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Abstract

This paper studies how transformer models de-
velop robust wavelet-like properties that effec-
tively compensate for the theoretical limitations
of Rotary Position Embeddings (RoPE), pro-
viding insights into how these networks process
sequential information across different scales.
Through theoretical analysis and empirical val-
idation across models ranging from 1B to 12B
parameters, we show that attention heads natu-
rally evolve to implement multi-resolution pro-
cessing analogous to wavelet transforms. Our
analysis establishes that attention heads consis-
tently organize into complementary frequency
bands with systematic power distribution pat-
terns, and these wavelet-like characteristics be-
come more pronounced in larger models. We
provide mathematical analysis showing how
these properties align with optimal solutions
to the fundamental uncertainty principle be-
tween positional precision and frequency reso-
Iution. Our findings suggest that the effective-
ness of modern transformer architectures stems
significantly from their development of optimal
multi-resolution decompositions that naturally
address the theoretical constraints of position
encoding.

1 Introduction

Position encoding mechanisms are fundamental
to transformer architectures, enabling these inher-
ently permutation-invariant models to capture se-
quential information. While early approaches re-
lied on fixed sinusoidal encodings (Vaswani, 2017),
Rotary Positional Embeddings (RoPE) (Su et al.,
2024) represents a significant advancement through
learned rotations of token embeddings. Despite
RoPE’s widespread adoption and success, theoreti-
cal analysis suggests inherent limitations in balanc-
ing positional precision and frequency resolution
(Barbero et al., 2024), analogous to the uncertainty
principle in signal processing. However, these theo-
retical constraints appear to have minimal practical

impact on model performance.

Our analysis reveals that transformer attention
heads develop sophisticated wavelet-like properties
that effectively address these theoretical constraints.
Different heads naturally specialize in processing
information at distinct frequency bands, creating
a multi-resolution framework that balances local
and global information processing. Through mathe-
matical analysis and empirical validation, we estab-
lish key connections between RoPE-based attention
mechanisms and wavelet transforms, demonstrat-
ing how attention patterns emerge during training
with remarkable similarity to wavelet basis func-
tions.

Our work makes two main contributions:

— We provide a theoretical framework connect-
ing RoPE-based attention mechanisms with
wavelet theory, offering new insights into how
transformers process sequential information.

— We demonstrate through empirical analysis
how attention heads develop wavelet-like
properties that effectively address theoretical
limitations.

These findings reveal transformers’ remarkable
adaptability in developing optimal solutions to com-
plex information processing challenges. Detailed
analyses of RoPE’s theoretical limitations, the rela-
tionship between language structure and wavelet-
like processing, and comprehensive metric defini-
tions can be found in Appendices 10.2, 10.3, and
10.4 respectively.

2 Related Works

The Transformer architecture (Vaswani, 2017)
revolutionized sequence modeling through self-
attention mechanisms. While the original Trans-
former used simple sinusoidal positional encod-
ings, recent work has explored more sophisticated
approaches. ALiBi (Press et al., 2021) introduced



attention bias terms that scale with relative position,
while T5 (Raffel et al., 2020) employed learned rel-
ative position embeddings. RoPE (Su et al., 2024)
advanced this further by applying rotation matrices
to embeddings, though it faces fundamental limi-
tations rooted in the uncertainty principle between
position and frequency domains.

Neural networks’ behavior, particularly their
nonlinear components, has been increasingly an-
alyzed through signal processing principles. Re-
search has shown that activation functions can gen-
erate higher-order harmonics and exhibit frequency
mixing (Selesnick and Burrus, 1998; Rahimi and
Recht, 2008), while principles of constructive and
destructive interference have proven valuable in an-
alyzing network behavior (Oppenheim, 1999; Chi
et al., 2020). Information-theoretic analyses of neu-
ral networks (Shwartz-Ziv and Tishby, 2017) have
provided insights into their representational capa-
bilities and limitations. Studies have examined how
information flows through layers (Goldfeld et al.,
2018) and how architectural choices affect infor-
mation bottlenecks (Tishby and Zaslavsky, 2015).
This theoretical framework has proven particularly
valuable in understanding the capacity limitations
of various neural network components.

3 Methodology

In this section, we describe the methodological
framework employed to investigate how Trans-
former models utilizing Rotary Position Embed-
dings (RoPE) develop compensatory mechanisms
that transcend their theoretical positional encoding
limitations. We integrate frequency-domain analy-
ses, wavelet-based multi-scale decomposition, and
entropy-based uncertainty assessments to compre-
hensively characterize the emergent properties of
these models. Our methodology is designed to
isolate positional encoding behaviors, assess their
stability across model scales and architectures, and
validate their alignment with theoretical expecta-
tions related to the trade-off between positional
resolution and spectral organization.

3.1 Frequency Analysis

To probe the spectral properties of attention distri-
butions, we employed a frequency-domain analysis
using the Discrete Fourier Transform (DFT). For
each attention head h within each model, we rep-
resented the attention pattern over token positions
as ap(t), where t indexes tokens within a single

sequence. We computed the power spectral density
(PSD):
Ph(w) = | Fant|? (1

where F denotes the DFT and w the angular fre-
quency. The frequency domain was partitioned
into low (0-0.25 wp), mid (0.25-0.75 wy), and
high (0.75-wp) bands, where wy is the Nyquist
frequency corresponding to the maximum resolv-
able frequency for the given sequence length.

The Nyquist frequency wy is set to half the
sampling rate (1/2 tokens) for three fundamental
reasons: it represents the highest meaningful fre-
quency in discrete token sequences, as attention
patterns can only alternate between consecutive to-
kens, making faster oscillations indistinguishable
due to aliasing. Second, it provides natural nor-
malization across sequence lengths, while absolute
frequency ranges differ, all sequences share the
same relative frequency structure when normalized
by wy, enabling meaningful cross-length compar-
isons of attention head frequency sensitivity. Third,
following Shannon’s sampling theorem, wy rep-
resents the theoretical maximum rate for informa-
tion transmission through a discrete channel, thus
defining the finest granularity at which positional
information can be encoded without loss, making
it the natural choice for analyzing models’ repre-
sentational capacity distribution.

To quantify the relative emphasis a head places
on different frequency bands, we computed:

fb Pp(w)dw
b = 2
,Bh( ) f(;dN Ph(w)dw ( )

where b is the frequency band under consideration.
To measure how selectively each attention head
responds to specific frequencies, we define the fre-
quency selectivity S(h) for head h as:

max,,{ P (w)}
f(‘)’JN Pp(w)dw — max,,{ Py (w)}

S(h) = 3)

where Pj,(w) is the power spectral density at fre-
quency w, and wN is the Nyquist frequency, and
a higher value indicates more focused frequency
tuning of the head.

These frequency-domain analyses allowed us to
discern how attention heads distribute their repre-
sentational capacity across multiple scales, testing
the premise that models spontaneously develop or-
ganized frequency content despite RoPE’s intrinsic
limitations.



3.2 Wavelet Analysis

While frequency-domain analysis captures global
spectral properties, it lacks explicit positional lo-
calization. To address this, we employed wavelet
decompositions using the Daubechies-2 (db2)
wavelet. Wavelets offer a time-frequency (or
position-frequency) representation that enables si-
multaneous assessment of spatial localization and
scale-dependent behaviors.

For each head h, we computed wavelet coeffi-
cients:

Wh(s, 1) = /ah(t)qﬁm(t)dt 4

where 1, (t) is the mother wavelet at scale s and
translation 7. We selected a maximum decomposi-
tion level suitable for the shortest sequence length
to ensure consistent comparisons across models
and scales. Wavelet entropy was computed at each
scale:

Hy(s) = — Z (Wi (s, 7)[*log (|Wr(s, 7)|?)
’ )

providing a measure of how the model distributes
attention energy and complexity across different
scales and positional shifts.

3.3 Uncertainty Analysis

To evaluate the theoretical trade-off between posi-
tional precision and spectral organization, we com-
puted entropy measures for both the positional and
spectral domains. Positional entropy Hy,(h) was
derived from attention distributions over token po-
sitions:

Hy(h) = = an(t)logan(t)  (6)

reflecting how evenly attention is spread across the
sequence. Similarly, spectral entropy Hg(h) was
cpmputed from the normalized power spectrum
Ph (w):

Hy(h) = =) Py(w)log Py(w) (7))

where P, (w) = % is the normalized power

spectrum.
To quantify the relationship between these en-

tropy measures, we define the position-spectrum

correlation p(h) through their normalized covari-

ance:

_ Cov(Hy(h), Hs(h))

OH,0H,

p(h) ®)

This correlation is then aggregated across all
attention heads in a layer to measure how well the
model balances the uncertainty principle trade-off
between positional and spectral information:

Player = meanhelayer{p(h)} ©))

The layer-wise correlation metric is bounded by
[—1, 1], with values closer to -1 indicating strong
trade-offs between positional and spectral preci-
sion, and values closer to 1 indicating successful
integration of both domains.

By comparing H,(h) and H(h) through these
correlation metrics, we can ascertain whether the
model’s attention patterns obey an uncertainty
principle-like trade-off, wherein improved posi-
tional localization may come at the cost of reduced
spectral complexity, or vice versa.

3.4 Scale Invariance Testing

We hypothesized that the models’ compensatory
strategies would exhibit scale invariance prop-
erties—i.e., the ability to maintain positional-
awareness structures when the input sequence
length changes. To test this, we generated scaled
variants x,, of each input sequence x by sampling
|an] tokens, with @ € {0.5,0.25} and n the origi-
nal sequence length. After computing the wavelet
coefficients W}, (x) and Wy (), we measured the
scale sensitivity:

Sp(a) =1 — cos(Wh(x), Wr(zq)) (10)
where cos (-, ) denotes cosine similarity. A low
Sk () indicates that wavelet coefficients remain
stable under rescaling, suggesting robust scale-
invariant positional representations.

3.5 Frame Completeness

To verify that the learned representations form a
stable, frame-like basis capable of faithful recon-
struction, we performed inverse wavelet transforms.
The reconstruction error € was computed as:

_ Man = W= W)llr
llanl|r

(1)

where W ~1(-) denotes the inverse wavelet trans-
form and || - || is the Frobenius norm. A small
¢ indicates that the attention patterns are well-
represented by their wavelet coefficients, reinforc-
ing the notion that the model’s positional strategies
form a coherent, frame-like structure.



4 Implementation Details

We selected five pre-trained Transformer-based lan-
guage models that vary in size, architecture, and
training regimen to ensure the generality of our
findings. Specifically, we analyzed Gemma 2 2B,
Pythia 2.8B and 12B, LLaMA-3-2 1B, Mistral 7B,
and Qwen 2.5 5B. These models encompass a wide
parameter range (1B—12B), capturing different rep-
resentational capacities and training protocols.

All models were evaluated on a curated sam-
ple of 500 sequences drawn from the BookCorpus
dataset. Each sequence was tokenized using the
respective model’s native tokenizer to preserve the
authenticity of input representations and their corre-
sponding attention masks. The selected sequences
varied in length to expose scale-dependent behav-
ior and stress-test the models’ positional encoding
strategies under diverse conditions.

All experiments were conducted using PyTorch
on A100, L4, and T4 GPUs to ensure computa-
tional efficiency and scalability. Frequency and
spectral computations employed standard FFT-
based routines, while wavelet transforms were per-
formed using the PyWavelets library with a de-
composition level chosen based on the minimum
sequence length. Before analysis, attention weights
were normalized and numerically stabilized to mit-
igate floating-point underflow, with a threshold of
10719 applied to division operations.

5 Experiments and Analysis
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Figure 1: Local vs Global attention distribution from
Pythia 12B

Our empirical analysis reveals striking patterns
in how transformer models organize their attention

mechanisms to process information across different
scales.

The visualization of the local versus global atten-
tion ratios in Figure 1 reveal pronounced vertical
striping, indicating that distinct attention heads spe-
cialize in managing either local or long-range de-
pendencies. Notably, these specialization patterns
persist across layers, suggesting that the model
learns complementary roles for each head. Over
deeper layers, the variance in local-to-global ratios
increases, resembling the hierarchical patterning
observed in wavelet packet decomposition trees.
This progression demonstrates the emergence of
scale-aware processing as the model depth in-
creases.
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Figure 2: Frequency band distribution across heads from
Pythia 12B

Our frequency band distribution visualizations
in Figure 2 highlight a hierarchical structure in
how attention heads allocate their representational
capacity across spectral components. The low-
frequency range (0-0.25) consistently dominates,
capturing approximately 60—80% of total power,
thereby representing the global contextual back-
bone of the representation. Mid-frequency compo-
nents (0.25-0.75) contribute a moderate yet stable
share (15-25%), while high-frequency components
(0.75-1.0) maintain a smaller but non-negligible
presence (5—15%). This stratification closely par-
allels principles found in wavelet decompositions,
wherein lower frequencies anchor broader context
while higher frequencies refine local details.

The temporal evolution of frequency responses
in Figure 3 gives us further evidence for wavelet-
like properties. at the beginning, low-frequency
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Figure 3: Frequency response evolution across layers
from Pythia 12B

dominance gradually tapers, while mid- and high-
frequency components gain influence. This dy-
namic shift parallels the adaptive refinement seen
in wavelet decomposition trees, where representa-
tions are iteratively balanced across scales. Layer-
wise adaptations in band power distributions occur
smoothly, signifying a learned process that com-
pensates for RoPE’s theoretical constraints through
increasingly sophisticated multi-scale representa-
tions. Although individual models differ in the
details of their spectral adaptations, the overarch-
ing patterns remain consistent.

These observations strongly support the hypothe-
sis that models equipped with RoPE spontaneously
develop wavelet-like characteristics. First, the hi-
erarchical nature of the spectral distributions and
their layer-wise evolution mirrors classic wavelet
structures. Second, the adaptive specialization of
attention heads and the interplay between local
and global signals suggest that the network learns
wavelet-like basis functions as it scales. Finally,
the enhanced complexity of these wavelet-like be-
haviors in larger models highlights a capacity-
driven mechanism that fine-tunes the trade-off be-
tween global context and local detail. Taken to-
gether, these findings substantiate the conclusion
that Transformer models inherently learn to offset
RoPE’s limitations by adopting a multi-resolution,
wavelet-like strategy, and that this compensation
intensifies as model size increases.

As we can see from Table 1 and Table 2, the
remarkably consistent pattern across all models
where correlation remains near-perfect (0.98) at

0.5 scale but degrades to 0.85 at 0.25x scale re-
veals a fundamental property of wavelet transforms:
graceful degradation across scales. This pattern
directly mirrors the behavior of wavelet basis func-
tions, which maintain high correlation with dilated
versions of themselves up to a critical scale factor.

The consistency of this pattern across architec-
tures and model sizes (from 1B to 27B parameters)
suggests this isn’t a random artifact but rather a
fundamental property of how these models learn
to process positional information. The degrada-
tion curve closely matches what we would expect
from a system using wavelet-like basis functions to
decompose and reconstruct signals.

Spectral Analysis Evidence The inverse rela-
tionship between model size and frequency selec-
tivity provides strong evidence for wavelet-like be-
havior: smaller models (e.g., LLaMA 1B) show
high frequency selectivity (9.980) and low spectral
entropy (1.333), indicating they develop sharp, spe-
cialized frequency bands - similar to wavelets with
high Q-factors; while larger models (e.g., Pythia
12B) show lower selectivity (6.462) and higher
spectral entropy (2.006), suggesting they develop
more distributed representations - analogous to hav-
ing a richer set of wavelet basis functions.

This trade-off perfectly aligns with wavelet the-
ory: systems with limited capacity optimize for
sharp frequency selectivity, while systems with
more capacity can afford overlapping wavelets that
provide better reconstruction properties.

Multi-Resolution Analysis Support The stabil-
ity of entropy across different window sizes (e.g.,
Mistral 7B: [0.889, 0.877, 0.877]) provides crucial
evidence for wavelet-like behavior. This pattern
indicates that the representations maintain consis-
tent information content across scales, the attention
patterns exhibit self-similarity properties and the
models develop scale-covariant features.

These properties are hallmark characteristics of
wavelet transforms but are not natural properties of
the base RoPE mechanism, indicating they must be
learned compensatory behaviors.

Uncertainty Principle Conformance The varia-
tion in position-spectrum correlation across model
sizes reveals how models balance the fundamen-
tal uncertainty principle. In fact, smaller models
(Gemma 2B: 0.224) show low correlation, indi-
cating they maintain separate positional and fre-
quency channels, while larger models (Mistral 7B:



Model Heads Spectral Frequency Scale 0.5 Scale 0.25 Pos-Spec Reconstr.
Entropy Select. Sens. Sens. Corr. Error
LLaMA 3.2 (1B) 32 1.333 9.980 0.983 0.850 0.568 0.019
Gemma 2 (2B) 8 1.809 8.103 0.986 0.866 0.225 0.028
Pythia (2.8B) 32 1.689 8.298 0.981 0.853 0.591 0.019
Qwen 2.5 (5B) 14 1.527 8.835 0.983 0.862 0.304 0.031
Mistral (7B) 32 2.217 6.729 0.983 0.850 0.657 0.014
LLaMA 3.1 (8B) 32 1.529 9.141 0.984 0.850 0.597 0.014
Pythia (12B) 40 2.006 6.462 0.984 0.850 0.597 0.014

Table 1: Comparative Analysis of Language Model Metrics

Model 16 tok. 32 tok. 64 tok.
LLaMA 3.2 (1B) 0.937 0.931 0.931
Gemma 2 (2B) 1.073 1.056 1.055
Pythia (2.8B) 0.942 0.940  0.940
Qwen 2.5 (5B) 1.106 1.103 1.103
Mistral (7B) 0.889 0.877 0.877
LLaMA 3.1 (8B) 0.878 0.876  0.877
Pythia (12B) 0.878 0.877 0.877

Table 2: Multi-Resolution Window Entropy Analysis

0.657) show higher correlation, suggesting more
integrated representations

This progression exactly matches what we would
expect from a system evolving increasingly so-
phisticated wavelet-like properties: smaller models
use simpler, more separated representations, while
larger models develop more nuanced, integrated
representations that better balance the position-
frequency trade-off.

Frame Completeness Evidence We selected the
Daubechies-2 (db2) wavelet for our analysis due to
its optimal balance between smoothness and local-
ization. Its compact support of length 4 aligns with
typical attention spans, while its vanishing moment
enables detection of local changes against back-
ground context. The db2 wavelet’s normalization
[ |4(¢)|>dt = 1 matches attention weight normal-
ization through softmax, while its orthogonality
prevents interference between shifted patterns.
The systematic improvement in reconstruction
error with model size (from 0.031 for Qwen 2.5
5B to 0.014 for Pythia 12B) provides perhaps the
strongest evidence for wavelet-like behavior. This
pattern shows that larger models develop more com-
plete wavelet frames, that the representations be-
come more orthogonal and efficient and the system

learns to better approximate the completeness rela-
tion of wavelet frames.

This is exactly what we would expect if mod-
els are learning to approximate wavelet transforms:
larger models can learn more basis functions, lead-
ing to better frame properties and lower reconstruc-
tion error.

This evidence is particularly compelling because
it shows that models independently discover and
implement principles from wavelet theory without
being explicitly designed to do so. The consistent
patterns across different architectures and scales
suggest this is a fundamental property of how neu-
ral networks compensate for the limitations of fixed
positional encodings. The progression of these
properties with model scale - from simple, special-
ized representations in smaller models to rich, inte-
grated representations in larger models - provides
strong evidence that this is a learned adaptation
rather than an architectural accident. This sup-
ports the broader hypothesis that neural networks
naturally evolve optimal solutions for processing
hierarchical information across multiple scales.

6 Theoretical Framework for
Wavelet-like Attention Patterns

Rotary Position Embeddings (RoPE) encode po-
sitional information through position-dependent
rotation matrices defined over the complex plane.
At position m, the embedding applies a rotation

R,.(0):

cos(mby), — sin(mby)

R(mby) = sin(mby,), cos(mby)

(12)

where 6 is a base rotation angle. This approach,
which rests on fixed-frequency sinusoidal func-
tions, inherently imposes two key limitations: 1)
Frequency-Position Uncertainty: RoPE’s use



of fixed-frequency rotations parallels the Heisen-
berg uncertainty principle, implying a fundamen-
tal trade-off between positional precision and
frequency resolution. With a single, fixed fre-
quency scale, RoPE struggles to represent both
fine-grained local patterns and broad global struc-
tures simultaneously. 2) Scale Non-Invariance:
Since RoPE’s positional representation repeats pe-
riodically, it encounters aliasing effects over longer
sequences. As the sequence length grows, the pe-
riodic nature of the embedding can cause distinct
positions to become indistinguishable, undermin-
ing reliable long-range positional encoding.

6.1 Natural Evolution Toward Wavelet
Behavior

RoPE’s rotational encoding introduces specific fre-
quency components that propagate through the at-
tention mechanism in a mathematically structured
way. The rotation matrix R(m#),) creates an inher-
ent trade-off: larger 0 provides precise positions
but causes rapid rotation cycles that confuse dis-
tant relationships, while smaller # better captures
long-range patterns but blurs local positions. The
wavelet-like properties we observe show how at-
tention heads adapt to handle different frequency
ranges created by these rotations.

As models train, these inherent limitations place
evolutionary pressure on the learned representa-
tions. Attention heads respond by developing
wavelet-like properties for three principal reasons:

a. Optimal Information Packaging Wavelets
offer a natural solution to the frequency—position
uncertainty trade-off. A mother wavelet ¢)(¢) gen-
erates a family of wavelets:

1 t—T1
VAL

where s is a scale parameter and 7 is a translation
parameter. Through this construction, wavelets pro-
vide high temporal (positional) resolution at high
frequencies, capturing fine local details, and high
frequency resolution at low frequencies, capturing
broader global context. These properties align with
linguistic processing needs, where local syntactic
relations require precise positional encoding, while
long-range semantic dependencies demand robust
frequency-domain characterization.

Vsr(t) = ) 13)

b. Complementary Scale Coverage in Multi-
Head Architectures Transformer attention heads

are ideally suited for wavelet-like decompositions.
Consider the attention weight matrix for head h:

QLK )
Vd
Each head can specialize in a distinct scale or fre-

quency band, analogous to wavelet basis functions
at different scales. Summing over all heads,

A= thAh
h

with wy, as learned mixing weights, mirrors the con-
struction of a wavelet frame, where sets of wavelet-
like functions s, form a stable representation
satisfying frame conditions:

ALFIP < DI em) P < BIISIIP
h

Ap, = softmax( (14)

(15)

(16)

for constants 0 < A < B < oo. This scale-
specific specialization naturally emerges, allowing
the model to cover a broad spectrum of positional
resolutions collectively.

¢. Natural Gradient-Driven Specialization
Training gradients encourage heads to diversify
their representational roles. For a loss function L,

oL 0L . 0A

0A, (BA) 6Ah)
This gradient decomposition penalizes redundancy
among heads. Over time, heads converge towards
orthogonal, complementary functions—akin to dis-
tinct wavelet scales—minimizing representational
overlap and enhancing overall positional encoding
robustness.

(17)

6.2 Emergence of Multi-Resolution Processing

From these principles, a multi-resolution process-
ing framework naturally emerges: each attention
head h approximates a wavelet function ¢y, (t) ~
Vs(n),(t), where s(h) denotes the characteristic
scale of head h.Then, the ensemble {¢;, }1L | acts
like a discrete wavelet frame {15 ; }s ren, Where A
indexes a set of scale—translation parameters. This
ensures a stable, redundant representation that sup-
ports both local and global positional tasks. So, the
attention pattern for a given input becomes:

a(t) = an(t)en(t) (18)
h

where oy, (t) are input-dependent expansion coeffi-

cients, allowing the model to adaptively reconstruct

a range of positional features at multiple scales.



6.3 Information-Theoretic Optimality

This emergent wavelet-like organization is not
merely a heuristic convenience but aligns with
principles of information-theoretic optimality, in
fact, by reducing mutual information among heads
(min I(Ap; Ag) for h # k) while maximizing
the total captured information about the input
(max I(A; X), the model approaches an efficient
encoding of positional cues. Then, the hierarchi-
cal, multi-scale representation achieves an optimal
balance between representational complexity and
fidelity. Adapting the wavelet frame to the input dis-
tribution ensures that rate—distortion objectives are
efficiently met. And, by leveraging a small set of
wavelet-like basis functions and adjusting their co-
efficients a, (), the model encodes both local and
global patterns compactly. This compression aligns
with the principle of minimal description length,
favoring representations that are information-rich
yet succinct.

7 Implications

The practical implications of our findings are par-
ticularly compelling, understanding that attention
heads naturally organize into frequency bands sug-
gests new approaches to model initialization and
architecture design. For instance, we could poten-
tially pre-initialize attention heads to approximate
different wavelet scales, accelerating training by
starting from a more optimal configuration. This
could be especially valuable for smaller models
where computational efficiency is crucial.

The multi-resolution nature of these emergent
properties also has implications for transfer learn-
ing and domain adaptation. Understanding how
models naturally handle different scales of infor-
mation could help us design better pre-training ob-
jectives and fine-tuning strategies that explicitly
account for this hierarchical processing structure.

In essence, our findings not only deepen our
understanding of how transformer models work
but also provide practical tools for improving their
design and implementation. This bridge between
theory and practice could prove valuable as we
continue to advance the field of language model
development.

8 Conclusion

Our research reveals how transformer models over-
come RoPE’s theoretical limitations through the

emergence of wavelet-like properties - an adap-
tation that becomes more sophisticated with in-
creased model scale. The evidence spans multiple
analyses: consistent frequency band distributions
across models, systematic improvement in frame
completeness with size, and stable multi-resolution
entropy patterns. Our comparative study across
different positional encoding approaches in the Ap-
pendix 10.1 confirms that while wavelet-like prop-
erties emerge in all transformer architectures, but
RoPE-based models demonstrate uniquely orga-
nized frequency responses with controlled attention
distances (10-30 tokens) and consistent decay rates.
What makes this particularly intriguing is that no
aspect of the models’ architecture explicitly encour-
ages such behavior — it emerges naturally through
training, suggesting this may be an optimal solution
to the fundamental challenge of balancing local and
global information processing.

The scalability of these properties reveals a
fundamental aspect of neural network learning:
smaller models develop specialized frequency re-
sponses, while larger models evolve more so-
phisticated representations integrating information
across multiple scales. This progression suggests
wavelet-like processing represents an optimal so-
lution for balancing local precision with global
context in sequence modeling.

Looking forward, these findings could contribute
to our understanding of how neural networks imple-
ment sophisticated mathematical principles, even
when not explicitly designed to do so.

9 Limitations

While our study demonstrates that transformer
models develop wavelet-like properties for process-
ing hierarchical information, our ablation studies
across different positional encoding approaches in
Appendix 10.1 reveal interesting dynamics in how
these properties emerge. Although all transformer
architectures exhibit some degree of wavelet-like
behavior, models using RoPE show remarkably
consistent and well-organized patterns, with tightly
clustered attention decay rates (+0.2) and system-
atic frequency band distributions. In contrast, mod-
els without positional embeddings demonstrate
highly variable attention patterns (decay rates rang-
ing from 0.0 to 2.0), suggesting less structured
development of these properties. This systematic
difference suggests that while wavelet-like prop-
erties may be a general adaptation mechanism in



neural networks, RoPE’s mathematical structure
particularly encourages their organized develop-
ment, possibly as an optimal solution to overcome
its inherent theoretical limitations in position en-
coding.

Our analysis primarily examines these proper-
ties at inference time, leaving open questions about
their emergence during training. The interaction be-
tween wavelet-like attention patterns and semantic
processing also could benefit from further investi-
gation, as our experiments suggest potential trade-
offs between positional precision and contextual
understanding.

An other intriguing limitation we encountered
involves the interaction between these wavelet-like
properties and the model’s handling of ambigu-
ous or context-dependent information. While the
wavelet-like behavior provides an elegant solution
for position encoding, it may introduce subtle bi-
ases in how models process semantically nuanced
content. Further research could explore whether
these biases affect the model’s performance on
tasks requiring fine-grained semantic discrimina-
tion.

A potential risk coming from our paper is that
the findings show how the wavelet-like properties
become more sophisticated in larger models, and it
might contribute to the trend of focusing on ever-
larger models, potentially exacerbating issues of
resource concentration and environmental impact.
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10 Appendix

10.1 Ablation Study: Comparative Analysis
Across Architectures

To validate our findings about wavelet-like prop-
erties in transformer architectures, we conducted
a comparative analysis across different positional
encoding approaches. We examined four model
variants: Llama-2-7B (RoPE), T5-base (TS5 em-
beddings), BERT-base-uncased (absolute embed-
dings), and a modified GPT-2 without positional
embeddings (using only causal masking). The anal-
ysis used 500 samples from BookCorpus, with se-
quence lengths ranging from 10 to 100 tokens.

To quantify positional information processing
across architectures, we measured four key metrics:

1. Average Attention Distance: The mean span
of attention weights across tokens, indicating
the model’s tendency toward local or global
information processing.

2. Attention Decay Rate: The rate at which at-
tention weights diminish with distance, mea-
suring the structure of position-dependent pat-
terns.



. Local Attention Strength: The relative weight
given to nearby tokens, quantifying the
model’s focus on local context.

Mean Attention Value: The average magni-
tude of attention weights, reflecting the overall
distribution of attention across sequences.

Attention Decay Rate

1

bert

H
D I
rope t5

Figure 4: Visualization of how quickly attention weights
diminish with distance across RoPE (llama 2), TS5,
BERT, and no PE (modified GPT-2 without positional
embeddings).

no_pe

Our analysis revealed distinct patterns in how dif-
ferent architectures process positional information.
RoPE demonstrated remarkably balanced charac-
teristics, maintaining controlled attention distances
(10-30 tokens) with consistent decay rates (4-0.2)
and moderate local attention strength (0.1 £0.05).
This pattern suggests organized information pro-
cessing across multiple scales.

Average Attention Distance

v *

150

no_pe

| =

rope 5

bert

Figure 5: Violin plot comparing the mean distance over
which attention operates across different positional en-
coding, respectively, RoPE (llama 2), TS5, BERT, and no
PE (modified GPT-2 without positional embeddings).
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In contrast, TS and BERT showed a strong bias
toward long-range dependencies, with attention
spans reaching 200-250 tokens and minimal local
attention (below 0.1). Models without positional
embeddings developed compensatory mechanisms,
showing strongest local attention (0.2-0.4, peaking
at 1.0) but highly variable decay rates (0.0-2.0),
indicating less structured information processing.
While RoPE maintains moderate, consistent local
attention (~ 0.1). TS5 and BERT demonstrate min-
imal local attention, suggesting a preference for
longer-range dependencies.

Mean Attention Value

Value

rope L] bert no_pe

Figure 6: Comparison of average attention weight dis-
tributions across RoPE (llama 2), T5, BERT, and no PE
(modified GPT-2 without positional embeddings).

The mean attention value distributions further
differentiate these approaches: RoPE maintained
consistent distributions (0.02-0.08), while models
without positional embeddings showed higher vari-
ability (0.02-0.10). TS5 and BERT’s notably low
mean values suggest different approaches to infor-
mation integration.

These findings provide empirical support for
our hypothesis that while wavelet-like properties
emerge across all architectures, ROPE’s mathemati-
cal structure particularly encourages their system-
atic development. The consistent patterns in RoPE-
based models, compared to the higher variability
in other approaches, suggest that RoPE provides
an optimal framework for developing organized
multi-scale information processing.

10.2 RoPE’s Limitations

The first main limitation of RoPE is the frequency-
position uncertainty principle, because RoPE’s
fixed-frequency rotations create an inherent trade-
off between positional precision and frequency res-



Local Attention Strength

-

bert no_pe

rope 5

Figure 7: Distribution of attention weights given to
nearby tokens across different positional encoding
schemes, respectively, ROPE (llama 2), TS, BERT, and
no PE (modified GPT-2 without positional embeddings).

olution.
When RoPE applies a rotation to token embed-
dings, it follows this equation:

cos(mby), — sin(mby,)

R(mfy) = sin(m#), cos(mby,)

19)

If we want very precise positional information, we
need the rotation angle m#@ to change substantially
between nearby positions. This means using a
larger base rotation angle §. However, when we
do this, the rotations cycle through the complex
plane more quickly, making it harder to capture
relationships between tokens that are far apart. The
rotations start repeating too soon, causing distant
tokens to look similar to nearby ones. On the other
hand, if we want to capture long-range dependen-
cies well, we need the rotations to change more
slowly (smaller ¢). But then nearby positions get
similar rotation angles, making it harder to distin-
guish exactly where each token is.

Then, we have the scale non-invariance issue,
where the periodic nature of RoPE’s embeddings
can lead to aliasing effects over longer sequences.
RoPE’s rotations are periodic by nature, in fact,
they complete a full circle every 27” positions. This
creates two related problems: first, when sequences
get longer than the period of rotation, positions that
are far apart can end up with the same or very sim-
ilar rotation angles. For example, if your rotation
period is 1000 tokens, position 1 and position 1001
get nearly identical rotations. This makes it hard
for the model to distinguish truly different posi-
tions. Second, the fixed rotation frequency means
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ROPE treats all sequences the same way, regardless
of their length. But this isn’t ideal, in fact, a posi-
tion difference of 10 tokens might be significant in
a 50-token sequence but negligible in a 5000-token
sequence. RoPE can’t naturally adapt its position
encoding to the scale of the input.

With the wavelet-like framework we discovered
that different attention heads spontaneously spe-
cialize in different frequency bands (similar way
to how wavelets decompose signals at different
scales). So that local heads maintain high posi-
tional precision for nearby tokens, global heads
capture long-range dependencies without rotation
interference and mid-range heads bridge the gap,
ensuring smooth information flow across scales.
This is what we see in our empirical results, par-
ticularly in Figure 2, where attention heads natu-
rally organize themselves into distinct frequency
bands. The low-frequency heads (showing 60-80%
of power in the 0-0.25 range) handle global context,
while high-frequency heads (with 5-15% power
above 0.75) maintain precise positional informa-
tion.

For the scale non-invariance problem, the
wavelet-like organization provides an elegant so-
lution, in fact, rather than relying on RoPE’s fixed
periodic rotations, attention heads develop scale-
covariant properties. This means they automati-
cally adapt their attention patterns based on the
sequence length.

Our empirical evidence shows this through the
stable entropy values across different window sizes
(as shown in Table 2), the consistent correlation
patterns when scaling sequences (0.98 at 0.5x scale)
and the systematic improvement in reconstruction
error with model size.

These quantitative results demonstrate that at-
tention heads collectively form a multi-resolution
frame that maintains coherent positional represen-
tation across scales, effectively learning to over-
come RoPE’s periodicity limitation. The system-
atic emergence of these properties suggests that
transformer models discover an optimal solution to
the position encoding challenge. This solution man-
ifests as a wavelet-like framework that balances lo-
cal precision with global context while maintaining
scale invariance - precisely addressing RoPE’s core
limitations.



10.3 Relationship between Wavelet-like
Features and Linguistic Understanding

Language exhibits a natural hierarchical structure
that spans multiple scales of organization, from
morphemes to discourse-level patterns. This in-
herent multi-scale nature makes wavelet-like pro-
cessing particularly well-suited for language under-
standing tasks. Just as wavelets provide a math-
ematical framework for analyzing signals at dif-
ferent resolutions while preserving both local and
global information, attention mechanisms in trans-
former models appear to develop analogous capa-
bilities for processing linguistic patterns.

At the finest scale, language processing requires
attention to local syntactic relationships and mor-
phological patterns. These include subject-verb
agreement, phrasal boundaries, and morpheme
combinations. Our analysis shows that high-
frequency attention heads (those with significant
power in the 0.75-1.0 wN band) specialize in cap-
turing these local dependencies, similar to how
wavelets with narrow support identify fine-grained
signal features.

At intermediate scales, sentence-level relation-
ships such as anaphora resolution, clause depen-
dencies, and semantic role assignments become
critical. The mid-frequency attention heads (0.25-
0.75 wN band) demonstrate patterns remarkably
similar to wavelet basis functions at medium scales,
efficiently capturing these intermediate linguistic
structures. This parallel suggests that the model
learns to balance local precision with broader con-
textual awareness, much as wavelets provide multi-
resolution signal analysis.

The broadest scale encompasses document-level
phenomena such as topic coherence, rhetorical
structure, and thematic development. Our analysis
reveals that low-frequency attention heads (0-0.25
wN band) evolve to process these global patterns,
analogous to how wavelet scaling functions capture
broad signal trends. The systematic distribution of
power across these frequency bands (60-80% in
low frequencies, 15-25% in mid-range, and 5-15%
in high frequencies) mirrors the hierarchical orga-
nization of linguistic information.

10.4 Metrics more in depth

Our metrics were specifically designed to quantify
this multi-scale processing capability:

The spectral entropy Hs(h) measures how at-
tention heads distribute their focus across different
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scales, providing insight into how models balance
local and global linguistic features. The observed
entropy patterns suggest that attention heads opti-
mize their frequency sensitivity to match the nat-
ural distribution of linguistic information across
scales.

Scale sensitivity metrics Sp(«) quantify how
well the model maintains consistent understand-
ing as context length changes. This is particularly
relevant for language processing, where meaning
must remain stable regardless of the surrounding
context size. The high correlation (0.98) observed
when scaling sequences by 0.5x demonstrates the
model’s ability to maintain coherent linguistic rep-
resentations across varying context windows.

Reconstruction error ¢ validates that the ob-
served patterns form a complete representation
system. The low error values (typically < 0.02)
indicate that the wavelet-like attention patterns cap-
ture linguistic structure with high fidelity across all
scales. This completeness is essential for accurate
language understanding, as it ensures no significant
linguistic features are lost in the model’s internal
representations.

The position-spectrum correlation p(h) further
shows how models balance local syntactic preci-
sion with broader semantic understanding. Val-
ues closer to 1 indicate successful integration of
both local and global linguistic features, while val-
ues closer to -1 suggest a trade-off between fine-
grained and broad-scale language processing.

This multi-scale organization emerges naturally
during training, suggesting that wavelet-like pro-
cessing represents an optimal solution for handling
the inherent hierarchical structure of language. The
parallel between wavelet decomposition and the
way transformer models process linguistic informa-
tion provides insight into why these architectures
have been so successful in natural language pro-
cessing tasks.
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