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Abstract

The 2023 Big ANN Challenge, held at NeurIPS’23, aimed at advancing the state-
of-the-art in indexing data structures and search algorithms. It focused for practical
variants of Approximate Nearest Neighbor (ANN) search that reflect the growing
complexity and diversity of workloads. Unlike prior challenges that emphasized
scaling up classical ANN search [21], this competition addressed filtered search,
out-of-distribution data, sparse and streaming variants of ANNS. Participants de-
veloped and submitted innovative solutions that were evaluated on new standard
datasets with constrained computational resources. The results showcased sig-
nificant improvements in search accuracy and efficiency over industry-standard
baselines, with notable contributions from both academic and industrial teams.
This paper summarizes the competition tracks, datasets, evaluation metrics, and
the innovative approaches of the top-performing submissions, providing insights
into the current advancements and future directions in the field of ANN search.

1 Introduction

Approximate Nearest Neighbor (ANN) search is an important tool in various fields, including com-
puter vision, natural language processing, information retrieval, and retrieval-augmentation. For
example, in the context of Large-Language-Models (LLMs), ANN search is used to add knowledge
after model training [14] via retrieval-augmented generation. The necessary similarity search op-
erations such as nearest neighbor queries are often required on large datasets, often with billions
of high-dimensional, real-valued vectors, and response times in milliseconds are needed for LLMs
to use these in multi-turn reasoning. As result, efficient and accurate ANN search algorithms are
essential.

As ANN search becomes commonplace, many variants have become critical in practice. For example,
database queries use a combination of vector similarity and predicates over attributes. Multi-modal
search involves vectors representing different modalities and thus potentially different distributions.
New sparse embedding models are being invented for interpretability and to incorporate text search [9].
Indices are continually updated to reflect changing content and database transactions. These complex
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Track Dataset Datatype Dim. Distance #Vectors #Queries Terms

Filtered YFCC uint8 192 ℓ2 10M 100K CC BY 4.0
OOD Yandex T2I float32 200 IP 10M 100K CC BY 4.0
Sparse MSMARCO/SPLADE float32 <105 IP 8.8M 7K CC BY 4.0

Streaming MS Turing float32 100 ℓ2 N/A N/A link

Table 1: Overview of datasets used for each of the four tracks, their sizes, dimensions, and other properties.

scenarios are the current reality in the industry, and require indices that work well in constrained
computational environments.

Our goal was to shine more light on these variants through a competition with new datasets and
baselines, and encourage the research community to develop new indexing and search algorithms,
and their optimized implementations. To ensure broad participation and accessibility, the scale of
the tasks in the competition was chosen to be large enough to be interesting and small enough to
experiment on laptops, small workstations, or virtual machines. The datasets were carefully curated
to be representative yet manageable in size, and the evaluation was conducted on standardized Azure
virtual machines with limited computational power and memory. Small grants for cloud compute
credits provided by Pinecone and AWS further encouraged participation. The competition emphasized
open-source contributions, promoting transparency and reproducibility.

This paper summarizes the competition, detailing the specific tracks and datasets used (Section 2),
the evaluation metrics employed (Section 3), and the notable approaches taken by the participants
(Section 4). By highlighting the advancements made during the challenge, we aim to provide valuable
insights into the current state of ANN research and identify promising directions for future work.

Broader Impact. While the previous NeurIPS’21 competition on billion-scale approximate
nearest neighbor search [21] focused on establishing datasets and the experimental methodology for
evaluating large-scale ANN search systems, the present paper proposes novel, industry-motivated
search tasks and evaluates the state of the art. We establish clear task definitions, suggest datasets
and workloads for them, and introduce the experimental framework that defines the methodology.
We believe that this competition had positive impact on this research community. By using small
datasets and accessible hardware, as well as issuing generous grants for development, the competition
ensured that anyone could participate regardless of their own resources. After the competition, people
used our proposal in their own research, see for example [3, 15, 26, 17, 25]. Moreover, the detailed
description of competition entries led to top-tier publications such as [5].

Limitations. Applications of ANN search, such as ranking or recommendation, can be used
towards unethical ends. However, this competition focuses on developing faster algorithms for
existing problems, and does not meaningfully enhance any existing capacity for unethical behavior.
The limitations of this work are inherent to the task of creating a competition with well-defined
evaluation metrics: the metrics and tracks cannot capture every nuance of a robust ANN search
algorithm. However, the tracks captured diverse scenarios and used the most widely accepted
evaluation metrics in the community.

2 Tracks and datasets

The competition consisted of four tracks. In each track, the entry must construct an index from a
database of vectors or dense representations of objects, optimized for the variant of queries applicable
to the track. Participants could submit separate entries to one or more of the tracks. Each track uses
one dataset listed in Table 1, which also summarizes their properties. All the datasets1 are available
for download from public cloud storage accounts without registration. Except in the case of the
streaming track, each dataset consists a set of dataset vectors that are supposed to be indexed, and a
set of query vectors. The dataset was made public during the development phase of the competition.
For the final evaluation, the dataset vectors remained fixed, while a fresh set of query vectors, unseen
to participants, was used. Each track was evaluated independently with its own leader board.

1All data was collected in compliance with the user agreement of a product or service, and in the case of the
MSMARCO dataset, with the consent of crowdsourced editors.

2

https://big-ann-benchmarks.com/MSFT-Turing-ANNS-terms.txt


Query Database

freight
country_GB

year_2007 month_July
camera_Canon country_GB ukrail
tankers horsepower haul britishrail
rail locomotive diesel machine
railway british freight work power

camera_Canon country_GB
kpa derbyshire transport
rolling rail peak wagon
britain stock railway british
freight forest train

Figure 1: Example images from the Filtered track, and their associated tags: query (left) and database (right).
The images are represented by CLIP embedding vectors.

2.1 Filtered Search Track

Searching for entities using a mixture of their semantic properties and associated keywords is natural
and pervasive. Examples include searching for a visual match for an image, but from a region or
associated with a certain kind of license, or querying articles on arXiv based both on semantic match
and time range or author affiliation. This track explored how to build indices that optimize for such
queries. The input data comes from the YFCC 100M dataset [24], which consists of embeddings of
images from Flickr2. We used 10M random images from YFCC100M and embedded them using
CLIP embeddings [19]. In addition, we associated to each image a “bag of tags”: words extracted
from the description, the camera model, the year the picture was taken, and the country. This data was
encoded as a sparse vector in the dataset. See Figure 1 for an illustration of datasets and associated
tags. The tags are from a vocabulary of 200,386 possible tags. The 100,000 queries consisted of one
image embedding and one or two tags. The index returns the images from the database with closest
embeddings such that each image’s “bag of tags” must contain all of the query’s tags.

2.2 Out-Of-Distribution Track

This track modeled the scenario where the database and query vectors have different distributions in
the shared vector space. As observed in [13], existing ANN search indices provide limited recall on
such datasets. This track used one such data set – the cross-modal Yandex Text-to-Image 10M. The
database is a 10M subset of the Yandex visual search database 3 represented by 200-dimensional image
embeddings produced by the Se-ResNext-101 model [10]. The query embeddings corresponded to
the user-specified textual search queries and were extracted with a variant of the DSSM model [11].4

A simple PCA projection of a sample of query vs. database vectors already shows the discrepancy
of distributions. Figure 2 shows the effect of out-of-distribution data. For illustration, let’s look at
the low-dimensional data, ignoring it’s a projection. The left plot shows that many text queries (in
the lower-left side of the plot) have the same database nearest neighbor because the database cloud
of points does not reach so far to the lower left. This means that the optimal index should be more
accurate (or have higher resolution) on part of image database distribution that is most likely to be
returned. Similarly, the right plot shows that many database images (in the lower right) will never
be returned as the nearest neighbor of a query because they are in an area of the space where there
are no queries. This means that an optimal index would just ignore these points altogether. We refer
to [13] for characterizations of distribution mismatch for vectors and thus OOD results.

2Flickr’s content policy prohibits offensive images and images that contain identifying information.
3The Yandex visual search database removes content where required by law. We were not able to determine

whether the dataset creators further restricted identifying or offensive information from the dataset.
4This dataset is a point in time and we do not have access to underlying data.
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Figure 2: PCA projection of 1000 arbitrary query vectors and 1000 database vectors from the OOD dataset.
Left: the two first PCA dimensions, right: the two following ones.

2.3 Sparse Track

This task was based on the common MSMARCO passage retrieval dataset [18], which has 8,841,823
text passages5, encoded into sparse vectors using the SPLADE model [9]. The vectors have a large
dimension (less than 100,000), but each vector in the base dataset has an average of approximately
120 nonzero elements. The query set was comprised of 6,980 text queries, embedded by the same
SPLADE model. The average number of nonzero elements in the query set is approximately 49
(since text queries are generally shorter). Given a sparse query vector, the index should return the top
k results according to the maximal inner product between the vectors.

2.4 Streaming Track

In this track, the underlying databases evolved over time, and participants were to design an index that
supports insertions, deletions and searches. While in practice such indices must support concurrent
operations, we allow the index to batch process one class of operations at a time for simplicity. The
index starts with zero points and must implement a “runbook” – a sequence of batches of insertion
operations, deletion operations, and search commands in a ratio of roughly 4:4:1. This task used a 10
million vector slice of the MS Turing data set released in the previous challenge6 [21]. In the final run,
we used a different runbook than the initial release to avoid participants over-fitting to the runbook.
The final runbook consists of 1280 batches of operations consisting of 5 rounds. To generate this,
we clustered the 10M points into 64 clusters. Each round consisted of 4× 64 = 256 steps: insert a
sample of points from a cluster, search the index using all the queries, delete a fraction of points in
the cluster, and search the index again. This simulates distribution drift and point expiration which
are both patterns is real workloads. We enforced a memory limit of 8GB to ensure that indices were
eliminating the data from the index and a time bound of 1 hour to carry out the whole runbook.

3 Evaluation

The entries were run by the organizers on the standard Azure D8lds_v5-series Virtual Machine with
8 vCPUs and 16GB RAM (memory shared by index with OS and standard libraries). Entries for all
tracks could use all resources available, except for the streaming track which limited memory to 8GB.

3.1 Metrics

Each of the four tasks had an independent leaderboard that participants could submit independent
entries to. For each entry, the participants provided a single set of configuration for building an index
and a limited list of configurations specifying hyperparameters for querying. The evaluation is carried
out with the final query set and the best run is selected. This is akin to the measurements in [6, 1, 21].

5The passages are anonymized and thus do not contain identifying information, but we were unable to
determine whether offensive content was otherwise excluded.

6The MS Turing dataset consists of Bing queries and answers. We were not able to determine if it explicitly
excludes offensive content and identifying information.
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Search accuracy. We measured 10-recall@10 where recall is defined as follows:

Definition 1 For a query vector q over dataset P , suppose that (a) G ⊆ P is the set of actual k
nearest neighbors in P , and (b) X ⊆ P is the output of a k′-ANNS query to an index for k′ ≥ k

nearest neighbors. Then the k-recall@k′ for the index for query q is |X∩G|
k . Recall for a set of queries

refers to the average recall over all queries.

The definition is easily modified for the streaming scenario and filtered queries. For the streaming
scenario, the recall is computed against the set P consisting of all insertions, minus deletions, at
the point at which the query was issued to the index. For the filtered search, the recall is computed
against the subset of P relevant to the filters specified in the query.

Throughput. We measured the overall query throughput on the standardized machine. All queries
are provided at once, and the entry could use all the threads available to batch process the queries.
We measured the wall clock time between the ingestion of the vectors and when all the results are
output. The resulting measure is the number of queries per second (QPS).

Scoring. For filtered, out-of-distribution, and sparse tasks, we measured the query throughput of each
configuration, and picked the highest throughput that achieved at least 90% 10-recall@10. The leader
board lists entries in decreasing throughput at this recall cut-off.

For the streaming scenario, we averaged the recall of queries at various checkpoints over runs that
complete in an execution window. That is, the algorithm must complete all insertions, deletions and
searches in 1 hour, and only those runs will be scored and ranked by maximum recall across searches.

3.2 Evaluation protocol

We extended the benchmarking framework developed by [21] to standardize and automate the
evaluation of the four tracks. The framework is open sourced at GitHub7. The framework takes
care of downloading and preparing the datasets, running the entries, and evaluating the results in
terms of providing summarizing metrics and plots. Entries should include code with installation
steps to build a Docker container (or provide such a Docker container) and implement the Python
API used by the targeted contest track. Each submission was allowed to submit one set of build
parameters (per track) and at most 10 sets of hyperparameters defining search-specific behavior. The
different hyperparameter settings are intended to strike different speed-accuracy tradeoffs. Except for
the streaming track, each submission had to build the index in at most 12 hours using all resources
available on the evaluation machine.

The entry submission was handled using Github’s pull requests initiated by the authors of an imple-
mentation. Authors had the opportunity to give feedback on the experimental runs carried out by the
organizers during an interactive round in which organizers reported on the success of the installation
and published the result of the evaluation on the public query set. These conversations are recorded
in public on the respective pull requests. For the filtered and sparse track, the final evaluation was
carried out on a query workload that was kept private to the organizers to avoid overfitted solutions.

Details of a submission. A participant has to submit a Python solution8 that implements a straight-
forward interface. The evaluation of the sparse, filter, and OOD track contains two parts: In the first
part, the evaluation framework provides the dataset X to the implementation. Given X , it builds
an index I. In the second phase, the evaluation framework presents the query workload Y (in one
batch) and asks for the 10 nearest neighbors for each query in Y in X under the task constraints. The
implementation will use its search method on I to produce the resulting set of indices and distances
of the approximate solution to the query workload. This set, as well as timing information regarding
build and search time, is then stored for further post-processing. For example, in the context of the
sparse track, X and Y are CSR matrices to efficiently represent the sparse, high-dimensional vectors.
In the context of the filtered track, each vector in X comes with a set of tags, and each vector of Y
comes with at most two tags. For the streaming task, there is no preprocessing phase, and the query
phase will instead emulate a “runbook” of insert, remove, and search operations, as detailed in the
previous section.

7https://github.com/harsha-simhadri/big-ann-benchmarks/releases/tag/v0.3.0
8In practice, the performance-critical parts are implemented in a low-level programming language, and a

wrapper is used to make this code usable from Python.
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Figure 3: Performance of the different algorithms in the filtered track on the private query set.
Algorithm parlay puck hwtl wm dhq fdu pyanns faiss+ faiss cufe
QPS (pub) 37902 19193 15059 14468 13671 5680 5185 3777 3033 2917
QPS (priv) 37671 19153 15189 14076 13517 5752 5336 3625 3253 2291

Table 2: Highest QPS achieved by any algorithm in the filtered track with public (pub) and private (priv) query
sets, as long as the recall@10 is at least 0.9. Entry names are abbreviated.
4 Competition results: baselines and notable approaches

The competition received a total of 26 entries. This section summarizes the competition results for
each track, and discusses the techniques used by the track winners and the baselines. The state of the
framework and the results, post competition, are captured on Github in v0.3.

4.1 Filtered Search Track

The organizers provided the baseline implementation (faiss) of the filtered search track, based on
Faiss [7]. The baseline operates in two possible modes. In vector-first mode, the search is performed
with a Faiss IVF index and vector results that do not satisfy the tag constraint are removed from the
result list. In metadata-first mode, the database is reduced to the vectors satisfying the word constraint;
in that case the vector search is performed brute force. See [7, Section 6.2] for more details. The
baseline is reasonably optimized but uses vanilla Faiss, with parts implemented in Python.

We received ten submissions. Fig. 3 and Table 2 summarize the results of the different algorithms
on the Filtered track. The top result is more than 11x faster than the baseline implementation. We
observe that there are no major discrepancies between the performance on the public and the private
query workload. The participants chose to vary their 10 search hyperparameters to different degrees;
all provided usually more than one parameter setting exceeding the target recall.

The winning team ParlayANN (parlayivf) used an index whose primary key is the tag associated to
each database item. For common tags that are shared by many vectors, a Vamana [23] graph as well
as a spatial inverted index are constructed, less common tags are just stored sequentially. At search
time, for single-tag queries, the relevant subset of the dataset is accessed immediately and searched,
using either a Vamana graph or linear scan. For two-tag queries, three different strategies are used. If
one tag corresponds to a set of low cardinality and the other to a set of high cardinality, the smallest
tag’s elements are intersected with a subset of the largest ones using an efficient bit vector. If both
tags correspond to sets of high cardinality, the corresponding spatial indices are used to generate a list
of candidates for each tag, and then the intersection of those two candidates is returned. If both tags
correspond to sets of low cardinality, the intersection is computed linearly. The queries are ordered to
perform similar queries in sequence to improve the cache behavior.

The second-place submission from Baidu (puck) is implemented in the Puck library (https://
github.com/baidu/puck). The index structure has four filtering levels. The first two levels are
trained using vector quantization, the last two ones employ product quantization. Each cluster in
the levels is labelled with the tags of the vectors in that cluster. This allows to filter out centroids at
search time based on the tags.

As visible from the description, the excellent performance of the top participants of this track comes
from genuinely handling the filtering constraints with more appropriate data structures. The search for
better hyperparameters on the baseline only resulted in minor differences, as visible in the difference
between faiss, faissplus, and cufe.
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Figure 4: Performance of the different algorithms in the OOD track.

Algorithm QPS
pyanns 22296
mysteryann-dif 22492
sustech-ood 13772
puck 8700
vamana 6753
ngt 6374
epsearch 5877
cufe 3561

Table 3: Highest QPS achieved
by any algorithm in the OOD
track, as long as the recall@10
is at least 0.9.

4.2 Out-Of-Distribution (OOD) Track

The baseline for the OOD track was the in-memory index variant vamana in the DiskANN library [20].
While a variant of DiskANN adapted to query distributed exists [13], the baseline does not use those
ideas and uses only the points in the database to construct the index.

This track had eight submissions. Fig. 4 and Table 3 show the results of the different algorithms (this
track only had a public query set). Due to extremely close performance, MysteryANN (later renamed
RoarANN) and PyANNS were declared the joint winners of the track.

RoarANN adopted a graph-based approach, with performance accelerated by scalar quantization
and graph reordering. Their graph-based approach took the query vector distribution into account
by initially building a bipartite graph between the base distribution and a sample from the query
distribution, where each query sample received a directed edge from its top nearest neighbor in the
base distribution, and sent k − 1 directed edges to its remaining k nearest neighbors in the base
distribution. The graph was then projected back into the base distribution. After computing these
query-based edges, additional edges were computed using the standard procedure for ANNS graph
algorithms in order to form a connected and searchable graph. The approach is published in [5].

PyANNS also used a graph-based approach but did not specifically adapt its algorithm for the out-
of-distribution setting. It achieved its winning QPS through careful engineering and optimization
of its core library. It used a Vamana graph with a standard greedy search. The search used a scalar
quantization of the vectors to 8 bits, with reranking using a 16-bit scalar quantization. The author
credits the strong performance of PyANNS to the aforementioned quantization, use of Vector Neural
Network Instructions (VNNI), and an adaptive prefetching strategy.

The results show that improvements over the baseline could be achieved in two ways: Through
careful algorithm design that adapts the index to the setting of out-of-distribution queries (RoarANN),
and through careful implementation engineering (PyANNS).

4.3 Sparse Track

The baseline for this track was the linscan algorithm [2] available in [12], which is based on an
efficient linear scan of an inverted index. Search was accelerated by considering only the largest
elements of the query vector, at the expense of accuracy.

We received five submissions each of which used a different technique. Their performance in terms
of recall-QPS is shown in Fig.5 and their highest throughput above recall .9 can be found in Table 4.
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Figure 5: Performance of the different algorithms in the sparse
track on the private query set.

Algorithm QPS QPS
(private) (public)

pyanns 6500 8732
shnsw 5078 7137
nle 1313 2359
sustech-whu 788 1015
cufe 98 105
linscan 95 93

Table 4: Highest QPS achieved by any
algorithm in the sparse track (private and
public query sets), as long as the recall@10
is at least 0.9.

The winning submissions, PyANNS (pyanns) and GrassRMA (shnsw), both used an HNSW-based
graph index [16] but applied different optimizations. PyANNS quantized vector coordinates to 16
bit integers and vector values to 16 bit half-precision floats. Further, during the graph search, the
coordinates of vectors in the database were represented as 8-bit integers, and smaller values of the
query were pruned away. In order to recover from the accuracy degradation due to the quantization
and pruning, the graph search was followed by a refinement step using the full query vector and
higher precision base vectors. GrassRMA employed the following optimizations: (1) co-locating
coordinates and values of the vector to improve memory access, and (2) keeping an upper and lower
bound of the values in the vectors in the index in order to early terminate the dot product calculation.
In summary, the winning submissions, won through careful engineering of existing baselines.

We also note the performance differences between the public and private queries. Several algorithms
(pyanns, shnsw, sustech-whu) performed around 25% slower on private queries, while nle performed
significantly worse (around 45% slower), showing potentially over-fitting on the public queries.

4.4 Streaming Search Track

The baseline for this track was the streaming in-memory index variant diskann from the DiskANN
library[20] using ideas described in [22]. While point insertions are processed eagerly, deletions are
processed lazily. A deletion vector is marked as such immediately, but the graph surrounding is not
immediately cleaned up. When the index is close to running out of space for inserting new vectors, it
runs a "consolidation" method that frees up deleted vectors and re-organizes the graph around deleted
nodes to improve search quality. A more detailed analysis of the recall trends of the baseline and
HNSW algorithms is provided in the framework.

The streaming track received four entries in total. The entrants were judged by their average recall for
queries over the entire runbook, with an hour time limit for executing the runbook, and the official
competition results can be found in Table 5.

Algorithm Recall
puck 0.985
hwtl_sdu_anns_stream 0.9674
pyanns 0.9597
diskann 0.883
cufe 0.8189

Table 5: Recall reported for entries in the
official results for the streaming track.

Algorithm Recall
pyanns 0.8865
hwtl_sdu_anns_stream 0.7693
diskann 0.7218
cufe 0.6481
puck 0.0921

Table 6: Recall of entries after the recall
computation was corrected.

The declared winner puck by Baidu uses the same baseline implementation as their entry in Filtered
search. Insertions were implemented using a natural extension of the build algorithm. Deletions were
implemented via an array of flags that allowed deleted points to be filtered during a query.

Unfortunately, more than six months after the competition, we discovered that recall had been
calculated incorrectly due to a caching error. The previous results reflected recall at the first snapshot
in the runbook rather than averaged over the whole runbook. The error was fixed9 and the entries

9https://github.com/harsha-simhadri/big-ann-benchmarks/pull/280
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were rerun and the recall measured again with the corrected definition10. The corrected results are
shown in Table 6. The winner under the corrected scoring, PyANNS, used the DiskANN index
out-of-the-box with an 8-bit scalar quantization to accelerate the computation which allows more
time to search deeper in to the graph index, similar to their entry in the OOD track.

5 Discussion

General remarks. Compared to the 2021 issue of the competition, there was more participation
and the performance gap between the submissions and the baseline was much wider. We attribute this
to (1) the fact that the competition needed accessible hardware which allowed more teams to iterate
more often on their algorithms, (2) smaller datasets of 10 million vectors in size, as opposed to billion
scale used in the last competition, (3) lesser effort placed in the optimization of the baselines by the
organizers, (4) larger interest in this topic given its importance to retrieval-augmented generative AI
use cases, and (5) community awareness of the benchmark through citations and prior participation.
We interpret this large gap as a sign that there were nontrivial improvements to do on several tracks.

As detailed in the individual discussion, improvements were achieved both through careful algorithmic
design choices, for example on how to handle the filtering constraints or how to add information
about the “OOD-ness” of the query set to the graph, as well as careful engineering choices on the
implementation level, in particular exemplified by the PyANNS submission. No winning entry
achieved their performance through hyperparameter tuning of the baseline approach.

There was a considerable difference in the participation level in the individual tasks: In particular the
filtered and OOD track received many interesting implementations with a large variety of ideas. On
the other hand, the sparse and streaming track received less attention. We speculate that this is due to
the difficulty of the tasks and the short timespan in which teams had to come up with a solution.

The filtered search track did restrict the filter predicates to 1 or 2 words. This was done on purpose to
narrow down the scope of the competition. However, it also encouraged the participants to develop
specialized data structures that may be less interesting for a more general setting. The OOD track
encouraged the use of query data samples in the construction of the index as intended.

Organization glitches. Here we identify unforeseen issues in the organization, apart from the
technical error in streaming track evaluation, to help future organizers avoid similar pitfalls.

Building a dataset is error prone and sometimes requires making arbitrary choices. Once results
on the dataset are published, it is hard to come back on choices made before. We re-used datasets
from previous competitions that are frozen, i.e., it is not possible to generate more data from the
same distributions. Therefore, it was not possible to get private query sets for all tracks. The
process of building the filtered search database was complicated, since it required several stages of
metadata extraction, re-balancing, handling of missing data or metadata. In the process we forgot to
de-duplicate near exact vectors. This makes the ordering of ground-truth search results arbitrary, and
did introduce some jitter in the measurements. However, we could verify that the maximum jitter on
recalls is below 0.00015.

Communication with participants required considerable effort – in particular matching registrations
received via CMT and pull requests. This made it difficult to reliably identify the affiliation of some
(unresponsive) participants. In future iterations, entries are to be submitted with non-anonymous
Github accounts and a reference to CMT entries with affiliations.

While there was general agreement on the organizers not competing, there was no written rule
published about this, and no exact defininition of an organizer (e.g., would all employees of a
organizer’s company or university be disallowed from competing?). This caused some tensions
between organizers and required to take ad-hoc decisions for participants distantly affiliated with
organizers. This could have been avoided with clearer rules.

6 Conclusion

The Big ANN Challenge at NeurIPS 2023 significantly advanced the field of Approximate Near-
est Neighbor (ANN) search by addressing complex real-world scenarios such as filtered, out-of-

10https://github.com/harsha-simhadri/big-ann-benchmarks/pull/288
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distribution, sparse and streaming searches. The competition featured significant improvements in
search accuracy and efficiency over state-of-the-art baselines through innovative approaches from
both academic and industrial participants. Key advancements included improvements in graph-
based indexing, quantization techniques, hybrid structures for vector and metadata indexing, and
efficient memory access strategies. Advancement have been achieved in two ways: through funda-
mental algorithmic advances accounting for the task specific setting or by careful engineering and
adapting existing implementations. The competition fostered broad participation by emphasizing
resource-efficient solutions and open-source contributions.

The Big ANN Challenge has already catalyzed ongoing research efforts in the field, with sev-
eral new advancements improving the top results of the challenge such as [4], [8], [5] and others.
Researchers and practitioners are encouraged to contribute and stay updated with the latest develop-
ments through the ongoing leaderboard, accessible at https://github.com/harsha-simhadri/
big-ann-benchmarks/blob/main/neurips23/ongoing_leaderboard/leaderboard.md.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly describe the paper as a report on the
NeurIPS’23 Big-ANN challenge and clearly reflect the content and organizational structure
of the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the implications and limitations of our work in the paragraph
Limitations in the introduction.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This is a report on a challenge and does not include theoretical results.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide an open benchmark infrastructure that takes care of all
stages of the experimental pipeline at https://github.com/harsha-simhadri/
big-ann-benchmarks/tree/main. The link is provided in Section 3 and the github
repository contains a README file that describes all steps necessary to run the benchmark.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the link to our github repository that contains all code and infras-
tructure to access the datasets.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 2 contains the information on how datasets were generated, Section 3
contains the details of hyperparameter choices. All detailed hyperparameters are accessible
in the github repo.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It is not customary to report error bars or test the statistic significance in the
field of ANN search because it would be computationally expensive and individual results
are the average over many individual searches.
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8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the experimental evaluation, we state the machine on which we carried out
the evaluation. We also state the explicit time limits for building an index and the measured
running times of queries.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We checked that our work presented in the article conforms with the NeurIPS
Code of Ethics. In particular, we observed that following data-related concerns are relevant
to our work and ensured that we address them. Deprecated data sets: We checked that we
did not use any deprecated data sets. Copyright and fair use: We checked that we respect
the terms of all models and data sets.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss societal impact in the paragraph Limitations. in the introduction.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any new models, and the data sets we release do not contain
raw image or text data since they are preprocessed by embedding the data into continuous
vector spaces.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets have a proper license attribution. Our benchmark uses evaluation
code from the Big-ANN-Benchmarks, released under the MIT license, which we credit.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our benchmark repository https://github.com/harsha-simhadri/
big-ann-benchmarks/blob/v0.3.0/neurips23 provides thorough documentation.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No such experiments were carried out in this research.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: See above.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in our research.
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