreting an instruction is distinct from
hallucination: the video looks coherent, yet it fails to follow the given command. We observe two
main failure modes. (i) Generalisation gaps: when the model encounters an unfamiliar instruction or
action, it often produces a static scene or executes the wrong motion—without hallucinating, but still
violating the instruction. (ii) Planning errors: if the upstream planner issues a physically unsound
command (e.g., “place the plate on the very edge of the table”), a faithful simulator should show the
plate toppling. Today’s world models cannot reproduce such plausible but incorrect plans, revealing a
deeper weakness in instruction comprehension.

18

3. Inefficient video generation. Large-scale visual diffusion models typically require 10-30 minutes
to produce a 5-10-second clip. This lengthy turnaround severely slows data collection; if the output
is unusable, we must restart the process and wait again. Consequently, training a self-learning agent
with a world model demands substantially more time and compute than training in a conventional
simulator.

08 Success Rate across Tasks Average Steps across Tasks
Iterations 35 Iterations
iter 1 77 ter 1
0.7 - ter 5 wAA ter 5
B . iter 9 - ter 9
. iter 13 30 = ter 13
06 iter 17 777 ter 17
iter 21 s iter 21
. iter 25 A iter 25

AT
AT
ATz
AT
AUTRTRNNNNNNNN

AT TTITTHTNNN
A

04
03 20
02

15
0.1
00 10

Pick Heat Cool Clean Picl

AN
AT

ARNNNNNNNNNNNNY

AN

e SONNUNENNENSN NN

=
9
2
o
<
s

Cleal

5

Figure 8: Performance comparison of SEEA-R1 across different tasks in ALFWorld over training
iterations. Left: Success rate across tasks. Right: Average number of steps taken to complete tasks.

F Dataset Details

ALFWorld: The ALFWorld dataset is structured into a training set comprising 3321 games and
a test set, further partitioned into test-seen (140 games) and test-unseen (134 games) splits. This
distinction is crucial for assessing out-of-distribution (OOD) generalization, as unseen tasks introduce
novel environments and instructions. For our experiments, we specifically evaluate our model on
the test-unseen split. This focus on unseen scenarios is motivated by the need to rigorously assess
the agent’s capacity for effective long-horizon planning and generalization to novel embodied tasks,
which is critical for real-world deployment. ALFWorld’s embodied setup, sparse rewards, and
requirement for OOD generalization collectively make it a rigorous benchmark for evaluating agents
intended for complex real-world task-solving.

G Experiments

G.1 Evaluation on the Genenal Multi-Modal Benchmark

MMBench is a multimodal benchmark that subdivides reasoning and perception capabilities into six
Level-2 dimensions: Logic Reasoning (LR), Attribute Reasoning (AR), Relation Reasoning (RR)
for Reasoning, and Fine-Grained Perception-Single Instance (FP-S), Fine-Grained Perception-Cross
Instance (FP-C), and Coarse Perception (CP) for Perception. The overall average score is derived
from the average of scores for all 20 Level-3 capabilities, and Level-2 capability dimension scores
are the average of all Level-3 capability scores within that dimension. Ground truth labels for the test
set are not publicly available. The evaluation results are reported in Table 3]

To comprehensively evaluate the capabilities of Multimodal Large Language Models (MM-LLMs),
we report performance across a suite of diverse benchmarks in Table[6] each targeting distinct aspects
of multimodal intelligence. MMStar assesses general multimodal reasoning and understanding.
MMMU (Massive Multi-discipline Multimodal Understanding) focuses on complex, expert-level
multimodal reasoning across various academic disciplines. HallusionBench specifically targets the
detection and mitigation of hallucinations in MM-LLMs, particularly when dealing with potentially
misleading visual information. AI2D (AI2 Diagrams) evaluates the models’ ability to understand
and reason about scientific diagrams, involving both visual perception and logical inference. Lastly,
OCRBench measures the models’ optical character recognition capabilities, evaluating their effective-
ness in extracting and understanding text embedded within images. This comprehensive evaluation

19

Table 5: Performance comparison of various Multimodal Large Language Models on the MMBench
benchmark.

Model Overal LR AR RR FP-S FP-C CP
Gemini-2.5-Pro 88.5 89.1 87.8 83.7 94.2 94 83.7
GPT-40 86.8 87.5 914 833 849 91 854
InternVL3-8B 82.3 712 84.1 829 882 813 809
Qwen2.5-VL-7B 82.4 717 849 802 898 80.1 813
LLaVA-OneVision-7B 80.9 679 882 822 849 738 819
SEEA-R1 814 669 829 810 903 754 81.7

45

41.79%

40

w
S

Success Rate (%)

20

10 —e— Sample=1024, Batch=512
Sample=512, Batch=128
-9+ Sample=128, Batch=32

0 1 2 3 4 5 6 7 8 9 10 I 12
Iteration

Figure 9: Performance comparison across different sample and batch sizes.

suite provides a holistic view of each model’s strengths and limitations in real-world multimodal
applications.

G.2 Impact of Sample Size and Batch Size on Training Stability

We investigate how training configurations affect model performance. As illustrated in Figure [9,
larger sample and batch sizes significantly influence the final success rate on the ALFWorld unseen
test set. Specifically, the largest configuration (Sample=1024, Batch=512) consistently demonstrates
a clear performance advantage, achieving a final success rate of 41.79%. In stark contrast, while
the medium setting (Sample=512, Batch=128) reached a peak success rate of 32.46% during its
intermediate iterations, and the smallest configuration (Sample=128, Batch=32) similarly achieved its
highest accuracy of 25.75% at an earlier iteration, their overall final performance was notably lower
and exhibited less stable convergence compared to the largest configuration. These results collectively
indicate that increasing the sample and batch sizes contributes to more stable and effective policy
updates in GRPO-based training, likely due to reduced variance in gradient estimation, ultimately
leading to superior and more consistent performance on unseen tasks.

20

Table 6: Performance comparison of various Multimodal Large Language Models on diverse multi-
modal benchmarks.

Model MMStar MMMU HallusionBench AI2ZD OCRBench
Gemini-2.5-Pro 73.6 74.7 64.1 89.5 862
GPT-40 70.2 72.9 57 86.3 822
SenseNova-V6-Pro 73.7 70.4 67.1 89.2 895
InternVL3-8B 68.7 62.2 49 85.1 884
Qwen2.5-VL-7B 64.1 58 51.9 84.3 888
LLaVA-OneVision-7B 56.7 46.8 47.5 82.8 697
SEEA-R1 60.2 48.5 66.4 79.4 766

—o— Tree-GRPO(MCTS+GRPO)
35 MCTS+DPO
—A— MCTS+SFT

30

[)
G

Success Rate (%)

Iteration

Figure 10: Performance comparison of Tree-GRPO against MCTS+DPO and MCTS+SFT across
training iterations.

G.3 Comparison with Different Algorithms

We investigate the comparative performance of Tree-GRPO against two established baseline methods:
MCTS integrated with DPO (MCTS+DPO) and MCTS with SFT (MCTS+SFT). As illustrated in
Figure [0, Tree-GRPO consistently outperforms both baselines across training iterations on the
ALFWorld unseen test set. Tree-GRPO reached a peak success rate of 32.46%, which is significantly
higher than the 25.37% peak achieved by MCTS+DPO and the 16.79% peak of MCTS+SFT.

This superior performance can be largely attributed to GRPO’s on-policy nature, which facilitates
more accurate and stable policy improvement through direct, interaction-aligned updates. In con-
trast, DPO is fundamentally an off-policy algorithm; it shares practical limitations with SFT, as
both methods heavily rely on static, pre-collected data and lack the dynamic optimization benefits
derived from online rollouts. Consequently, the off-policy characteristic of DPO contributes to its
observed performance ceiling, while the stagnation and eventual degradation in the performance
of MCTS+SFT clearly reflect the inherent limitations of purely supervised learning in complex
interactive environments. The on-policy nature of GRPO, especially when combined with tree-based

21

~&— Tree-GRPO

40

35

30

25

Success Rate (%)

20

0 5 10 15 20 25 30
Iteration

Figure 11: Learning curve of Tree-GRPO over 30 training iterations.

exploration, enables more stable and effective updates, leading to superior sample efficiency and
enhanced robustness in reinforcement learning.

G.4 Long-Term Performance of Tree-GRPO

To thoroughly assess the long-term effectiveness of Tree-GRPO, we extended the training duration
of the model to 30 iterations. As illustrated in Figure [T, the success rate on the ALFWorld
unseen test set demonstrates a consistent and substantial increase, rising from an initial 11.57% to
a robust final success rate of 39.48%. While minor fluctuations are observed, which are indicative
of exploration-induced variance inherent in reinforcement learning, the overall upward momentum
remains undeniably consistent. This sustained improvement over an extended training horizon
unequivocally confirms the scalability and strong convergence potential of Tree-GRPO. Such reliable
long-term performance makes Tree-GRPO particularly well-suited for practical deployment in
complex, long-horizon decision-making tasks where consistent improvement and robustness are
paramount.

G.5 Impact of Iterative Self-Evolution on MCTS Performance and Data Quality

This experiment investigates how iterative self-evolution affects Monte Carlo Tree Search (MCTS)
performance and the quality of trajectories it generates. We hypothesize that refining the MCTS’s
underlying model through successive self-evolution iterations leads to progressively higher-quality
sampled trajectories, as measured by increased average rewards.

The results are presented in Figure A clear positive trend is evident: later self-evolution iterations
(warmer colors, e.g., iter_12) consistently achieve higher average cumulative maximum rewards
compared to earlier iterations (cooler colors, e.g., iter_1) across various MCTS search step counts.
For instance, at 15 MCTS search steps, iter_12 attains an average reward of approximately 0.8,
whereas iter_1 reaches about 0.7. This performance gap tends to widen with an increasing number
of search steps, implying that models from later iterations benefit more substantially from deeper
MCTS searches.

22

Combined Average Cumulative Max Goal Reward vs. Search Steps

Average Goal Reward (Cumulative Max)

—— iter_1 (2025-05-18_03-07-31)
—— iter_2 (2025-05-18_10-46-32)
iter_3 (2025-05-18_18-36-33)
iter_4 (2025-05-19_02-17-34)
iter_5 (2025-05-19_10-51-12)
iter_6 (2025-05-20_02-53-16)
iter_7 (2025-05-20_13-21-47)
iter_8 (2025-05-20_22-29-31)
iter_9 (2025-05-21_07-18-44)
iter_10 (2025-05-21_17-44-17)
—— iter_11 (2025-05-22_03-09-25)
—— iter_12 (2025-05-22_13-19-04)

0 5 10 15 20 25 30
MCTS Search Steps

Figure 12: Iterative Self-Evolution Enhances MCTS Performance and Sampled Trajectory Quality.
Each line represents a distinct self-evolution iteration (from iter_1 to iter_12), plotting the average
cumulative maximum goal reward against MCTS search steps. The color gradient (blues for early
iterations, reds for later ones) highlights the progression.

This observed upward trend in average reward across self-evolution iterations strongly suggests that
the models become more proficient at guiding MCTS towards successful outcomes. Consequently,
trajectories sampled by MCTS using these more advanced models are of increasingly higher quality.
This improvement in sampled data is crucial, as it provides a more effective training signal for
subsequent model refinement, thereby validating the efficacy of the self-evolutionary approach in
enhancing both agent performance and data generation.

G.6 Evaluating Data Quality from Iterative MCTS + GRPO via Supervised Fine-Tuning

To assess the evolution of data quality throughout the Iterative MCTS + GRPO training process,
we conducted an auxiliary experiment. We aimed to determine if data collected in later iterations
progressively improves and if this improvement translates to enhanced performance when a separate,
pre-trained model (Qwen2.5-VL-7B-Instruct) is fine-tuned using this data.

For this experiment, data generated by the policy model after each iteration of Iterative MCTS +
GRPO was collected. These samples were then filtered, retaining only those with an Advantage
value greater than zero, which we considered as potentially high-quality instances. Subsequently,
this filtered data from each respective iteration was used for Supervised Fine-Tuning (SFT) of the
Qwen2.5-VL-7B-Instruct model. We hypothesized that if data quality improves with more iterations,
the SFT performance of Qwen2.5-VL-7B-Instruct would exhibit a corresponding upward trend when
trained on data from later iterations.

However, as depicted by the blue bars in Figure[I3] the SFT performance of Qwen2.5-VL-7B-Instruct
did not show a monotonically increasing trend with the iteration number of the source data. Instead,
the success rate fluctuated. For instance, SFT on data from iteration 3 yielded a success rate of
approximately 0.247, but this dipped with data from iteration 4 (approx. 0.164) and iteration 5
(approx. 0.179). While performance peaked again with data from iteration 7 (approx. 0.268), it
subsequently declined for data from later iterations (8, 9, and 10).

This observation—that SFT performance on a fixed baseline model does not consistently improve
with the iteration number of the data-generating policy—suggests a nuanced aspect of iterative
reinforcement learning. While the Iterative MCTS + GRPO process itself (orange line in Figure [13)
demonstrates clear improvement in its own success rate, the data generated at each step may become
increasingly specialized or "tailored" to the current state and capabilities of the policy model that
produced it. Consequently, this data, while optimal for the self-improvement of the generating policy,
may not be universally or increasingly beneficial for fine-tuning a different, general-purpose model

23

Success Rate

Iterative MCTS + GRPO
SFT (Trained Once on Baseline)

0.35

0.25

0.20

Success Rate

0.15

0.05

0.00 T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10
Iteration

Figure 13: Success Rate Comparison: Iterative MCTS + GRPO vs. SFT on Generated Data. The
orange line tracks the success rate of the Iterative MCTS + GRPO policy over its training iterations.
The blue bars represent the success rate of the Qwen2.5-VL-7B-Instruct model after SFT using data
collected from the corresponding Iterative MCTS + GRPO iteration (filtered for Advantage > 0).

Table 7: Performance comparison on the text-only scenario of ALFWorld Benchmark. ITO stands
for Inference-Time Optimization. MPO (Meta Plan Optimization) [23]] provides the agent with the
meta plan as context in inference time to improve performance.

Model w/o Training ‘ ITO ‘ %ﬂd‘ Average
| | Seen Unseen |
GPT-40* [43] - 78.6 83.6 81.1
Qwen2.5-7B* [55] 71.4 75.4 73.4
Llama-3.1-8B* [56] - 22.9 28.4 25.7
Llama-3.1-70B* [56] - 78.6 73.9 76.3
GPT-40* MPO | 89.3 93.3 91.3

Llama-3.1-8B*

Llama-3.1-8B + SFT* [57]
Llama-3.1-8B + ETO* [58]
Llama-3.1-8B + KnowAgent* [59]
Llama-3.1-8B + WKM* [60]
Llama-3.1-8B + SFT*
Llama-3.1-8B + ETO*

SEEA-R1 (w/ GT-reward)

MPO | 50.0 522 51.1

79.3 71.6 75.5
- 71.1 76.4 76.8
- 80.0 74.9 71.5
- 77.1 78.2 1.7
MPO | 80.7 81.3 81.0
MPO | 85.0 79.1 82.1

| - | 853 851 | 852

NESSSSSNS XXX XXX

like Qwen2.5-VL-7B-Instruct. This suggests that the data collected by the evolving policy becomes
more "self-serving" and less generalizable for enhancing distinct models as training progresses

H Case Studies on ALFWorld Tasks

We present representative execution trajectories across various task categories in the ALFWorld
benchmark. Each case highlights the SEEA-R1 agent’s ability to understand language instructions,
plan goal-directed behaviors, and interact with the environment effectively.

24

H.1 ALFWorld: Pick and Place Task

Figure|14]illustrates a typical Pick and Place task, where the agent is instructed to place a pencil into
a shelf. The agent must first locate and pick up the correct object, navigate to the target receptacle,
and complete the placement action. This requires not only spatial reasoning but also precise object
manipulation.

H.2 ALFWorld: Multi-Object Placement Task

A more complex variant of the pick and place paradigm is shown in Figure[T4, where the agent is
asked to place two CDs into a safe. This scenario introduces increased goal complexity, requiring
multi-object tracking, inventory management, and the satisfaction of compound task conditions.

H.3 ALFWorld: Look Task

As shown in Figure[I4, the Look task evaluates the agent’s perceptual capabilities. The instruction
"Look at CD under the desklamp" requires SEEA-R1 to locate the correct spatial reference (under
the desklamp), identify the target object, and perform an observation action. This task emphasizes
the importance of grounded language understanding and fine-grained spatial perception.

Table 8: Accuracy Comparison Between Frozen and Training MGRM

Model Success Accuracy Continue Accuracy Failure Accuracy Overall Accuracy

Frozen MGRM 60.00% (9/15) 36.42% (460/1263) 81.25% (39/48) 51.59% (65/126)
Training MGRM 75.00% (9/12) 96.92% (1478/1525) 90.00% (27/30) 91.67% (77/84)

H.4 ALFWorld: Heat and Cool Tasks

Figures [14] and I3 illustrate representative instances of Heat tasks in the ALFWorld benchmark.
In these scenarios, the agent is required to manipulate the thermal state of target objects—such as
heating a mug prior to placing it in a coffee machine, or ensuring that a tomato is sufficiently warmed
before disposal. Successfully completing these tasks demands the agent to not only identify the
correct object and comprehend the temporal order of subgoals (e.g., "heat before use"), but also to
correctly interact with relevant environmental appliances (e.g., microwaves or stoves). These tasks
pose unique challenges in reasoning about object affordances, causal relationships, and multi-step
transformations, as the agent must infer the implicit preconditions necessary for goal satisfaction and
execute a valid sequence of actions accordingly.

H.5 ALFWorld: Clean Task

In Figure[I5, the Clean task involves transforming the object’s state (e.g., cleaning an egg before
microwaving it). This category tests the agent’s ability to recognize when preprocessing steps are
required to satisfy high-level goals.

H.6 ALFWorld: Composite Pick & Look Task

Figure[I5]presents a composite task that blends object manipulation with perception. The agent must
pick up an item and inspect its surroundings, requiring coordination of multiple sub-skills within a
single instruction. This reflects real-world complexity and cross-modal reasoning demands.

H.7 Visualization of Policy and Reward Model Interactions

Figure [16 provides qualitative examples of the policy and reward models interacting within the
environment. Each panel shows the visual state, the reward model’s reasoning (‘RM: <think>...¢),
and the policy model’s chosen action (‘Actor: Action:...‘), illustrating their step-by-step interplay.

I Qualitative Analysis of Reasoning Traces

This section provides qualitative examples of how the agent’s reasoning traces evolve throughout
the training process, focusing on the task "find two CDs and put them in the safe" to illustrate
improvements in reasoning capability.

25

1.0.1 Baseline Model (Qwen-2.5-VL-7B-Instruct)

The baseline model’s multi-round chain of thought exhibits limited adaptive reasoning, primarily
relying on exhaustive search with repetitive failed actions:

Baseline (Qwen-2.5-VL-7B-Instruct) Reasoning Traces

Thought: To find the CDs, I should start checking the shelves and drawers since they are
likely places where CDs might be stored. I’ll begin with shelf 1.
Action: go to shelf 1

Thought: There are no CDs on shelf 3 either. I should check the next shelf, which is
shelf 4.

Action: go to shelf 4

Observation: [image]

Thought: Drawer 3 is closed. I need to open it to check inside.

Action: open drawer 3

Observation: Nothing happens.

... (more than ten consecutive failed attempts)

Thought: Drawer 3 is still closed. I need to open it again to check inside.
Action: open drawer 3

Observation: Nothing happens.

\. J

The baseline initially identifies plausible CD locations (shelves, drawers) and performs basic explo-
ration but rigidly adheres to exhaustive search logic. It repeatedly executes unsuccessful actions (e.g.,
"open drawer 3" over ten times) without adjusting strategy, reflecting a lack of reflective reasoning
about failure causes.

1.0.2 SEEA-RI1 (Iteration 5)

After 5 training iterations, the model begins to exhibit adaptive reasoning, attempting alternative
strategies when facing failures:

SEEA-R1 (Iteration 5) Reasoning Traces

Thought: To find the CDs, I should start checking the shelves and drawers since they are
likely places where CDs might be stored. Shelf 1 seems like a good place to start.
Action: go to shelf 1

Thought: Safe 1 is open. I should put the CD inside.

Action: put cd 1 in/on safe 1

Observation: Nothing happens.

Thought: Putting the CD in the safe didn’t work. I should try closing the safe first.
Action: close safe 1

Observation: Nothing happens.

Thought: Closing the safe didn’t help either. I should try opening it again.
Action: open safe 1

Observation: [image]

Thought: Now that the safe is open, I should put the CD inside.

Action: put cd 1 in/on safe 1

J

SEEA-RI1 (Iteration 5) avoids mindless repetition of failed actions. When "put cd 1 in safe 1" fails,
it reasons about potential causes (e.g., safe state) and tests alternatives (close — open). Though
initial understanding of the safe’s state is flawed, it eventually succeeds through strategic adjustment,
demonstrating emerging reflective reasoning.

26

1.0.3 SEEA-RI1 (Iteration 10)

After 10 training iterations, the model exhibits structured planning and targeted corrective reasoning:

SEEA-R1 (Iteration 10) Reasoning Traces

Thought: To solve the task, I need to find and take the first CD, then put it in the safe,
then find and take the second CD, then put it in the safe. First, I need to find the first CD.
A CD is more likely to appear in drawer, desk, shelf, and laundryhamper. I can check
one by one, starting with drawer 1.

Action: go to drawer 1

Action: put cd 1 in/on safe 1

Observation: Nothing happens.

Thought: The action to put the first CD in the safe did not work, so I need to try opening
the safe first.

Action: open safe 1

Observation: [image]

Action: put cd 1 in/on safe 1

J

SEEA-R1 (Iteration 10) shows significant improvements in planning and execution: (1) Its initial
thought chain outlines a clear step-by-step plan (find — take — place CD1; repeat for CD2), with
subsequent actions aligning closely with this plan. (2) When encountering failures (e.g., CD not
placed), it immediately engages in reflective reasoning to identify fixes (e.g., "open the safe first").
(3) Unlike earlier stages, it minimizes redundant thoughts, focusing on actionable logic—evolving
naturally toward efficient reasoning without explicit length penalties.

This progression confirms enhanced coherence and adaptability in the agent’s internal thought
processes.

J Detailed Real-World Tasks

Table [0 lists all real-world tasks used in our experiments, organized by scenario. Each scenario
contains 12 distinct tasks.

K Reward Model Accuracy Analysis

The frozen reward model refers to directly using the untrained Qwen2.5-VL-7B-Instruct model to
judge task states, and the accuracy of this untrained reward model in judging task states is only
51.59%. Therefore, the reward signals are highly unstable, as it can only provide correct reward
signals in half of the cases. For example, when Embodied Agents are still in the process of completing
the task, the actual task completion status is "Continue", but the reward model directly judges the
task as "Failure", thus misjudging the actual situation and providing an incorrect reward signal.

In Table [8, the reward model trained with GRPO improves the prediction accuracy to 91.67%,
enabling it to provide more accurate reward signals to Embodied Agents. The feedback from the
frozen MGRM was primarily noisy rather than consistently rewarding incorrect actions, given its
low accuracy of 51.59%—near random for binary judgments of task states (e.g., "Continue" vs.
"Failure"). However, this noise included critical misjudgments that disrupted the agent’s learning
process. Specifically, the frozen model frequently misclassified ongoing task states (where the
agent should "Continue") as "Failure," prematurely signaling task termination. Over time, such
erroneous feedback led the embodied agent to learn flawed behavioral patterns: it began to halt
task execution prematurely, even when progress was valid, as it adapted to the unreliable reward
signals. In short, while the frozen MGRM did not systematically reward incorrect actions, its noisy
feedback—particularly misclassifications of ongoing progress as failure—introduced persistent biases
that distorted the agent’s learned behaviors.

27

Home Living Room Children’s Room

1 Put the lemon on the sofa 1 Put the toy on the bedside table

2 Put the beverage on the TV cabinet 2 Put the toy on the bed

3 Put two fruits on the cabinet 3 Put the pillow on the bed

4 Put two fruits on the sofa 4 Close the bedside drawer

5 Put the beverage on the cabinet 5 Put the toy back on the shelf

6 Put the beverage on the sofa 6 Put the book on the bed

7 Put the apple in the plate 7 Put the book on the bookshelf

8 Throw the cup into the trash bin 8 Turn on the bedside lamp

9 Put the pear on the coffee table 9 Open the bedside drawer

10 Put the apple and pear on the coffee table 10 Put the book in the drawer

11 Put the apple in the refrigerator 11 Take the book out of the drawer

12 Tidy up items on the sofa 12 Put the toys on the bed into the drawer

Guest Room Kitchen

1 Put the book on the sofa 1 Put the pot on the gas stove

2 Put the book back on the bookshelf 2 Put the cherry tomatoes in the plate

3 Put the beverage on the sofa 3 Put the apple in the refrigerator

4 Throw the cup into the trash bin 4 Put the bowl in the sink

5 Put the apple in the plate 5 Wipe the countertop

6 Put the apple and banana on the coffee table 6 Put the empty plate in the cabinet

7 Throw the paper ball and cup into the trash bin | 7 Put the sesame paste back into the refrigerator

8 Take the fruits on the sofa to the coffee table 8 Take the soybean paste to the stove

9 Put the apple and mango on the plate 9 Put the chili in the refrigerator

10 Put the pillow on the floor back on the sofa 10 Arrange the seasonings on the countertop
neatly

11 Wipe the coffee table with a towel 11 Throw the trash on the countertop into the trash
bin

12 Tidy up the pillows on the sofa 12 Put the tableware on the shelf

Tea Room Apartment

1 Put the book on the chair 1 Put the apple in the refrigerator

2 Put the book back on the bookshelf 2 Throw the beverage bottle into the trash bin

3 Put the beverage bottle on the bookshelf 3 Take the beverage from the refrigerator to the
kitchen counter

4 Put the bowl on the table 4 Wipe the coffee table with a towel

5 Put the cushion on the chair 5 Take the beverage from the refrigerator to the
table

6 Tidy up the tea sets on the tea table 6 Throw the paper ball and cup into the trash bin

7 Throw the trash on the table into the trash bin | 7 Put the beverage and apple in the refrigerator

8 Put the water cup and beverage on the tea table | 8 Put the clothes in the washing machine

9 Take a book and put it on the tea table 9 Put the apple and banana in the refrigerator

10 Wipe the tea table clean with a towel 10 Tidy up the pillows on the sofa

11 Put the cups on the tea table onto the dining | 11 Put the shoes on the shoe rack

table

12 Take the fruits on the bookshelf to the tea table | 12 Put the apple in the refrigerator and the book

on the sofa

Table 9: Detailed real-world tasks by scenario. Each scenario includes 12 tasks evaluating different
manipulation capabilities.

L Training Cost and Efficiency Analysis

This section provides detailed analysis of the training costs and efficiency of our proposed methods,
including experimental setup, computational requirements, and performance comparisons.

L.1 Experimental Environment

All experiments were conducted on a high-performance computing cluster equipped with 8 NVIDIA
A100 80GB GPUs. We used the MS-Swift framework for distributed model training, which provided
efficient scaling across multiple GPUs. For inference performance evaluation, we employed the
vLLM library [61] to ensure high-throughput and low-latency model serving.

28

L.2 Training Efficiency Comparison

Table[I0 presents a comprehensive comparison of the training efficiency between different configu-
rations of our SEEA-R1 model. All time metrics in the table represent average values per training
iteration; specifically, they include average sampling time per iteration, policy training time per
iteration, reward model training time per iteration, and total training time per iteration. All time units
are standardized to minutes for consistency.

Table 10: Training Efficiency Comparison of SEEA-R1 Under Different Reward Configurations (Per
Training Iteration).
Method MGRM Training Method Average S ling Time Policy Training Time Reward Model Training Time Total Time

SEEA-R1 (w/o GT-reward) TTRL 173.5 mins 4.0 mins 244.0 mins 421.5 mins
SEEA-R1 (w/ GT-reward) - 190.1 mins 4.0 mins - 194.1 mins

L.3 Key Observations

From the training efficiency analysis, we can draw several important conclusions:

1. Self-supervised Training Overhead: The SEEA-R1 model with self-supervised MGRM training
(w/o GT-reward) requires significantly more total training time (248 minutes) compared to the
supervised configuration, primarily due to the additional reward model training time (244 minutes).

2. Sampling Efficiency: Despite the longer total training time, the self-supervised configuration
demonstrates more efficient sampling, with an average sampling time of 173.50 minutes compared to
190.12 minutes for the supervised configuration.

3. Policy Training Consistency: The policy training time remains consistent at 4 minutes across
both configurations, indicating that the core policy learning process is not significantly affected by
the reward configuration.

4. Cost-Effectiveness Trade-off: The self-supervised approach, while computationally more ex-
pensive, offers the advantage of not requiring ground truth rewards, making it more practical for
real-world scenarios where labeled data is scarce or unavailable.

These findings highlight the computational considerations involved in deploying our proposed
methods and provide insights into the trade-offs between training efficiency and the need for ground
truth supervision.

M Limitations

Despite its strong performance and generalization, SEEA-R1, like current embodied Al, does not
yet fully address the complexities of operating in highly dynamic and unpredictable real-world
environments. This reflects a broader, significant challenge for the field, indicating a substantial path
forward for future research to bridge the gap to truly autonomous real-world agents. Future work
might explore scaling experiments involving more diverse environments, larger sample size, and
bigger models, aiming to enhance SEEA-R1’s capacity for dynamic environments.

29

N Prompts

N.1 Prompt for the ALFWorld Dataset

Instruction Prompt for ALFWorld

Interact with a household to solve a task. Imagine you are an intelligent agent in a
household environment and your target is to perform actions to complete the task goal.
At the beginning of your interactions, you will be given the detailed description of the
current environment and your goal to accomplish.

For each of your turn, you will be given the observation of the last turn. You should
choose from two actions: "Thought" or "Action". If you choose "Thought", you should
first think about the current condition and plan for your future actions, and then output
your action in this turn. Your output must strictly follow this format:"Thought: your
thoughts.\n Action: your next action"; If you choose "Action", you should directly
output the action in this turn. Your output must strictly follow this format:"Action: your
next action".

The available actions are:

. go to {recep}

. take {obj} from{recep}

. put {obj} in/on{recep}

. open{recep}

. close{recep}

. use {obj}{recep}

. clean {obj} with{recep}

. heat {obj} with{recep}

. cool {obj} with{recep}

where {obj} and{recep} correspond to objects and receptacles.

After your each turn, the environment will give you immediate feedback based on which
you plan your next few steps. if the envrionment output "Nothing happened", that means
the previous action is invalid and you should try more options.

Reminder:

1. The action must be chosen from the given available actions. Any actions except
provided available actions will be regarded as illegal.

2. Think when necessary, try to act directly more in the process.

O 0NN W~

Here is an example.
{example}

Now, it’s your turn and here is the task.
{task_instruction }

30

N.2 Prompt for the EmbodiedEval Dataset

Instruction Prompt for EmbodiedEval

You are an intelligent vision-language embodied agent skilled at solving tasks and answering
questions in a 3D environment. Your job is to efficiently complete a specified task by
choosing the optimal action at each timestep from a set of available actions. You are given
a series of ego-centric images, and a history of previous actions with optional feedback
(success/failure or human response). Each image shows what you see at a particular step in
the action history, along with an extra image showing your current view.

Current task:
{task}

Action history (action -> feedback):
{action_history}

Visual history:
{image_history}
Current view:
{image}

For the current step, your available options are listed as "[Option Number]. Con-
tent" as follows:
{options}

Choose your action from the above options by replying with "Thought: Your rea-
soning.\nChoice: [Option Number] (e.g. [1])".

Note:

- If the task needs more information of the scene, navigate wisely to the required targets
(objects, places, or people).

- Avoid repeated actions like useless forward motion and circling.

- You can only interact with objects or humans (e.g. pick/place/open/close/handover) if they
are within your view and very close to you.

- You can only hold one object at a time. Put down any held object before picking up another.
- Tasks containing "I" or "me" are requested by a person in the scene.

- Reflect on why previous actions fail to avoid repeating mistakes and ajdust your current
action.

- You have a limited number of {max_steps} steps to complete the task.

31

N.3 Prompt for the real-world experiment.

Instruction Prompt for real-world experiment.

Interact with a household to solve a task. You are an intelligent agent in a real-
world household environment and your target is to perform actions to complete the
task goal. At the beginning of your interactions, you will be given the goal to accomplish.

For each of your turn, you will be given the observation of the last turn. You should
choose from two actions: "Thought" or "Action". If you choose "Thought", you should
first think about the current condition and plan for your future actions, and then output
your action in this turn. Your output must strictly follow this format:"Thought: your
thoughts. Action: your next action"; If you choose "Action", you should directly output
the action in this turn. Your output must strictly follow this format:"Action: your next
action".

The available actions are:
1. look around
2. turn left
3. turn right
4. turn around
5. move forward {number} steps
6. move backward {number} steps
7. go to{recep}
8. take {obj} from{recep}
9. put {obj} in/on{recep}
10. open{recep}
11. close{recep}
12. use {obj}
13. clean {obj} with{recep}
14. heat {obj} with{recep}
15. done
where {obj},{recep} and {number} correspond to objects, receptacles and the number.

After your each turn, the environment will give you immediate feedback based on which
you plan your next few steps. if the envrionment output "Nothing happens", that means
the previous action is invalid and you should try more options.

Reminder: 1. The action must be chosen from the given available actions. Any actions
except provided available actions will be regarded as illegal.
2. Think when necessary, try to act directly more in the process.

N.4 Prompt for the Multi-modal Generative Reward Model.

Instruction Prompt for MGRM

A conversation between User and Assistant. The user provides the task and the current
state, and the Assistant evaluates the state and determine if the current state is success,
failure, or continue. Failure means the user cannot achieve success through further actions,
while continue means the user can still achieve success through additional actions. The
assistant first thinks about the reasoning process in the mind and then provides the user
with the answer. The reasoning process and answer are enclosed within <think> </think>
and <answer> </answer> tags, respectively, i.e., <think> reasoning process here </think>
<answer> Success/Failure/Continue </answer>.

32

Task: put a pencil in shelf
Agent: SEEA-R1

gem
el

a)

Thought: To solve the task, I need Action: take pencil 1 from desk 1 Action: go to shelf 1 Action: put pencil 1in/on shelf 1 Success!
to find and take a pencil, then put

itin/on shelf. A pencil is more

likely to appear in desk (1-2),

drawer (1-6), shelf (1-6), safe (1),

laundryhamper (1). | can check

one by one, starting with desk 1.

Action: go to desk 1

Task: look at cd under the desklamp

b)

Thought: To solve the task, | need Action: take cd 1 from desk 1 Action: go to desk 2 Action: use desklamp 1 Success!
to find and take a CD, then find
and use a desklamp. First, | need
to find a CD. A CD is more likely to
appear in desk (1-2), sidetable
(1-2), shelf (1-6), laundryhamper
(1), drawer (1-6). | can check one
by one, starting with desk 1.
Action: go to desk 1

Task: put a pencil in shelf Task: look at cd under the desklamp
Agent: SEEA-R1 Agent: SEEA-R1

Action: take pencil 1from desk 1~ Action: go to shelf 1 Action: take cd 1 from desk 1 Action: go to desk 2

Thought: To solve the task, | need Thought: To solve the task, | need
tofind and take a pencil, then put tofind and take a CD, then find
itin/on shelf. A pencil is more - : and use a desklamp. First, | need
likely to appear in desk (1-2), . tofind a CD. A CD is more likely to
drawer (1-6), shelf (1-6), safe (1), - ~ i B appearin desk (1-2), sidetable
laundryhamper (1). | can check one > ’ (1-2), shelf (1-6), laundryhamper
by one, starting with desk 1. (1), drawer (1-6). | can check one
Action: go to desk 1 by one, starting with desk 1.
Action: go to desk 1

Action: put pencil Lin/on shelf 1 Success! Action: use desklamp 1 Success!

Task: heat some mug and put it in coffeemachine
Agent: SEEA-R1

Nothing happens.

d)

i » X o o : L
Action: take mug 1 from Action: go to countertop 2 Action: take mug 1 from Action: go to microwave 1
countertop 1 countertop 2

Thought: To solve the task, | need
to find and take a mug, then heat it
with microwave, then put it in
coffeemachine. First | need to find
amug. Amugis more likely to
appear in fridge (1), countertop
(1-3), cabinet (1-4), sink (1-2), shelf
(1-3), drawer (1-3). | can check one
by one, starting with countertop 1.
Action: go to countertop 1

Action: heat mug 1 with Action: go to coffeemachine 1 Action: put mug L in/on Success!
microwave 1 coffeemachine 1

Figure 14: ALFWorld Task Demonstrations (a—d). (a) Put a pencil in shelf — step-by-step object
manipulation. (b) Put two CDs in safe — compound goal handling. (c) Look at object — spatial and
property-based reasoning. (d) Heat mug and place in coffeemachine — multi-step planning.

40

Task: put a hot tomato in garbagecan
Agent: SEEA-R1

5 Nothing happens.

 —

: take tomato 1 from fridge

Thought: To solve the task, | need
tofind and take a tomato, then
heat it with microwave, then put it
in garbagecan. First | need to find a
tomato. A tomato is more likely to
appearin fridge (1), countertop
(1-3), cabinet (1-4), stoveburner
(1-4), garbagecan (1), shelf (1-3),
drawer (1-3). | can check one by
one, starting with fridge 1.
Action: goto fridge 1 y

G
Action: go to microwave 1 Action: heat tomato 1 with Action: go to garbagecan 1 Action: put tomato 1in/on Finish!
microwave 1 garbagecan 1

Task: put a cool potato in microwave
Agent: SEEA-R1

W

f)
"

Thought: To solve the task, | need
to find and take a potato, then 7 ‘Nothing happens.
cool it with the fridge, and finally
putitin the microwave. First, |
need to find a potato. A potato is
more likely to appear in the sink
(1-2), countertop (1-3), cabinet
(1-4), drawer (1-3), shelf (1-3). I can
check one by one, starting with
sink 1.

Action: go to sink 1

Action: put potato 1in/on Action: open microwave 1 Action: put potato 1in/on Finish!
microwave 1 microwave 1

Task: put a clean egg in microwave
erm.
E 5

Agent: SEEA-R1
|

g)

—— ——
jon: take egg 1 from fridge 1 ion:

w o w A 2
Action: take egg 1 from countertop Action: go to sink 1 Action: clean egg 1 with sink 1
1

Thought: To solve the task, | need
to find and take an egg, then clean 4 Nothing happens.
itwith sink L or sink 2, then put it

in microwave 1. First, | need to find

an egg. An egg is more likely to
appear in fridge (1), countertop
(1-3), cabinet (1-4), drawer (1-3),
shelf (1-3), stoveburner (1-4). | can
check one by one, starting with
fridge 1.

Action: go to fridge 1

Action: go to microwave 1 Action: put egg 1in/on microwave Finish!
1 1

Task: find two cd and put them in safe
Agent: SEEA-R1

h)

Action: take cd 1 from desk 1 Action: putcd 1in safe 1

Thought: To solve the task, | need
tofind and take the first CD, then
putitin the safe, then find and
take the second CD, then put itin
the safe. First, | need to find the
first CD. A CD is more likely to
appear in drawer (1-6), desk (1-2),
shelf (1-6), and laundryhamper (1)
Ican check one by one, starting
with drawer 1
Action: go to drawer 1

Action: go to desk 1 Action: take cd 2 fromdesk 1 Action: go to safe 1 Action: put cd 2in safe 1 Finish!

Figure 15: ALFWorld Task Demonstrations (e-h). (¢) Put hot tomato in trash — handling state
change before disposal. (f) Cool an object — inverse state manipulation. (g) Clean the egg and
microwave — sequential object preparation. (h) Pick and Look — combined manipulation and
inspection.

41

Tosk: put two cloth in shelf
Agent: SEEA-R1

Actor: None

Actor: Action: go to toilet 1

RM: <think>Since the cloth was not
found in the toilet, | should check
othar locations e the bothtubbosi,

second cloth.

bothtubbosin (|),(b)n1mub (-), Totlet
1), 9 1), toiletpoperhanger
3 Fornes, ey

storting with Mhlubbou
porAdrig Buthiones

RM: ince there ore no visible

Gloiha 1 e ottty bosin, | shouid
next locol

v o o Gl s

<answer>Continue</answer

Actor: Action: take cloth 2 from toilet
1

RM: <think>Since the cloth was not

rvotion, it W’M the second
cmn o ot found 1 ony of the
S0 for.</thinic>

Rk <tinioSioce the tosk s 1o oot
clot he

RM: <think>Since the cloth hos not
been

Gue to some
not work, | wil try
the other shelves.</think>

<onswer>Continue</onswer>
Pred: Continue

Figure 16: Policy and reward model interactions. Shows state, reward model thoughts, and actor

actions step-by-step.

Pred: Continue
GT: Continue

Actor: Action: o to shelf 1

RM: <think>S tosk requires.

in the bathtubbosin 1. Th
might need to
Bk the bothtub 1, olet 1, or
for the second cloth.
. ting i it ftom
the Dotrtubbasin 1 6d ot work,

Actor: Action: put cloth 1 in/on shelf
2

RiE <tinloso o, the actor hos

Gready 0 1ekmo it ror the
bathtubbasin without success, the ...

Actor: Actio Actor: Action: go to shelf 1
bothtubbosi

toke cloth 1 from
1

SinioNow tha he firt cotn _ Rik <tinkoNow thol 1 st cloth
fr tubbasi been taken from the bathtubbasin,
the noxt step 1 15 put t on the shall
observation shows thot the shelf
is empty except for the cloth already

Actor: Action: o to shelf 1

Actor: Action: put cloth 2 in/on shelf
1

<think>So for, the tosk requires RM: <think>So far, the tosk involves

checking
anather location where o cloth oight

<mler)0mlmw(/mu.

Actor: Action: put cloth 2 in/on shelf Actor: Action: o to bathtubbasin 1
T

i <tinksSo for the tosk Rk koS0 for, he frst cloth s
finding ond plocing two clotm into the token from ubbasin ond
s e ek Dot s Brad on the snalf T &
ploced successfly on shlf 1 " e s token from the tollet but oo
eloth e from the tollet not be
i not poced oorm:”y- and then
{aken ogoin from he bathiub but olso
ok pocad conecly I sooma e
There might be o problem with
plocement action o the ovala ity of
the the correct location. Let's
1y cather cpprocen 1o enos

the bothtubbor
rk either. The next

Step shouid invowe «rymv onother

location for the second cloth.</think>

Sanswer>Continve</onswer>

Pred:

Actor: Action: take cloth 1 from
bothtubbosin 1

Actor: Action: go to bothtubbosin 1

onother shelf thot might not hove

been checked yet.</think>
ly token <answer>Continue</answer>

bothtubbasin 1 but not successf Pred: Continue

ploced in any shelf, it might be i

necessary to recheck the bathtubba...

42

been the bothtubbosin or any o

Actor: Action: put cloth 1 in/on shelf
1

putting e
e o it s aready boen ionen

remai
where o ¢ c«m. i be
locoted.

ComaversContoe< fonom...

Actor: Action: go to bothtub 1

Rk <thnlosSa for, the task o
completed. The first ciolh wos.
Coken o e baitusoasin o
plooed on the shll Howev, e
s4c0n0 cloth could nol be token from
her location.
cloth might not be

ince the
ot - o0 the tosk ey

Actor: Action: o to shelf 3

e ploced on oy shef ot soerns
ke tere might be on ssue with
he shelves. It's

iner
o the ciion o ploce the
C on the sheil .t functioning

Howorer, ince the coth o areody
taken, we should o, lo Itercct with
the shelves ogoi
ConoversSomtmoesfanow.-

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: [NA|
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, it is in the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

33

Justification: Yes, its included in the methods.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes, it is in the paper.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

34

Answer: [Yes]
Justification: Yes, we will release in the future.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, we release all settings.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, we have reported and will add in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, it is included in the paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We will include the discussion in the appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

36

https://neurips.cc/public/EthicsGuidelines

11.

12.

13.

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: [NA |
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The paper uses cited papers and datasets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

37

paperswithcode.com/datasets

14.

15.

16.

Answer:
Justification: No, we will release model checkpoints in the future.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

38

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

39

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Works
	Self-Evolution Learning
	Planning for Embodied Agent
	Reinforcement Fine-Tuning

	Methods
	Preliminaries
	Self-Evolving Emodied Agent-R1
	Data Evolution: Experience Generation via MCTS
	Model Evolution: Co-refining Policy Model and Reward Model
	Iterative Self-Evolution Loop

	Experiments
	Experimental Setup
	Environment, Dataset and Evaluation
	Implementation Details

	Experimental Results
	Overall Performance Comparison
	Real World Results
	Comparative Study of Training Algorithms
	Efficiency Analysis
	Ablation Study: Self-Evolution with Different Rewards
	Generalization on Out-of-Distribution Embodied Benchmark

	Conclusion
	Acknowledgments
	Appendix Overview
	Algorithm Details
	Embodied Agent Formulation
	MCTS
	Training and Efficiency Analysis

	Exploration of World Model as environmental feedback in Self-evolving Agent
	Dataset Details
	Experiments
	Evaluation on the Genenal Multi-Modal Benchmark
	Impact of Sample Size and Batch Size on Training Stability
	Comparison with Different Algorithms
	Long-Term Performance of Tree-GRPO
	Impact of Iterative Self-Evolution on MCTS Performance and Data Quality
	Evaluating Data Quality from Iterative MCTS + GRPO via Supervised Fine-Tuning

	Case Studies on ALFWorld Tasks
	ALFWorld: Pick and Place Task
	ALFWorld: Multi-Object Placement Task
	ALFWorld: Look Task
	ALFWorld: Heat and Cool Tasks
	ALFWorld: Clean Task
	ALFWorld: Composite Pick & Look Task
	Visualization of Policy and Reward Model Interactions

	Qualitative Analysis of Reasoning Traces
	Baseline Model (Qwen-2.5-VL-7B-Instruct)
	SEEA-R1 (Iteration 5)
	SEEA-R1 (Iteration 10)

	Detailed Real-World Tasks
	Reward Model Accuracy Analysis
	Training Cost and Efficiency Analysis
	Experimental Environment
	Training Efficiency Comparison
	Key Observations

	Limitations
	Prompts
	Prompt for the ALFWorld Dataset
	Prompt for the EmbodiedEval Dataset
	Prompt for the real-world experiment.
	Prompt for the Multi-modal Generative Reward Model.

