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Abstract—Visual sensing has been increasingly employed in
industrial processes. This paper presents the design and im-
plementation of an industrial wireless camera system, namely,
EFCam, which uses low-power wireless communications and
edge-fog computing to achieve cordless and energy-efficient
visual sensing. The camera performs image pre-processing (i.e.,
compression or feature extraction) and transmits the data to a
resourceful fog node for advanced processing using deep models.
EFCam admits dynamic configurations of several parameters
that form a configuration space. It aims to adapt the configuration
to maintain desired visual sensing performance of the deep model
at the fog node with minimum energy consumption of the camera
in image capture, pre-processing, and data communications,
under dynamic variations of application requirement and wireless
channel conditions. However, the adaptation is challenging due
primarily to the complex relationships among the involved
factors. To address the complexity, we apply deep reinforce-
ment learning to learn the optimal adaptation policy. Extensive
evaluation based on trace-driven simulations and experiments
show that EFCam complies with the accuracy and latency
requirements with lower energy consumption for a real industrial
product object tracking application, compared with four baseline
approaches incorporating hysteresis-based adaptation.

I. INTRODUCTION

Computer vision has become an essential component of
the automated inspection processes in smart manufacturing
systems. Examples include product quality inspection [1],
manufacturing system fault diagnosis [2], and activity moni-
toring [3]. For instance, in Figs. 1(a) and 1(b), a camera is used
to assess the wear and tear conditions of gears and count items
for inventory checking, respectively; in Fig. 1(c), cameras are
installed to monitor the settings/conditions of many legacy
ovens that do not have data logging features. In this paper,
we aim to design and implement an industrial wireless com-
puter vision system. Without replying on cables for network
connectivity and power supply, the wireless cameras offer
several benefits such as easy deployment, mobility support,
and unobtrusiveness to the ongoing industrial processes. As
today’s wireless cameras become smaller in form factors,
they are promising for swift ad hoc deployments in event-
based or schedule-based diagnostic tasks, such as the one-
off deployment for gear condition assessment illustrated in
Fig. 1(a). In the scheme of reconfigurable manufacturing
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Fig. 1. Industrial vision applications. (a) Wear and tear assessment for gears;
(b) Item counting; (c) Legacy equipment setting and condition monitoring.
(The subfigure (a) is designed using resources from Freepik.com and Wiki-
media Commons.)

system [4] that can adjust the layout, capacity, and config-
uration of the production resources in response to changes in
market demands or regulatory requirements, the ad hoc one-off
deployments of wireless cameras for configuration validation
and calibration are desirable.

An industrial visual sensing system in general involves
compute-intensive image processing. Deep learning has been
increasingly used for industrial computer vision applica-
tions [5]. However, the execution of deep models imposes
high demand on computing resources. On the other hand, to
achieve the cordless setting for agility, the wireless cameras
are often powered by batteries with finite capacities. Energy
harvesting is generally infeasible in the indoor environments
of factories. Therefore, running the compute-intensive deep
models on the wireless cameras is not desirable since other-
wise bulky batteries or wired power supply will be needed.
In this paper, we consider using a wall-powered wireless fog
node with sufficient computing resources to support the front-
end wireless cameras in facilitating deep model execution. The
geographical proximity of the fog node to the data-generating
wireless cameras at the network edge is in favor of the delay-
critical industrial tasks, vis-à-vis the remote cloud that often
suffers large jitters and long delays.

We design a system called Edge-Fog Camera (EFCam)
that leverages wireless camera at the edge and fog node to
achieve a cordless and energy-efficient industrial visual sens-
ing system. EFCam uses a battery-powered wireless camera,
called ESP32-CAM [6] to perform image sensing, generates
smaller representations of the captured images, and transmits
the representations to the fog node for advanced processing978-1-6654-4108-7/21/$31.00 ©2021 IEEE



using deep models. EFCam is capable of dynamically updating
the configuration for various parameters such as frame capture
rate, image resolution and the parameters of pre-processing
mode of either feature extraction or image compression. The
configuration affects EFCam’s accuracy, latency, and energy
consumption. The pre-processing at the camera can help
reduce data transmission energy and latency, but may cause
loss of visual sensing accuracy at the fog node.

Existing studies [7], [8] have designed various low-power
wireless visual sensing systems. Similar to EFCam, those
systems also have system parameters that need to be con-
figured. However, adapting their configuration in response
to the variations of application requirements and wireless
channel conditions for energy-efficient sensing performance
compliance is largely unexplored. On the other hand, the
adaptation is desired in dynamic industrial environments. First,
the application performance requirements and power saving
opportunities may vary at run time. For instance, in a system
for product object recognition and tracking, the frame rate
should increase when the interested product objects appear
in the field of view. Otherwise, the frame rate can be kept
at the minimum to reduce image processing overheads and
save power. Second, the industrial spaces typically have time-
varying and noisy wireless channels due to the moving parts of
production lines, vehicles and workers, as well as electromag-
netic emissions from the electrified machinery. As a result, the
industrial visual sensing system needs to deal with changeable
data transmission performance.

To advance wireless computer vision in industrial settings,
in this paper, we propose a novel configuration adaptation
scheme for EFCam to achieve good visual sensing per-
formance with minimum camera energy consumption. We
formally formulate a configuration adaptation problem that
aims at maintaining the end-to-end visual sensing latency and
accuracy within their respective bounds with the minimum
expected energy consumption of the camera, under dynamic
application performance requirements and wireless channel
conditions. The configuration includes the image frame rate,
resolution, and the mode and parameters of the camera’s image
pre-processing. The key challenge in solving this problem
is the lack of closed-form models describing the intricate
relationships among the various concerned factors of the
problem. To address this challenge, we apply deep reinforce-
ment learning (DRL) to learn the optimal adaptation policy.
However, the typical online training of the DRL agent takes
excessive time. Instead, we develop computational models for
the latency and camera energy consumption of image pre-
processing and data transmissions given the wireless channel
condition. Then, we use these models to drive offline training
of the DRL agent. Finally, the trained agent is commissioned
to adapt the configuration of EFCam at run time.

We have implemented the proposed DRL-based EFCam for
an industrial product object recognition and tracking system.
Specifically, we conduct various experiments to collect an
image object dataset from the product manufacturing line to
drive the design of the image pre-processing and recognition

deep models. We also collect data traces of Bluetooth Low
Energy transmission delay and camera energy consumption
in the factory. We extensively evaluate the performance of
EFCam in real experiments and compare the DRL-based
configuration adaptation with four baseline approaches incor-
porating hysteresis-based adaptation. The evaluation results
show that EFCam complies with the sensing performance
requirements with less camera energy consumption.

The remainder of this paper is organized as follows. §II
reviews related work. §III describes EFCam’s design and im-
plementation. §IV studies the impact of EFCam configuration
on the system performance. §V formulates the adaptation
problem and presents our DRL-based solution. §VI presents
the evaluation results. §VII concludes this paper.

II. RELATED WORK

Low-power visual sensing systems have received increasing
research attention [7]–[10]. The studies in [9]–[11] focused
on developing low-power camera sensors which are equipped
with early-processing capabilities to extract meaningful fea-
tures of the raw images for further processing by advanced
computer vision models. Such early-processing capabilities
help avoid image processing on redundant visual information,
and thus reduce the camera energy consumption. For instance,
Vazquez et al. [9] implemented a sensing front-end chip with
embedded pre-processors on the focal-plane of the image
sensors to extract and convert low-level features of the analog
visual signal to a digital format. The use of these front-
end chips leads to reduced camera energy consumption for
analog-to-digital conversion (ADC). Gottardi et al. [10] used
mixed-signal circuits to extract visual spatial-contrast and
perform basic image processing such as motion extraction
and background subtraction at the sensor level to reduce the
amount of data output.

The works in [7], [8] prototyped various wireless visual
sensing systems which leverage the low-power image captur-
ing and/or local image processing to reduce the camera energy
consumption. For instance, the authors in [7] adopted a visual
sensing approach that directly pipelines analog pixels straight
from the camera to the wireless radio, which helps eliminate
the need of the power-consuming hardware components (e.g.,
ADCs, codecs) as well as the memory for storing the images.
However, the disadvantage of this approach is that the image
frame rate of the camera is limited by the data transmission
throughput of the wireless link. To address this issue, Joseph-
son et al. [7] introduced a pixel-level compression technique
to further reduce the size of the image data to be transmitted
via the wireless link.

In summary, existing studies on smart visual sensing sys-
tems mainly focused on the design of low-power image
sensors and/or local image processing techniques to reduce
energy consumption. Differently, our work aims to adapt
the configuration of a low-power visual sensing system to
minimize the camera energy consumption while the visual
sensing application requirements can be met. Similar to our
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Fig. 2. EFCam system overview. A fog node can support multiple low-power wireless cameras at the network edge.

work, the authors in [7] also proposed to adjust the config-
uration of camera in terms of the frame rate and resolution
to save the camera energy while maintaining high accuracy
of a face detection task. However, they used a hysteresis-
based control approach which may have inferior performance
under dynamic application requirements and wireless channel
conditions, as shown by our experiment results in §VI. In this
study, we apply the model-free DRL [12] that has shown good
performance for various control tasks with high-dimensional
state and action spaces as well as complex system dynamics.
Our proposed DRL-based approach aims to learn the optimal
configuration adaptation policy for the camera under variations
of application requirements and wireless channel conditions.

III. EFCAM DESIGN & IMPLEMENTATION

Fig. 2 overviews EFCam which has two main components:
the low-power wireless camera and the fog node. The camera
performs low-power image sensing, local processing for image
feature extraction and compression, and data transmission.
The fog node reconstructs images, performs advanced visual
sensing using the deep model, and a DRL-based controller
for the system configuration adaptation. In what follows, we
describe the design and implementation details of EFCam.

A. Background and Hardware

For the camera, we choose the ESP32-CAM [6], an off-
the-shelf battery-powered wireless camera sized 40× 27 mm
as illustrated in Fig. 2(a). The ESP32-CAM consists of an
OV2640 camera module that supports a wide range of image
resolutions up to 1600×1200. It is equipped with a low-power
32-bit MCU with a clock frequency up to 240 MHz, 520KB
internal SRAM memory, and 4MB external PSRAM memory.
To reduce the wireless communication overheads, our design
strategy is to use the deep model-based techniques to locally
process the raw images at the camera before offloading the
remaining computing to the fog node. Thus, it is desirable for
the camera platform to support deployment of lightweight deep
models. From our survey, the ESP32-CAM is a suitable plat-
form that supports the TensorFlow Lite (TFLite) Micro, a deep
learning library tailored for MCUs. Bluetooth Low Energy
(BLE) is used for the communications between the camera
and the fog node due to its low energy consumption [13].

B. Processing Pipeline and Adaptation

Now, we present the detailed implementation of the end-
to-end image processing pipeline of EFCam, which includes
image sensing, scaling, local processing, and the image recon-
struction and recognition at the fog node.

Image sensing and scaling: As shown in Fig. 2, the camera
first sets a sensing schedule which defines the frame rate of the
camera module. The OV2640 camera sensor of ESP32-CAM
supports image capture with eight resolution levels between
160× 120 and 1600× 1200. We implement a bilinear scaling
based image resizing method to provide the image resolutions
which are not natively supported by the camera sensor.

Image local processing and reconstruction: To reduce
wireless communication overheads, we implement two lo-
cal image pre-processing techniques as follows. JPEG com-
pression: It is a commonly used lossy image compression
method [14]. EFCam supports multiple JPEG modes with the
quality index from 0 to 80. A high quality index leads to better
quality of decompressed images. Autoencoder: It is a deep
learning-based image compression method. An autoencoder
has two parts: encoder and decoder. The encoder is imple-
mented in the camera to extract the high-level representation
of a raw image while the decoder is deployed at the fog node
to reconstruct the image based on the received data represen-
tation. For EFCam, we develop multiple deep convolutional
autoencoders as well as JPEG compression modes, which can
result in different processing/communication overheads and
visual sensing performance.

Configuration adaptation: At the fog node, we implement
a DRL-based controller which aims to adapt the configura-
tion for the camera’s parameters in response to changes of
visual sensing performance requirement and industrial wireless
channel condition. Specifically, at every adaptation period, the
controller obtains the results of the advanced visual processing
and the wireless channel condition, then takes actions based on
the obtained results. The main objective of the configuration
adaptation is to maintain desired visual sensing performance
with the minimum camera energy consumption, subject to
the application’s dynamic performance requirement and time-
varying and noisy industrial wireless conditions. In §V, we
formally formulate the configuration adaptation problem and
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Fig. 3. Some examples from the Casting dataset [15].

present our DRL-based solution. Note that as the deep model
of the DRL agent cannot fit into the limited memory of the
camera, the adaptation decision is performed by the fog node.

IV. EFCAM SYSTEM PROFILING

In this section, we conduct a set of profiling experiments to
study the impact of the EFCam configuration on visual sensing
performance and energy consumption. The results provide
insights to guide the configuration adaptation in EFCam.

A. Profiling Methodology

We investigate how the configuration of EFCam affects
various types of the visual sensing tasks. Thus, we conduct
the profiling based on four image datasets as follows.

• MNIST [16] consists of 60,000 grayscale images of
handwritten digits between 0 and 9.

• CIFAR-10 [17] contains 60,000 color images in 10
classes, such as airplance, bird, car, ship, and etc.

• Casting [15] is an industrial image dataset of 7,348
grayscale images capturing top views of submersible
pump impeller in a manufacturing casting process. The
dataset has two classes: the defective class of images with
various types of defects in the pump impellers (e.g., the
pinholes, shrinkage and mould material defects), and the
defect-free class of images. Fig. 3 shows some examples.

• Product is a dataset containing 15,544 images of indus-
trial product parts collected by ourselves in a factory.
Specifically, we used the ESP32-CAM to capture an
image of product parts moving on a convey belt every
one second. The images are labelled with four classes
which indicate the number of the product parts appearing
in the field of view, which is from 0 to 3.

We evaluate EFCam in terms of three metrics: the camera
energy consumption, visual sensing accuracy and latency.

B. Impacts of Image Compression and Resolution

We first conduct experiments to evaluate the impacts of the
JPEG and autoencoder modes on visual sensing performance.
Specifically, we design and train four convolutional autoen-
coder networks for image feature extraction and reconstruction
for the above four datasets, respectively. Each autoencoder
network contains an encoder with three convolution layers
and a decoder with nine convolution layers. The rectified
linear units (ReLUs) are used as the activation function for
convolution layers in both encoder and decoder, while the

(a) JPEG modes (b) Encoders (sf :so)

Fig. 4. Impacts of image compression on classification accuracy and data
output size. Bars and lines present the accuracy and output size, respectively.

(a) Casting (b) Product

Fig. 5. Impacts of image resolution on image classification accuracy under
JPEG-10 and encoder with sf = so = 3.

sigmoid activation is used at the output layers. For image
classification, we train four different convolution neural net-
works (CNNs) for the four datasets. The CNNs for CIFAR-10,
MNIST, Casting, and Product datasets are trained with 50000,
60000, 6633, and 10879 samples, respectively. These trained
CNNs are tested using 10000, 10000, 715, and 4665 images
that are reconstructed by the respective decoder from the image
presentation.

We evaluate the impacts of the configuration for JPEG
compressor and autoencoder on the classification accuracy and
the size of output data. Fig. 4 shows the accuracy and output
size under the JPEG with the quality index from 0 to 80
and encoder networks with the size of filters in convolution
(sf ) and output (so) layers of the encoder from 3 to 9 on
the four datasets. Note that for autoencoder network, the sf
characterizes the amount of computing resource required to
extract the image feature at the wireless camera, while the
so characterizes the amount of the data transmitted via BLE.
From Fig. 4, the accuracy for the CIFAR-10 dataset and the
output size for the four datasets increase with the JPEG index,
and sf and so of the encoders. This is because a higher JPEG
index and a larger size of the encoder filters reduce the loss
of information caused by the image compression and feature
extraction, respectively. As a result, the reconstructed images
have a higher quality which leads to a higher classification
accuracy by the CNNs. Moreover, the accuracies for the
MNIST, Casting, and Product are mostly constant across
various JPEG and autoencoder modes. Under the same dataset,
the output size of the JPEG modes are mostly larger than those
of the autoencoder networks.

We also perform experiments to study the impacts of image
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Fig. 6. Impacts of image resolution on output size and compression time
under JPEG-10 and encoder with sf = so = 3 The bars and lines represent
output size and compression time, respectively.

Fig. 7. BLE RSSI traces in different environments.

resolution on the classification accuracy and compression time
under the autoencoder networks and JPEG compression. Fig. 5
shows the accuracy under various image resolutions from
16 × 16 to 64 × 64 pixels for two industrial image datasets
(i.e., Casting and Product). The JPEG with quality index of 10
(denoted as JPEG-10) and encoder with sf = so = 3 are used.
From Fig. 5, the accuracy under both JPEG and autoencoder
increases with the image resolution. This is because the image
with a higher resolution contains more useful visual informa-
tion, leading to a higher quality of the reconstructed image
at the fog node. Moreover, with the same resolution below
24× 24, the JPEG leads to a higher accuracy than that of the
autoencoder. When the resolution is higher than 24×24 pixels,
the accuracy of the autoencoder is slightly higher than that of
JPEG. Fig. 6 shows output size and compression time of the
JPEG and autoencoder under various image resolutions. Under
the JPEG mode, the output size and compression time remain
almost constant when the resolution varies. Differently, under
the autoencoder mode, the output size and camera computation
time increase with the resolution.

C. Wireless Link Quality and BLE Performance Benchmarks

We conduct experiments to investigate the BLE channel
condition and its impact on the data transmission performance
in various environments. In each experiment, the camera
continuously transmits 400-byte application data packets to
the fog node. The BLE transmitting power at the camera and
fog node is set to be 0 dBm. The camera and the fog node are
separated for about 2 meters with a line of sight. We perform
the data transmission experiments in three environments which
are factory, home, and office.

Fig. 7 shows the traces of the received signal strength
indicator (RSSI) of the radio signal sensed by the fog node
over a time duration of four hours in the three environments.

(a) Packet transmission delay (b) Packet energy consumption

Fig. 8. Performance of BLE data transmission in different environment
conditions. The box, line, triangle, upper and lower whiskers represent middle
50%, median, average, ranges for the bottom 25% and the top 25% of the
samples, respectively.

During the experiments, we measure the RSSI every one
second. Each data point in Fig. 7 presents the averaged
RSSI over one minute. From Fig. 7, the factory environment
always has lower RSSIs, compared with the home and office
environments. In the factory environment, the RSSI fluctuates
from −75 dB to −60 dB over the experiment period of four
hours; in the home and office environments, the RSSI is
mostly around −60 dB. The reason is that the factory space
contains large metal objects such as machines and moving
manufacturing components which may cause the high path loss
of radio waves and strong multipath fading propagation effects.
In addition, the size of the home, office, and factory spaces
are about 10 m2, 200 m2, 1000 m2, respectively. The reflections
from the surrounding walls in a smaller space can typically
enhance RSSI. Fig. 7 also shows that the RSSI decreases with
the indoor space size.

Fig. 8 shows box plots for the distributions of the round-
trip transmission delay and energy consumption of the data
packets that are transmitted from the camera to the fog node
over a duration of four hours under three environments. The
packet transmission energy consumption is the total amount of
energy that the camera consumes during the round-trip delay.
From Fig. 8, the packet energy consumption and delay in
the factory environment fluctuates in wider ranges than those
under the home and office environments. Moreover, the factory
environment has the highest maximum packet transmission
delay and energy consumption. These results indicate that the
data transmissions in the factory environment are subject to
more fluctuating delay and energy consumption, compared
with the office and home environments. The reason is that
when the wireless channel condition is poor, the camera may
need to retransmit the packet for multiple times before the
successful delivery. Moreover, with the time-varying and noisy
wireless channel in the factory, the number of retransmission
times is more variable.

V. DRL-BASED ADAPTATION

From §IV, the resolution, local processing method (JPEG
compression or autoencoder networks), and wireless channel
condition are the main factors affecting the image processing
latency and energy consumption of EFCam. In addition, the
image frame rate also greatly affects the camera energy con-
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sumption. In this paper, we focus on adapting the configuration
for these system parameters to minimize the camera energy
consumption while maintaining the desired image processing
latency and visual sensing accuracy, under dynamic variations
of wireless channel condition and application requirements.
In what follows, we formulate the configuration adaptation
problem as a Makov decision process (MDP) and propose a
DRL-based solution.

A. MDP Formulation

Time is divided into intervals with identical duration of
τ seconds, which is referred as adaptation period. The con-
figuration adaptation is performed at the beginning of every
adaptation period, called a time step.

System state: The system state, denoted by x, is a vector
x = [ξ, η], where ξ represents the image processing result
and η is the RSSI of the wireless channel at the current time
step. In our case study application of industrial product object
tracking, the ξ ∈ {0, 1} indicates whether an object is detected
in the last frame captured in the previous adaptation period.

Configuration action: Let f ∈ [fmin, fmax] denote the
number of frames per adaptation period τ , where fmin and
fmax are the minimum and maximum number of image frames
required by the application, respectively. The camera performs
the image scaling to resize the captured images to a resolution,
denoted by r ∈ [rmin, rmax], where the rmin and rmax denote
the minimum and maximum resolutions, respectively. We
denote c as the local image processing mode (i.e., the JPEG
with a quality index and autoencoder network with a setting
for its hyperparameters). The configuration action, denoted by
a, is a vector a = [f, r, c].

Reward function: When an action a is performed at the
current time step with a system state of x, let eτ (x, a) denote
the total energy consumed by the camera for the image
sensing, scaling, local processing, and data transmission over
the adaptation period of τ seconds; let lmax(x, a) denote
the maximum image processing latency during the period
capturing f images; let φ denote the number of images that
are captured and correctly recognized during the period of τ .
We define a penalty function as follows:

p(x, a) = λ1 · N (lmax(x, a)− lth) + λ2 · N (φreq − φ), (1)

where lth is the upper bound threshold for the maximum
latency, φreq is the number of correctly recognized images
required over the current period of τ , λ1 and λ2 are config-
urable weights, N (x) is a normalization process, i.e., N (x) =
max(x,0)
xmax

. From the definition of p(x, a), if the maximum

Fig. 10. Workflow of DRL-based adaptation.

latency lmax(s, a) does not exceed the lth and the φ(x, a)
is higher than φreq, which means that no delays exceed the
threshold and enough images are captured and recognized
correctly, no penalty will be applied. The immediate reward,
denoted by r(x, a), is defined as r(x, a) = −eτ (x, a)−p(x, a).
Thus, the reward is defined based on the weighted sum of the
energy consumption and the degree of violating of the latency
and accuracy requirements.

We now use the case study application of industrial product
object tracking as an example to illustrate the setting of the
reward function. We define φreq as the required number of
correctly recognized images in the current period of τ . It is
calculated as φreq = 1 + ρreq · ∆t, where ρreq is the required
frame rate and ∆t is a time duration that the objects appear
in the camera’s view during the period of τ . Fig. 9 shows an
example that the ∆t in the ith and jth adaptation periods equal
to τ seconds and zero, respectively. As a result, the accuracy
requirement φreq in the two adaptation periods are 1 + ρreq · τ
and 1, respectively. The φreq is equal to or higher than one to
make sure that at least one image is correctly recognized in
an adaptation period.

B. Approach Overview

The main objective of the above MDP problem is to find an
adaptation policy that determines a based on x to maximize
the expected reward over a long run, i.e., E[r]. In general, it is
difficult to design a closed-form adaptation policy to maximize
E[r] because the state evolution of the system (i.e., ξ and η) has
complex dynamics. To deal with this challenge, we adopt the
DRL to learn the optimal configuration adaptation. Typically,
DRL agent learns the configuration adaptation policy during
the online interactions with the camera system. However, for
the formulated configuration adaptation problem, the online
DRL learning scheme has the following two issues. First,
it may take a long time to converge, which may lead to
the camera’s excessive battery energy consumption. Second,
during the online learning phase, measuring the camera’s
power and image processing accuracy is cumbersome or
infeasible. The camera is not capable of metering its power in
real time, which requires an external power meter. Moreover,
the image classification accuracy cannot be obtained during
the online learning due to the lack of ground truth labels. To
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Fig. 11. Impacts of the RSSI on packet transmission latency and energy
consumption. The line and belt represent the mean value and the ±3 standard
deviation of the fitted Gaussian distributions, respectively.

address these issues, we adopt an offline training approach as
illustrated in Fig. 10, which consists of three steps. First, we
model the image processing latency and energy consumption
based on real data traces collected from the deployment field.
Second, we use the real data traces and models built in the
first step to drive the offline training of the DRL agent. Third,
after the completion of the offline training, the DRL agent
is commissioned to adapt the configuration of EFCam for
industrial visual sensing tasks.

C. Modeling Latency and Energy Consumption

This section models the image processing latency and cam-
era energy consumption. The resulted models will be used for
driving the offline training of the DRL agent. Denote by l(x, a)
and e(x, a) the image processing latency and camera energy
consumption, respectively, when an action a is taken at state x.
They can be expressed as: l(x, a) = lr + lc +

∑n
i=1 lp(η), and

e(x, a) = (lr + lc)po +
∑n
i=1 ep(η) + eidle, where lr, lc, lp(η)

are the image scaling, compression and packet transmission
latency, respectively; po is the camera’s operating power; eidle
is energy consumed in the idle mode; and n is the number of
packets used to deliver an image to the fog node. Given r and
c, the lr and lc can be determined by offline measurements.
Using real measurements, we fit stochastic distributions to
model the lp(η) and ep(η) as follows.

Our measurements are shown in Fig. 11. When the RSSI
η is lower than −60 dB, the lp(η) and ep(η) each follows the
same distribution regardless of the RSSI. When the RSSI η is
above −60 dB, their distributions vary with the RSSI. Thus,
we fit two distributions for the lp(η) and ep(η) using all the
data with η < −60 dB. Then, for each η that is greater than
or equal to 60 dB, we fit two separate distributions for the
lp(η) and ep(η). Figs. 12 and 13 show the histograms of real
lp(η) and ep(η) data and the fitted density functions, when
η < −60 dB, η = −60 dB, and η = −59 dB. The histograms
for other η levels that are greater than −59 dB are not shown.
From Figs. 12 and 13, we can see that the histogram and fitted
density function of lp(η) and ep(η) are different under each
of the RSSI levels. Fig. 11 also shows the mean values and
the ranges of ±3 standard deviations of the fitted distributions
under various RSSI levels.
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Fig. 12. Histograms and fitted Gaussian distributions for packet transmission
latency under different RSSI levels. Results for the RSSI levels greater than
−59 dB are not shown.
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Fig. 13. Histograms and fitted Gaussian distributions for the camera energy
consumption under different RSSI levels. Results for the RSSI levels greater
than −59 dB are not shown.

D. Offline Training of DRL Agent

We adopt the learning framework in [12] to train offline a
deep Q-network (DQN) for the configuration adaptation agent
to capture a good policy to address the problem formulated
in §V-A. Specifically, the DQN is trained through interacting
with a simulated EFCam environment for N episodes, each of
which consists of T time steps. The simulation is driven by
real data traces. An episode starts with a state chosen randomly
from the training data that include real traces of the RSSI
and time-series object images. Then, at the kth time step, an
action a[k] is selected for state x[k] according to the ε-greedy
algorithm. Given the selected action a[k], the images from
the image traces are fed to compression or feature extraction
module. Then, the CNNs are used to classify the reconstructed
images (cf. §IV). The ξ[k + 1] is set to the classification
result of the last image captured in the current period, while
the η[k + 1] is taken from the RSSI trace. To calculate the
immediate reward r[k], the latency and power consumption
are estimated using the models developed in §V-C. The φ and
φreq are calculated using the image classification results and
real image traces, respectively. During the learning phase, two
mechanisms, i.e., experience replay and target Q-network, are
used to update the weights of the DQN every time step.

VI. EVALUATION

This section evaluates the DRL-based configuration adapta-
tion for the vision-based product object tracking application.
In what follows, we present the performance of the proposed
DRL approach using simulations driven by real data traces.
Lastly, we evaluate the performance of the trained DRL agent
in real experiments.



Fig. 14. DQN training results with various λ2 settings (λ1=1, lth=200ms).

A. Offline DRL Training and Performance

1) DRL and simulation settings: We build a fully connected
deep neural network as the DQN that consists of an input layer,
three hidden layers and a linear output layer. Three hidden
layers has 128, 64, and 32 ReLUs, respectively. The DRL
agent takes as input the system state a = [ξ, η] and chooses
the action a = [f, r, c] from a discrete action space: f is from
{1, 2, 3, 4, 5}; r is from {16 × 16, 24 × 24, 32 × 32}; c is
selected from three JPEG compression modes with the image
quality index of 0, 40, 80, and the three autoencoder models
developed in §IV. For the offline training of DQN, we use the
Adam optimizer with the learning rate of 0.0001. The ε of the
ε-greedy method decreases linearly from 1 to 0.1 during the
learning phase. The adaptation period τ is 5 seconds.

We use our Product dataset to drive the evaluation of
the industrial vision-based product object tracking application
system. In addition, we use real traces of 15,967 RSSI samples
measured in a factory over 4.5 hours, as illustrated in Fig. 7
to model the condition of the industrial wireless environment.
In particular, the first 10,000 RSSI and 10,000 image samples
are used for training and the remaining data for evaluating the
trained DRL agent. For the performance requirements, we set
the ρreq to 0.8, and lth to 200 ms.

2) Training of DRL agent: The offline training is conducted
for N = 400 epochs, each of which includes T = 500
adaptation periods. We evaluate the convergence of the DRL
agent training under various settings for λ1 and λ2, which
affect the trade-off between the energy consumption and
compliance with the latency/accuracy requirements. Fig. 14
shows the DQN training traces of average rewards, average
energy, average latency and accuracy penalties when the λ2 is
from 10 to 15 and λ1 = 10. Along with the training epochs, the
reward always increases and then becomes flat under different
settings of λ2. With λ2 = 10, all the energy consumption,
latency, and accuracy penalties have increasing variances but
decreasing averages. Differently, when λ2 = 15, the penalties

(a) Accuracy. (b) Latency. (c) Power.

Fig. 15. Execution results under various settings of λ2 and λ1 = 1 and lth
= 200ms. The red line in (b) represents the lth.

are close to zero and the energy consumption remains stable.
This is because with a higher weight λ2, the DRL agent is
trained toward minimizing the accuracy penalty. We also train
the DRL agent under various settings for the λ1, lth and ρreq.
The results show that the DRL agent can converge after a
certain number of training epochs (e.g., 400) with the reward
learning curves similar to that shown Fig. 14.

3) DRL performance: We evaluate the performance of the
trained DRL agent for adapting the configuration of EFCam
in trace-driven simulations over a period of 1,000 adaptation
periods. Fig. 15 shows the accuracy compliance (i.e.,

∑
φ∑
φreq

),
box plots for the distribution of latency and average cam-
era power over the 1,000 adaptation periods under various
settings for λ2 from 3 to 15. Higher accuracy compliance
indicates that more images are correctly recognized to meet
the application’s accuracy requirement. From Fig. 15(a), the
accuracy compliance increases with λ2. The DRL approach
can adapt the camera’s configuration to meet the accuracy
requirement, i.e.,

∑
φ∑
φreq
≥ 1 under λ2 ≥ 10. From Fig. 15(b),

the latency is mostly below the lth under various λ2 settings.
Moreover, the camera power consumption increases with λ2
as shown in Fig. 15(c). This is because with higher λ2, the
camera increases the frame rate and resolution and selects
the JPEG or autoencoder mode such that more images are
recognized correctly. Thus, the camera consumes more power
for processing and data transmission.

B. Real-World Experiments

We conduct a set of experiments to investigate the perfor-
mance of EFCam in real environments. At the camera, we use
C++ and APIs provided by the ESP32-CAM to implement the
image scaling, JPEG compression, encoder of the autoencoder,
BLE-based data transmission, and parameter configuration.
The fog node is prototyped by a Raspberry Pi 4 single-
board computer, in which the JPEG decompressor, decoder
of the autoencoder, CNN image classifiers and DRL agent are
implemented in Python 3.7 using TensorFlow 2.3 and PyTorch
1.6. The implementation of these models requires a total of
13.6 MB memory which cannot be provided by the ESP32-
CAM with 4.52 MB RAM only. Thus, offloading the CNN
computation to the fog is required. We perform experiments in
a lab in which the wireless camera and fog node are separated
for about 2 meters. We use our Product images to model the



(a) Accuracy. (b) Latency. (c) Power.

Fig. 16. Results in real experiments. For DRL, λ1=1, λ2=10, lth=200ms.

product object tracking system. At the fog node, the DRL
agent trained with λ1 = 1, λ2 = 10, and lth = 200 ms is used
to adapt the configuration for the camera.

We compare our DRL-based approach with four baseline
approaches which are variants of a hysteresis-based camera
configuration adaptation approach in an existing study [7].
Specifically, the first two baseline approaches always select
the maximum resolution (i.e., r = rmax) and the maximum
number of captured images (i.e., f = fmax), and adapt the
image pre-processing mode c (i.e., feature extraction or JPEG
compression modes) as follows:

• The prioritized-latency (PL-1) baseline approach selects
the c that leads to the shortest latency.

• The prioritized-accuracy (PA-1) baseline approach selects
the c that leads to the largest number of correctly recog-
nized images φ.

The remaining two baseline approaches are PL-2 and PA-
2, which additionally adapt the configuration for the f .
Specifically, with the PL-2 and PA-2 approaches, the initial
configuration of the f is set to fmax. At the beginning of each
adaptation period, if the product objects do not appear in the
last frame of the previous period (i.e., ξ = 0), f is decreased
by 1. Otherwise, f is increased by 1 until it reaches to fmax.

Fig. 16 shows the accuracy compliance, box plots for the
latency, and average power consumption of the camera under
our DRL approach and four baseline schemes over an exper-
iment period of one hour. The PA-1 approach achieves the
highest accuracy compliance but leads to the longest latency
and requires the highest power consumption. The reason is
that to achieve higher accuracy, the PA-1 approach always
selects the autoencoders for image compression at the camera,
which results in the long compression latency. Moreover,
the PA-1 and PA-2 overprovision the accuracy performance
(i.e., the accuracy compliance is higher than one) at the cost
of high power consumption. On the other hand, the PL-2
has the shortest latency but the lowest accuracy compliance.
This is because with the PL-2 approach, the camera always
selects the JPEG compression mode which leads to lower
compression latency but low image quality. Compared with the
four baseline approaches, the proposed DRL approach mostly
meets the accuracy and latency requirements and consumes
the lowest power. These results imply that the proposed DRL
approach can strike good trade-off points to achieve more
energy savings and higher sensing performance compliance

levels. Specifically, over a period of one hour, our DRL
approach can achieve power saving of about 61.1%, compared
with the PA-1 approach. The above results show the superiority
of our DRL approach, compared with the hysteresis-based
baseline approaches.

VII. CONCLUSION

This paper designed and implemented EFCam, an industrial
wireless camera system which uses low-power wireless com-
munication and edge-fog computing to achieve cordless and
energy-efficient visual sensing. We formulated a configuration
adaptation problem that aims to minimize the energy con-
sumption of the wireless camera, while maintaining the visual
sensing performance of the deep model at the fog node, under
dynamic variations of application requirement and wireless
channel conditions. We applied deep reinforcement learning
to learn the optimal adaptation policy. Extensive evaluation
shows that the DRL-based adaptation approach can achieve
better accuracy and latency with lower energy consumption
for an industrial product object tracking application, compared
with four baselines incorporating hysteresis-based adaptation.
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