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ABSTRACT

Bayesian neural networks (BNNs) allow rigorous uncertainty quantification in
deep learning, but often come at a prohibitive computational cost. We propose
three different innovative architectures of partial trace-class Bayesian neural net-
works (PaTraC BNNs) that enable uncertainty quantification comparable to stan-
dard BNNs but use significantly fewer Bayesian parameters. These PaTraC BNNs
have computational and statistical advantages over standard Bayesian neural net-
works in terms of speed and memory requirements. Our proposed methodology
therefore facilitates reliable, robust, and scalable uncertainty quantification in neu-
ral networks. The three architectures build on trace-class neural network priors
which induce an ordering of the neural network parameters, and are thus a natural
choice in our framework. In a numerical simulation study, we verify the claimed
benefits, and further illustrate the performance of our proposed methodology on a
real-world dataset.

1 INTRODUCTION

Neural networks are important and powerful tools for the prediction and modelling of complex data.
Often, one large concern is in quantifying the uncertainty in the predictions of such a network.
Bayesian neural networks (BNNs) can be used to quantify this uncertainty (Neal, 1996; Izmailov
et al., 2021; Fortuin et al., 2021; Fortuin, 2022; Papamarkou et al., 2024), however the uncertainty
quantification often comes with a high computational cost. In an attempt to reduce the sometimes
prohibitively expensive running of BNNs, we wish to exploit the computational speed and efficiency
of training and running a standard neural network, and combine this with a Bayesian model in a
way that facilitates meaningful uncertainty quantification. With a similar goal in mind of capturing
uncertainty at a lower cost, previously, the idea of only applying Bayesian inference on the last layer
of a network has been studied in both the context of Bayesian Optimization Snoek et al. (2015) as
well as in our context of Bayesian Neural Networks, Zeng et al. (2018) and Brosse et al. (2020),
whose results suggested there is not much benefit to having any more than a single uncertainty
layer within the model. In contrast to these hybrid approaches, which allow layers to be only either
fully Bayesian or completely non-Bayesian (Valentin Jospin et al., 2020; Chang, 2021; Prabhudesai
et al., 2023), a partial Bayesian Neural Network (pBNN) approach (Calvo-Ordoñez et al., 2024),
also known as subnetwork inference (Izmailov et al., 2020; Daxberger et al., 2021b), allows layers
to be split into Bayesian and non-Bayesian parameters. Andrade & Sato (2024) investigate different
strategies when selecting Bayesian parameters in the neural network, and show that pBNNs can even
improve the predictive power of BNNs.

Unlike standard BNNs, trace-class Bayesian neural networks (Sell & Singh, 2023) introduce a natu-
ral ordering of the prior weights and thus naturally lend themselves to truncation. We will recall the
definition and some properties of trace-class BNNs in Section 2.1, before investigating partial trace-
class Bayesian neural networks (PaTraC BNNs), which we introduce in Section 3. In particular, we
look at three different potential structures for such PaTraC BNNs, and evaluate their effectiveness in
a numerical study in Section 4, as well as on the abalone data set (Nash et al., 1994) in Section 5. A
particular focus of this study lies on the PaTraC BNN’s ability to accurately quantify the uncertainty
in the target function of interest.

Our approach differs from these existing pBNNs in two important ways. First, we employ a trace-
class BNN prior (Sell & Singh, 2023) which by construction enforces a natural ordering of the
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network parameters, and which further suggests a node-based procedure to select Bayesian parame-
ters. Second, we select nodes based on their relative importance in the trained network, and turn the
associated weights into Bayesian parameters; rather than selecting parameters on their respective
values after training or picking full layers to be Bayesian. An exception to this is our out-PaTraC
BNN, which is more similar to the construction used by Franssen & Szabó (2022), where we focus
only on a subset of the final layer weights to be Bayesian.

Other relevant work related to ours include variational inference for BNNs (Graves, 2011; Wu et al.,
2018), which can be considered the state-of-the-art in BNN inference due to its low computational
cost, although it comes at a relatively high price in terms of posterior approximation (Foong et al.,
2020). Laplace approximations to BNNs (Daxberger et al., 2021a) also reduce the computational
cost of full BNN inference. Different priors for BNNs are discussed e. g. by Wenzel et al. (2020);
Noci et al. (2021); Fortuin (2022).

2 STATISTICAL SETTING

Given an input dimension d ∈ N and output dimension m ∈ N, we are interested in estimat-
ing a function f : Rd → Rm. Suppose there exists a true function f⋆ and a data generating
mechanism which gives rise to the likelihood function L(f |D), where we denoted D the observed
data set. For estimation purposes, we can now define a function class F , from which the classi-
cal maximum likelihood estimation approach is to find a function f̂MLE ∈ F which maximises
the likelihood, i. e. f̂MLE := argmaxf∈F L(f |D). Due to the monotonicity of the logarithm, this
is, of course, equivalent to minimising the negative log-likelihood, which we call the loss function
L(f) := − log(L(f |D)).

The choice of the function class F is of key importance to the practitioner, this involves consider-
ations such as model interpretability, perceived complexity of the target function to be estimated,
computational cost of available inference methods, and flexibility of the model. For the purposes
of this work, we are working with a nonparametric function class F imposed by a choice of a neu-
ral network structure. Such function classes have been shown to be capable of estimating a wide
range of functions to an arbitrary level of precision and are now ubiquitously used across disci-
plines (Härdle, 1990). One further major advantage of using neural networks is that inference can
be easily done using many existing optimisation libraries.

One of the limitations of optimising the neural network weights to estimate the function of interest
is that it does not provide understanding of the uncertainty around the estimate, i. e. it could be
that another neural network would be similarly capable at estimating the true function of interest.
Furthermore, trained neural networks are known to be overconfident even in regions with lower
amounts of training data (Kristiadi et al., 2020), and a desirable property of an estimation procedure
would be honest about the uncertainty around the estimated function, which should generally be
larger in regions with little training data. One principled approach to tackle these issues is given
by the Bayesian paradigm, which yields an entire distribution over possible neural networks, giving
more posterior probability to networks which fit the data well and are a priori probable.

More precisely, a prior distribution P (f) over all neural networks is defined by placing prior distri-
butions on the weights and biases of the network, which are then weighted by the likelihood to give
rise to the posterior distribution, which is well defined for a large range of priors even if taking the
number of network nodes to infinity (Neal, 1996; de G. Matthews et al., 2018). In what follows, we
define the prior distribution used throughout this paper, and then explain how to infer the posterior
distribution P (f |D) ∝ L(f |D)P (f) using Markov chain Monte Carlo methods.

2.1 TRACE-CLASS BAYESIAN NEURAL NETWORK PRIOR

We use the trace-class neural network prior (Sell & Singh, 2023), which, like other Bayesian neural
network priors, is well-defined in the infinite-width limit, but retains weights bounded away from 0
and thus allows one to interpret the (non-zero) function on the last network layer as hidden features
– a desirable property for interpretation purposes (Neal, 1996). Additionally, posterior inference
can be made more efficient as described in Section 2.2, and the asymmetry in the prior reduces
multimodality in the posterior distribution of the network (Sell & Singh, 2023). Let L be the total
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number of layers in the network including the output layer, and N (l) the number of nodes in the lth
layer, for l = 1, . . . , L, additionally we define N (0) := d. We write the pre-activated function on
the ith node in the lth network layer as

f
(l)
i (x) = b

(l)
i +

N(l−1)∑
j=1

w
(l)
i,jζ

(
f
(l−1)
j (x)

)
,

where we denote the bias of the ith node of layer l as b(l)i , the weight for the jth output of the layer
l − 1 to the ith node of layer l as w

(l)
i,j , and where ζ is the activation function. We summarise all

neural network parameters as θ = (w
(l)
i,j , b

(l)
i )N

(l),N(l−1),L
i=1,j=1,l=1 . While we choose the same activation for

all layers, one may generally choose layer-dependent activation functions ζ(l). The trace-class prior
for the weights and biases is now defined by letting

w
(1)
i,j ∼ N

(
0,

σ2
w(1)

iα

)
, w

(l)
i,j ∼ N

(
0,

σ2
w(l)

(ij)α

)
for l ≥ 2, b

(l)
i ∼ N

(
0,

σ2
b(l)

iα

)
,

where α > 1, σ2
w(l) > 0 and σ2

b(l)
> 0 are parameters to be specified. This forces the nodes in the

network which are ‘further down’ in a layer, i. e. those with larger indices, to have smaller variances.
The exception to this is the first layer, where the inputs should be given equal prior importance and
thus the variances for w(1)

i,j do not depend on j. The intuition behind the decreasing variances is that
we a priori believe some weights to be larger and others to be closer to 0, and the proposed prior
enforces this resulting in non-interchangeable nodes, with those nodes at the beginning of a layer
(i. e. small i and j) carrying more information than those further down in the layer (larger i, j). This
remains true when increasing the number of nodes in a layer, and even in the infinite-width limit
retains interpretable hidden features. We summarise all the variances in the covariance operator C.

2.2 POSTERIOR INFERENCE

As the posterior distribution over the neural network parameters is analytically intractable, we re-
sort to a Markov chain Monte Carlo (MCMC) method to approximate the posterior distribution.
Even in the infinite width limit, the weights and biases can be shown to fall into the Hilbert
space ℓ2 = {(a1, a2, . . .) ∈ RN :

∑∞
i=1 a

2
i < ∞} (Sell & Singh, 2023, Lemma 5), such that

we choose a dedicated Hilbert space MCMC method for posterior inference – the preconditioned
Crank-Nicholson Langevin (pCNL) algorithm (Cotter et al., 2013). Given a current set of weights
and biases u, the method proposes a move to v by

v =
1

2 + δ

(
(2− δ)u+ 2δCDℓ(u) +

√
8δw

)
,

where w ∼ N(0, C) is a random Gaussian vector, δ ∈ (0, 2) is a tuning parameter, C is the prior
covariance operator defined in Section 2.1, and ℓ is the log-likelihood. The acceptance probability
is given by min{1, exp(ρ(u, v)− ρ(v, u))}, where

ρ(u, v) = −ℓ(u)− 1

2
⟨u− v,Dℓ(u)⟩ − δ

4
⟨v + u,Dℓ(u)⟩+ δ

4
||
√
CDℓ(u)||2.

In our neural network setting, we have Dℓ(u) = ∇θℓ(u), i. e. the derivative of the log-likelihood
with respect to the neural network parameters.

3 PARTIAL TRACE-CLASS BAYESIAN NEURAL NETWORKS

We now propose different neural network structures that contain both Bayesian and non-Bayesian
parameters, giving rise to a posterior distribution over the Bayesian parameters, while the non-
Bayesian parameters are trained using off-the-shelf optimisation methods. For the Bayesian param-
eters, we adopt the trace-class prior described in Section 2.1, which gives rise to a natural ordering
of the nodes. Due to the split of the parameter space and the involved prior, we coin our architec-
tures Partial Trace-Class Bayesian Neural Networks (PaTraC BNNs). The proposed PaTraC BNNs
achieve better numerical performance, both in terms of computational speed per inference step and
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sample mixing speed, and have a lower memory requirement when compared to full (trace-class)
BNNs. Furthermore, full Bayesian inference remains possible on the output function, with the poste-
rior distributions of standard trace-class BNNs and PaTraC BNNs being close. There is a beneficial
trade-off in computational efficiency, mixing speed, and memory requirement versus the quality of
the uncertainty quantification retained, which we carefully examine in a numerical study in Sec-
tion 4. In what follows, we introduce the three different PaTraC BNN architectures, each of which
has a total of K Bayesian parameters; a table summarising the key properties and differences can be
found in Section E in the Supplementary Material.

(a) Sep-PaTraC BNN structure with
two Bayesian nodes and four opti-
mised nodes in each hidden layer of
the NN.

(b) Out-PaTraC BNN structure
with six nodes in each hidden layer
and two Bayesian weights on the
output layer.

(c) Mix-PaTraC BNN structure on
a network where we have six
nodes in each hidden layer and two
Bayesian nodes in each layer.

Figure 1: An illustration of the three different PaTraC BNN structures; green lines denote Bayesian
weights, green nodes have associated Bayesian biases, black lines denote optimised weights and
black nodes have associated optimised biases. The two red lines at the output in Subfigure 1a denote
a fixed weight of 1 (there is no bias on the very last node in the diagram). Note that we explicitly
visualise the non-linear activation function as distinct lines going into the post-activation nodes
represented by pink squares.

3.1 SEPARATE NETWORKS – SEP-PATRAC BNN

This architecture, illustrated in Figure 1a, consists of a standard neural network running alongside a
fully Bayesian neural network. The only interaction between these two is in the output layer, where
we sum the respective outputs of the two networks to get the PaTraC BNN output. The overall
posterior distribution arises from first training the non-Bayesian neural network, and then using
e.g. MCMC for posterior inference on the PaTraC BNN. This PaTraC BNN architecture can be
interpreted as estimating the posterior mode using the non-Bayesian neural network, and estimating
the uncertainty around it using a smaller but fully Bayesian neural network.

3.2 PARTIAL-BAYESIAN OUTPUT LAYER – OUT-PATRAC BNN

This PaTraC BNN architecture, illustrated in Figure 1b, arises from training a neural network before
turning those parameters on the output layer into Bayesian weights which correspond to the most im-

portant nodes on the last hidden layer. More precisely, let ηi :=
(
b
(L−1)
i

)2

+
∑N(L−2)

j=1

(
w

(L−1)
i,j

)2

be the sum of the squared biases and weights going into the ith node of the last hidden layer. The
Bayesian parameters are the N (L)biases of the output nodes, as well as the K/N (L) − 1 weights
for each node on the output layer corresponding to the largest ηi. To ensure that each output node
has the same number of Bayesian weights going into it, K should be a multiple of N (L), which
is always the case when there is only a single output node. Note that the out-PaTraC BNN can be
derived from Algorithm 1 by setting k = 0 in lines 2–21, and k = K/N (L) − 1 in lines 22–25.

In a spirit similar to Franssen & Szabó (2022), the interpretation here is that we can decompose
each output function into an expansion of ‘basis’ functions, i. e. the functions on the last hidden
layer. The key difference to their work is that we consider a mixture of both optimised and Bayesian
weights. Alternatively, the out-PaTraC BNN can also be thought of as equivalent to having a BNN
with N (L−1) inputs, N (L) outputs, and no hidden layers, where we choose all the output biases and
K −N (L) of the weights to be Bayesian (according to the order defined in the previous paragraph),
while the others are kept as the optimised weights trained previously.
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3.3 MIXED NETWORKS – MIX-PATRAC BNN

This structure, illustrated in Figure 1c, expands the idea of having a partially Bayesian layer, and
applies it across all layers of our network. As with the out-PaTraC BNN, a non-Bayesian neural
network is first trained, after which the nodes of each layer in the neural network are ordered using
the same method described in the previous subsection. After the ordering step, the top k nodes from
each layer are selected as Bayesian nodes, i. e. the biases attached to these nodes become Bayesian
and any weights which connect two Bayesian nodes together also become Bayesian. Note that a
sep-PaTraC BNN with k nodes per layer and a mix-PaTraC BNN with k Bayesian nodes per layer
will have the same number of Bayesian parameters. Pseudocode for sampling from the mix-PaTraC
BNN prior is given in Algorithm 1.

Notably, the mix-PaTraC BNN is a generalisation of the other two architectures. In comparison
to the sep-PaTraC BNN, it allows full interaction between the Bayesian and the optimised neural
networks, while when comparing it to the out-PaTraC BNN, Bayesian parameters can be found on
all layers of the network.

Algorithm 1 Procedure to sample from the mix-PaTraC BNN prior. In Line 7, the order statistic of
the ηi is defined, resulting in a relabelling of the nodes where i = 1 corresponds to the largest ηi,
i = 2 is the second largest, and so on. Tie-breaking is done using lexicographic ordering of the i.

1: Input: k ∈ N0,
(
(wopt)

(l)
i,j

)N(l),N(l−1),L

i=1,j=1,l=1
,
(
(bopt)

(l)
i

)N(l),L

i=1,l=1
▷ Input the number of Bayesian

nodes per layer, and the weights and biases after training/optimisation.
2: for l ∈ [L− 1] do
3: for i ∈ [N (l)] do

4: ηi :=
(
(bopt)

(l)
i

)2

+
∑N(l−1)

j=1

(
(wopt)

(l)
i,j

)2

5: end for
6: for i ∈ [N (l)] do
7: i←

∑N(l)

m=1 1{ηi ≤ ηm} ▷ Order statistic of the ηi.
8: if i ≤ k then ▷ Assign the Bayesian prior if the node is in the largest k nodes.

9: b
(l)
i ∼ N

(
0,

σ2

b(l)

iα

)
10: if l = 1 then
11: w

(l)
i,j ∼ N

(
0,

σ2

w(l)

iα

)
,∀j ∈ [N (0)]

12: else if l ̸= 1 then

13: w
(l)
i,j ∼ N

(
0,

σ2

w(l)

(ij)α

)
,∀j ∈ [k]; w(l)

i,j ← (wopt)
(l)
i,j ,∀j /∈ [k]

14: end if
15: else ▷ Small nodes remain non-Bayesian.
16: b

(l)
i ← (bopt)

(l)
i ; w(l)

i,j ← (wopt)
(l)
i,j ,∀j ∈ [N (l−1)]

17: end if
18: end for
19: end for
20: for i ∈ [N (L)] do ▷ Treat the output layer separately

21: b
(L)
i ∼ N

(
0,

σ2

b(L)

iα

)
; w

(L)
i,j ∼ N

(
0,

σ2

w(L)

(ij)α

)
,∀j ∈ [k]; w

(L)
i,j ← (wopt)

(L)
i,j ,∀j /∈ [k]

22: end for
23: Output:

(
w

(l)
i,j

)N(l),N(l−1),L

i=1,j=1,l=1
,
(
b
(l)
i

)N(l),L

i=1,l=1
▷ Return a prior sample, containing all weights and

biases.

4 NUMERICAL SIMULATION STUDY

We now aim to compare our different PaTraC BNN architectures to each other, and to the full
Bayesian neural network, as well as to optimised neural networks. In particular, in Subsection 4.2
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we show the ability of PaTraC BNNs to recover meaningful uncertainty quantification, in 4.3 we
highlight the improved mixing behaviour of the PaTraC BNNs’ Markov chains when compared to
full BNNs, and analyse the computational and statistical efficiency of our proposed approaches.
These insights allow us to argue in Section 6 that there exists a trade-off between obtaining good un-
certainty quantification, lowering computational cost, and increasing mixing speeds. Subsection 4.1
describes our experimental setup in detail; all code was run on a laptop with 16 GB RAM and an i7
Intel Core, without the use of GPUs.

4.1 STUDY SETUP

We assess our methodology on a simple toy training data set consisting of 100 data points (xi, yi)
100
i=1,

where xi ∼ U [−5, 5], and y ∼ N(f(x), 1) with f(x) = sin(x). We sample a further 1, 000 test data
points from the same distribution for model comparison and evaluation. To assess the robustness
with respect to the training set, we will be comparing the performance across 100 experiments with
independently generated training and test data.

Our model supposes that there exists a neural network indexed by parameters θ such that fθ ≈ f .
Throughout this section we use feed-forward fully-connected neural networks with 2 hidden layers
of 50 nodes, 1 input, and 1 output node, which are connected by tanh activation functions. We
train neural networks using Adam (Kingma, 2014) with a learning rate of 10−6 and an L2 penalty
of 1, the loss function is the negative log-likelihood. Any networks were trained until there were 20
consecutive steps of non-improvement on the loss.

(a) Optimised neural network (left) and full BNN. (b) Sep-PaTraC BNN.

(c) Out-PaTraC BNN. (d) Mix-PaTraC BNN.

Figure 2: Plots of the different posterior distributions, shown are 100 samples from the respective
posteriors (orange). The green dotted lines indicate the true mean function we are attempting to
predict, the dashed purple lines are the respective 2.5% and 97.5% posterior quantiles.

The fully Bayesian version of this neural network, as well as the PaTraC BNNs, is equipped with
the trace-class prior described in Section 2.1. For the PaTraC BNNs, we have two different models,
with differing numbers of Bayesian nodes. For both the sep-PaTraC BNN and mix-PaTraC BNN,
we chose k ∈ {2, 5} Bayesian nodes per layer, for the out-PaTraC BNN we chose k ∈ {12, 45}
Bayesian weights on the output layer. This results in a total number of 13 and 46 Bayesian weights
for each of the different architectures, respectively. The hyperparameter choices are detailed in
Section A in the Supplementary Material.

Our burn-in procedure is outlined in Section B in the Supplementary Material. After burn-in, we
use an adaptive pCNL tuning parameter δ to ensure that the acceptance probability falls into the
interval (0.4, 0.9), see Section A in the Supplementary Material for details on the adaptive choice of

6
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δ. 500, 000 samples are collected and thinned to 500 effective samples used in the results presented
below.

4.2 COMPARISON OF UNCERTAINTY QUANTIFICATION

Figure 2 shows how the PaTraC BNN posteriors compare to a full BNN, based on a fixed training
data set. For each of the PaTraC BNN architectures, we picked two different numbers of Bayesian
nodes to illustrate the effect of this quantity on the quality of approximation to the full BNN. The
first plot in the top row shows the function fθopt , i. e. the optimised neural network regression func-
tion. The orange functions are samples from the respective posteriors. We see that, even with few
Bayesian parameters, the PaTraC posterior samples are relatively close to the optimised function,
this effect decreases as more Bayesian parameters are included, when the PaTraC posteriors get
closer to the full BNN posterior.

We analyse the ability to capture uncertainty over 100 independent repetitions of the above exper-
iment, generating new train and test sets for each of the runs. In Figure 3, we report boxplots of
the observed coverages, that is, 1

1000

∑1000
i=1 1{f(xtest

i ) ∈ [π̂τ/2(fθ(x
test
i )), π̂1−τ/2(fθ(x

test
i ))]} for

τ ∈ {0.01, 0.05, 0.35}, and where π̂β(fθ(x)) := argmin{q ∈ R : 1
M

∑M
j=1 1{fθj (x) < q} ≤ β}

is an estimator of the β-quantile based on M = 500 posterior samples at a fixed point x, and
f(x) = sin(x) is the true function of interest. The mix-PaTraC BNN appears to achieve cover-
ages similar to the full BNN, while the out-PaTraC BNN and sep-PaTraC BNN show slightly worse
coverages, with more Bayesian parameters improving the coverage for all architectures.

Figure 3: Box plots of observed coverage for the differ-
ent architectures across 100 experiments. Black lines:
target coverages of 65%, 95%, and 99%, respectively.

Table 1: Empirical predictive neg-
ative log-likelihood values, averaged
over 100 independent runs (1000 test
points per run), with standard devia-
tions across the different runs shown in
brackets.

Architecture NLL
Full 571.775(31.639)

Sep 2 547.724(17.857)
Sep 5 557.431(24.865)

Mix 2 567.272(30.018)
Mix 5 575.944(33.628)

Out 12 559.644(24.931)
Out 45 559.646(25.388)

Laplace 576.478(60.180)

4.3 MIXING SPEED AND COMPUTATION TIME

Our main motivation for proposing PaTraC BNNs was an expected speed-up in terms of both poste-
rior mixing and computational cost. Traceplots, illustrating the mixing behaviour, are presented in
Section D in the Supplementary Material. Table 2 shows the effective sample size (ESS) and ESS
per second (ESS/s) for the different architectures.

Considering the different architectures, we first observe that the mix-PaTraC BNNs offer hardly any
benefit in terms of ESS/s in comparison to the full BNN, although we suspect this is due to our code
not being optimised for efficient computation. Both the sep-PaTraC BNN and the out-PaTraC BNN
offer a significant speed up. Interestingly, the ESS/s increases with the number of Bayesian nodes
for both the mix-PaTraC BNN and the out-PaTraC BNN, which is the opposite of what we would
have expected. We conjecture this is due our ESS calculation focusing on the target space of interest,
rather than the parameter space, see Section C in the Supplementary Material for the implementation
details of our ESS measure.
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Table 2: Effective sample size (ESS) per second, ESS, and computation time (in seconds), all av-
eraged over 100 independent experiment repetitions. The standard deviations across these runs are
reported in brackets.

BNN Mean ESS/s Mean ESS Mean time
Full 3.7618(1.6740) 2591.23(1150.48) 689.187(8.544)

Sep 2 23.6800(6.1666) 9787.71(2530.85) 413.467(5.979)
Sep 5 14.6011(4.2347) 6103.98(1757.65) 418.197(5.886)

Mix 2 3.0764(1.2894) 1692.30(704.76) 550.512(9.072)
Mix 5 4.0604(1.0869) 2244.97(600.24) 552.933(7.171)

Out 12 12.0872(13.7228) 3073.65(3492.16) 254.567(4.955)
Out 45 13.3810(13.2031) 3404.58(3362.53) 254.689(4.547)

5 REAL DATA EXAMPLES

5.1 CIFAR-10

To verify the scalability of the different PaTraC BNN architectures to more challenging ex-
amples, we compare performance and computation time on the CIFAR-10 image classification
dataset (Krizhevsky, 2009). The log-likelihood was chosen to be the negative cross-entropy loss
scaled by a factor of 1, 000 to account for the informativeness of the chosen prior. The results are
presented in Table 3. The full BNN takes longest to be sampled from, closely followed by the
mix-PaTraC BNN due to it requiring full gradient calculations. The sep-PaTraC and out-PaTraC are
magnitudes faster. We also observe that the negative log-likelihood (NLL) of these PaTraCs is much
closer to the NLL of the optimised NN, which resembles what was observed in the numerical study
in Section 4. Finally, we note that we cannot assess the usefulness of the uncertainty quantification
in this real data example in the same way as was done in Section 4.

5.2 ABALONE

Table 3: Predicted negative log-likelihood (NLL) val-
ues for the CIFAR-10 dataset. The standard devia-
tions based on the posterior samples for the full BNN
and respective PaTraC architectures are reported in
brackets; the NLL for the optimised (non-Bayesian)
NN are shown in the first row. The final column
reports the time (in seconds) elapsed to obtain 500
thinned samples.

Architecture PNLL Sampling time
Optimised 1.3028 N/a

Full 2.0850(0.02799) 26191.72

Sep 4 1.3399(0.03118) 4830.57
Sep 10 1.3382(0.0311) 5296.12

Mix 4 1.7736(0.1361) 25583.62
Mix 10 1.9595(0.1855) 24922.24

Out 24 1.3728(0.02395) 475.07
Out 90 1.5392(0.02672) 471.10

To illustrate the performance of our pro-
posed methodology on real data, we use the
abalone data set (Nash et al., 1994), aim-
ing to predict the number of rings (propor-
tional to the age) of abalones based on 8 fea-
tures. We split the data into N = 2, 923
training and Ntest = 1, 254 test points. The
study was conducted using the same archi-
tectures and priors as in Section 4, with the
same training and sampling procedures (ex-
cept for changing the L2 penalty to 0.01),
and on the same computer. The likelihood
is chosen to be normal with mean fθ(x) and
variance σ2 = 36. The results based on
500 posterior samples for each of the differ-
ent PaTraC BNNs are presented in Figure 4.
Apart from the sep-PaTraC BNNs that ap-
pear to be overly confident, all the architec-
tures yield reasonable uncertainty quantifi-
cation. The full BNN gives the best predic-
tive posterior, while the sep-PaTraC-BNNs
give the worst and are underestimating the
uncertainty around the prediction. As ex-
pected, a higher number of Bayesian param-
eters results in posteriors closer to the full BNNs, in fact, the out-PaTraC BNN with 45 Bayesian
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parameters and the mix-PaTraC BNN with 5 Bayesian nodes per layer show behaviour virtually
undistinguishable from the full BNN.

Figure 4: Results from the abalone data set. Left: for a single test point, the true number of rings is
shown as a red vertical line, the prediction of the trained neural network is shown as a blue vertical
line. The posterior predictive distributions are shown for the full BNN (blue line), sep-PaTraC
(orange and green dotted lines), mix-PaTrac (red and purple dashed line), and out-PaTraC (brown
and pink dotted-dashed line). Right: kernel density estimates for posterior quality comparison,
shown is the empirical distribution of

∑500
i=1 1{fθi(x) < y}/500 over all (x, y) in the test set.

Distributions close to uniform correspond to better posterior quality, while convex and concave
distributions correspond to over- and under-confident posteriors, respectively.

6 DISCUSSION

We proposed three new Bayesian neural network architectures that are more computationally and
statistically efficient than full Bayesian neural networks by reducing the number of Bayesian param-
eters based on the relative ordering of weights from a trained neural network. Similar approaches
have been explored by Izmailov et al. (2020); Daxberger et al. (2021b); Calvo-Ordoñez et al. (2024),
with our work differing in two key ways: first, we use trace-class BNN priors (Sell & Singh, 2023)
which inherently introduce an order of the neural network parameters, and naturally suggest a node-
based procedure to select Bayesian parameters. Second, we select nodes based on their relative
importance after optimising the network parameters using an off-the-shelf optimiser, and turn the
associated weights into Bayesian parameters. This is in contrast to existing approaches that select
parameters on their respective values after training, choose full layers to be Bayesian, or focus only
on a subset of the final layer weights to be Bayesian.

Our results presented in Section 4.2 show that the three different architectures provide uncertainty
quantification comparable to the full Bayesian neural network, while only using a fraction of the
number of Bayesian parameters. Between the three different architectures, the mix-PaTraC BNN
appears to be most similar to the full BNN, while the sep-PaTraC BNN is over-confident in com-
parison to the other architectures, particularly if few Bayesian parameters are used. In Section 4.3,
we observed that the sep-PaTraC BNN offers the highest ESS/s in comparison to the other archi-
tectures, while the mix-PaTraC BNN showed only a marginal improvement in terms of ESS/s. This
lack of ESS/s improvement, despite a reduced number of Bayesian parameters, is discouraging on
first sight, but we conjecture this can be explained by the fact that these target different posteriors,
and by the fact that we did not optimise our code in any way, e. g. by optimising GPU use and
avoiding unnecessary computation in the gradient calculations. This computational bottleneck thus
holds the potential to significantly improve the relative performance of all PaTraC BNNs compared
to the full BNN.

On the positive side, the reduction in computation and memory requirements that a PaTraC BNN
can provide would lessen the negative impact of large-scale machine learning on the environment.
Our methodology thus addresses the concerning negative environmental impact of large machine
learning models, one of the main ethical considerations in AI.

Aside from computational considerations, a theoretical investigation into the properties of the Pa-
TraC BNNs in the infinite width limit would strengthen the foundations of the proposed methodol-
ogy, in particular if the Wasserstein distance of the induced posteriors on the output space can be
explicitly bounded.
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7 REPRODUCIBILITY STATEMENT

The architectures used are clearly described in Section 3, with specific parameter choices detailed
in Section A in the Appendix. Algorithm 1 describes in pseudo code the procedure to sample
from the mix-PaTraC prior. All details to reproduce our numerical simulations are provided at the
beginning of Section 4 with some details outsourced to the Appendix, see Sections B and C. A
GitHub repository containing all code will be made public upon publication.
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APPENDIX

A HYPERPARAMETER CHOICE

Recall that we have a set of optimised parameters which we denote as θ̂. First, we define

(α, σ2
w/4, σ

2
b/4) := argmin

α,σ2
w,σ2

b

∑
l∈[L]

∑
i∈[N(l)]

{
Db(l, i, σ

2
b ) +

∑
j∈[N(l−1)]

Dw(l, i, j, σ
2
w)

} ,

where

Db(l, i, σ
2
b(l)) =

(
(b̂

(l)
i )2 −

σ2
b(l)

iα

)2

, for 1 ≤ l ≤ L,

Dw(l, i, j, σ
2
w(l)) =

(
(ŵ

(l)
i,j)

2 −
σ2
w(l)

(ij)α

)2

, for 2 ≤ l ≤ L− 1,

Dw(1, i, j, σ
2
w(1)) =

(
(ŵ

(1)
i,j )

2 −
σ2
w(1)

iα

)2

,

Dw(L, i, j, σ
2
w(L)) =

(
(ŵ

(L)
i,j )2 −

σ2
w(L)

jα

)2

.

Now, the remaining hyperparameters for the full BNN are chosen as

σ2
w(1) = σ2

w(2) = · · · = σ2
w(L) := σ2

w, and σ2
b(1) = σ2

b(2) = · · · = σ2
b(L) := σ2

b .

Furthermore, for the PaTraC BNNs, we scale all parameters to match the overall prior variance to
match the variance of the full BNN, similar to Daxberger et al. (2021b). To this end, we define the
total weight and total bias variances of the full BNN as

ϕw =

L∑
l=1

N(l)∑
i=1

N(l−1)∑
j=1

V ar(w
(l)
i,j), and ϕb =

L∑
l=1

N(l)∑
i=1

V ar(b
(l)
i ),

respectively, and let ϕ := ϕw +ϕb. For the PaTraC BNNs, similar quantities are computed based on
all Bayesian parameters in the respective PaTraC BNN, which we denote ϕPaTraC. We then rescale
the PaTraC BNN prior as

w
(1)
i,j ∼ N

(
0,

σ2
w(1)

iα
ϕ

ϕPaTraC

)
, w

(l)
i,j ∼ N

(
0,

σ2
w(l)

(ij)α
ϕ

ϕPaTraC

)
for l ≥ 2,

b
(l)
i ∼ N

(
0,

σ2
b(l)

iα
ϕ

ϕPaTraC

)
.

B BURN-IN PROCEDURE

We will make use of pCNL with an adaptive tuning parameter δ to ensure that the acceptance prob-
ability falls into a pre-specified interval (pL, pU). To this end, let p̂acc denote the relative frequency
of acceptance in the last 200 samples. If p̂acc ≤ pl then update δ ← δ

2 , if p̂acc ≥ pu then update
δ ← min{ 4δ3 , 2}, otherwise leave δ unchanged.

While other burn-in procedures are possible, we found the following procedure to lead to a quick
burn-in:

1. Initialise δ := 10−4.
2. Run 50, 000 pCNL steps with an adaptive delta and (pL, pU) := (0.85, 0.95).
3. Run 100, 000 pCNL steps with every move accepted, and do not adjust δ.
4. Run another 500, 000 pCNL steps with adaptive δ and (pL, pU) := (0.4, 0.9).
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C EFFECTIVE SAMPLE SIZE CALCULATION

We are ultimately interested in the induced posterior on the joint input and output space, and are
thus estimating the effective sample based on an evaluation metric based on a regular grid on the
input space. To this end, let R = {r1, r2, . . . , rg} be a grid of inputs to the BNN and let Θ =

{θ(1), . . . , θ(N)} be N posterior samples on the parameter space. For k ∈ [1, 1000], let

γk =
1

N − k − 1

N−k∑
n=1

1

|R|
∑
r∈R

((fθ(n)(r)− µ(r))(fθ(n+k)(r)− µ(r))) ,

where µ(x) = 1
n

∑N
n=1 fθ(n)(x). Considering the vector

(fθ(R)− µ(R)) = [(fθ(r1)− µ(r1)), . . . , (fθ(rg)− µ(rg))]
T ,

we note that

γk =
1

N − k − 1

N−k∑
n=1

1

|R|
(
(fθ(n)(R)− µ(R))T (fθ(n+k)(R)− µ(R))

)
=

1

|R|
∑
r∈R

1

N − k − 1

N−k∑
n=1

((fθ(n)(r)− µ(r))(fθ(n+k)(r)− µ(r))) ,

i. e. γk is an estimator of the mean autocovariance of fθ(n)(rm) across the |R| chosen grid points.
This allows us to obtain an estimator of the corresponding mean autocorrelations by letting

ρ̂k :=
1

|R|
∑
r∈R

1

N − k − 1

1

σ̂2
r

N−k∑
n=1

((fθ(n)(r)− µ(r))(fθ(n+k)(r)− µ(r)))

where σ̂2
r = 1

N−1

∑N
n=1(fθ(n)(r)−µ(r))2. We can then define an estimator of the effective sample

size as usual by

ÊSS :=
N

−1 + 2
∑1000

k=0 ρ̂k
,

where we set ρ̂0 = 1.

We note that other notions of effective sample size may be of interest, see e. g. Papamarkou et al.
(2022), however, the differences observed compared to the above results were not significant enough
to change the interpretation of them.

D TRACEPLOTS

Tables 4 to 7 show traceplots to visually assess mixing behaviour of the MCMC algorithm for the
different posterior distributions arising from the full BNN and the three PaTraC BNNs with different
parameters. Displayed are traceplots for the log-likelihood, log-prior, the first weight on the last
layer, and the output function evaluated at x = −2 (mean centred).
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Table 4: Table of traceplot figures for the full BNN, and the Sep 2 and Sep 5 PaTraC BNNs. Shown
are the traces of the log-likelihood and log-prior for 500, 000 samples. The table is continued on the
next page.

Log-likelihood Log-prior

Full BNN

Sep 2 PaTraC

Sep 5 PaTraC
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Table 5: Table (continued) of traceplot figures for the full BNN, and the Sep 2 and Sep 5 PaTraC
BNNs. Shown are the traces of the first weight on the last layer, and the output function evaluated
at x = −2 for 500, 000 samples.

First weight on last layer Output at x = −2 (mean centred)

Full

Sep 2

Sep 5
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Table 6: Table of traceplot figures for the Out 12, Out 45, Mix 2, and Mix 5 PaTraC BNNs. Shown
are the traces of the log-likelihood and log-prior for 500, 000 samples. The table is continued on the
next page.

Log-likelihood Log-prior

Out 12 PaTraC

Out 45 PaTraC

Mix 2 PaTraC

Mix 5
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Table 7: Table (continued) of traceplot figures for the Out 12, Out 45, Mix 2, and Mix 5 PaTraC
BNNs. Shown are the traces of the first weight on the last layer, and the output function evaluated
at x = −2 for 500, 000 samples.

First weight on last layer Output at x = −2 (mean centred)

Out 12

Out 45

Mix 2

Mix 5
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