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Abstract
Molecular interactions underlie nearly all biologi-
cal processes. However, most machine learning
models treat molecules in isolation or specialize
in a single type of interaction, which prevents gen-
eralization across biomolecular classes and limits
the ability to systematically model interaction in-
terfaces. We introduce ATOMICA, a geometric
deep learning model that learns atomic-scale rep-
resentations of intermolecular interfaces across
diverse biomolecular modalities, including small
molecules, metal ions, amino acids, and nucleic
acids. ATOMICA uses a self-supervised denois-
ing and masking objective to train on 2,037,972 in-
teraction complexes and generate hierarchical em-
beddings at the levels of atoms, chemical blocks,
and molecular interfaces. The model learns gener-
alizable representations across molecular classes.
We apply ATOMICA to the interfaceome and
show that proteins that interact similarly with ions,
small molecules, nucleic acids, lipids, and pro-
teins tend to be involved in the same disease. We
then construct five modality-specific interfaceome
networks termed ATOMICANETs, which con-
nect proteins based on interaction interface simi-
larity. These networks identify disease pathways
across 27 conditions. Finally, we use ATOMICA
to annotate the dark proteome—proteins lacking
known structure or function—by predicting 2,646
previously uncharacterized ligand-binding sites
for metal ions and cofactors.

1. Introduction
Molecular interactions influence all aspects of chemistry and
biology. Despite advances in structure prediction and molec-
ular modeling, prevailing machine learning approaches em-
phasize modeling molecules in isolation (Rives et al., 2021;
Luo et al., 2022) or provide limited modeling of molec-
ular interactions, typically restricted to a specific type of
interaction, such as protein-ligand and protein-protein in-
teractions (Gainza et al., 2020). These methods rely on
separate architectures for different molecular classes, pre-
venting cross-modality knowledge transfer and limiting the

generalizability of learned representations.

Current generative models, including AlphaFold (Google
DeepMind AlphaFold Team & Isomorphic Labs Team,
2023) and RosettaFold (Krishna et al., 2024), generate
molecular structures but do not explicitly learn representa-
tions of intermolecular interactions. We lack a generalizable
approach to represent and fingerprint interaction complexes
of biomolecules. A universal representation learning model
that operates at the atom scale, captures multi-modal molec-
ular interactions, and learns generalizable representations
across biomolecular modalities could address this limitation.
Existing models primarily learn molecular representations,
whereas a model that explicitly represents molecular interac-
tions could unify predictive modeling across different types
of biomolecular complexes.

The geometry of intermolecular interactions follows fun-
damental physical and chemical principles, yet the diver-
sity of interacting molecular types introduces fundamen-
tal modeling challenges. Key biomolecular interactions,
including protein-RNA, protein-DNA, protein-metal ion,
protein-small molecule, protein-peptide, nucleic acid-small
molecule, and protein-protein interactions, share universal
spatial constraints, such as hydrogen bonding, van der Waals
forces, π-stacking, and electrostatic interactions. However,
each type of interaction varies dramatically in binding affin-
ity, interface size, chemical composition, and functional
roles. For example, protein-protein interfaces are often
large (median of 2,000-4,000Å2), stabilized by multiple
hydrophobic and electrostatic contacts, whereas protein-
ligand binding sites are smaller (median of 300-1,500Å2)
and shaped by high-affinity, highly specific binding pock-
ets (Evans et al., 2021; Krishna et al., 2024). RNA and
DNA interfaces introduce additional sequence-dependent
constraints, while metal ions exhibit coordination-specific
geometry. Existing deep learning models largely treat these
interactions independently, limiting cross-modality knowl-
edge transfer. Jointly modeling atomic interactions across
diverse biomolecular interface geometries is essential to de-
veloping generalizable, transferable molecular interaction
representations, yet remains highly challenging due to the
heterogeneity in molecular residues, steric constraints, and
biochemical environments.

Present Work. We introduce ATOMICA, an all-atom geo-
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metric deep learning model that learns representations of in-
termolecular complexes across diverse biomolecular modal-
ities, including small molecules, metals, amino acids, and
nucleic acids. Unlike existing models that focus on single
molecular types, ATOMICA generalizes across modalities
by leveraging a pretraining dataset of 2,037,972 interaction
complexes. These include 1,747,710 small-molecule inter-
action complexes from the Cambridge Structural Database
(CSD) (Groom et al., 2016) and 290,262 biomolecular com-
plexes from Q-BioLiP and the Protein Data Bank (PDB)
(Wei et al., 2023; Yang et al., 2012; Berman et al., 2000).
Learning from interactions spanning proteins, nucleic acids,
small molecules, and ions enables ATOMICA to generalize
across molecular modalities. This cross-domain generaliz-
ability improves representation quality in low-data modal-
ities, such as for protein-nucleic acid interactions that are
less common in the PDB.

Analysis of the interfaceome reveals that proteins with simi-
lar ATOMICA-derived interaction profiles often participate
in shared disease pathways across protein interactions with
small molecules, ions, lipids, nucleic acids, and proteins.
Moving beyond annotated proteins, we apply ATOMICA
to the dark proteome—regions of the proteome lacking func-
tional labels (Perdigão et al., 2015; Barrio-Hernandez et al.,
2023; Kulkarni & Uversky, 2018). Finetuning ATOMICA
enables the annotation of 2,646 binding sites with putative
ions and cofactors, revealing functions in ancient and un-
characterized protein families.

2. Related Work
Representation learning for biomolecules. Despite ad-
vances in representation learning, existing models remain
constrained to specific molecular modalities, limiting their
applicability across the biochemical landscape. Protein and
nucleic acid models leverage sequence-based tokenization
(Lin et al., 2023; Rives et al., 2021; Chen et al., 2022; Boyd
et al., 2023; Celaj et al., 2023), whereas small molecules
require atomic-scale modeling due to their lack of inherent
sequential structure (Chithrananda et al., 2020; Liu et al.,
2021a; Zaidi et al., 2022; Atz et al., 2021; Wang et al.,
2022b; Fang et al., 2022).

Predictive models for molecular interactions. Current
molecular interaction models are specialized, with distinct
architectures designed for protein-ligand binding affinity
(Moesser et al., 2022; Yan et al., 2023; Moon et al., 2022;
Li et al., 2021; Meng & Xia, 2021), binding site prediction
(Meller et al., 2023; Krapp et al., 2023; Jiménez et al., 2017;
Kandel et al., 2021), protein-peptide interactions (Tsaban
et al., 2022; Cunningham et al., 2020; Lei et al., 2021),
protein-protein interactions (Gainza et al., 2020; Sverris-
son et al., 2021; Gainza et al., 2023; Bryant et al., 2022;
Das & Chakrabarti, 2021; Renaud et al., 2021), and protein-

RNA recognition (Lam et al., 2019; Xia et al., 2021; Ali-
panahi et al., 2015; Wei et al., 2022; Sun et al., 2021; Rube
et al., 2022). This siloed approach prevents knowledge
transfer across molecular classes even though interactions
between proteins, nucleic acids, small molecules, and ions
obey shared physicochemical principles.

Universal generative models for biomolecular structure
prediction. Structure-based generative models have demon-
strated the feasibility of learning across all biomolecular
modalities present in the Protein Data Bank (Krishna et al.,
2024; Google DeepMind AlphaFold Team & Isomorphic
Labs Team, 2023). However, existing approaches do not
yet unify molecular representations across interaction types,
leaving open the question of whether a single model can
capture the full spectrum of biomolecular interactions.

3. ATOMICA Approach
We model the interactions between molecules, which is
contrary to prior work focused on modeling individual
molecules or protein surfaces. By modeling intermolec-
ular interactions universally across all modalities, we instill
the inductive prior that they are all fundamentally governed
by the same chemistry principles of intermolecular bonding,
such as hydrogen bonding, hydrophobic interactions, and
Van der Waals forces.

3.1. Problem Setup: Self-Supervised Learning on
Interaction Complexes

Given is an unlabeled pretraining dataset of graphs of
molecular complexes, D = {Gi | i = 1, . . . , N}, and a
target dataset of labeled graphs of molecular complexes
S = {(Gitarget, yi) | i = 1, . . . ,M}, where M << N .
Our goal is to pretrain a model F on D such that it gener-
ates representations hi = F(Gi) for every intermolecular
patch Gi that are chemically informative, and F can also be
finetuned on S to predict yi for every Gitarget.

3.2. Overview of ATOMICA Model Architecture

Hierarchical graph input. We represent each interaction
complex using a hierarchical graph that models both atomic-
level details and higher-order chemical structure (Fig. 1).
At the first level, nodes represent individual atoms, each de-
fined by its element type and 3D spatial coordinates. At the
second level, we group atoms into chemically meaningful
blocks—such as amino acids in proteins, nucleotides in nu-
cleic acids, or functional moieties in small molecules—and
construct a block-level graph (Hermosilla et al., 2021; Wang
et al., 2022a; Kong et al., 2023). This hierarchical design
captures both local atomic interactions and broader struc-
tural organization and has theoretically higher expressive
power than purely atom-level graphs (Wollschläger et al.,
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2024). Within each level, we define two types of edges:
intramolecular edges connect nearby nodes within the same
molecule, and intermolecular edges connect nearby nodes
across the interface between two interacting molecules (de-
tails are available in Appendix A).

Figure 1. Overview of ATOMICA architecture, interaction com-
plexes are modeled at the atom and block level. Message passing
between nodes at each level is done via intermolecular and in-
tramolecular edges.

ATOMICA equivariant all-atom graph neural network.
ATOMICA is a self-supervised geometric graph neural
network that learns multi-scale embeddings at the atom,
block, and graph level from the structure of interacting
two molecules (Fig. 1). Unlike modality-specific models,
ATOMICA is capable of generating embeddings at the in-
terface for any complex of interacting molecular modalities
(small molecules, metals, amino acids, and nucleic acids).
We use SE(3)-equivariant tensor field networks for message
passing (Appendix B), which have been used to predict in-
teratomic potentials (Batzner et al., 2022; Musaelian et al.,
2023), molecular coupling (Corso et al., 2023), and scoring
RNA structure (Townshend et al., 2021). Message passing
is first done at the atom-level across intermolecular and in-
tramolecular edges and it is then pooled to the blocks the
nodes belong to. Message passing is completed again at the
block-level and graph-level embeddings are then produced
by pooling the block-level embeddings.

Self-supervised learning with ATOMICA. To learn high-
quality representations, we employ a denoising and masked
block strategy (Appendix C). Denoising is effective as a
pretraining objective to learn representations of 3D confor-
mations of single molecules for property prediction (Luo
et al., 2022; Zaidi et al., 2023; Zhou et al., 2023; Godwin
et al., 2022), unsupervised binding affinity prediction (Jin
et al., 2023). Masking is a powerful self-supervised objec-
tive for learning representations of protein sequences (Rives
et al., 2021) and nucleic acid sequences (Dalla-Torre et al.,
2025). The ATOMICA pretraining strategy applies a rigid

SE(3) transformation as well as random rotation and torsion
angles of one of the molecular entities at the interface. The
model denoising output is optimized to minimize the dis-
tance to the score function of the global translation, global
rotation, and torsion noise distributions (Corso et al., 2023;
Jin et al., 2023). By denoising and masking one molecular
interface with respect to the other, this approach aims to
capture the chemical, structural, and geometric patterns of
intermolecular interaction.

Formally, given Gi ∈ D, which is comprised of atom and
block nodes from two interacting molecules. G̃i is a per-
turbed graph created by applying two transformations to a
molecule in Gi, which is selected uniform randomly:

• Rigid rotation and translation: A rotation vector is sam-
pled ω ∼ p(ω) = NSO(3) and we apply the rotation
of all atom and block coordinates about the center of
the selected molecule. A translation vector is sam-
pled t ∼ p(t) = N (0, σ2

t I) and we apply this transla-
tion to all atom and block coordinates of the selected
molecule.

• Torsion angle noising: Torsion angles are sampled
θ ∼ p(θ) = NSO(2)m where m is the number of
rotatable bonds in the molecule. For peptides, proteins,
RNA and DNA we only perturb rotatable bonds in the
side chain.

ATOMICA is pre-trained to predict the rotation score sω ∈
R3, translation score st ∈ R3, and torsion score sθ ∈ Rm
from G̃i (details are available in Appendix C).

In addition to denoising, ATOMICA is also pretrained with
identifying masked out block identities. For each graph
Gi, 10% of blocks are randomly sampled and their block
identities are replaced with the special ‘mask’ block and we
denote these blocks as B.

3.3. Pretraining Dataset

We assembled a dataset of pairs of interacting molecular
entities from the Cambridge Structural Database (CSD)
v2022.3.0 (Groom et al., 2016) and Q-BioLiP (Wei et al.,
2023; Yang et al., 2012) which includes all biologically
relevant intermolecular interactions across all modalities
available in the Protein Data Bank. This results in 1,767,710
interacting pairs of small molecules. From Q-BioLiP, which
includes structures of protein complexes with proteins,
DNA, RNA, peptides, ligands, and ions, as well as nucleic
acid ligand structures from the PDB, we obtain 337,993
interaction complexes. The interaction interface between
two entities is defined by atoms within an 8 Å distance to the
other molecule. For larger molecules (proteins and nucleic
acids), we crop the molecules to only keep residues at the
interaction interface. Details are available in Appendix D.
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4. Experiments
4.1. Latent space of ATOMICA captures

physicochemical features

Experimental Setup. ATOMICA is used to generate multi-
scale embeddings at the atom, block, and graph level for
complexes of molecules between ions, small molecules, pep-
tides, proteins, and nucleic acids. We use uniform manifold
approximation and projection (UMAP) to project the latent
space of graph embeddings of all interaction complexes in
our dataset (Fig. 2). We also explore the mean node embed-
dings of all nodes of each atomic element and block types in
the pretraining dataset by projecting into 2D with principal
component analysis (PCA).

Figure 2. UMAP of latent space of all interaction complexes seen
during pretraining of ATOMICA.

Results. While not explicitly provided by the model, inter-
actions are enriched by the modalities of interactions and
capture relative chemical similarity of interactions. For ex-
ample, the embeddings of protein-protein interactions lie
closer to the embeddings of protein-peptide interactions. We
confirm this by comparing the distribution of cosine sim-
ilarity between protein-protein and protein-peptide graph
embeddings compared to the cosine similarity between any
ATOMICA embedding and protein-peptide graph embed-
dings (KS-statistic = 0.100, p-value < 0.001). We also ob-
serve the organization of the latent space of the mean node
embeddings according to periodic table location (Fig. 3a).
Additionally, we see organization according to the chemical

properties of the amino acids (Fig. 3b) and these are distinct
from DNA and RNA nucleotides. This suggests ATOM-
ICA has learned chemical similarity from the patterns of
occurrence of elements and amino acids observed during
pretraining.

Figure 3. a Principle components of mean embedding of elements
in the pretraining validation and test set. b Principle components of
mean embedding of amino acids and nucleotides in the pretraining
validation and test set.

4.2. ATOMICA identifies residues on interaction
interfaces involved in intermolecular bonds

Experimental Setup. We examine the ability of ATOM-
ICA to differentiate between blocks that are involved in
intermolecular bonds (hydrogen bonding, pi-stacking, hy-
drophobic interactions) and other blocks present at the in-
terface (Fig. 4a). To identify amino acids involved in inter-
molecular interactions, we analyzed protein-small molecule
complexes in the test set using PLIP (Adasme et al., 2021).
We then quantified the contribution of each amino acid to
the interaction by calculating an importance score, ATOMI-
CASCORE (Fig. 4b). For amino acid i, ATOMICASCORE

is defined as ai = sim
(
hG,hGmask

i

)
, where hG is the em-

bedding of the original complex, and hGmask
i

represents the
embedding of the modified complex in which amino acid
i has been replaced with a special mask token and its con-
stituent atoms substituted with a single special mask atom.
Here, sim denotes the cosine similarity between the two
embedding vectors. In total, we analyze 5,691 protein-small
molecule complexes with at least 20 amino acid blocks
at the interface. We report precision at rank 10 (Fig. 4c).
For reference, we compare this to randomly nominating 10
amino acids at the interface, and to ESM-2 (3 billion param-
eters) (Rives et al., 2021) and score amino acids by the log
likelihood of the masked mutant compared to the original
amino acid (Meier et al., 2021) (Fig. 4d). Although ATOM-
ICA is not trained on any labels related to intermolecular
bonds, this setup enables a zero-shot probing of its learned
representations.

Results. We evaluate precision at rank 10 and find that
ATOMICASCORE achieves the highest performance, with
an average of 2.7 amino acid blocks in intermolecular bonds
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Table 1. AUPRC performance of ATOMICA on masked-block
prediction: models pretrained on all interacting-modality pairs vs.
single-pair baselines.

Modality All pairs One pair

Mean Std Mean Std

SM-SM 0.958 0.006 0.958 0.003
Protein-protein 0.789 0.002 0.774 0.002
D/RNA-SM 0.758 0.060 0.595 0.034
Protein-DNA 0.707 0.014 0.243 0.007
Protein-peptide 0.666 0.004 0.322 0.006
Protein-ion 0.621 0.020 0.540 0.021
Protein-RNA 0.552 0.008 0.187 0.008
Protein-SM 0.331 0.005 0.307 0.005

SM = small molecule

retrieved, followed by ESM-2 with 2.4, and the random
reference with 2.0 (Fig. 4d). ATOMICA’s ability to identify
intermolecular bonds is also uniformly true across the most
common types of intermolecular bonds observed (Fig. S1).

4.3. Pretraining on interaction complexes of multiple
modalities leads to better generalizability

Experimental Setup. To evaluate the benefits of incorpo-
rating multiple molecular modalities in pretraining ATOM-
ICA, we compare the full ATOMICA model against iden-
tical model architectures that were each pretrained exclu-
sively on individual pairs of interacting molecular modalities
(Fig. 5a). We reserve a test set of interface complexes with
a maximum of 30% sequence similarity and minimal small
molecular structure similarity to structures observed in train-
ing and validation to evaluate the models on. To evaluate
generalizability and model embedding quality, we use the
accuracy of the models on masked block identity predic-
tion. This task tests whether the model can recover missing
structural components based on their context, which reflects
chemically meaningful constraints such as conserved motifs
or binding site configurations.

Results. Pretraining across molecular modalities of inter-
acting molecules improves block identity recovery over pre-
training on a singular type of interacting molecules on the
test set for all pairs of modalities (Table 1). ATOMICA’s
performance gains are correlated with dataset size (Fig. 5b),
reflecting established scaling laws in LLMs where perfor-
mance improves with dataset size (Kaplan et al., 2020).
ATOMICA also demonstrates for the first time an approach
to address the limited availability of structural data for inter-
action complexes with DNA, RNA, and peptide modalities.

4.4. Proteins that share similar ATOMICA protein
interfaces tend to be involved in the same disease

Complex diseases are caused by a signaling network’s dys-
regulation rather than a single protein (Menche et al., 2015)

and often involve dysfunctional interactions with ions (Leal
et al., 2012), small molecules (Sawicki et al., 2015; Shan
et al., 2015), lipids (Saliba et al., 2015), or nucleic acids
(Tateishi-Karimata & Sugimoto, 2021). Proteins involved
in the same disease tend to be clustered in the same net-
work neighborhood where network relations are defined via
protein-protein interactions and maps of cellular pathways
(Kratz et al., 2023; Zheng et al., 2021). In this section, we
test the hypothesis if relations defined by similar interac-
tions with other molecular modalities, given by ATOMICA
embeddings, are likely to be involved in the same disease.

Experimental setup. To test this hypothesis, we first embed
the human interfaceome, defined as the set of human protein
interfaces that mediate interactions with other molecules, in-
cluding ions, small molecules, nucleic acids, lipids, and pro-
teins. We use PeSTo (Krapp et al., 2023) to predict modality-
specific binding sites for 23,391 protein structures predicted
by AlphaFold2. We finetune ATOMICA-Interface from
ATOMICA to support embedding of protein interfaces in-
stead of complexes (details in Appendix F). To ensure we
are working with high-quality protein structures, we remove
binding sites of protein interfaces that have low confidence
pLDDT scores < 70. For disease proteins, we select a di-
verse set of 82 diseases and their disease-associated proteins
from OpenTargets (Buniello et al., 2025).

Results. We confirm that proteins with similar interaction
profiles in the interfacome networks often participate in the
same disease pathways, as the probability of pairs of nodes
being involved in the same disease is higher if the two nodes
have higher ATOMICA similarity (Fig. 6). We next explore
how ATOMICA similarity across the interfaceome can be
applied to studying disease proteins in Section 4.5.

4.5. Disease pathways in interfaceome-based
ATOMICANET networks

Formally, for disease d with associated proteins Vd, the
disease pathway Hd = (Vd, Ed) is a subnetwork of the
network of proteins. Since interactions of proteins with
other molecular modalities are often implicated in diseases,
relying on protein-protein interactions and maps of cellular
pathways may fail to capture this information. We study
disease pathways from a new angle with ATOMICA to
with ATOMICANETs where proteins implicated in the
same disease are more likely to share similar ion, small
molecule, nucleic acid, and lipid interactions.

Construction of ATOMICANET. All binding sites for
each modality extracted with PeSTo are embedded with
ATOMICA-Interface. We compute pairwise cosine simi-
larity matrices from the embeddings for each of the three
ATOMICA-Interface replicates and then average them to
produce a single, consolidated cosine similarity matrix. Us-
ing the resultant cosine similarity matrix, we then construct

5



275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

ATOMICA: Learning Universal Representations of Intermolecular Interactions

Figure 4. a Some blocks in the interaction complex are involved in intermolecular bonds (hydrogen bonds, hydrophobic interactions,
pi-stacking, etc.). b Definition of ATOMICASCORE for block i, cosine similarity between interaction graph with block i masked and
unmasked. c Nomination of blocks involved in intermolecular bonds at interfaces based on ATOMICASCORE. The reference ranking is
determined by random ordering of the blocks at the interaction interface. d Number of blocks involved in intermolecular bonds in the
top 10 nominated blocks of ATOMICASCORE, ESM-2 (3B parameters), and reference for protein-small molecule complexes in the
pretraining test set.

Figure 5. a Schema to test generalizability of representations
learned by ATOMICA trained on all pairs of modalities com-
pared to trained on one pair of modalities. We evaluate quality of
representations based on masked block identity accuracy.
b Increase in AUPRC between models trained pretrained on all
pairs v.s. one pair.

a network for each modality based on a cosine similarity
threshold and enforce that each node in the network has
a maximum degree of 50. Cutoffs are defined such that
90% of the proteins in each modality are in the largest
connected component. We construct these networks using
NetworkX (Hagberg et al., 2008). In total, for the largest
connected component in each network, we have 5,831 nodes
in ATOMICANET-Ion, 5,246 nodes in ATOMICANET-
Small-Molecule, 5,974 nodes in ATOMICANET-Nucleic-
Acid, 6,055 nodes in ATOMICANET-Lipid, and 15,450
nodes in ATOMICANET-Protein (Fig. 7a). Visualisations
of the networks are constructed with Gephi (Bastian et al.,
2009).

Figure 6. Cosine similarity of ATOMICA embeddings of protein
interface pairs across five interacting modalities compared to the
probability of the protein pair being involved in the same disease.

Observation of disease pathways in ATOMICANETs.
For the target-disease associations, we study their dis-
ease pathways across the five ATOMICANETs. A dis-
ease pathway is one or more connected subgraphs com-
prised of disease proteins (Menche et al., 2015), with a
minimum requirement of 25 associated genes for a dis-
ease for there to be an observable disease pathway. We
refer to a disease d with associated proteins in a modal-
ity network V modality

d and the disease pathway is the undi-

rected subgraph Hmodality
d =

(
V modality
d , Emodality

d

)
. Follow-

ing (Agrawal et al., 2018), we use their definition of the
size of the largest pathway component as the fraction of
disease proteins that lie inHmodality

d ’s largest connected com-
ponent. For all modalities with |V modality

d | > 25, we analyze
the size of the largest pathway component. To assess the
statistical significance of the observed pathway size, we
compared it against a distribution derived from 1,000 ran-
domized sets of disease proteins. These randomized sets
were constructed to match the degree distribution of the
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original disease proteins, thereby accounting for the het-
erogeneous connectivity patterns in ATOMICANETs. For
each network, we applied the Benjamini-Hochberg proce-
dure to correct for multiple hypothesis testing, considering
results with adjusted p-values < 0.05 as statistically sig-
nificant. Across the five networks, the average size of the
largest pathway component for ATOMICANET-Ion is 11%,
for ATOMICANET-Small-Molecule is 11%, for ATOMI-
CANET-Lipid is 16%, for ATOMICANET-Nucleic-Acid
is 10%, and for ATOMICANET-Protein is 6% Fig. 7c). In
the following section, we highlight some of the largest path-
way components observed for diseases across the ATOMI-
CANET-Ion, Small-Molecule, and Lipid.

Examining disease pathways in ATOMICANETs. First
we look at disease pathways analyzed in ATOMICANET-
Lipid, of the 40 diseases with sufficient disease proteins we
found that 22 diseases exhibited significantly larger largest
pathway components than expected, and 11 diseases had sig-
nificantly fewer disconnected pathway components than ex-
pected. Asthma has 43 disease proteins in ATOMICANET-
Lipid (Fig 7b), and has a well-observed disease pathway
(p-value < 0.001 for size of largest pathway component
and p-value < 0.001 for number of pathway components)
with 10 proteins in the largest pathway component, which is
comprised of sodium channel family proteins (OpenTargets
mean strength of evidence = 0.54, mean evidence sources
= 5.2). In the second and third largest pathway component,
we observe 8 and 5 proteins, respectively, both involving
G protein-coupled receptors (adenosine, α/β-adrenergic,
muscarinic, and histamine receptors). These clusters have a
mean strength of evidence of 0.61 and 0.56 with on average
66 and 245 sources of evidence (Ochoa et al., 2021). Pro-
teins in these two components form key interactions with
PIP2, a minority lipid component of the cell membrane (Yen
et al., 2018a).

Next in ATOMICANET-Ion, 10 diseases had significantly
larger pathway components than expected and 11 diseases
had fewer disconnected pathway components than expected
of the 35 diseases with sufficient disease proteins. Myeloid
leukemia has 53 disease proteins in ATOMICANET-Ion
(Fig 7b), with 12 proteins in the largest pathway compo-
nent (p-value < 0.001) with a mean strength of evidence
of 0.60 and on average 401 sources of evidence per dis-
ease protein (Ochoa et al., 2021). This component includes
TET2, a Fe2+ binder, which plays a key role in active DNA
demethylation and is frequently mutated in acute myeloid
leukemia (Yen et al., 2018b). Four DNA binding proteins
with zinc finger domains are also observed (DNMT1, POLE,
WT1, PHF6) in the largest pathway component on ATOM-
ICANET-Ion, showing the ability of ATOMICANET to
capture disease-relevant similar interaction patterns. Other
proteins in this cluster include isoforms of protein kinase C
and serine/threonine-protein kinase D proteins.

In ATOMICANET-Small-Molecule, one disease had a sig-
nificantly larger pathway component than expected of the 37
diseases with sufficient disease proteins. Hypertrophic car-
diomyopathy has 45 associated proteins in ATOMICANET-
Small-Molecule (Fig 7b), and the largest pathway compo-
nent is of size 7 (p-value = 0.037) with a mean strength of
evidence of 0.70 and on average 630 sources of evidence
per disease protein (Ochoa et al., 2021). Since ATOMI-
CANET-Small-Molecule connects proteins that share sim-
ilar binding sites, we find that the proteins in this com-
ponent share nucleotide (GTP/GDP, ATP/ADP) binding
sites. These proteins include: myosin heavy chain proteins
(MYH6, MYH7B) – which are responsible for force genera-
tion in cardiac muscle and are frequently mutated in patients
with hypertrophic cardiomyopathy (Jiang et al., 2013; Mc-
Nally, 2002), cardiac actin (ACTC1) – a crucial sarcomeric
protein which is also strongly associated with the disease
(Despond & Dawson, 2018), and HRAS – a GTPase regu-
lating a host of signaling pathways and cellular responses
(Matsuda et al., 2017).

For ATOMICANET-Nucleic-Acid and ATOMICANET-
Protein we do not observe any statistically significant path-
way components. These networks also have relatively
smaller largest pathway components with a mean size of
3.4 members for ATOMICANET-Nucleic-Acid and 6.0
for ATOMICANET-Protein, compared to 7.3 for ATOMI-
CANET-Small-Molecule, 8.3 for ATOMICANET-Ion, and
8.9 for ATOMICANET-Lipid. Thus, disease pathways are
likely currently unobservable in ATOMICANET-Nucleic-
Acid and ATOMICANET-Protein (Menche et al., 2015).

4.6. Ligand annotation for binding sites in the dark
proteome

In this section we demonstrate the application of ATOM-
ICA outside of the human proteome, and to poorly anno-
tated proteins. Ion and cofactor binding sites are conserved
functional features widely distributed throughout the pro-
teome (Cammisa et al., 2013; Harel et al., 2014). Even
among proteins that differ significantly in their overall se-
quence or structure, ligand-binding regions often align with
functional domains preserved across evolution (Harel et al.,
2014). Structural databases such as PDB document com-
pelling examples where proteins with minimal sequence
similarity (as low as 22%) still maintain strikingly similar
ligand-binding sites (Corso et al., 2024). Suggesting the
potential of structure-based approaches, such as ATOM-
ICA, to annotate functional binding sites in regions of the
proteome that currently lack any functional description, col-
lectively known as the dark proteome (Perdigão et al., 2015;
Barrio-Hernandez et al., 2023; Kulkarni & Uversky, 2018).
Currently, 711,705 protein clusters (30.9% of all clusters
cataloged in the AlphaFold (AFDB) FoldSeek) fall into
this dark category. Investigating these dark clusters pro-
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Figure 7. Interfaceome disease pathways on ATOMICANETs. a Set up of the modality specific networks based on ATOMICA
embedding similarity of protein interfaces with ions, small molecules, lipids, nucleic acids, and proteins. b The three largest pathway
components for: asthma in ATOMICANET-Lipid, myeloid leukemia in ATOMICANET-Ion, hypertrophic cardiomyopathy in ATOMI-
CANET-Small-Molecule. c Relative size of largest pathway component across diseases for each modality network. We display only the
diseases which have statistically larger pathway components than expected in at least one ATOMICANET modality.

vides opportunities to discover previously unknown protein
functions, elucidate novel molecular mechanisms, and re-
construct evolutionary trajectories leading to present-day
protein diversity (Perdigão et al., 2015; Bitard-Feildel &
Callebaut, 2017; Levitt, 2009).

Experimental Setup. Dark proteins often differ signifi-
cantly from characterized proteins in both sequence and
structure, sequence-based methods have difficulty assign-
ing functional annotations such as ligand or cofactor bind-
ing (Hekkelman et al., 2023). ATOMICA addresses this
challenge by structurally annotating ion and cofactor bind-
ing sites in the dark proteome. We restrict our analysis to
dark clusters with high confidence AlphaFold2 structures
and identify ligand binding sites are on the surface of pro-
teins with PeSTo. In total, 2,851 proteins are identified
with ion binding sites and 969 proteins are identified with
small molecule binding sites. We finetune ATOMICA to
predict ion and cofactor identities given respective protein
pockets from structures in the PDB for 9 metal ions and 12
commonly found cofactors (Appendix G).

Results. ATOMICA annotates metal ion binding sites for
2,565 out of 2,851 proteins and ligand binding sites for
81 out of 969 proteins. Using AlphaFold3 we confirm the
quality of ATOMICA predictions with ipTM scores of the
complexes, which serve as a quantitative metric for the gen-
eration quality of complexes (Bhat et al., 2023; Abramson
et al., 2024). The results from ATOMICA are statistically
significantly higher than reference complexes for ions (KS
Statistic: 0.11, p-value < 0.001) and ligands (KS Statistic:
0.54, p-value < 0.001) (Fig. 8). Reference complexes are
determined by randomly assigning ions and ligands to the
predicted binding sites in the dark proteome. These annota-
tions span proteins across cellular organisms with a total of

1,265 unique species, of which 1,051 are Bacteria, 99 are
Eukaryota, and 115 are Archaea.

Figure 8. a Prediction of ligands for metal ion and small molecule
binding sites of proteins in the dark proteome. b AlphaFold3 ipTM
scores of complexes from ATOMICA-Ligand annotated small
molecule and metal ion compared to reference.

5. Conclusion
ATOMICA is a model for representing intermolecular inter-
actions across molecular modalities. By pretraining on over
two million molecular complexes involving small molecules,
metal ions, amino acids, and nucleic acids, ATOMICA
learns hierarchical, chemically grounded embeddings that
generalize across interaction types. Exploring the human
interfacome with ATOMICA embeddings also shows pro-
teins sharing similar interaction interfaces are likely to be in-
volved in the same disease. ATOMICA generalizes to previ-
ously uncharacterized proteins in the dark proteome, allow-
ing the annotation of ion and cofactor binding sites in struc-
turally and functionally novel protein families. As efforts to-
ward a virtual cell intensify (Bunne et al., 2024), approaches
such as ATOMICA will be necessary to model the full
spectrum of molecular interactions, including protein-ion,
protein-small molecule, protein-protein, and protein-nucleic
acid contacts, at atomic resolution. Extending ATOMICA
to integrate sequence-derived and experimental interaction
evidence will improve its applicability in capturing molecu-
lar interactions in biological systems.
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Impact Statement
This work advances the field of machine learning by in-
troducing a universal representation learning framework
for modeling intermolecular interactions across diverse
biomolecular modalities. By generalizing across molec-
ular modalities, it may accelerate biomedical research and
therapeutic development. While the model could be applied
in settings with dual-use potential, such as compound de-
sign, we rely on public datasets and focus on medically
relevant applications.
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A. Construction of hierarchical graphs of interacting molecules
Given the atomic structure of two molecules interacting, an atom-level graph is then constructed. Each atom in the complex
maps to an atom node in the graph with the features: element and 3D coordinates of the atom. Intramolecular atom edges
are defined for each atom to the k nearest atoms in the same molecule. Intermolecular atom edges are defined for each atom
to the k nearest atoms in the other molecule. In total, there are 118 atom types based on the elements of the periodic table.

Atom nodes are connected to the next level of nodes, block nodes. Block nodes have the features: block type and 3D
coordinates of the block given by the mean of the atomic coordinates of atoms in the block. Each atom is connected to one
block node. For proteins, peptides, DNA, and RNA, we define the atoms that belong to a given block by the amino acid
and nucleotide residues. For small molecule ligands, blocks are defined by a vocabulary of 290 common chemical motifs.
Atoms of sections of the molecule that cannot be fragmented into these motifs become blocks comprised of one atom. We
use the vocabulary and fragmentation of the molecule to blocks from (Kong et al., 2023). Intramolecular block edges are
defined for each atom to the k nearest blocks in the same molecule. Intramolecular block edges are defined for each atom to
the k nearest blocks in the other molecule. In total, there are the following block types: 20 for canonical amino acids, 4 for
DNA nucleotides, 4 for RNA nucleotides, 290 for small molecule fragments, and 118 for elemental blocks.

In addition, there are three special block types: mask, unknown, and global. The mask node is applied at pretraining for
masked identity prediction of blocks. Unknown nodes are used for nodes that do not fall into the defined vocabulary, such as
non-canonical amino acids and nucleotides. There are also two atom global-type nodes at the atom and block level. The two
global nodes are connected to all nodes in each molecule at their respective level.

B. All-atom graph neural network
ATOMICA uses a SE(3)-equivariant 3D message passing network on graphs of molecular complexes to learn representations
that are informative of the intermolecular interactions between molecules.

B.1. Atom-level representation learning

Here we outline the SE(3)-equivariant 3D message passing network for ATOMICA on the nodes of the graph Gi. Several
rotational equivariant neural networks have been introduced for modeling molecules (Schütt et al., 2018; Klicpera et al., 2021;
Liu et al., 2021b; Batzner et al., 2022). We build on the E(3)-equivariant neural network layers presented by Tensor-Field
Networks implemented in e3nn (Geiger & Smidt, 2022) and DiffDock (Corso et al., 2023). Message passing for the
intermolecular edges and intramolecular edges is done separately, but the message passing framework for the two edge types
is the same.

The feature vector of atom (hatom
a ) node a in Gi is a geometric object comprised of a direct sum of irreducible representations

of the O(3) symmetry group. The feature vectors hatom
a,(λ,p) are indexed with λ, p, where λ = 0, 1, 2, . . . is a non-negative

integer denoting the rotation order and p ∈ {o, e} indicates odd or even parity, which together index the irreducible
representations (irreps) of O(3). In our model, we set λmax = 1 for hatom

a , and we denote the number of scalar (0e) and
pseudoscalar (0o) irrep features in hatom

a with ns, and the number of vector (1o) and pseudovector (1e) irrep features in hatom
a

with nv.

The atom-type of node a, determined by the element of the atom, is embedded with a normal distribution and trainable
weights as a scalar ns × 0e. There are LGNN layers of message passing between atom nodes. At each layer l, the node
updates for node a in the graph of interaction complex Gi are given by:

hatom
a ← hatom

a + LN

(
1

|Na|
∑
b∈Na

Y (r̂ab)⊗ψab
hatom
b

)
(1)

with ψab = Ψ
(
eab, tab,h

atom
a,(0e),h

atom
b,(0e)

)
. (2)

After each layer l of message passing, hatom
a is filtered down to irreps with λmax = 2. After L layers the hatom

a embedding is
projected with a 2-layer MLP to a dnode-dimension vector.
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B.2. Block-level representation learning

The feature vector of block (hblock
b ) node b in Gi is also a geometric object defined in the same way as (hatom

a ). We initialize
block nodes using a scalar, ns× 0e, trainable embedding of block types.

Let dnode be the dimension of hblock
b and nheads be the number of attention heads. We define dh = dnode/nheads as the

dimension per head. The multi-head cross-attention operation can be expressed as:

hblock
b ← hblock

b + MultiHead(hblock
b , {hatom

a }a∈Ab
) (3)

where Ab is the set of atoms in block b, and MultiHead is defined as:

MultiHead(hblock
b , {hatom

a }a∈Ab
) = Concat(head1, . . . , headnheads)WO (4)

and each head computed as:

headi =
∑
a∈Ab

αbav
atom,(i)
a with αba =

exp
(
q

block,(i)
b · katom,(i)

a /
√
dh

)
∑
v∈Ab

exp
(
q

block,(i)
b · katom,(i)

v /
√
dh

) (5)

where q
block,(i)
b = hblock

b W
(i)
Q , k

atom,(i)
a = hatom

a W
(i)
K , v

atom,(i)
a = hatom

a W
(i)
V , and W

(i)
Q ,W

(i)
K ,W

(i)
V ∈ Rdnode×dh and

WO ∈ Rdnode×dnode . Message passing between the block nodes follows the same architecture as the atom nodes described in
equation 1 with separate model parameters.

B.3. Graph-level representation learning

To pool hblock
b ∈ Rd for b ∈ Gi for a graph-level representation hgraph

i ∈ Rd, we use multi-head self-attention for Lpool

layers and sum the output hblock
b for all b ∈ Gi for hgraph

i .

C. Self-supervised learning on interaction complexes
C.1. Geometric Denoising

Node-level denoising as an objective function has been useful for pretraining on 3D coordinate molecular datasets from
DFT generated molecules to prevent over-smoothing of GNNs (Godwin et al., 2021), and it has proven that it is related
to learning a force field of per-atom forces (Zaidi et al., 2022; Feng et al., 2023). In addition, denoising is linked to
score-matching which has also been popular in training generative models (Ho et al., 2020; Corso et al., 2023) as well as
unsupervised binding affinity prediction (Jin et al., 2023). Thus, this motivates the application of denoising as an objective
for self-supervised training.

To predict the rotation score sω ∈ R3 and the translation score st ∈ R3 from G̃i, the node representations at the atom and
block level are convolved with the center of the graph using a tensor field network (Corso et al., 2023):

s← LN

(
1

|A′|
∑
a∈A′

Y (r̂ca)⊗ϕca
hatom
a

)
with ϕca = Φ

(
eca,h

atom
a,(0e)

)
, (6)

where node a ∈ A′ are the atom nodes in the perturbed molecule and c is the center of the perturbed molecule. This
is a weighted tensor product, with the weights given by a 2-layer MLP, Φ, which takes as input the Gaussian smearing
dedge-embedding of the Euclidean distance between coordinates of the center c and node a, and the scalar component of
hatom
a .

Finally, the rotation score is given by the pseudovector irrep component sω = Γω(h
graph
i ) ∗ s(1e) and the translation score

is given by the vector irrep component st = Γt(h
graph
i ) ∗ s(1o), where Γω and Γt are 2-layer MLPs that project the graph

representation of Gi to a single scalar.

To predict the torsion score sθ ∈ Rm the atom nodes are convolved with the center of the rotatable bonds connecting atoms
az0, az1. Let z denote the center of one of the rotatable bonds. We connect Nz = {a | a ∈ A′, ||r̂za|| < 5Å} which is all
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atoms in the perturbed molecule within 5 Å to the center of the bond.

hz =
1

|Nz|
∑
a∈Nz

(
Y 2(r̂z)⊗ Y (r̂za)

)
⊗πza hatom

a with πza = Π(t)
(
eza,h

atom
a,(0e),h

atom
az0,(0e)

+ hatom
az1,(0e)

)
, (7)

The first tensor product is between the second order irreps of the unit direction vector along the two atoms az0, az1 of
the bond z, Y 2(r̂z), and the unit direction vector between the center of the bond and atom a, Y (r̂za). This is followed
by a weighted tensor product with the weights given by a 2-layer MLP, Π, which takes as input the Gaussian smearing
dedge-embedding of the Euclidean distance between coordinates of the bond center z and node a, the scalar component
of hatom

a , and the sum of the scalar component of the two atoms in the bond haz0 ,haz1 . Finally, we sum the scalar and
pseudoscalar components of hz and project it to a single scalar sθz

using a 2-layer MLP.

We calculate the loss components with:

lω = ||sω −∇ω log p(ω)||2 (8)

lt = ||st −∇t log p(t)||2 (9)

lθ =
∑
z

||sθz −∇θz log p(θz)||2 (10)

where ∇t log p(t) = −t/σ2
t . The values of ∇t log p(t),∇θz

log p(θz) can be calculated by pre-computing a truncated
infinite series following (Corso et al., 2023; Jin et al., 2023).

C.2. Masking Blocks

In addition to denoising, we also pretrain the model by masking out block identities and predicting the masked block
identities. For each graph Gi, 10% of blocks are randomly sampled and their block identities are replaced with the special
‘mask’ block and we denote these blocks as B. For a masked block b ∈ B, the probability vector of the block identity is
predicted with ŷb = Softmax(Υ(hblock

b )), where Υ is a 2-layer MLP. We calculate the masked loss using a cross-entropy
loss:

lm = − 1

|B|
∑
b∈B

yb · log(ŷb) (11)

C.3. Loss Function

The pretraining loss is then calculated by a weighted sum of the above loss functions:

L = βωlω + βtlt + βθlθ + βmlm

.

D. Curation of pretraining dataset
D.1. Small molecule structures

We extract structures of small molecule interactions from the Cambridge Structural Database (CSD) v2023.2.0. The database
was filtered for all CSD entries that satisfied the following criteria: organic, not polymeric, has 3D coordinates, no disorder,
no errors, no metals, had only one SMILES string describing the crystal entry (in other words, each crystal is comprised of
only one chemical compound), and molecules with 6-50 heavy atoms. CSD entries are unit cells of infinitely repeating
crystal lattices. For our purposes of learning intermolecular interactions, we sampled many patches of intermolecular
interactions to represent all examples of intermolecular interactions in a given unit cell. Given an entry of the CSD, we iterate
through each unique conformer in the unit cell and extract all pairs of interactions with neighboring peripheral conformers
that are within 4 Å to the central conformer using the CSD Python API. In total, there are 1,767,710 structures of molecular
pairs from 375,941 CSD entries. Inspired by fingerprint-based similarity measures used in chemistry (Bajusz et al., 2015),
we use a one-hot encoding of the molecular complex from a vocabulary of 290 common chemical motifs (Kong et al., 2023)
and Manhattan distance between the embeddings to sample 1,000 molecular complexes and their 100 nearest neighbors,
giving a total of 10,000 molecular complexes for validation and test splits respectively, that are distinct from the training set.
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D.2. Biomolecular structures

We extract structures of interacting molecules from QBioLiP (June 2024), this includes structures of proteins interacting
with ions, ligands, DNA, RNA, peptides, and proteins, and nucleic acids interacting with ions and ligands from the Protein
Databank (PDB). For proteins, peptides, DNA, and RNA, we crop the complex to keep all residues within 8 Å to any atom,
amino acid, or nucleic acid residue in the other molecule. In total, there are 124,541 protein-protein interaction complexes,
119,017 protein-small molecule interaction complexes, 74,514 pro-tein-ion interaction complexes, 8,475 protein-peptide
interaction complexes, 5,185 nucleic acid-ligand interaction complexes, 3,511 protein-RNA interaction complexes, and
2,750 protein-DNA interaction complexes. For protein-ion, protein-small molecule, protein-peptide, and protein-protein
molecular complexes, we cluster each modality with 30% protein sequence similarity using MMseqs2 with a coverage
of 80%, sensitivity of 8, and cluster mode 1(Steinegger & Söding, 2017). For protein-protein complexes, we also ensure
that for any two complexes in different clusters there is a maximum of 30% sequence similarity between all chains in the
two complexes. For protein-RNA and protein-DNA complexes, we cluster by 30% protein sequence similarity and 30%
nucleotide similarity using MMseqs2 with the same settings as above, this ensures that complexes in different clusters have
a maximum of 30% protein sequence similarity and 30% nucleotide sequence similarity. For nucleic acid-ligand structures,
we cluster based on 30% nucleotide sequence similarity. Finally, we split clusters into train, validation, and test splits using
an 8:1:1 ratio.

E. Training details for ATOMICA
We pretrain ATOMICA on the training split of biomolecular structures and small molecule structures to generate embeddings
of molecular complexes at the atom, block, and graph scale. To learn representations in a self-supervised manner, during
training, we apply noise to the atomic coordinates and mask block identities of the input graphs of the molecular complex.
At inference time, embeddings from the graphs are generated without noise or masked blocks.

E.1. Hyperparameter tuning

We employed a hyperparameter optimization strategy utilizing Ray Tune (Liaw et al., 2018) in conjunction with Optuna
(Akiba et al., 2019) and the Asynchronous Successive Halving Algorithm (ASHA) scheduler (Li et al., 2020). The
hyperparameter space we search on includes: the number of nearest neighbors to define edges to in the graph k ∈ [4,8, 16],
dropout in the tensor field network ∈ [0.00, 0.01, 0.05, 0.10], edge dimension dedge ∈ [16, 24, 32], node dimension
dnode ∈ [16, 24,32], and the number of tensor field network layers L ∈ [4, 6, 8]. The best hyperparameters are shown in
bold and chosen based on the lowest validation loss when trained on a random 10% subsample of the training set. Then
for determining the level of noise to apply to the interaction complexes, we conducted a second hyperparameter search
on rotation σω ∈ [0.25, 0.5, 1], ωmax ∈ [0.25,0.5, 1], translation σt ∈ [0.5,1, 1.5], and torsion σθ ∈ [0.25,0.5, 1]. The
best hyperparameters are shown in bold and chosen based on the highest masked block identity prediction accuracy when
trained on a random 10% subsample of the training set. For the loss function, we set βω = 1, βt = 1, βm = 0.1, and the
block identities are randomly masked at 10% probability. ATOMICA is trained on the full training set with the above
hyperparameters, the learning rate cycles between 1e-4 and 1e-6 using Cosine Annealing Warm Restarts, with a cycle length
of 400,000 steps, and the model is trained for 150 epochs.

E.2. Implementation

ATOMICA is implemented with PyTorch (Version 2.1.1) (Paszke et al., 2019) and PyTorch Geometric (Version 2.1.1)
(Fey & Lenssen, 2019). Training runs were monitored with Weights and Biases (Biewald, 2020). Models are trained on 4
NVIDIA H100 Tensor Core GPUs in parallel.

E.3. Training ATOMICA on a single pair of interacting modalities

To demonstrate representations learned by ATOMICA are generalizable across multiple modalities, we train models with
identical architecture and hyperparameters on only single pairs of interacting modalities (small molecules, protein-ion,
protein-small molecule, protein-DNA, protein-RNA, protein-peptide, protein-protein, nucleic acid-small molecule). Using
the same training set-up as ATOMICA, these models are trained on the same training data as ATOMICA but filtered for
only one pair of interacting modalities. The models are trained for 150 epochs on 4 NVIDIA H100 Tensor Core GPUs in
parallel. The model checkpoint with the lowest validation loss is then used for further finetuning on masked block identity
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prediction on the same training data for 50 epochs with a learning rate of 1e-4. We also finetune ATOMICA for 50 epochs
on block identity prediction for each pair of interacting modalities. To compare the quality of embeddings generated by
ATOMICA and versions of it trained on single modalities, we evaluate the accuracy of masked block identity prediction on
a test set. This test set was not seen by any of the models and has 30% sequence similarity and minimal small molecule
fingerprint similarity to any training and validation data.

F. Interfaceome
F.1. Training ATOMICA-Interface

To support the embedding of protein binding interfaces, we finetune ATOMICA with structures of interfaces rather than
complexes. For our finetuning dataset, we adapt the biomolecular structures from the training set. For each graph Gi we
crop the graph to only the protein interface of one protein in the complex Gi ′. Let hgraph

i = F(Gi) where F is pretrained
and frozen ATOMICA. Our goal is to train G initialized with F such that hgraph ′

i = G(Gi ′) for every intermolecular patch
Gi such that hgraph

i and hgraph ′
i are aligned. Then for a randomly sampled mini-batch of Nbatch examples, the loss function is:

Linterface = −
Nbatch∑
i=1

log
exp

(
sim

(
hgraph
i ,hgraph ′

i

)
/τ
)

∑Nbatch
j=1 1[j ̸=i] exp

(
sim

(
hgraph
i ,hgraph ′

j

)
/τ
)

+ log
exp

(
sim

(
hgraph ′
i ,hgraph

i

)
/τ
)

∑Nbatch
j=1 1[j ̸=i] exp

(
sim

(
hgraph
j ,hgraph ′

i

)
/τ
) (12)

where sim is cosine similarity and τ is the temperature factor. This contrastive loss is adapted from the normalized
temperature-scaled cross-entropy loss (Chen et al., 2020). We finetune the model for 50 epochs with a cyclic learning rate
ranging from 1e-3 to 1e-5 over 50000 steps. Three replicates of the model are trained. The models were finetuned on 4
NVIDIA H100 Tensor Core GPUs in parallel.

F.2. Detection of binding sites across the human proteome with PeSTo

We employ PeSTo (Version 4.1) (Krapp et al., 2023), which for a given protein structure, PeSTo predicts the probability
of each amino acid as a binding site for an ion, ligand, nucleic acid, protein, and lipid binder. PeSTo is run across all
human proteins from the AlphaFold Protein Structure Database (Varadi et al., 2024; Jumper et al., 2021). For each protein
and binding modality, we extract binding sites as all amino acids with PeSTo confidence > 0.7 and AlphaFold2 pLDDT
> 70 with at least 5 amino acids at the binding site to keep only high-confidence binding sites. This gives us a total of
6,458 protein-ion binding interfaces, 5,856 protein-ligand binding interfaces, 6,649 protein-nucleic acid binding sites, 6,766
protein-lipid binding sites, and 17,158 protein-protein binding interfaces.

F.3. Therapeutic targets dataset

We extract targets for diseases from Open Targets (2024-09) (Ochoa et al., 2021). Genes are associated with diseases using
multiple lines of evidence (genetic association, somatic mutations, known drug, affected pathway) and we use the overall
score, which is an aggregated sum of all evidence sources. For all diseases, we keep all targets with overall evidence scores
> 0.5.

G. Dark proteome binding site characterization with ATOMICA-Ligand
We demonstrate versatility in ATOMICA and finetune the model for annotating ions and ligands to binding sites. The
finetuned version of the model is applied to putative binding sites in the dark proteome.

G.1. Training ATOMICA-Ligand

The objective is to predict the probability of a specific ion or ligand binding to a given protein interface pocket. We frame this
as a binary prediction task and finetune a separate model for each ion and small molecule. A predictive head is a Lligand-layer
MLP. For each ion and small molecule, we use RayTune with Optuna and ASHA to finetune ATOMICA-Ligand from
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Figure S1. Number of blocks involved in intermolecular bonds in the top 10 nominated blocks for protein-small molecule complexes
in the pretraining test set. We compare ATOMICASCORE, ESM-2 (3B), and a reference on the recovery of the following types of
intermolecular bonds: a hydrogen bonds, b hydrophobic interactions, and c pi-stacking.

ATOMICA and find the optimal hyperparameters among Lligand ∈ [3, 4, 5], learning rate ∈ [10−6, 10−3], non-linearity ∈
[relu, gelu, elu], hidden dimension of MLP ∈ [16, 32, 64], gradient clipping ∈ [None, 1], and the number of nearest
neighbors to define edges to in the graph k ∈ [4, 6, 8]. To address class imbalances in our dataset, we apply a weighted
sampling strategy during training, where each protein pocket receives a sampling weight inversely proportional to the total
count of its label class. For each ion and small molecule, we finetune ATOMICA-Ligand for 50 epochs on 1 NVIDIA H100
Tensor Core GPU. Three replicate models are trained for each ion and small molecule. For binary classification of binding
sites, we set thresholds that maximize the F1 score, constraining these values to fall within the range of 0.05 to 0.95.

G.2. Dataset curation

Given an ion or small molecule, we separate all graphs in the pretraining set containing this ion bound to a protein. We cluster
protein binders with a 30% protein sequence similarity cutoff, coverage of 80%, sensitivity of 8, and cluster mode 1 using
MMseqs2 (Steinegger & Söding, 2017). The clusters are then divided into training, validation, and test sets in an 8:1:1 ratio.
We set up this split for the following metal ions: Ca, Co, Cu, Fe, K, Mg, Mn, Na, Zn, and the following small molecules
with these PDB chemical codes: ADP (adenosine diphosphate), ATP (adenosine triphosphate), CIT (citric acid), CLA
(chlorophyll A), FAD (flavin adenine dinucleotide), GDP (guanosine diphosphate), GTP (guanosine triphosphate), HEC
(heme C), HEM (heme B), NAD (nicotinamide adenine dinucleotide), NAP (NADP+, nicotinamide adenine dinucleotide
phosphate, oxidized form), NDP (NADPH, nicotinamide adenine dinucleotide phosphate, reduced form).

G.3. Dark proteome annotation

The dark proteome is comprised of proteins that are dissimilar in sequence and structure from all currently annotated
proteins. We use the clusters of the dark proteome from FoldSeek cluster on the AlphaFold Protein Structure Database
(Barrio-Hernandez et al., 2023). We limit our analysis to the 33,482 clusters with an average pLDDT > 90. For each cluster,
we take the representative protein and run PeSTo on the protein structure to predict ion and small molecule binding sites.
We keep residues with PeSTo confidence > 0.8 as the putative binding site, with a minimum of 5 residues required. In total,
we extract 2,851 ion binding proteins and 969 small molecule binding proteins from the 33,482 representative proteins.
Given these binding interfaces, we run ATOMICA-Ligand for all finetuned ion and small molecules to annotate chemical
identities to the binding sites. We evaluated the quality of our predicted protein-ligand complexes by folding them with
AlphaFold3 and evaluating their ipTM scores. For comparison, we established a reference baseline using randomly sampled
proteins from the dark proteome with predicted ion and small molecule binding capabilities. These reference proteins were
selected and paired with ligands to match both the number and identity of annotated ligands in our predicted complexes. For
sequence-based annotation we run the Google Colab notebook with ProtNLM (Gane et al., 2022).
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