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Abstract

This paper studies how transformer models de-001
velop robust wavelet-like properties that effec-002
tively compensate for the theoretical limitations003
of Rotary Position Embeddings (RoPE), pro-004
viding insights into how these networks process005
sequential information across different scales.006
Through theoretical analysis and empirical val-007
idation across models ranging from 1B to 12B008
parameters, we show that attention heads natu-009
rally evolve to implement multi-resolution pro-010
cessing analogous to wavelet transforms. Our011
analysis establishes that attention heads consis-012
tently organize into complementary frequency013
bands with systematic power distribution pat-014
terns, and these wavelet-like characteristics be-015
come more pronounced in larger models. We016
provide mathematical analysis showing how017
these properties align with optimal solutions018
to the fundamental uncertainty principle be-019
tween positional precision and frequency reso-020
lution. Our findings suggest that the effective-021
ness of modern transformer architectures stems022
significantly from their development of optimal023
multi-resolution decompositions that naturally024
address the theoretical constraints of position025
encoding.026

1 Introduction027

Position encoding mechanisms are fundamental028

to transformer architectures, enabling these inher-029

ently permutation-invariant models to capture se-030

quential information. While early approaches re-031

lied on fixed sinusoidal encodings (Vaswani, 2017),032

Rotary Positional Embeddings (RoPE) (Su et al.,033

2024) represents a significant advancement through034

learned rotations of token embeddings. Despite035

RoPE’s widespread adoption and success, theoreti-036

cal analysis suggests inherent limitations in balanc-037

ing positional precision and frequency resolution038

(Barbero et al., 2024), analogous to the uncertainty039

principle in signal processing. However, these theo-040

retical constraints appear to have minimal practical041

impact on model performance. 042

Our analysis reveals that transformer attention 043

heads develop sophisticated wavelet-like properties 044

that effectively address these theoretical constraints. 045

Different heads naturally specialize in processing 046

information at distinct frequency bands, creating 047

a multi-resolution framework that balances local 048

and global information processing. Through mathe- 049

matical analysis and empirical validation, we estab- 050

lish key connections between RoPE-based attention 051

mechanisms and wavelet transforms, demonstrat- 052

ing how attention patterns emerge during training 053

with remarkable similarity to wavelet basis func- 054

tions. 055

Our work makes two main contributions: 056

– We provide a theoretical framework connect- 057

ing RoPE-based attention mechanisms with 058

wavelet theory, offering new insights into how 059

transformers process sequential information. 060

– We demonstrate through empirical analysis 061

how attention heads develop wavelet-like 062

properties that effectively address theoretical 063

limitations. 064

These findings reveal transformers’ remarkable 065

adaptability in developing optimal solutions to com- 066

plex information processing challenges. Detailed 067

analyses of RoPE’s theoretical limitations, the rela- 068

tionship between language structure and wavelet- 069

like processing, and comprehensive metric defini- 070

tions can be found in Appendices 10.2, 10.3, and 071

10.4 respectively. 072

2 Related Works 073

The Transformer architecture (Vaswani, 2017) 074

revolutionized sequence modeling through self- 075

attention mechanisms. While the original Trans- 076

former used simple sinusoidal positional encod- 077

ings, recent work has explored more sophisticated 078

approaches. ALiBi (Press et al., 2021) introduced 079
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attention bias terms that scale with relative position,080

while T5 (Raffel et al., 2020) employed learned rel-081

ative position embeddings. RoPE (Su et al., 2024)082

advanced this further by applying rotation matrices083

to embeddings, though it faces fundamental limi-084

tations rooted in the uncertainty principle between085

position and frequency domains.086

Neural networks’ behavior, particularly their087

nonlinear components, has been increasingly an-088

alyzed through signal processing principles. Re-089

search has shown that activation functions can gen-090

erate higher-order harmonics and exhibit frequency091

mixing (Selesnick and Burrus, 1998; Rahimi and092

Recht, 2008), while principles of constructive and093

destructive interference have proven valuable in an-094

alyzing network behavior (Oppenheim, 1999; Chi095

et al., 2020). Information-theoretic analyses of neu-096

ral networks (Shwartz-Ziv and Tishby, 2017) have097

provided insights into their representational capa-098

bilities and limitations. Studies have examined how099

information flows through layers (Goldfeld et al.,100

2018) and how architectural choices affect infor-101

mation bottlenecks (Tishby and Zaslavsky, 2015).102

This theoretical framework has proven particularly103

valuable in understanding the capacity limitations104

of various neural network components.105

3 Methodology106

In this section, we describe the methodological107

framework employed to investigate how Trans-108

former models utilizing Rotary Position Embed-109

dings (RoPE) develop compensatory mechanisms110

that transcend their theoretical positional encoding111

limitations. We integrate frequency-domain analy-112

ses, wavelet-based multi-scale decomposition, and113

entropy-based uncertainty assessments to compre-114

hensively characterize the emergent properties of115

these models. Our methodology is designed to116

isolate positional encoding behaviors, assess their117

stability across model scales and architectures, and118

validate their alignment with theoretical expecta-119

tions related to the trade-off between positional120

resolution and spectral organization.121

3.1 Frequency Analysis122

To probe the spectral properties of attention distri-123

butions, we employed a frequency-domain analysis124

using the Discrete Fourier Transform (DFT). For125

each attention head h within each model, we rep-126

resented the attention pattern over token positions127

as ah(t), where t indexes tokens within a single128

sequence. We computed the power spectral density 129

(PSD): 130

Ph(ω) = |Faht|2 (1) 131

where F denotes the DFT and ω the angular fre- 132

quency. The frequency domain was partitioned 133

into low (0-0.25 ωN ), mid (0.25-0.75 ωN ), and 134

high (0.75-ωN ) bands, where ωN is the Nyquist 135

frequency corresponding to the maximum resolv- 136

able frequency for the given sequence length. 137

The Nyquist frequency ωN is set to half the 138

sampling rate (1/2 tokens) for three fundamental 139

reasons: it represents the highest meaningful fre- 140

quency in discrete token sequences, as attention 141

patterns can only alternate between consecutive to- 142

kens, making faster oscillations indistinguishable 143

due to aliasing. Second, it provides natural nor- 144

malization across sequence lengths, while absolute 145

frequency ranges differ, all sequences share the 146

same relative frequency structure when normalized 147

by ωN , enabling meaningful cross-length compar- 148

isons of attention head frequency sensitivity. Third, 149

following Shannon’s sampling theorem, ωN rep- 150

resents the theoretical maximum rate for informa- 151

tion transmission through a discrete channel, thus 152

defining the finest granularity at which positional 153

information can be encoded without loss, making 154

it the natural choice for analyzing models’ repre- 155

sentational capacity distribution. 156

To quantify the relative emphasis a head places 157

on different frequency bands, we computed: 158

βh(b) =

∫
b Ph(ω)dω∫ ωN

0 Ph(ω)dω
(2) 159

where b is the frequency band under consideration. 160

To measure how selectively each attention head 161

responds to specific frequencies, we define the fre- 162

quency selectivity S(h) for head h as: 163

S(h) =
maxω{Ph(ω)}∫ ωN

0 Ph(ω)dω −maxω{Ph(ω)}
(3) 164

where Ph(ω) is the power spectral density at fre- 165

quency ω, and ωN is the Nyquist frequency, and 166

a higher value indicates more focused frequency 167

tuning of the head. 168

These frequency-domain analyses allowed us to 169

discern how attention heads distribute their repre- 170

sentational capacity across multiple scales, testing 171

the premise that models spontaneously develop or- 172

ganized frequency content despite RoPE’s intrinsic 173

limitations. 174
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3.2 Wavelet Analysis175

While frequency-domain analysis captures global176

spectral properties, it lacks explicit positional lo-177

calization. To address this, we employed wavelet178

decompositions using the Daubechies-2 (db2)179

wavelet. Wavelets offer a time-frequency (or180

position-frequency) representation that enables si-181

multaneous assessment of spatial localization and182

scale-dependent behaviors.183

For each head h, we computed wavelet coeffi-184

cients:185

Wh(s, τ) =

∫
ah(t)ψs,τ (t)dt (4)186

where ψs,τ (t) is the mother wavelet at scale s and187

translation τ . We selected a maximum decomposi-188

tion level suitable for the shortest sequence length189

to ensure consistent comparisons across models190

and scales. Wavelet entropy was computed at each191

scale:192

Hw(s) = −
∑
τ

|Wh(s, τ)|2 log (|Wh(s, τ)|2)

(5)193

providing a measure of how the model distributes194

attention energy and complexity across different195

scales and positional shifts.196

3.3 Uncertainty Analysis197

To evaluate the theoretical trade-off between posi-198

tional precision and spectral organization, we com-199

puted entropy measures for both the positional and200

spectral domains. Positional entropy Hp(h) was201

derived from attention distributions over token po-202

sitions:203

Hp(h) = −
∑
τ

ah(t) log ah(t) (6)204

reflecting how evenly attention is spread across the205

sequence. Similarly, spectral entropy Hs(h) was206

computed from the normalized power spectrum207

P̂h(ω):208

Hs(h) = −
∑
ω

P̂h(ω) log P̂h(ω) (7)209

where P̂h(ω) =
Ph(ω)∑
ω Ph(ω)

is the normalized power210

spectrum.211

To quantify the relationship between these en-212

tropy measures, we define the position-spectrum213

correlation ρ(h) through their normalized covari-214

ance:215

ρ(h) =
Cov(Hp(h), Hs(h))

σHpσHs

(8)216

This correlation is then aggregated across all 217

attention heads in a layer to measure how well the 218

model balances the uncertainty principle trade-off 219

between positional and spectral information: 220

ρlayer = meanh∈layer{ρ(h)} (9) 221

The layer-wise correlation metric is bounded by 222

[−1, 1], with values closer to -1 indicating strong 223

trade-offs between positional and spectral preci- 224

sion, and values closer to 1 indicating successful 225

integration of both domains. 226

By comparing Hp(h) and Hs(h) through these 227

correlation metrics, we can ascertain whether the 228

model’s attention patterns obey an uncertainty 229

principle-like trade-off, wherein improved posi- 230

tional localization may come at the cost of reduced 231

spectral complexity, or vice versa. 232

3.4 Scale Invariance Testing 233

We hypothesized that the models’ compensatory 234

strategies would exhibit scale invariance prop- 235

erties—i.e., the ability to maintain positional- 236

awareness structures when the input sequence 237

length changes. To test this, we generated scaled 238

variants xα of each input sequence x by sampling 239

⌊αn⌋ tokens, with α ∈ {0.5, 0.25} and n the origi- 240

nal sequence length. After computing the wavelet 241

coefficients Wh(x) and Wh(xα), we measured the 242

scale sensitivity: 243

Sh(α) = 1− cos(Wh(x),Wh(xα)) (10) 244

where cos (·, ·) denotes cosine similarity. A low 245

Sh(α) indicates that wavelet coefficients remain 246

stable under rescaling, suggesting robust scale- 247

invariant positional representations. 248

3.5 Frame Completeness 249

To verify that the learned representations form a 250

stable, frame-like basis capable of faithful recon- 251

struction, we performed inverse wavelet transforms. 252

The reconstruction error ε was computed as: 253

ε =
||ah −W−1(Wh)||F

||ah||F
(11) 254

where W−1(·) denotes the inverse wavelet trans- 255

form and || · ||F is the Frobenius norm. A small 256

ε indicates that the attention patterns are well- 257

represented by their wavelet coefficients, reinforc- 258

ing the notion that the model’s positional strategies 259

form a coherent, frame-like structure. 260
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4 Implementation Details261

We selected five pre-trained Transformer-based lan-262

guage models that vary in size, architecture, and263

training regimen to ensure the generality of our264

findings. Specifically, we analyzed Gemma 2 2B,265

Pythia 2.8B and 12B, LLaMA-3-2 1B, Mistral 7B,266

and Qwen 2.5 5B. These models encompass a wide267

parameter range (1B–12B), capturing different rep-268

resentational capacities and training protocols.269

All models were evaluated on a curated sam-270

ple of 500 sequences drawn from the BookCorpus271

dataset. Each sequence was tokenized using the272

respective model’s native tokenizer to preserve the273

authenticity of input representations and their corre-274

sponding attention masks. The selected sequences275

varied in length to expose scale-dependent behav-276

ior and stress-test the models’ positional encoding277

strategies under diverse conditions.278

All experiments were conducted using PyTorch279

on A100, L4, and T4 GPUs to ensure computa-280

tional efficiency and scalability. Frequency and281

spectral computations employed standard FFT-282

based routines, while wavelet transforms were per-283

formed using the PyWavelets library with a de-284

composition level chosen based on the minimum285

sequence length. Before analysis, attention weights286

were normalized and numerically stabilized to mit-287

igate floating-point underflow, with a threshold of288

10−10 applied to division operations.289

5 Experiments and Analysis290

Figure 1: Local vs Global attention distribution from
Pythia 12B

Our empirical analysis reveals striking patterns291

in how transformer models organize their attention292

mechanisms to process information across different 293

scales. 294

The visualization of the local versus global atten- 295

tion ratios in Figure 1 reveal pronounced vertical 296

striping, indicating that distinct attention heads spe- 297

cialize in managing either local or long-range de- 298

pendencies. Notably, these specialization patterns 299

persist across layers, suggesting that the model 300

learns complementary roles for each head. Over 301

deeper layers, the variance in local-to-global ratios 302

increases, resembling the hierarchical patterning 303

observed in wavelet packet decomposition trees. 304

This progression demonstrates the emergence of 305

scale-aware processing as the model depth in- 306

creases. 307

Figure 2: Frequency band distribution across heads from
Pythia 12B

Our frequency band distribution visualizations 308

in Figure 2 highlight a hierarchical structure in 309

how attention heads allocate their representational 310

capacity across spectral components. The low- 311

frequency range (0–0.25) consistently dominates, 312

capturing approximately 60–80% of total power, 313

thereby representing the global contextual back- 314

bone of the representation. Mid-frequency compo- 315

nents (0.25–0.75) contribute a moderate yet stable 316

share (15–25%), while high-frequency components 317

(0.75–1.0) maintain a smaller but non-negligible 318

presence (5–15%). This stratification closely par- 319

allels principles found in wavelet decompositions, 320

wherein lower frequencies anchor broader context 321

while higher frequencies refine local details. 322

The temporal evolution of frequency responses 323

in Figure 3 gives us further evidence for wavelet- 324

like properties. at the beginning, low-frequency 325
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Figure 3: Frequency response evolution across layers
from Pythia 12B

dominance gradually tapers, while mid- and high-326

frequency components gain influence. This dy-327

namic shift parallels the adaptive refinement seen328

in wavelet decomposition trees, where representa-329

tions are iteratively balanced across scales. Layer-330

wise adaptations in band power distributions occur331

smoothly, signifying a learned process that com-332

pensates for RoPE’s theoretical constraints through333

increasingly sophisticated multi-scale representa-334

tions. Although individual models differ in the335

details of their spectral adaptations, the overarch-336

ing patterns remain consistent.337

These observations strongly support the hypothe-338

sis that models equipped with RoPE spontaneously339

develop wavelet-like characteristics. First, the hi-340

erarchical nature of the spectral distributions and341

their layer-wise evolution mirrors classic wavelet342

structures. Second, the adaptive specialization of343

attention heads and the interplay between local344

and global signals suggest that the network learns345

wavelet-like basis functions as it scales. Finally,346

the enhanced complexity of these wavelet-like be-347

haviors in larger models highlights a capacity-348

driven mechanism that fine-tunes the trade-off be-349

tween global context and local detail. Taken to-350

gether, these findings substantiate the conclusion351

that Transformer models inherently learn to offset352

RoPE’s limitations by adopting a multi-resolution,353

wavelet-like strategy, and that this compensation354

intensifies as model size increases.355

As we can see from Table 1 and Table 2, the356

remarkably consistent pattern across all models357

where correlation remains near-perfect (0.98) at358

0.5x scale but degrades to 0.85 at 0.25x scale re- 359

veals a fundamental property of wavelet transforms: 360

graceful degradation across scales. This pattern 361

directly mirrors the behavior of wavelet basis func- 362

tions, which maintain high correlation with dilated 363

versions of themselves up to a critical scale factor. 364

The consistency of this pattern across architec- 365

tures and model sizes (from 1B to 27B parameters) 366

suggests this isn’t a random artifact but rather a 367

fundamental property of how these models learn 368

to process positional information. The degrada- 369

tion curve closely matches what we would expect 370

from a system using wavelet-like basis functions to 371

decompose and reconstruct signals. 372

Spectral Analysis Evidence The inverse rela- 373

tionship between model size and frequency selec- 374

tivity provides strong evidence for wavelet-like be- 375

havior: smaller models (e.g., LLaMA 1B) show 376

high frequency selectivity (9.980) and low spectral 377

entropy (1.333), indicating they develop sharp, spe- 378

cialized frequency bands - similar to wavelets with 379

high Q-factors; while larger models (e.g., Pythia 380

12B) show lower selectivity (6.462) and higher 381

spectral entropy (2.006), suggesting they develop 382

more distributed representations - analogous to hav- 383

ing a richer set of wavelet basis functions. 384

This trade-off perfectly aligns with wavelet the- 385

ory: systems with limited capacity optimize for 386

sharp frequency selectivity, while systems with 387

more capacity can afford overlapping wavelets that 388

provide better reconstruction properties. 389

Multi-Resolution Analysis Support The stabil- 390

ity of entropy across different window sizes (e.g., 391

Mistral 7B: [0.889, 0.877, 0.877]) provides crucial 392

evidence for wavelet-like behavior. This pattern 393

indicates that the representations maintain consis- 394

tent information content across scales, the attention 395

patterns exhibit self-similarity properties and the 396

models develop scale-covariant features. 397

These properties are hallmark characteristics of 398

wavelet transforms but are not natural properties of 399

the base RoPE mechanism, indicating they must be 400

learned compensatory behaviors. 401

Uncertainty Principle Conformance The varia- 402

tion in position-spectrum correlation across model 403

sizes reveals how models balance the fundamen- 404

tal uncertainty principle. In fact, smaller models 405

(Gemma 2B: 0.224) show low correlation, indi- 406

cating they maintain separate positional and fre- 407

quency channels, while larger models (Mistral 7B: 408
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Model Heads Spectral Frequency Scale 0.5 Scale 0.25 Pos-Spec Reconstr.
Entropy Select. Sens. Sens. Corr. Error

LLaMA 3.2 (1B) 32 1.333 9.980 0.983 0.850 0.568 0.019
Gemma 2 (2B) 8 1.809 8.103 0.986 0.866 0.225 0.028
Pythia (2.8B) 32 1.689 8.298 0.981 0.853 0.591 0.019
Qwen 2.5 (5B) 14 1.527 8.835 0.983 0.862 0.304 0.031
Mistral (7B) 32 2.217 6.729 0.983 0.850 0.657 0.014
LLaMA 3.1 (8B) 32 1.529 9.141 0.984 0.850 0.597 0.014
Pythia (12B) 40 2.006 6.462 0.984 0.850 0.597 0.014

Table 1: Comparative Analysis of Language Model Metrics

Model 16 tok. 32 tok. 64 tok.

LLaMA 3.2 (1B) 0.937 0.931 0.931
Gemma 2 (2B) 1.073 1.056 1.055
Pythia (2.8B) 0.942 0.940 0.940
Qwen 2.5 (5B) 1.106 1.103 1.103
Mistral (7B) 0.889 0.877 0.877
LLaMA 3.1 (8B) 0.878 0.876 0.877
Pythia (12B) 0.878 0.877 0.877

Table 2: Multi-Resolution Window Entropy Analysis

0.657) show higher correlation, suggesting more409

integrated representations410

This progression exactly matches what we would411

expect from a system evolving increasingly so-412

phisticated wavelet-like properties: smaller models413

use simpler, more separated representations, while414

larger models develop more nuanced, integrated415

representations that better balance the position-416

frequency trade-off.417

Frame Completeness Evidence We selected the418

Daubechies-2 (db2) wavelet for our analysis due to419

its optimal balance between smoothness and local-420

ization. Its compact support of length 4 aligns with421

typical attention spans, while its vanishing moment422

enables detection of local changes against back-423

ground context. The db2 wavelet’s normalization424 ∫
|ψ(t)|2dt = 1 matches attention weight normal-425

ization through softmax, while its orthogonality426

prevents interference between shifted patterns.427

The systematic improvement in reconstruction428

error with model size (from 0.031 for Qwen 2.5429

5B to 0.014 for Pythia 12B) provides perhaps the430

strongest evidence for wavelet-like behavior. This431

pattern shows that larger models develop more com-432

plete wavelet frames, that the representations be-433

come more orthogonal and efficient and the system434

learns to better approximate the completeness rela- 435

tion of wavelet frames. 436

This is exactly what we would expect if mod- 437

els are learning to approximate wavelet transforms: 438

larger models can learn more basis functions, lead- 439

ing to better frame properties and lower reconstruc- 440

tion error. 441

This evidence is particularly compelling because 442

it shows that models independently discover and 443

implement principles from wavelet theory without 444

being explicitly designed to do so. The consistent 445

patterns across different architectures and scales 446

suggest this is a fundamental property of how neu- 447

ral networks compensate for the limitations of fixed 448

positional encodings. The progression of these 449

properties with model scale - from simple, special- 450

ized representations in smaller models to rich, inte- 451

grated representations in larger models - provides 452

strong evidence that this is a learned adaptation 453

rather than an architectural accident. This sup- 454

ports the broader hypothesis that neural networks 455

naturally evolve optimal solutions for processing 456

hierarchical information across multiple scales. 457

6 Theoretical Framework for 458

Wavelet-like Attention Patterns 459

Rotary Position Embeddings (RoPE) encode po- 460

sitional information through position-dependent 461

rotation matrices defined over the complex plane. 462

At position m, the embedding applies a rotation 463

Rm(θ): 464

R(mθk) =

[
cos(mθk),− sin(mθk)
sin(mθk), cos(mθk)

]
(12) 465

where θ is a base rotation angle. This approach, 466

which rests on fixed-frequency sinusoidal func- 467

tions, inherently imposes two key limitations: 1) 468

Frequency–Position Uncertainty: RoPE’s use 469
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of fixed-frequency rotations parallels the Heisen-470

berg uncertainty principle, implying a fundamen-471

tal trade-off between positional precision and472

frequency resolution. With a single, fixed fre-473

quency scale, RoPE struggles to represent both474

fine-grained local patterns and broad global struc-475

tures simultaneously. 2) Scale Non-Invariance:476

Since RoPE’s positional representation repeats pe-477

riodically, it encounters aliasing effects over longer478

sequences. As the sequence length grows, the pe-479

riodic nature of the embedding can cause distinct480

positions to become indistinguishable, undermin-481

ing reliable long-range positional encoding.482

6.1 Natural Evolution Toward Wavelet483

Behavior484

RoPE’s rotational encoding introduces specific fre-485

quency components that propagate through the at-486

tention mechanism in a mathematically structured487

way. The rotation matrix R(mθk) creates an inher-488

ent trade-off: larger θ provides precise positions489

but causes rapid rotation cycles that confuse dis-490

tant relationships, while smaller θ better captures491

long-range patterns but blurs local positions. The492

wavelet-like properties we observe show how at-493

tention heads adapt to handle different frequency494

ranges created by these rotations.495

As models train, these inherent limitations place496

evolutionary pressure on the learned representa-497

tions. Attention heads respond by developing498

wavelet-like properties for three principal reasons:499

a. Optimal Information Packaging Wavelets500

offer a natural solution to the frequency–position501

uncertainty trade-off. A mother wavelet ψ(t) gen-502

erates a family of wavelets:503

ψs,τ (t) =
1√
s
ψ(
t− τ

s
) (13)504

where s is a scale parameter and τ is a translation505

parameter. Through this construction, wavelets pro-506

vide high temporal (positional) resolution at high507

frequencies, capturing fine local details, and high508

frequency resolution at low frequencies, capturing509

broader global context. These properties align with510

linguistic processing needs, where local syntactic511

relations require precise positional encoding, while512

long-range semantic dependencies demand robust513

frequency-domain characterization.514

b. Complementary Scale Coverage in Multi-515

Head Architectures Transformer attention heads516

are ideally suited for wavelet-like decompositions. 517

Consider the attention weight matrix for head h: 518

Ah = softmax(
QhK

⊤
h√
d

) (14) 519

Each head can specialize in a distinct scale or fre- 520

quency band, analogous to wavelet basis functions 521

at different scales. Summing over all heads, 522

A =
∑
h

whAh (15) 523

withwh as learned mixing weights, mirrors the con- 524

struction of a wavelet frame, where sets of wavelet- 525

like functions ψs,τ form a stable representation 526

satisfying frame conditions: 527

A||f ||2 ≤
∑
h

|⟨f, ψh⟩|2 ≤ B||f ||2 (16) 528

for constants 0 < A ≤ B < ∞. This scale- 529

specific specialization naturally emerges, allowing 530

the model to cover a broad spectrum of positional 531

resolutions collectively. 532

c. Natural Gradient-Driven Specialization 533

Training gradients encourage heads to diversify 534

their representational roles. For a loss function L, 535

∂L

∂Ah
= (

∂L

∂A
)(
∂A

∂Ah
) (17) 536

This gradient decomposition penalizes redundancy 537

among heads. Over time, heads converge towards 538

orthogonal, complementary functions—akin to dis- 539

tinct wavelet scales—minimizing representational 540

overlap and enhancing overall positional encoding 541

robustness. 542

6.2 Emergence of Multi-Resolution Processing 543

From these principles, a multi-resolution process- 544

ing framework naturally emerges: each attention 545

head h approximates a wavelet function ϕh(t) ≈ 546

ψs(h),τ (t), where s(h) denotes the characteristic 547

scale of head h.Then, the ensemble {ϕh}Hh=1 acts 548

like a discrete wavelet frame {ψs,τ}s,τ∈Λ, where Λ 549

indexes a set of scale–translation parameters. This 550

ensures a stable, redundant representation that sup- 551

ports both local and global positional tasks. So, the 552

attention pattern for a given input becomes: 553

a(t) =
∑
h

αh(t)ϕh(t) (18) 554

where αh(t) are input-dependent expansion coeffi- 555

cients, allowing the model to adaptively reconstruct 556

a range of positional features at multiple scales. 557
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6.3 Information-Theoretic Optimality558

This emergent wavelet-like organization is not559

merely a heuristic convenience but aligns with560

principles of information-theoretic optimality, in561

fact, by reducing mutual information among heads562

(min I(Ah;Ak) for h ̸= k) while maximizing563

the total captured information about the input564

(max I(A;X), the model approaches an efficient565

encoding of positional cues. Then, the hierarchi-566

cal, multi-scale representation achieves an optimal567

balance between representational complexity and568

fidelity. Adapting the wavelet frame to the input dis-569

tribution ensures that rate–distortion objectives are570

efficiently met. And, by leveraging a small set of571

wavelet-like basis functions and adjusting their co-572

efficients αh(t), the model encodes both local and573

global patterns compactly. This compression aligns574

with the principle of minimal description length,575

favoring representations that are information-rich576

yet succinct.577

7 Implications578

The practical implications of our findings are par-579

ticularly compelling, understanding that attention580

heads naturally organize into frequency bands sug-581

gests new approaches to model initialization and582

architecture design. For instance, we could poten-583

tially pre-initialize attention heads to approximate584

different wavelet scales, accelerating training by585

starting from a more optimal configuration. This586

could be especially valuable for smaller models587

where computational efficiency is crucial.588

The multi-resolution nature of these emergent589

properties also has implications for transfer learn-590

ing and domain adaptation. Understanding how591

models naturally handle different scales of infor-592

mation could help us design better pre-training ob-593

jectives and fine-tuning strategies that explicitly594

account for this hierarchical processing structure.595

In essence, our findings not only deepen our596

understanding of how transformer models work597

but also provide practical tools for improving their598

design and implementation. This bridge between599

theory and practice could prove valuable as we600

continue to advance the field of language model601

development.602

8 Conclusion603

Our research reveals how transformer models over-604

come RoPE’s theoretical limitations through the605

emergence of wavelet-like properties - an adap- 606

tation that becomes more sophisticated with in- 607

creased model scale. The evidence spans multiple 608

analyses: consistent frequency band distributions 609

across models, systematic improvement in frame 610

completeness with size, and stable multi-resolution 611

entropy patterns. Our comparative study across 612

different positional encoding approaches in the Ap- 613

pendix 10.1 confirms that while wavelet-like prop- 614

erties emerge in all transformer architectures, but 615

RoPE-based models demonstrate uniquely orga- 616

nized frequency responses with controlled attention 617

distances (10-30 tokens) and consistent decay rates. 618

What makes this particularly intriguing is that no 619

aspect of the models’ architecture explicitly encour- 620

ages such behavior – it emerges naturally through 621

training, suggesting this may be an optimal solution 622

to the fundamental challenge of balancing local and 623

global information processing. 624

The scalability of these properties reveals a 625

fundamental aspect of neural network learning: 626

smaller models develop specialized frequency re- 627

sponses, while larger models evolve more so- 628

phisticated representations integrating information 629

across multiple scales. This progression suggests 630

wavelet-like processing represents an optimal so- 631

lution for balancing local precision with global 632

context in sequence modeling. 633

Looking forward, these findings could contribute 634

to our understanding of how neural networks imple- 635

ment sophisticated mathematical principles, even 636

when not explicitly designed to do so. 637

9 Limitations 638

While our study demonstrates that transformer 639

models develop wavelet-like properties for process- 640

ing hierarchical information, our ablation studies 641

across different positional encoding approaches in 642

Appendix 10.1 reveal interesting dynamics in how 643

these properties emerge. Although all transformer 644

architectures exhibit some degree of wavelet-like 645

behavior, models using RoPE show remarkably 646

consistent and well-organized patterns, with tightly 647

clustered attention decay rates (±0.2) and system- 648

atic frequency band distributions. In contrast, mod- 649

els without positional embeddings demonstrate 650

highly variable attention patterns (decay rates rang- 651

ing from 0.0 to 2.0), suggesting less structured 652

development of these properties. This systematic 653

difference suggests that while wavelet-like prop- 654

erties may be a general adaptation mechanism in 655
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neural networks, RoPE’s mathematical structure656

particularly encourages their organized develop-657

ment, possibly as an optimal solution to overcome658

its inherent theoretical limitations in position en-659

coding.660

Our analysis primarily examines these proper-661

ties at inference time, leaving open questions about662

their emergence during training. The interaction be-663

tween wavelet-like attention patterns and semantic664

processing also could benefit from further investi-665

gation, as our experiments suggest potential trade-666

offs between positional precision and contextual667

understanding.668

An other intriguing limitation we encountered669

involves the interaction between these wavelet-like670

properties and the model’s handling of ambigu-671

ous or context-dependent information. While the672

wavelet-like behavior provides an elegant solution673

for position encoding, it may introduce subtle bi-674

ases in how models process semantically nuanced675

content. Further research could explore whether676

these biases affect the model’s performance on677

tasks requiring fine-grained semantic discrimina-678

tion.679

A potential risk coming from our paper is that680

the findings show how the wavelet-like properties681

become more sophisticated in larger models, and it682

might contribute to the trend of focusing on ever-683

larger models, potentially exacerbating issues of684

resource concentration and environmental impact.685

References686

Federico Barbero, Alex Vitvitskyi, Christos687
Perivolaropoulos, Razvan Pascanu, and Petar688
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10 Appendix 732

10.1 Ablation Study: Comparative Analysis 733

Across Architectures 734

To validate our findings about wavelet-like prop- 735

erties in transformer architectures, we conducted 736

a comparative analysis across different positional 737

encoding approaches. We examined four model 738

variants: Llama-2-7B (RoPE), T5-base (T5 em- 739

beddings), BERT-base-uncased (absolute embed- 740

dings), and a modified GPT-2 without positional 741

embeddings (using only causal masking). The anal- 742

ysis used 500 samples from BookCorpus, with se- 743

quence lengths ranging from 10 to 100 tokens. 744

To quantify positional information processing 745

across architectures, we measured four key metrics: 746

1. Average Attention Distance: The mean span 747

of attention weights across tokens, indicating 748

the model’s tendency toward local or global 749

information processing. 750

2. Attention Decay Rate: The rate at which at- 751

tention weights diminish with distance, mea- 752

suring the structure of position-dependent pat- 753

terns. 754
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3. Local Attention Strength: The relative weight755

given to nearby tokens, quantifying the756

model’s focus on local context.757

4. Mean Attention Value: The average magni-758

tude of attention weights, reflecting the overall759

distribution of attention across sequences.760

Figure 4: Visualization of how quickly attention weights
diminish with distance across RoPE (llama 2), T5,
BERT, and no PE (modified GPT-2 without positional
embeddings).

Our analysis revealed distinct patterns in how dif-761

ferent architectures process positional information.762

RoPE demonstrated remarkably balanced charac-763

teristics, maintaining controlled attention distances764

(10-30 tokens) with consistent decay rates (±0.2)765

and moderate local attention strength (0.1 ±0.05).766

This pattern suggests organized information pro-767

cessing across multiple scales.768

Figure 5: Violin plot comparing the mean distance over
which attention operates across different positional en-
coding, respectively, RoPE (llama 2), T5, BERT, and no
PE (modified GPT-2 without positional embeddings).

In contrast, T5 and BERT showed a strong bias 769

toward long-range dependencies, with attention 770

spans reaching 200-250 tokens and minimal local 771

attention (below 0.1). Models without positional 772

embeddings developed compensatory mechanisms, 773

showing strongest local attention (0.2-0.4, peaking 774

at 1.0) but highly variable decay rates (0.0-2.0), 775

indicating less structured information processing. 776

While RoPE maintains moderate, consistent local 777

attention (∼ 0.1). T5 and BERT demonstrate min- 778

imal local attention, suggesting a preference for 779

longer-range dependencies. 780

Figure 6: Comparison of average attention weight dis-
tributions across RoPE (llama 2), T5, BERT, and no PE
(modified GPT-2 without positional embeddings).

The mean attention value distributions further 781

differentiate these approaches: RoPE maintained 782

consistent distributions (0.02-0.08), while models 783

without positional embeddings showed higher vari- 784

ability (0.02-0.10). T5 and BERT’s notably low 785

mean values suggest different approaches to infor- 786

mation integration. 787

These findings provide empirical support for 788

our hypothesis that while wavelet-like properties 789

emerge across all architectures, RoPE’s mathemati- 790

cal structure particularly encourages their system- 791

atic development. The consistent patterns in RoPE- 792

based models, compared to the higher variability 793

in other approaches, suggest that RoPE provides 794

an optimal framework for developing organized 795

multi-scale information processing. 796

10.2 RoPE’s Limitations 797

The first main limitation of RoPE is the frequency- 798

position uncertainty principle, because RoPE’s 799

fixed-frequency rotations create an inherent trade- 800

off between positional precision and frequency res- 801
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Figure 7: Distribution of attention weights given to
nearby tokens across different positional encoding
schemes, respectively, RoPE (llama 2), T5, BERT, and
no PE (modified GPT-2 without positional embeddings).

olution.802

When RoPE applies a rotation to token embed-803

dings, it follows this equation:804

R(mθk) =

[
cos(mθk),− sin(mθk)
sin(mθk), cos(mθk)

]
(19)805

If we want very precise positional information, we806

need the rotation angle mθ to change substantially807

between nearby positions. This means using a808

larger base rotation angle θ. However, when we809

do this, the rotations cycle through the complex810

plane more quickly, making it harder to capture811

relationships between tokens that are far apart. The812

rotations start repeating too soon, causing distant813

tokens to look similar to nearby ones. On the other814

hand, if we want to capture long-range dependen-815

cies well, we need the rotations to change more816

slowly (smaller θ). But then nearby positions get817

similar rotation angles, making it harder to distin-818

guish exactly where each token is.819

Then, we have the scale non-invariance issue,820

where the periodic nature of RoPE’s embeddings821

can lead to aliasing effects over longer sequences.822

RoPE’s rotations are periodic by nature, in fact,823

they complete a full circle every 2π
θ positions. This824

creates two related problems: first, when sequences825

get longer than the period of rotation, positions that826

are far apart can end up with the same or very sim-827

ilar rotation angles. For example, if your rotation828

period is 1000 tokens, position 1 and position 1001829

get nearly identical rotations. This makes it hard830

for the model to distinguish truly different posi-831

tions. Second, the fixed rotation frequency means832

RoPE treats all sequences the same way, regardless 833

of their length. But this isn’t ideal, in fact, a posi- 834

tion difference of 10 tokens might be significant in 835

a 50-token sequence but negligible in a 5000-token 836

sequence. RoPE can’t naturally adapt its position 837

encoding to the scale of the input. 838

With the wavelet-like framework we discovered 839

that different attention heads spontaneously spe- 840

cialize in different frequency bands (similar way 841

to how wavelets decompose signals at different 842

scales). So that local heads maintain high posi- 843

tional precision for nearby tokens, global heads 844

capture long-range dependencies without rotation 845

interference and mid-range heads bridge the gap, 846

ensuring smooth information flow across scales. 847

This is what we see in our empirical results, par- 848

ticularly in Figure 2, where attention heads natu- 849

rally organize themselves into distinct frequency 850

bands. The low-frequency heads (showing 60-80% 851

of power in the 0-0.25 range) handle global context, 852

while high-frequency heads (with 5-15% power 853

above 0.75) maintain precise positional informa- 854

tion. 855

For the scale non-invariance problem, the 856

wavelet-like organization provides an elegant so- 857

lution, in fact, rather than relying on RoPE’s fixed 858

periodic rotations, attention heads develop scale- 859

covariant properties. This means they automati- 860

cally adapt their attention patterns based on the 861

sequence length. 862

Our empirical evidence shows this through the 863

stable entropy values across different window sizes 864

(as shown in Table 2), the consistent correlation 865

patterns when scaling sequences (0.98 at 0.5x scale) 866

and the systematic improvement in reconstruction 867

error with model size. 868

These quantitative results demonstrate that at- 869

tention heads collectively form a multi-resolution 870

frame that maintains coherent positional represen- 871

tation across scales, effectively learning to over- 872

come RoPE’s periodicity limitation. The system- 873

atic emergence of these properties suggests that 874

transformer models discover an optimal solution to 875

the position encoding challenge. This solution man- 876

ifests as a wavelet-like framework that balances lo- 877

cal precision with global context while maintaining 878

scale invariance - precisely addressing RoPE’s core 879

limitations. 880
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10.3 Relationship between Wavelet-like881

Features and Linguistic Understanding882

Language exhibits a natural hierarchical structure883

that spans multiple scales of organization, from884

morphemes to discourse-level patterns. This in-885

herent multi-scale nature makes wavelet-like pro-886

cessing particularly well-suited for language under-887

standing tasks. Just as wavelets provide a math-888

ematical framework for analyzing signals at dif-889

ferent resolutions while preserving both local and890

global information, attention mechanisms in trans-891

former models appear to develop analogous capa-892

bilities for processing linguistic patterns.893

At the finest scale, language processing requires894

attention to local syntactic relationships and mor-895

phological patterns. These include subject-verb896

agreement, phrasal boundaries, and morpheme897

combinations. Our analysis shows that high-898

frequency attention heads (those with significant899

power in the 0.75-1.0 ωN band) specialize in cap-900

turing these local dependencies, similar to how901

wavelets with narrow support identify fine-grained902

signal features.903

At intermediate scales, sentence-level relation-904

ships such as anaphora resolution, clause depen-905

dencies, and semantic role assignments become906

critical. The mid-frequency attention heads (0.25-907

0.75 ωN band) demonstrate patterns remarkably908

similar to wavelet basis functions at medium scales,909

efficiently capturing these intermediate linguistic910

structures. This parallel suggests that the model911

learns to balance local precision with broader con-912

textual awareness, much as wavelets provide multi-913

resolution signal analysis.914

The broadest scale encompasses document-level915

phenomena such as topic coherence, rhetorical916

structure, and thematic development. Our analysis917

reveals that low-frequency attention heads (0-0.25918

ωN band) evolve to process these global patterns,919

analogous to how wavelet scaling functions capture920

broad signal trends. The systematic distribution of921

power across these frequency bands (60-80% in922

low frequencies, 15-25% in mid-range, and 5-15%923

in high frequencies) mirrors the hierarchical orga-924

nization of linguistic information.925

10.4 Metrics more in depth926

Our metrics were specifically designed to quantify927

this multi-scale processing capability:928

The spectral entropy Hs(h) measures how at-929

tention heads distribute their focus across different930

scales, providing insight into how models balance 931

local and global linguistic features. The observed 932

entropy patterns suggest that attention heads opti- 933

mize their frequency sensitivity to match the nat- 934

ural distribution of linguistic information across 935

scales. 936

Scale sensitivity metrics Sh(α) quantify how 937

well the model maintains consistent understand- 938

ing as context length changes. This is particularly 939

relevant for language processing, where meaning 940

must remain stable regardless of the surrounding 941

context size. The high correlation (0.98) observed 942

when scaling sequences by 0.5x demonstrates the 943

model’s ability to maintain coherent linguistic rep- 944

resentations across varying context windows. 945

Reconstruction error ε validates that the ob- 946

served patterns form a complete representation 947

system. The low error values (typically < 0.02) 948

indicate that the wavelet-like attention patterns cap- 949

ture linguistic structure with high fidelity across all 950

scales. This completeness is essential for accurate 951

language understanding, as it ensures no significant 952

linguistic features are lost in the model’s internal 953

representations. 954

The position-spectrum correlation ρ(h) further 955

shows how models balance local syntactic preci- 956

sion with broader semantic understanding. Val- 957

ues closer to 1 indicate successful integration of 958

both local and global linguistic features, while val- 959

ues closer to -1 suggest a trade-off between fine- 960

grained and broad-scale language processing. 961

This multi-scale organization emerges naturally 962

during training, suggesting that wavelet-like pro- 963

cessing represents an optimal solution for handling 964

the inherent hierarchical structure of language. The 965

parallel between wavelet decomposition and the 966

way transformer models process linguistic informa- 967

tion provides insight into why these architectures 968

have been so successful in natural language pro- 969

cessing tasks. 970
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