
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PARTIAL TRACE-CLASS
BAYESIAN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian neural networks (BNNs) allow rigorous uncertainty quantification in
deep learning, but often come at a prohibitive computational cost. We propose
three different innovative architectures of partial trace-class Bayesian neural net-
works (PaTraC BNNs) that enable uncertainty quantification comparable to stan-
dard BNNs but use significantly fewer Bayesian parameters. These PaTraC BNNs
have computational and statistical advantages over standard Bayesian neural net-
works in terms of speed and memory requirements. Our proposed methodology
therefore facilitates reliable, robust, and scalable uncertainty quantification in neu-
ral networks. The three architectures build on trace-class neural network priors
which induce an ordering of the neural network parameters, and are thus a natural
choice in our framework. In a numerical simulation study, we verify the claimed
benefits, and further illustrate the performance of our proposed methodology on a
real-world dataset.

1 INTRODUCTION

Neural networks are important and powerful tools for the prediction and modelling of complex data.
Often, one large concern is in quantifying the uncertainty in the predictions of such a network.
Bayesian neural networks (BNNs) can be used to quantify this uncertainty (Neal, 1996; Izmailov
et al., 2021; Fortuin et al., 2021; Fortuin, 2022; Papamarkou et al., 2024), however the uncertainty
quantification often comes with a high computational cost. In an attempt to reduce the sometimes
prohibitively expensive running of BNNs, we wish to exploit the computational speed and efficiency
of training and running a standard neural network, and combine this with a Bayesian model in a
way that facilitates meaningful uncertainty quantification. With a similar goal in mind of capturing
uncertainty at a lower cost, previously, the idea of only applying Bayesian inference on the last layer
of a network has been studied in both the context of Bayesian Optimization Snoek et al. (2015) as
well as in our context of Bayesian Neural Networks, Zeng et al. (2018) and Brosse et al. (2020),
whose results suggested there is not much benefit to having any more than a single uncertainty
layer within the model. In contrast to these hybrid approaches, which allow layers to be only either
fully Bayesian or completely non-Bayesian (Valentin Jospin et al., 2020; Chang, 2021; Prabhudesai
et al., 2023), a partial Bayesian Neural Network (pBNN) approach (Calvo-Ordoñez et al., 2024),
also known as subnetwork inference (Izmailov et al., 2020; Daxberger et al., 2021b), allows layers
to be split into Bayesian and non-Bayesian parameters. Andrade & Sato (2024) investigate different
strategies when selecting Bayesian parameters in the neural network, and show that pBNNs can even
improve the predictive power of BNNs.

Unlike standard BNNs, trace-class Bayesian neural networks (Sell & Singh, 2023) introduce a natu-
ral ordering of the prior weights and thus naturally lend themselves to truncation. We will recall the
definition and some properties of trace-class BNNs in Section 2.1, before investigating partial trace-
class Bayesian neural networks (PaTraC BNNs), which we introduce in Section 3. In particular, we
look at three different potential structures for such PaTraC BNNs, and evaluate their effectiveness in
a numerical study in Section 4, as well as on the abalone data set (Nash et al., 1994) in Section 5. A
particular focus of this study lies on the PaTraC BNN’s ability to accurately quantify the uncertainty
in the target function of interest.

Our approach differs from these existing pBNNs in two important ways. First, we employ a trace-
class BNN prior (Sell & Singh, 2023) which by construction enforces a natural ordering of the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

network parameters, and which further suggests a node-based procedure to select Bayesian parame-
ters. Second, we select nodes based on their relative importance in the trained network, and turn the
associated weights into Bayesian parameters; rather than selecting parameters on their respective
values after training or picking full layers to be Bayesian. An exception to this is our out-PaTraC
BNN, which is more similar to the construction used by Franssen & Szabó (2022), where we focus
only on a subset of the final layer weights to be Bayesian.

Other relevant work related to ours include variational inference for BNNs (Graves, 2011; Wu et al.,
2018), which can be considered the state-of-the-art in BNN inference due to its low computational
cost, although it comes at a relatively high price in terms of posterior approximation (Foong et al.,
2020). Laplace approximations to BNNs (Daxberger et al., 2021a) also reduce the computational
cost of full BNN inference. Different priors for BNNs are discussed e. g. by Wenzel et al. (2020);
Noci et al. (2021); Fortuin (2022).

2 STATISTICAL SETTING

Given an input dimension d ∈ N and output dimension m ∈ N, we are interested in estimat-
ing a function f : Rd → Rm. Suppose there exists a true function f⋆ and a data generating
mechanism which gives rise to the likelihood function L(f |D), where we denoted D the observed
data set. For estimation purposes, we can now define a function class F , from which the classi-
cal maximum likelihood estimation approach is to find a function f̂MLE ∈ F which maximises
the likelihood, i. e. f̂MLE := argmaxf∈F L(f |D). Due to the monotonicity of the logarithm, this
is, of course, equivalent to minimising the negative log-likelihood, which we call the loss function
L(f) := − log(L(f |D)).

The choice of the function class F is of key importance to the practitioner, this involves consider-
ations such as model interpretability, perceived complexity of the target function to be estimated,
computational cost of available inference methods, and flexibility of the model. For the purposes
of this work, we are working with a nonparametric function class F imposed by a choice of a neu-
ral network structure. Such function classes have been shown to be capable of estimating a wide
range of functions to an arbitrary level of precision and are now ubiquitously used across disci-
plines (Härdle, 1990). One further major advantage of using neural networks is that inference can
be easily done using many existing optimisation libraries.

One of the limitations of optimising the neural network weights to estimate the function of interest
is that it does not provide understanding of the uncertainty around the estimate, i. e. it could be
that another neural network would be similarly capable at estimating the true function of interest.
Furthermore, trained neural networks are known to be overconfident even in regions with lower
amounts of training data (Kristiadi et al., 2020), and a desirable property of an estimation procedure
would be honest about the uncertainty around the estimated function, which should generally be
larger in regions with little training data. One principled approach to tackle these issues is given
by the Bayesian paradigm, which yields an entire distribution over possible neural networks, giving
more posterior probability to networks which fit the data well and are a priori probable.

More precisely, a prior distribution P (f) over all neural networks is defined by placing prior distri-
butions on the weights and biases of the network, which are then weighted by the likelihood to give
rise to the posterior distribution, which is well defined for a large range of priors even if taking the
number of network nodes to infinity (Neal, 1996; de G. Matthews et al., 2018). In what follows, we
define the prior distribution used throughout this paper, and then explain how to infer the posterior
distribution P (f |D) ∝ L(f |D)P (f) using Markov chain Monte Carlo methods.

2.1 TRACE-CLASS BAYESIAN NEURAL NETWORK PRIOR

We use the trace-class neural network prior (Sell & Singh, 2023), which, like other Bayesian neural
network priors, is well-defined in the infinite-width limit, but retains weights bounded away from 0
and thus allows one to interpret the (non-zero) function on the last network layer as hidden features
– a desirable property for interpretation purposes (Neal, 1996). Additionally, posterior inference
can be made more efficient as described in Section 2.2, and the asymmetry in the prior reduces
multimodality in the posterior distribution of the network (Sell & Singh, 2023). Let L be the total

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

number of layers in the network including the output layer, and N (l) the number of nodes in the lth
layer, for l = 1, . . . , L, additionally we define N (0) := d. We write the pre-activated function on
the ith node in the lth network layer as

f
(l)
i (x) = b

(l)
i +

N(l−1)∑
j=1

w
(l)
i,jζ

(
f
(l−1)
j (x)

)
,

where we denote the bias of the ith node of layer l as b(l)i , the weight for the jth output of the layer
l − 1 to the ith node of layer l as w

(l)
i,j , and where ζ is the activation function. We summarise all

neural network parameters as θ = (w
(l)
i,j , b

(l)
i )N

(l),N(l−1),L
i=1,j=1,l=1 . While we choose the same activation for

all layers, one may generally choose layer-dependent activation functions ζ(l). The trace-class prior
for the weights and biases is now defined by letting

w
(1)
i,j ∼ N

(
0,

σ2
w(1)

iα

)
, w

(l)
i,j ∼ N

(
0,

σ2
w(l)

(ij)α

)
for l ≥ 2, b

(l)
i ∼ N

(
0,

σ2
b(l)

iα

)
,

where α > 1, σ2
w(l) > 0 and σ2

b(l)
> 0 are parameters to be specified. This forces the nodes in the

network which are ‘further down’ in a layer, i. e. those with larger indices, to have smaller variances.
The exception to this is the first layer, where the inputs should be given equal prior importance and
thus the variances for w(1)

i,j do not depend on j. The intuition behind the decreasing variances is that
we a priori believe some weights to be larger and others to be closer to 0, and the proposed prior
enforces this resulting in non-interchangeable nodes, with those nodes at the beginning of a layer
(i. e. small i and j) carrying more information than those further down in the layer (larger i, j). This
remains true when increasing the number of nodes in a layer, and even in the infinite-width limit
retains interpretable hidden features. We summarise all the variances in the covariance operator C.

2.2 POSTERIOR INFERENCE

As the posterior distribution over the neural network parameters is analytically intractable, we re-
sort to a Markov chain Monte Carlo (MCMC) method to approximate the posterior distribution.
Even in the infinite width limit, the weights and biases can be shown to fall into the Hilbert
space ℓ2 = {(a1, a2, . . .) ∈ RN :

∑∞
i=1 a

2
i < ∞} (Sell & Singh, 2023, Lemma 5), such that

we choose a dedicated Hilbert space MCMC method for posterior inference – the preconditioned
Crank-Nicholson Langevin (pCNL) algorithm (Cotter et al., 2013). Given a current set of weights
and biases u, the method proposes a move to v by

v =
1

2 + δ

(
(2− δ)u+ 2δCDℓ(u) +

√
8δw

)
,

where w ∼ N(0, C) is a random Gaussian vector, δ ∈ (0, 2) is a tuning parameter, C is the prior
covariance operator defined in Section 2.1, and ℓ is the log-likelihood. The acceptance probability
is given by min{1, exp(ρ(u, v)− ρ(v, u))}, where

ρ(u, v) = −ℓ(u)− 1

2
⟨u− v,Dℓ(u)⟩ − δ

4
⟨v + u,Dℓ(u)⟩+ δ

4
||
√
CDℓ(u)||2.

In our neural network setting, we have Dℓ(u) = ∇θℓ(u), i. e. the derivative of the log-likelihood
with respect to the neural network parameters.

3 PARTIAL TRACE-CLASS BAYESIAN NEURAL NETWORKS

We now propose different neural network structures that contain both Bayesian and non-Bayesian
parameters, giving rise to a posterior distribution over the Bayesian parameters, while the non-
Bayesian parameters are trained using off-the-shelf optimisation methods. For the Bayesian param-
eters, we adopt the trace-class prior described in Section 2.1, which gives rise to a natural ordering
of the nodes. Due to the split of the parameter space and the involved prior, we coin our architec-
tures Partial Trace-Class Bayesian Neural Networks (PaTraC BNNs). The proposed PaTraC BNNs
achieve better numerical performance, both in terms of computational speed per inference step and

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

sample mixing speed, and have a lower memory requirement when compared to full (trace-class)
BNNs. Furthermore, full Bayesian inference remains possible on the output function, with the poste-
rior distributions of standard trace-class BNNs and PaTraC BNNs being close. There is a beneficial
trade-off in computational efficiency, mixing speed, and memory requirement versus the quality of
the uncertainty quantification retained, which we carefully examine in a numerical study in Sec-
tion 4. In what follows, we introduce the three different PaTraC BNN architectures, each of which
has a total of K Bayesian parameters; a table summarising the key properties and differences can be
found in Section E in the Supplementary Material.

(a) Sep-PaTraC BNN structure with
two Bayesian nodes and four opti-
mised nodes in each hidden layer of
the NN.

(b) Out-PaTraC BNN structure
with six nodes in each hidden layer
and two Bayesian weights on the
output layer.

(c) Mix-PaTraC BNN structure on
a network where we have six
nodes in each hidden layer and two
Bayesian nodes in each layer.

Figure 1: An illustration of the three different PaTraC BNN structures; green lines denote Bayesian
weights, green nodes have associated Bayesian biases, black lines denote optimised weights and
black nodes have associated optimised biases. The two red lines at the output in Subfigure 1a denote
a fixed weight of 1 (there is no bias on the very last node in the diagram). Note that we explicitly
visualise the non-linear activation function as distinct lines going into the post-activation nodes
represented by pink squares.

3.1 SEPARATE NETWORKS – SEP-PATRAC BNN

This architecture, illustrated in Figure 1a, consists of a standard neural network running alongside a
fully Bayesian neural network. The only interaction between these two is in the output layer, where
we sum the respective outputs of the two networks to get the PaTraC BNN output. The overall
posterior distribution arises from first training the non-Bayesian neural network, and then using
e.g. MCMC for posterior inference on the PaTraC BNN. This PaTraC BNN architecture can be
interpreted as estimating the posterior mode using the non-Bayesian neural network, and estimating
the uncertainty around it using a smaller but fully Bayesian neural network.

3.2 PARTIAL-BAYESIAN OUTPUT LAYER – OUT-PATRAC BNN

This PaTraC BNN architecture, illustrated in Figure 1b, arises from training a neural network before
turning those parameters on the output layer into Bayesian weights which correspond to the most im-

portant nodes on the last hidden layer. More precisely, let ηi :=
(
b
(L−1)
i

)2

+
∑N(L−2)

j=1

(
w

(L−1)
i,j

)2

be the sum of the squared biases and weights going into the ith node of the last hidden layer. The
Bayesian parameters are the N (L)biases of the output nodes, as well as the K/N (L) − 1 weights
for each node on the output layer corresponding to the largest ηi. To ensure that each output node
has the same number of Bayesian weights going into it, K should be a multiple of N (L), which
is always the case when there is only a single output node. Note that the out-PaTraC BNN can be
derived from Algorithm 1 by setting k = 0 in lines 2–21, and k = K/N (L) − 1 in lines 22–25.

In a spirit similar to Franssen & Szabó (2022), the interpretation here is that we can decompose
each output function into an expansion of ‘basis’ functions, i. e. the functions on the last hidden
layer. The key difference to their work is that we consider a mixture of both optimised and Bayesian
weights. Alternatively, the out-PaTraC BNN can also be thought of as equivalent to having a BNN
with N (L−1) inputs, N (L) outputs, and no hidden layers, where we choose all the output biases and
K −N (L) of the weights to be Bayesian (according to the order defined in the previous paragraph),
while the others are kept as the optimised weights trained previously.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 MIXED NETWORKS – MIX-PATRAC BNN

This structure, illustrated in Figure 1c, expands the idea of having a partially Bayesian layer, and
applies it across all layers of our network. As with the out-PaTraC BNN, a non-Bayesian neural
network is first trained, after which the nodes of each layer in the neural network are ordered using
the same method described in the previous subsection. After the ordering step, the top k nodes from
each layer are selected as Bayesian nodes, i. e. the biases attached to these nodes become Bayesian
and any weights which connect two Bayesian nodes together also become Bayesian. Note that a
sep-PaTraC BNN with k nodes per layer and a mix-PaTraC BNN with k Bayesian nodes per layer
will have the same number of Bayesian parameters. Pseudocode for sampling from the mix-PaTraC
BNN prior is given in Algorithm 1.

Notably, the mix-PaTraC BNN is a generalisation of the other two architectures. In comparison
to the sep-PaTraC BNN, it allows full interaction between the Bayesian and the optimised neural
networks, while when comparing it to the out-PaTraC BNN, Bayesian parameters can be found on
all layers of the network.

Algorithm 1 Procedure to sample from the mix-PaTraC BNN prior. In Line 7, the order statistic of
the ηi is defined, resulting in a relabelling of the nodes where i = 1 corresponds to the largest ηi,
i = 2 is the second largest, and so on. Tie-breaking is done using lexicographic ordering of the i.

1: Input: k ∈ N0,
(
(wopt)

(l)
i,j

)N(l),N(l−1),L

i=1,j=1,l=1
,
(
(bopt)

(l)
i

)N(l),L

i=1,l=1
▷ Input the number of Bayesian

nodes per layer, and the weights and biases after training/optimisation.
2: for l ∈ [L− 1] do
3: for i ∈ [N (l)] do

4: ηi :=
(
(bopt)

(l)
i

)2

+
∑N(l−1)

j=1

(
(wopt)

(l)
i,j

)2

5: end for
6: for i ∈ [N (l)] do
7: i←

∑N(l)

m=1 1{ηi ≤ ηm} ▷ Order statistic of the ηi.
8: if i ≤ k then ▷ Assign the Bayesian prior if the node is in the largest k nodes.

9: b
(l)
i ∼ N

(
0,

σ2

b(l)

iα

)
10: if l = 1 then
11: w

(l)
i,j ∼ N

(
0,

σ2

w(l)

iα

)
,∀j ∈ [N (0)]

12: else if l ̸= 1 then

13: w
(l)
i,j ∼ N

(
0,

σ2

w(l)

(ij)α

)
,∀j ∈ [k]; w(l)

i,j ← (wopt)
(l)
i,j ,∀j /∈ [k]

14: end if
15: else ▷ Small nodes remain non-Bayesian.
16: b

(l)
i ← (bopt)

(l)
i ; w(l)

i,j ← (wopt)
(l)
i,j ,∀j ∈ [N (l−1)]

17: end if
18: end for
19: end for
20: for i ∈ [N (L)] do ▷ Treat the output layer separately

21: b
(L)
i ∼ N

(
0,

σ2

b(L)

iα

)
; w

(L)
i,j ∼ N

(
0,

σ2

w(L)

(ij)α

)
,∀j ∈ [k]; w

(L)
i,j ← (wopt)

(L)
i,j ,∀j /∈ [k]

22: end for
23: Output:

(
w

(l)
i,j

)N(l),N(l−1),L

i=1,j=1,l=1
,
(
b
(l)
i

)N(l),L

i=1,l=1
▷ Return a prior sample, containing all weights and

biases.

4 NUMERICAL SIMULATION STUDY

We now aim to compare our different PaTraC BNN architectures to each other, and to the full
Bayesian neural network, as well as to optimised neural networks. In particular, in Subsection 4.2

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

we show the ability of PaTraC BNNs to recover meaningful uncertainty quantification, in 4.3 we
highlight the improved mixing behaviour of the PaTraC BNNs’ Markov chains when compared to
full BNNs, and analyse the computational and statistical efficiency of our proposed approaches.
These insights allow us to argue in Section 6 that there exists a trade-off between obtaining good un-
certainty quantification, lowering computational cost, and increasing mixing speeds. Subsection 4.1
describes our experimental setup in detail; all code was run on a laptop with 16 GB RAM and an i7
Intel Core, without the use of GPUs.

4.1 STUDY SETUP

We assess our methodology on a simple toy training data set consisting of 100 data points (xi, yi)
100
i=1,

where xi ∼ U [−5, 5], and y ∼ N(f(x), 1) with f(x) = sin(x). We sample a further 1, 000 test data
points from the same distribution for model comparison and evaluation. To assess the robustness
with respect to the training set, we will be comparing the performance across 100 experiments with
independently generated training and test data.

Our model supposes that there exists a neural network indexed by parameters θ such that fθ ≈ f .
Throughout this section we use feed-forward fully-connected neural networks with 2 hidden layers
of 50 nodes, 1 input, and 1 output node, which are connected by tanh activation functions. We
train neural networks using Adam (Kingma, 2014) with a learning rate of 10−6 and an L2 penalty
of 1, the loss function is the negative log-likelihood. Any networks were trained until there were 20
consecutive steps of non-improvement on the loss.

(a) Optimised neural network (left) and full BNN. (b) Sep-PaTraC BNN.

(c) Out-PaTraC BNN. (d) Mix-PaTraC BNN.

Figure 2: Plots of the different posterior distributions, shown are 100 samples from the respective
posteriors (orange). The green dotted lines indicate the true mean function we are attempting to
predict, the dashed purple lines are the respective 2.5% and 97.5% posterior quantiles.

The fully Bayesian version of this neural network, as well as the PaTraC BNNs, is equipped with
the trace-class prior described in Section 2.1. For the PaTraC BNNs, we have two different models,
with differing numbers of Bayesian nodes. For both the sep-PaTraC BNN and mix-PaTraC BNN,
we chose k ∈ {2, 5} Bayesian nodes per layer, for the out-PaTraC BNN we chose k ∈ {12, 45}
Bayesian weights on the output layer. This results in a total number of 13 and 46 Bayesian weights
for each of the different architectures, respectively. The hyperparameter choices are detailed in
Section A in the Supplementary Material.

Our burn-in procedure is outlined in Section B in the Supplementary Material. After burn-in, we
use an adaptive pCNL tuning parameter δ to ensure that the acceptance probability falls into the
interval (0.4, 0.9), see Section A in the Supplementary Material for details on the adaptive choice of

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

δ. 500, 000 samples are collected and thinned to 500 effective samples used in the results presented
below.

4.2 COMPARISON OF UNCERTAINTY QUANTIFICATION

Figure 2 shows how the PaTraC BNN posteriors compare to a full BNN, based on a fixed training
data set. For each of the PaTraC BNN architectures, we picked two different numbers of Bayesian
nodes to illustrate the effect of this quantity on the quality of approximation to the full BNN. The
first plot in the top row shows the function fθopt , i. e. the optimised neural network regression func-
tion. The orange functions are samples from the respective posteriors. We see that, even with few
Bayesian parameters, the PaTraC posterior samples are relatively close to the optimised function,
this effect decreases as more Bayesian parameters are included, when the PaTraC posteriors get
closer to the full BNN posterior.

We analyse the ability to capture uncertainty over 100 independent repetitions of the above exper-
iment, generating new train and test sets for each of the runs. In Figure 3, we report boxplots of
the observed coverages, that is, 1

1000

∑1000
i=1 1{f(xtest

i ) ∈ [π̂τ/2(fθ(x
test
i )), π̂1−τ/2(fθ(x

test
i ))]} for

τ ∈ {0.01, 0.05, 0.35}, and where π̂β(fθ(x)) := argmin{q ∈ R : 1
M

∑M
j=1 1{fθj (x) < q} ≤ β}

is an estimator of the β-quantile based on M = 500 posterior samples at a fixed point x, and
f(x) = sin(x) is the true function of interest. The mix-PaTraC BNN appears to achieve cover-
ages similar to the full BNN, while the out-PaTraC BNN and sep-PaTraC BNN show slightly worse
coverages, with more Bayesian parameters improving the coverage for all architectures.

Figure 3: Box plots of observed coverage for the differ-
ent architectures across 100 experiments. Black lines:
target coverages of 65%, 95%, and 99%, respectively.

Table 1: Empirical predictive neg-
ative log-likelihood values, averaged
over 100 independent runs (1000 test
points per run), with standard devia-
tions across the different runs shown in
brackets.

Architecture NLL
Full 571.775(31.639)

Sep 2 547.724(17.857)
Sep 5 557.431(24.865)

Mix 2 567.272(30.018)
Mix 5 575.944(33.628)

Out 12 559.644(24.931)
Out 45 559.646(25.388)

Laplace 576.478(60.180)

4.3 MIXING SPEED AND COMPUTATION TIME

Our main motivation for proposing PaTraC BNNs was an expected speed-up in terms of both poste-
rior mixing and computational cost. Traceplots, illustrating the mixing behaviour, are presented in
Section D in the Supplementary Material. Table 2 shows the effective sample size (ESS) and ESS
per second (ESS/s) for the different architectures.

Considering the different architectures, we first observe that the mix-PaTraC BNNs offer hardly any
benefit in terms of ESS/s in comparison to the full BNN, although we suspect this is due to our code
not being optimised for efficient computation. Both the sep-PaTraC BNN and the out-PaTraC BNN
offer a significant speed up. Interestingly, the ESS/s increases with the number of Bayesian nodes
for both the mix-PaTraC BNN and the out-PaTraC BNN, which is the opposite of what we would
have expected. We conjecture this is due our ESS calculation focusing on the target space of interest,
rather than the parameter space, see Section C in the Supplementary Material for the implementation
details of our ESS measure.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Effective sample size (ESS) per second, ESS, and computation time (in seconds), all av-
eraged over 100 independent experiment repetitions. The standard deviations across these runs are
reported in brackets.

BNN Mean ESS/s Mean ESS Mean time
Full 3.7618(1.6740) 2591.23(1150.48) 689.187(8.544)

Sep 2 23.6800(6.1666) 9787.71(2530.85) 413.467(5.979)
Sep 5 14.6011(4.2347) 6103.98(1757.65) 418.197(5.886)

Mix 2 3.0764(1.2894) 1692.30(704.76) 550.512(9.072)
Mix 5 4.0604(1.0869) 2244.97(600.24) 552.933(7.171)

Out 12 12.0872(13.7228) 3073.65(3492.16) 254.567(4.955)
Out 45 13.3810(13.2031) 3404.58(3362.53) 254.689(4.547)

5 REAL DATA EXAMPLES

5.1 CIFAR-10

To verify the scalability of the different PaTraC BNN architectures to more challenging ex-
amples, we compare performance and computation time on the CIFAR-10 image classification
dataset (Krizhevsky, 2009). The log-likelihood was chosen to be the negative cross-entropy loss
scaled by a factor of 1, 000 to account for the informativeness of the chosen prior. The results are
presented in Table 3. The full BNN takes longest to be sampled from, closely followed by the
mix-PaTraC BNN due to it requiring full gradient calculations. The sep-PaTraC and out-PaTraC are
magnitudes faster. We also observe that the negative log-likelihood (NLL) of these PaTraCs is much
closer to the NLL of the optimised NN, which resembles what was observed in the numerical study
in Section 4. Finally, we note that we cannot assess the usefulness of the uncertainty quantification
in this real data example in the same way as was done in Section 4.

5.2 ABALONE

Table 3: Predicted negative log-likelihood (NLL) val-
ues for the CIFAR-10 dataset. The standard devia-
tions based on the posterior samples for the full BNN
and respective PaTraC architectures are reported in
brackets; the NLL for the optimised (non-Bayesian)
NN are shown in the first row. The final column
reports the time (in seconds) elapsed to obtain 500
thinned samples.

Architecture PNLL Sampling time
Optimised 1.3028 N/a

Full 2.0850(0.02799) 26191.72

Sep 4 1.3399(0.03118) 4830.57
Sep 10 1.3382(0.0311) 5296.12

Mix 4 1.7736(0.1361) 25583.62
Mix 10 1.9595(0.1855) 24922.24

Out 24 1.3728(0.02395) 475.07
Out 90 1.5392(0.02672) 471.10

To illustrate the performance of our pro-
posed methodology on real data, we use the
abalone data set (Nash et al., 1994), aim-
ing to predict the number of rings (propor-
tional to the age) of abalones based on 8 fea-
tures. We split the data into N = 2, 923
training and Ntest = 1, 254 test points. The
study was conducted using the same archi-
tectures and priors as in Section 4, with the
same training and sampling procedures (ex-
cept for changing the L2 penalty to 0.01),
and on the same computer. The likelihood
is chosen to be normal with mean fθ(x) and
variance σ2 = 36. The results based on
500 posterior samples for each of the differ-
ent PaTraC BNNs are presented in Figure 4.
Apart from the sep-PaTraC BNNs that ap-
pear to be overly confident, all the architec-
tures yield reasonable uncertainty quantifi-
cation. The full BNN gives the best predic-
tive posterior, while the sep-PaTraC-BNNs
give the worst and are underestimating the
uncertainty around the prediction. As ex-
pected, a higher number of Bayesian param-
eters results in posteriors closer to the full BNNs, in fact, the out-PaTraC BNN with 45 Bayesian

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

parameters and the mix-PaTraC BNN with 5 Bayesian nodes per layer show behaviour virtually
undistinguishable from the full BNN.

Figure 4: Results from the abalone data set. Left: for a single test point, the true number of rings is
shown as a red vertical line, the prediction of the trained neural network is shown as a blue vertical
line. The posterior predictive distributions are shown for the full BNN (blue line), sep-PaTraC
(orange and green dotted lines), mix-PaTrac (red and purple dashed line), and out-PaTraC (brown
and pink dotted-dashed line). Right: kernel density estimates for posterior quality comparison,
shown is the empirical distribution of

∑500
i=1 1{fθi(x) < y}/500 over all (x, y) in the test set.

Distributions close to uniform correspond to better posterior quality, while convex and concave
distributions correspond to over- and under-confident posteriors, respectively.

6 DISCUSSION

We proposed three new Bayesian neural network architectures that are more computationally and
statistically efficient than full Bayesian neural networks by reducing the number of Bayesian param-
eters based on the relative ordering of weights from a trained neural network. Similar approaches
have been explored by Izmailov et al. (2020); Daxberger et al. (2021b); Calvo-Ordoñez et al. (2024),
with our work differing in two key ways: first, we use trace-class BNN priors (Sell & Singh, 2023)
which inherently introduce an order of the neural network parameters, and naturally suggest a node-
based procedure to select Bayesian parameters. Second, we select nodes based on their relative
importance after optimising the network parameters using an off-the-shelf optimiser, and turn the
associated weights into Bayesian parameters. This is in contrast to existing approaches that select
parameters on their respective values after training, choose full layers to be Bayesian, or focus only
on a subset of the final layer weights to be Bayesian.

Our results presented in Section 4.2 show that the three different architectures provide uncertainty
quantification comparable to the full Bayesian neural network, while only using a fraction of the
number of Bayesian parameters. Between the three different architectures, the mix-PaTraC BNN
appears to be most similar to the full BNN, while the sep-PaTraC BNN is over-confident in com-
parison to the other architectures, particularly if few Bayesian parameters are used. In Section 4.3,
we observed that the sep-PaTraC BNN offers the highest ESS/s in comparison to the other archi-
tectures, while the mix-PaTraC BNN showed only a marginal improvement in terms of ESS/s. This
lack of ESS/s improvement, despite a reduced number of Bayesian parameters, is discouraging on
first sight, but we conjecture this can be explained by the fact that these target different posteriors,
and by the fact that we did not optimise our code in any way, e. g. by optimising GPU use and
avoiding unnecessary computation in the gradient calculations. This computational bottleneck thus
holds the potential to significantly improve the relative performance of all PaTraC BNNs compared
to the full BNN.

On the positive side, the reduction in computation and memory requirements that a PaTraC BNN
can provide would lessen the negative impact of large-scale machine learning on the environment.
Our methodology thus addresses the concerning negative environmental impact of large machine
learning models, one of the main ethical considerations in AI.

Aside from computational considerations, a theoretical investigation into the properties of the Pa-
TraC BNNs in the infinite width limit would strengthen the foundations of the proposed methodol-
ogy, in particular if the Wasserstein distance of the induced posteriors on the output space can be
explicitly bounded.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

The architectures used are clearly described in Section 3, with specific parameter choices detailed
in Section A in the Appendix. Algorithm 1 describes in pseudo code the procedure to sample
from the mix-PaTraC prior. All details to reproduce our numerical simulations are provided at the
beginning of Section 4 with some details outsourced to the Appendix, see Sections B and C. A
GitHub repository containing all code will be made public upon publication.

REFERENCES

Daniel Andrade and Koki Sato. On the effectiveness of partially deterministic bayesian neural
networks. Computational Statistics, pp. 1–28, 2024.

Nicolas Brosse, Carlos Riquelme, Alice Martin, Sylvain Gelly, and Éric Moulines. On last-layer al-
gorithms for classification: Decoupling representation from uncertainty estimation. arXiv preprint
arXiv:2001.08049, 2020.

Sergio Calvo-Ordoñez, Matthieu Meunier, Francesco Piatti, and Yuantao Shi. Partially stochastic
infinitely deep bayesian neural networks. In Proceedings of the 41st International Conference on
Machine Learning, pp. 5436–5452, 2024.

Daniel T Chang. Bayesian neural networks: Essentials. arXiv preprint arXiv:2106.13594, 2021.

SL Cotter, GO Roberts, AM Stuart, and D White. Mcmc methods for functions: Modifying old
algorithms to make them faster. Statistical Science, 28(3):424–446, 2013.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux-effortless bayesian deep learning. Advances in Neural Information
Processing Systems, 34:20089–20103, 2021a.

Erik Daxberger, Eric Nalisnick, James U Allingham, Javier Antorán, and José Miguel Hernández-
Lobato. Bayesian deep learning via subnetwork inference. In International Conference on Ma-
chine Learning, pp. 2510–2521. PMLR, 2021b.

Alexander G. de G. Matthews, Jiri Hron, Mark Rowland, Richard E. Turner, and Zoubin Ghahra-
mani. Gaussian process behaviour in wide deep neural networks. International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=
H1-nGgWC-.

Andrew Foong, David Burt, Yingzhen Li, and Richard Turner. On the expressiveness of approximate
inference in bayesian neural networks. Advances in Neural Information Processing Systems, 33:
15897–15908, 2020.

Vincent Fortuin. Priors in bayesian deep learning: A review. International Statistical Review, 90(3):
563–591, 2022.

Vincent Fortuin, Adrià Garriga-Alonso, Sebastian W Ober, Florian Wenzel, Gunnar Rätsch,
Richard E Turner, Mark van der Wilk, and Laurence Aitchison. Bayesian neural network pri-
ors revisited. arXiv preprint arXiv:2102.06571, 2021.

Stefan Franssen and Botond Szabó. Uncertainty quantification for nonparametric regression using
empirical bayesian neural networks. arXiv preprint arXiv:2204.12735, 2022.

Alex Graves. Practical variational inference for neural networks. Advances in neural information
processing systems, 24, 2011.

Wolfgang Härdle. Applied nonparametric regression. Cambridge university press, 1990.

Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and An-
drew Gordon Wilson. Subspace inference for bayesian deep learning. In Ryan P. Adams and
Vibhav Gogate (eds.), Proceedings of The 35th Uncertainty in Artificial Intelligence Conference,
volume 115 of Proceedings of Machine Learning Research, pp. 1169–1179. PMLR, 22–25 Jul
2020. URL https://proceedings.mlr.press/v115/izmailov20a.html.

10

https://openreview.net/forum?id=H1-nGgWC-
https://openreview.net/forum?id=H1-nGgWC-
https://proceedings.mlr.press/v115/izmailov20a.html


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson. What
are bayesian neural network posteriors really like? In International conference on machine learn-
ing, pp. 4629–4640. PMLR, 2021.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit, fixes
overconfidence in relu networks. In International conference on machine learning, pp. 5436–
5446. PMLR, 2020.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009. URL https:
//api.semanticscholar.org/CorpusID:18268744.

Warwick Nash, Tracy Sellers, Simon Talbot, Andrew Cawthorn, and Wes Ford. Abalone. UCI
Machine Learning Repository, 1994. DOI: https://doi.org/10.24432/C55C7W.

Radford M Neal. Priors for infinite networks. Bayesian learning for neural networks, pp. 29–53,
1996.

Lorenzo Noci, Kevin Roth, Gregor Bachmann, Sebastian Nowozin, and Thomas Hofmann. Dis-
entangling the roles of curation, data-augmentation and the prior in the cold posterior effect.
Advances in neural information processing systems, 34:12738–12748, 2021.

T. Papamarkou, J. Hinkle, M. T. Young, and D. Womble. Challenges in Markov chain Monte Carlo
for Bayesian neural networks. Statistical Science, 37(3):425–442, 2022.

Theodore Papamarkou, Maria Skoularidou, Konstantina Palla, Laurence Aitchison, Julyan Arbel,
David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-
Lobato, et al. Position: Bayesian deep learning is needed in the age of large-scale ai. In Forty-first
International Conference on Machine Learning, 2024.

Snehal Prabhudesai, Jeremiah Hauth, Dingkun Guo, Arvind Rao, Nikola Banovic, and Xun Huan.
Lowering the computational barrier: Partially bayesian neural networks for transparency in med-
ical imaging ai. Frontiers in Computer Science, 5:1071174, 2023.

Torben Sell and Sumeetpal Sidhu Singh. Trace-class gaussian priors for bayesian learning of neural
networks with mcmc. Journal of the Royal Statistical Society Series B: Statistical Methodology,
85(1):46–66, 2023.

Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep
neural networks. In International Conference on Machine Learning, pp. 2171–2180. PMLR,
2015.

Laurent Valentin Jospin, Wray Buntine, Farid Boussaid, Hamid Laga, and Mohammed Bennamoun.
Hands-on bayesian neural networks–a tutorial for deep learning users. arXiv e-prints, pp. arXiv–
2007, 2020.

Florian Wenzel, Kevin Roth, Bastiaan S. Veeling, Jakub Świa̧kowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the bayes
posterior in deep neural networks really? Proceedings of the 37th International Conference on
Machine Learning, pp. 10248–10259, 2020.

Anqi Wu, Sebastian Nowozin, Edward Meeds, Richard E Turner, José Miguel Hernández-Lobato,
and Alexander L Gaunt. Deterministic variational inference for robust bayesian neural networks.
International Conference on Learning Representations, 2018.

Jiaming Zeng, Adam Lesnikowski, and Jose M Alvarez. The relevance of bayesian layer positioning
to model uncertainty in deep bayesian active learning. CoRR, 2018.

11

https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

APPENDIX

A HYPERPARAMETER CHOICE

Recall that we have a set of optimised parameters which we denote as θ̂. First, we define

(α, σ2
w/4, σ

2
b/4) := argmin

α,σ2
w,σ2

b

∑
l∈[L]

∑
i∈[N(l)]

{
Db(l, i, σ

2
b ) +

∑
j∈[N(l−1)]

Dw(l, i, j, σ
2
w)

} ,

where

Db(l, i, σ
2
b(l)) =

(
(b̂

(l)
i )2 −

σ2
b(l)

iα

)2

, for 1 ≤ l ≤ L,

Dw(l, i, j, σ
2
w(l)) =

(
(ŵ

(l)
i,j)

2 −
σ2
w(l)

(ij)α

)2

, for 2 ≤ l ≤ L− 1,

Dw(1, i, j, σ
2
w(1)) =

(
(ŵ

(1)
i,j )

2 −
σ2
w(1)

iα

)2

,

Dw(L, i, j, σ
2
w(L)) =

(
(ŵ

(L)
i,j )2 −

σ2
w(L)

jα

)2

.

Now, the remaining hyperparameters for the full BNN are chosen as

σ2
w(1) = σ2

w(2) = · · · = σ2
w(L) := σ2

w, and σ2
b(1) = σ2

b(2) = · · · = σ2
b(L) := σ2

b .

Furthermore, for the PaTraC BNNs, we scale all parameters to match the overall prior variance to
match the variance of the full BNN, similar to Daxberger et al. (2021b). To this end, we define the
total weight and total bias variances of the full BNN as

ϕw =

L∑
l=1

N(l)∑
i=1

N(l−1)∑
j=1

V ar(w
(l)
i,j), and ϕb =

L∑
l=1

N(l)∑
i=1

V ar(b
(l)
i ),

respectively, and let ϕ := ϕw +ϕb. For the PaTraC BNNs, similar quantities are computed based on
all Bayesian parameters in the respective PaTraC BNN, which we denote ϕPaTraC. We then rescale
the PaTraC BNN prior as

w
(1)
i,j ∼ N

(
0,

σ2
w(1)

iα
ϕ

ϕPaTraC

)
, w

(l)
i,j ∼ N

(
0,

σ2
w(l)

(ij)α
ϕ

ϕPaTraC

)
for l ≥ 2,

b
(l)
i ∼ N

(
0,

σ2
b(l)

iα
ϕ

ϕPaTraC

)
.

B BURN-IN PROCEDURE

We will make use of pCNL with an adaptive tuning parameter δ to ensure that the acceptance prob-
ability falls into a pre-specified interval (pL, pU). To this end, let p̂acc denote the relative frequency
of acceptance in the last 200 samples. If p̂acc ≤ pl then update δ ← δ

2 , if p̂acc ≥ pu then update
δ ← min{ 4δ3 , 2}, otherwise leave δ unchanged.

While other burn-in procedures are possible, we found the following procedure to lead to a quick
burn-in:

1. Initialise δ := 10−4.
2. Run 50, 000 pCNL steps with an adaptive delta and (pL, pU) := (0.85, 0.95).
3. Run 100, 000 pCNL steps with every move accepted, and do not adjust δ.
4. Run another 500, 000 pCNL steps with adaptive δ and (pL, pU) := (0.4, 0.9).

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C EFFECTIVE SAMPLE SIZE CALCULATION

We are ultimately interested in the induced posterior on the joint input and output space, and are
thus estimating the effective sample based on an evaluation metric based on a regular grid on the
input space. To this end, let R = {r1, r2, . . . , rg} be a grid of inputs to the BNN and let Θ =

{θ(1), . . . , θ(N)} be N posterior samples on the parameter space. For k ∈ [1, 1000], let

γk =
1

N − k − 1

N−k∑
n=1

1

|R|
∑
r∈R

((fθ(n)(r)− µ(r))(fθ(n+k)(r)− µ(r))) ,

where µ(x) = 1
n

∑N
n=1 fθ(n)(x). Considering the vector

(fθ(R)− µ(R)) = [(fθ(r1)− µ(r1)), . . . , (fθ(rg)− µ(rg))]
T ,

we note that

γk =
1

N − k − 1

N−k∑
n=1

1

|R|
(
(fθ(n)(R)− µ(R))T (fθ(n+k)(R)− µ(R))

)
=

1

|R|
∑
r∈R

1

N − k − 1

N−k∑
n=1

((fθ(n)(r)− µ(r))(fθ(n+k)(r)− µ(r))) ,

i. e. γk is an estimator of the mean autocovariance of fθ(n)(rm) across the |R| chosen grid points.
This allows us to obtain an estimator of the corresponding mean autocorrelations by letting

ρ̂k :=
1

|R|
∑
r∈R

1

N − k − 1

1

σ̂2
r

N−k∑
n=1

((fθ(n)(r)− µ(r))(fθ(n+k)(r)− µ(r)))

where σ̂2
r = 1

N−1

∑N
n=1(fθ(n)(r)−µ(r))2. We can then define an estimator of the effective sample

size as usual by

ÊSS :=
N

−1 + 2
∑1000

k=0 ρ̂k
,

where we set ρ̂0 = 1.

We note that other notions of effective sample size may be of interest, see e. g. Papamarkou et al.
(2022), however, the differences observed compared to the above results were not significant enough
to change the interpretation of them.

D TRACEPLOTS

Tables 4 to 7 show traceplots to visually assess mixing behaviour of the MCMC algorithm for the
different posterior distributions arising from the full BNN and the three PaTraC BNNs with different
parameters. Displayed are traceplots for the log-likelihood, log-prior, the first weight on the last
layer, and the output function evaluated at x = −2 (mean centred).

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Table of traceplot figures for the full BNN, and the Sep 2 and Sep 5 PaTraC BNNs. Shown
are the traces of the log-likelihood and log-prior for 500, 000 samples. The table is continued on the
next page.

Log-likelihood Log-prior

Full BNN

Sep 2 PaTraC

Sep 5 PaTraC

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Table (continued) of traceplot figures for the full BNN, and the Sep 2 and Sep 5 PaTraC
BNNs. Shown are the traces of the first weight on the last layer, and the output function evaluated
at x = −2 for 500, 000 samples.

First weight on last layer Output at x = −2 (mean centred)

Full

Sep 2

Sep 5

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Table of traceplot figures for the Out 12, Out 45, Mix 2, and Mix 5 PaTraC BNNs. Shown
are the traces of the log-likelihood and log-prior for 500, 000 samples. The table is continued on the
next page.

Log-likelihood Log-prior

Out 12 PaTraC

Out 45 PaTraC

Mix 2 PaTraC

Mix 5

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Table (continued) of traceplot figures for the Out 12, Out 45, Mix 2, and Mix 5 PaTraC
BNNs. Shown are the traces of the first weight on the last layer, and the output function evaluated
at x = −2 for 500, 000 samples.

First weight on last layer Output at x = −2 (mean centred)

Out 12

Out 45

Mix 2

Mix 5

17


	Introduction
	Statistical setting
	Trace-class Bayesian neural network prior
	Posterior inference

	Partial trace-class Bayesian neural networks
	Separate networks – sep-PaTraC BNN
	Partial-Bayesian output layer – out-PaTraC BNN
	Mixed networks – mix-PaTraC BNN

	Numerical simulation study
	Study setup
	Comparison of uncertainty quantification
	Mixing speed and computation time

	Real data examples
	CIFAR-10
	Abalone

	Discussion
	Reproducibility Statement
	Hyperparameter choice
	Burn-in procedure
	Effective sample size calculation
	Traceplots

