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Abstract

Pre-trained large language models based on Transformers have demonstrated
remarkable in-context learning (ICL) abilities. With just a few demonstration
examples, the models can implement new tasks without any parameter updates.
However, it is still an open question to understand the mechanism of ICL. In
this paper, we attempt to explore the ICL process in Transformers through a lens
of representation learning. Initially, leveraging kernel methods, we figure out a
dual model for one softmax attention layer. The ICL inference process of the
attention layer aligns with the training procedure of its dual model, generating
token representation predictions that are equivalent to the dual model’s test outputs.
We delve into the training process of this dual model from a representation learning
standpoint and further derive a generalization error bound related to the quantity of
demonstration tokens. Subsequently, we extend our theoretical conclusions to more
complicated scenarios, including one Transformer layer and multiple attention
layers. Furthermore, drawing inspiration from existing representation learning
methods especially contrastive learning, we propose potential modifications for the
attention layer. Finally, experiments are designed to support our findings.

1 Introduction

Recently, large language models (LLMs) based on the Transformer architectures [Vaswani et al.,
2017] has shown surprising in-context learning (ICL) capabilities [Brown et al., 2020, Wei et al., 2022,
Dong et al., 2022, Liu et al., 2023]. By prepending several training examples before query inputs
without labels, the models can make predictions for the queries and achieve excellent performance
without any parameter updates. This excellent capability enables pre-trained LLMs such as GPT
models to be used in general downstream tasks conveniently. Despite the good performance of the
ICL capabilities, the mechanism of ICL still remains an open question.

In order to better understand the ICL capabilities, many works began to give explanations from
different aspects. Xie et al. [2021] propose a Bayesian inference framework to explain how ICL
occurs between pretraining and test time, where the LLMs infers a shared latent concept among
the demonstration examples. Garg et al. [2022] demonstrate through experiments that pre-trained
Transformer-based models can learn new functions from in-context examples, including (sparse)
linear functions, two-layer neural networks, and decision trees. Zhang et al. [2023b] adopt a
Bayesian perspective and show that ICL implicitly performs the Bayesian model averaging algorithm,
which is approximated by the attention mechanism. Li et al. [2023] define ICL as an algorithm
learning problem where a transformer model implicitly builds a hypothesis function at inference-
time and derive generalization bounds for ICL. Han et al. [2023] suggest that LLMs can emulate
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kernel regression algorithms and exhibit similar behaviors during ICL. These works have provided
significant insights into the interpretation of ICL capabilities from various perspectives.

In addition to the above explorations, there are also some attempts to relate ICL capabilities to
gradient descent. Inspired by the dual form of linear attention proposed in Aiserman et al. [1964] and
Irie et al. [2022], the ICL process is interpreted as implicit fine-tuning in the setting of linear attention
by Dai et al. [2022]. However, there is still a certain noticeable gap between linear attention and
the widely used softmax attention. Additionally, this comparison is more of a formal resemblance
and the specific details of gradient descent, including the form of the loss function and training data,
require a more fine-grained exploration. Akyürek et al. [2022] show that by constructing specific
weights, Transformer layers can perform fundamental operations (mov, mul, div, aff), which can
be combined to execute gradient descent. Von Oswald et al. [2023a] adopt another construction,
such that the inference process on a single or multiple linear attention layers can be equivalently
seen as taking one or multiple steps of gradient descent on linear regression tasks. Building upon
this weight construction method, subsequent work has conducted a more in-depth exploration of the
capabilities of ICL under a causal setting, noticing that the inference of such attention layers is akin
to performing online gradient descent [Ding et al., 2023, Von Oswald et al., 2023b]. However, these
analyses are still conducted under the assumption of linear attention and primarily focus on linear
regression tasks, adopting specific constructions for the input tokens (concatenated from features and
labels) and model weights. This limits the explanation of the Transformer’s ICL capabilities in more
general settings. Thus, the question arises: Can we relate ICL to gradient descent under the softmax
attention setting, rather than the linear attention setting, without assuming specific constructions for
model weights and input tokens?

Motivated by the aforementioned challenges and following these works that connect ICL with
gradient descent, we explore the ICL inference process from a representation learning lens. First, by
incorporating kernel methods, we establish a connection between the ICL inference process of one
softmax attention layer and the gradient descent process of its dual model. The test prediction of the
trained dual model will be equivalent to the ICL inference result. We analyze the training process
of this dual model from the perspective of representation learning and compare it with existing
representation learning methods. Then, we derive a generalization error bound of this process, which
is related to the number of demonstration tokens. Our conclusions can be easily extended to more
complex scenarios, including a single Transformer layer and multiple attention layers. Furthermore,
inspired by existing representation learning methods especially contrastive learning, we propose
potential modifications to the attention layer and experiments are designed to support our findings.

2 Preliminaries

2.1 In-context Learning with Transformers

The model we consider is composed of many stacked Transformer decoder layers, each of which
is composed of an attention layer and a FFN layer. For simplicity, we have omitted structures
such as residual connections and layer normalization, retaining only the most essential parts. We
consider the standard ICL scenario, where the model’s input consists of demonstrations followed
by query inputs, that is, the input can be represented as X = [XD,XT ] ∈ Rdi×(N+T ), where
XD = [x1,x2, ...,xN ] denotes N demonstration tokens, and XT = [x′

1,x
′
2, ...,x

′
T ] denotes T

query tokens. Here, we focus more on how tokens interact during model inference while ignoring the
internal structure of demonstration tokens. For the query input at position T + 1, its output after one
layer of Transformer can be represented as

h′
T+1 = WV Xsoftmax

(
(WKX)TWQx

′
T+1/

√
do

)
, (1)

x̂′
T+1 = W2ReLu(W1h

′
T+1 + b1) + b2, (2)

where WK ,WQ,WV ∈ Rdo×di are parameters for key, query, value projections and W1 ∈
Rdh×do ,W2 ∈ Rdo×dh ,b1 ∈ Rdh , b2×Rdo are FFN parameters. Our concern is how the query token
x′
T+1 learns in-context information from demonstrations. Unlike previous work [Von Oswald et al.,

2023a, Zhang et al., 2023a, Bai et al., 2023], here we do not make additional assumptions about the
structure of input matrix X and parameters to study the Transformer’s ability to implement some
specific algorithms. Instead, we adopt the same setting as [Dai et al., 2022] to study more general
cases.
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2.2 Self-Supervised Representation Learning Using Contrastive Loss Functions

Representation learning aims to learn embeddings of data to preserve useful information for down-
stream tasks. One class of methods most relevant to our work is probably contrastive learning
methods without negative samples [Chen and He, 2021, Grill et al., 2020, Caron et al., 2020, Tian
et al., 2021]. Contrastive learning is a significant approach of self-supervised learning (SSL) which
aims at learning representations by minimizing the distance between the augmentations of the same
data point (positive samples) while maximizing the distance from different data points (negative
samples) [He et al., 2020, Chen et al., 2020b, Oord et al., 2018, Oh Song et al., 2016]. To alleviate
the burden of constructing a sufficient number of negative samples while avoiding representational
collapse, some works propose architectures for contrastive learning without negative samples, which
mainly use weight-sharing network known as Siamese networks [Chen and He, 2021, Grill et al.,
2020, Caron et al., 2020, Tian et al., 2021]. The architecture takes two augmentations x1,x2 from
the same data x as inputs, which will be processed by online network and target network respectively
to obtain the corresponding representations, that is, x̂1 = fonline(x1), x̂2 = ftarget(x2). The two
encoder networks share weights directly or using Exponential Moving Average (EMA). Then, x̂1

will be input into a predictor head to obtain the predictive representation z1 = g(x̂1). Finally,
we minimize the distance between the predictive representation and target representation, that is,
L (z1,StopGrad(x̂2)) where StopGrad(·) means x̂2 is treated as a constant during backpropagation.
For L(·), we often choose the cosine similarity or the l2-norm as a measure of distance, although they
are equivalent when the vector is normalized. Another class similar to our work is kernel contrastive
learning [Esser et al., 2024]. Given an anchor x and its positive and negative samples x+,x−, it
aims to optimize the loss function L = f(x)T (f(x−)− f(x+)), where f(x) = Wϕ(x) and ϕ(x)
is the feature mapping for some kernel. We will consider the gradient descent process corresponding
to the inference process of ICL from the perspective of representation learning and compare it with
the two aforementioned representation learning patterns.

2.3 Gradient Descent on Linear Layer is the Dual Form of Linear Attention

It has been found that the linear attention can be connected to the linear layer optimized by gradient
descent [Aiserman et al., 1964, Irie et al., 2022, Dai et al., 2022], that is, the gradient descent on
linear layer can be seen as the dual form 2 of linear attention. A simple linear layer can be defined as
fL(x) = Wx, where W ∈ Rdo×di is the projection matrix. Given training inputs [xi]

N
i=1 ∈ Rdi

with their labels [yi]
N
i=1 ∈ Rdo , a linear layer can output the predictions [ŷi]

N
i=1 where ŷi = Wxi

and then compute certain loss L(ŷi,yi) for training. Backpropagation signals [ei]Ni=1 ∈ Rdo will be
produced to update W in gradient descent process where ei = −η (∇ŷi

L) if we set η as the learning
rate. During test time, the trained weight matrix Ŵ can be represented by its initialization W0 and
the updated part ∆W , that is,

Ŵ = W0 +∆W = W0 +

N∑
i=1

ei ⊗ xi, (3)

where ⊗ denotes the outer product according to the chain rule of differentiation. On the other hand,
this process can be viewed from the perspective of linear attention. Let [ki]

N
i=1, [vi]

N
i=1 ∈ Rdi denote

the N key and value vectors constituting matrices K,V ∈ Rdi×N respectively. For a given query
input q ∈ Rdi , linear attention is typically defined as the weighted sum of these value vectors

LA(V ,K, q) = V KTq =

N∑
i=1

vik
T
i q =

(
N∑
i=1

vi ⊗ ki

)
q.

Then, we can rewrite the output of a linear layer during test time as

fL(xtest) = Ŵxtest = W0xtest +

(
N∑
i=1

ei ⊗ xi

)
xtest = W0xtest + LA(E,X,xtest),

(4)
2It should be clarified that the term "dual" here is different from the one in mathematical optimization theory.

Instead, it follows the terminology used in previous works [Irie et al., 2022, Dai et al., 2022], where the forward
process of the attention layer and backward process on some model are referred to as a form of "dual".
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Figure 1: The ICL output h′
N+1 of one softmax attention layer is equivalent to the test prediction

ŷtest of its trained dual model f(x) = Ŵϕ(x). The training data and test input can be obtained by
linear transformations of demonstration and query tokens, respectively.

where E ∈ Rdo×N and X ∈ Rdi×N are stacked by backpropagation signals [ei]Ni=1 and training
inputs [xi]

N
i=1 respectively. We can find from Eq (4) that the trained weight Ŵ records all training

datapoints and the test prediction of the linear layer indicates which training datapoints are chosen to
activate using LA(·) where [ei]

N
i=1 can be considered as values while [xi]

N
i=1 as keys and xtest as

the query. This interpretation uses gradient descent as a bridge to connect predictions of linear layers
with linear attention, which can be seen as a simplified softmax attention used in Transformers.

Inspired by this relationship, Dai et al. [2022] understand ICL as implicit fine-tuning. However,
this interpretation based on linear attention deviates from the softmax attention used in practical
Transformers. Furthermore, this alignment is also ambiguous as the specific details of the gradient
descent process, including the form of loss function and dataset, have not been explicitly addressed.
In addition, Von Oswald et al. [2023a], Ding et al. [2023] also connect ICL with gradient descent
for linear regression tasks using weight construction methods, where parameters WK , WQ and WV

of the self-attention layer need to roughly adhere to a specific constructed form. However, these
analyses rely on the setting of linear regression tasks and assumptions about the form of input tokens
(concatenated with features and labels), which limits the interpretability of ICL capabilities from the
perspective of gradient descent. Thus, we attempt to address these issues in the following sections.

3 Connecting ICL with Gradient Descent

In this section, we will address two questions discussed above: (i) Without assuming specific
constructions for model weights and input tokens, how to relate ICL to gradient descent in the setting
of softmax attention instead of linear attention? (2) What are the specific forms of the training data
and loss function in the gradient descent process corresponding to ICL? In addressing these two
questions, we will explore the gradient descent process corresponding to ICL from the perspective of
representation learning.

3.1 Connecting Softmax Attention with Kernels

Before we begin establishing the connection between ICL and gradient descent, we need to firstly
rethink softmax attention with kernel methods. Dai et al. [2022] connect ICL with gradient descent
under the linear attention setting. In fact, it is completely feasible to interpret ICL under softmax
attention with the help of kernel methods. We define the attention block as

A = softmax
(
(WKX)TWQX/

√
do

)
, (5)

which can be viewed as the product of an unnormalized part Au and a normalizing multiplier D, that
is,

A = AuD
−1, Au = exp

(
(WKX)TWQX/

√
do

)
, D = diag(1T

NAu), (6)

where exp(·) is element-wise. Similar in [Choromanski et al., 2020], we define softmax kernel Ksm :

Rdo × Rdo → R+ as Ksm(x,y) = ex
Ty = e

∥x∥2+∥y∥2
2 Kguass(x,y) where Kguass = e−∥x−y∥2/2

is the guassian kernel when the variance σ2 = 1. According to Mercer’s theorem [Mercer, 1909],
there exists some mapping function ϕ : Rdo → Rdr satisfying that Ksm(x,y) = ϕ(x)Tϕ(y). Thus,
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noting that when omitting the
√
do-renormalization and equivalently normalize key and value vectors

in Eq (6), every entry in the unnormalized part Au can be seen as the output of softmax kernel Ksm

defined for the mapping ϕ, which can be formulated as:

Au(i, j) = exp
(
(WKxi)

TWQxj

)
= Ksm(WKxi,WQxj) = ϕ(WKxi)

Tϕ(WQxj). (7)

There have been many forms of mapping function ϕ(·) used in linear Transformers research to
approximate this non-negative kernel [Choromanski et al., 2020, Katharopoulos et al., 2020, Peng
et al., 2021, Lu et al., 2021]. For example, we can choose ϕ(·) as positive random features which
has the form ϕ(x) = ew

Tx−∥x∥2/2 to achieve unbiased approximation [Choromanski et al., 2020].
Alternatively, we can also choose ϕ(x) = elu(x) + 1 proposed by Katharopoulos et al. [2020].

3.2 The Gradient Descent Process of ICL

Now, we begin to establish the connection between the ICL inference process of a softmax attention
layer and gradient descent. We focus on a softmax attention layer in a trained Transformer model,
where the parameters {WQ,WK ,WV } have been determined and the input X = [XD,XT ] has
the form introduced in Section 2.1. Then, after the inference by one attention layer, the query token
at position T + 1 will have the form h′

T+1 formulated by Eq (1).

On the other hand, given a specific softmax kernel mapping function ϕ(x) that satisfies Eq (7), we
can define the dual model for the softmax attention layer as

f(x) = Wϕ(x), (8)

where W ∈ Rdo×dr is parameters. We assume that the dual model obtains its updated weights Ŵ
after undergoing one step of gradient descent with some loss function L. Subsequently, when we
take ztest = WQx

′
T+1 as the test input, we can obtain its test prediction as

ŷtest = f(ztest) = f
(
WQx

′
T+1

)
= Ŵϕ

(
WQx

′
T+1

)
.

We will show that h′
T+1 in Eq (1), is strictly equivalent to the above test prediction ŷtest, which

implies that the inference process of ICL involves a gradient descent step on the dual model. This
can be illustrated by the following theorem:

Theorem 3.1. The query token h′
T+1 obtained through ICL inference process with one softmax

attention layer, is equivalent to the test prediction ŷtest obtained by performing one step of gradient
descent on the dual model f(x) = Wϕ(x). The form of the loss function L is:

L = − 1

ηD

N∑
i=1

(WV xi)
T
Wϕ(WKxi), (9)

where η is the learning rate and D is a constant.

Proof can be found in Appendix A. Theorem 3.1 demonstrates the equivalence between the ICL
inference process and gradient descent. Below, we delve into more detailed discussions:

Training Set and Test Input: In fact, once the attention layer has already been trained, that is,
WK ,WQ,WV has been determined, the demonstration tokens [xi]

N
i=1 will be used to construct a

training set for the dual model. Specifically, the training data has the form {z(i)
std,y

(i)
std}Ni=1 where

z
(i)
std = WKxi as inputs and y

(i)
std = WV xi as their labels. During training stage, for each input z(i)

std,

the dual model outputs its prediction ŷ(i) = f
(
z
(i)
std

)
= Wϕ

(
z
(i)
std

)
= Wϕ (WKxi). Then, the

loss function Eq (9) can be rewritten as L = − 1
ηD

∑N
i=1(y

(i)
std)

T ŷ(i), which can be regarded as the
cosine similarity. Then, using this loss function and the training data, we can perform one step of
Stochastic Gradient Descent (SGD) on the dual model and obtain the updated Ŵ . Finally, during the
testing stage, we take ztest = WQx

′
T+1 as the test input to get its prediction which will be consistent

with the ICL result h′
T+1, that is, ŷtest = f(ztest) = Ŵϕ

(
WQx

′
T+1

)
= h′

T+1. This process can
be illustrated in Figure 1. Demonstration tokens provide information about the training data points
and the weight matrix Ŵ is optimized to learn sufficient knowledge about demonstrations. This
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Figure 2: Left Part: The representation learning process for the ICL inference by one attention layer.
Remaining Part: Comparison of the ICL Representation Learning Process (Center Left), Contrastive
Learning without Negative Samples (Center Right), and Contrastive Kernel Learning (Right).

gradient descent process using the loss function L applied to f(x) can be seen as the dual form of
the ICL inference process of the attention layer.

Representation Learning Lens: Even though we have now clarified the details of the gradient
descent process of ICL, what does this process more profoundly reveal to us? In fact, for a encoded
demonstration token xi, the key and value mapping will generate a pair of features WKxi and WV xi

that exhibit a certain distance from each other, akin to positive samples in contrastive learning. And
then, ϕ(x) projects WKxi into a higher-dimensional space to capture deeper features. Finally, the
weight matrix W , which maps ϕ(WKxi) back to the original space, is trained to make the mapped
vector as close as possible to WV xi. This process is illustrated in Figure 2. Below, we attempt to
understand this process from the perspective of existing representation learning methods introduced
in Section 2.2, although we emphasize that there are certain differences between them.

Comparison with Contrastive Learning without Negative Samples: If we consider the key and
value mapping as two types of data augmentation, then from the perspective of contrastive learning
without negative samples, this process can be similarly formalized as

min
W

L
(
ŷ(i),y

(i)
std

)
= L

(
ŷ(i),StopGrad(y

(i)
std)
)
,

where StopGrad(·) is naturally applicable because there are no learning parameters involved in the
generation process of the representation y

(i)
std. However, it’s important to note that the representation

learning process of ICL is much simpler: Firstly, the online and target networks are absent while
the augmentations WKxi,WV xi are directly used as online and target representations respectively.
Secondly, the predictor head is useful and not discarded, which is then used during test stage.

Comparison with Contrastive Kernel Learning: Given an anchor data x and its positive
and negative samples x+, x−, contrastive kernel learning aims to optimize the loss function
L = f(x)(f(x−) − f(x+)) where f(x) = Wϕ(x). There are significant differences in the
representation learning process of ICL: Firstly, it does not involve negative samples. Secondly,
there is no corresponding processing for positive samples, leading to parameter updates being solely
dependent on the processing of the anchor.

Extension to More Complicated Scenarios: Theorem 3.1 can be naturally extended to one single
Transformer layer and multiple attention layers. As for one Transformer layer formed in Section 2.1,
its dual model f+(x) = Wϕ(x) + b introduces an additional bias b and only W is trained
while b remains fixed. In addition, the labels of training set will be y

(i)
std = WFWKxi where

WF has potential low-rankness property induced by Relu(·). As for multiple attention layers, the
ICL inference process will be equivalent to sequentially performing gradient descent and making
predictions on the dual model sequence. We provide more details in Appendix B.

Compared to Dai et al. [2022] considering the connection under linear attention setting, Theorem 3.1
gives explanation for more generally used softmax attention and offers a more detailed exploration
of the training process. Additionally, unlike Von Oswald et al. [2023a,b], Ding et al. [2023]’s focus
on particular linear regression task and specific configurations of token and parameters, we aim to
explain the process of token interactions during ICL inference in a more general setting.
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3.3 Generalization Bound of the dual gradient descent process for ICL

In this part, we are interested in the generalization bound of the ICL gradient process. When ICL
inference is performed for some task T , we cannot provide all demonstrations related to task T limited
by the length of input tokens. We denote ST ⊆ Rdi as all possible tokens for the task T and assume
that these tokens will be selected according to the distribution DT . During a particular instance of
ICL inference, let S = {xi}Ni=1 ⊆ ST represent the example tokens we selected. We define the
function class as F := {f(x) = Wϕ(WKx) | ∥W ∥ ≤ w} where ∥ · ∥ denotes the Frobenius norm.
Generally, ignoring constant term in Eq (9), we consider the representation learning loss as

L(f) = Ex∼DT

[
− (WV x)

T
f(x)

]
= Ex∼DT

[
− (WV x)

T
Wϕ(WKx)

]
, (10)

where f ∈ F and DT is the distribution for some ICL task T . Correspondingly, the empirical loss
will be formulated as L̂(f) = − 1

N

∑N
i=1 (WV xi)

T
f(xi) and we have f̂ = argminf∈F L̂(f). In

addition, we denote the kernel matrix of demonstration tokens S as KS ∈ RN×N where (KS)i,j =
⟨ϕ(WKxi), ϕ(WKxj)⟩, that is, the inner product of the feature maps after WK projection between
the i-th token and j-th token. We state our theorem as follows:
Theorem 3.2. Define the function class as F := {f(x) = Wϕ(WKx) | ∥W ∥ ≤ w} and let the
loss function defined as Eq (10). Consider the given demonstration set as S = {xi}Ni=1 where
S ⊆ ST and ST is all possible demonstration tokens for some task T . With the assumption that
∥WV xi∥, ∥Wϕ(WKxi)∥ ≤ ρ, then for any δ > 0, the following statement holds with probability
at least 1− δ for any f ∈ F

L(f̂) ≤ L(f) +O

wρdo
√
Tr(KS)

N
+

√
log 1

δ

N

 . (11)

Proof of 3.2 can be found in Appendix C. Theorem 3.2 provides the generalization bound of the
optimal dual model trained on a finite selected demonstration set under a mild assumption that ∥W ∥
is bounded. Intuitively, as the number of demonstration (and therefore the number of demonstration
tokens) increases, the generalization error decreases, which is consistent with existing experimental
observations [Xie et al., 2021, Garg et al., 2022, Wang et al., 2024].

4 Attention Modification Inspired by the Representation Learning Lens

Analyzing the dual gradient descent process of ICL from the perspective of representation learning
inspires us to consider that: Do existing representation learning methods, especially contrastive
learning methods, also involve a dual attention inference process? Alternatively, can we modify the
attention mechanism by drawing on existing methods? In fact, since there are lots of mature works in
representation learning especially contrastive learning, it is possible for us to achieve this by drawing
on these works [He et al., 2020, Chen et al., 2020c, Wu et al., 2018, Chen et al., 2020a, Chen and He,
2021]. We will provide some simple perspectives from the loss function, data augmentations and
negative samples to try to adjust attention mechanism. It is worth noting that these modifications are
also applicable to the self-attention mechanism, and we will explore these variants in experiments.
More details can be seen in Appendix D.

Attention Modification inspired by the Contrastive Loss: It can be observed that the unnormalized
similarity in Eq (9) allows ∥W ∥ to be optimized to infinity if we ignore the Layer Normalization (LN)
layer to prevent this. As for one single attention layer without LN layer, to address this issue, we can
introduce regularization term to constrain the norm of W , specifically by

L = − 1

ηD

N∑
i=1

(WV xi)
T
Wϕ(WKxi) +

α

2η
∥W ∥2F , (12)

where α is a hyperparameter. Equivalently, the attention output Eq (1) will be modified as

h′
T+1 = WV [XD, (1− α)XT ] softmax

(
(WKX)TWQx

′
T+1/

√
do

)
. (13)

This modification is equivalent to retaining less prompt information for query token during aggregation
and relatively more demonstration information will be attended to.
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Figure 3: The equivalence between ICL of one softmax attention layer and gradient descent, along
with analysis on different model modifications. Left Part: ∥ŷtest − h′

T+1∥2 as the gradient descent
proceeds under setting N = 15; Remaining Part: the performance for regularized models (Center
Left), augmented models (Center Right) and negative models (Right) with different settings.

Attention Modification inspired by the Data Augmentation: If we analogize the key and value
mappings to data augmentations in contrastive learning, then for the representation learning process
of ICL, these overly simple linear augmentations may limit the model’s ability to learn deeper
representations. Thus, more complicated augmentations can be considered. Denoting these two
augmentations as g1 and g2, the loss function will be modified as

L = − 1

ηD

N∑
i=1

[g1(WV xi)]
T
Wϕ(g2(WKxi)).

Correspondingly, the attention layer can be adjusted as,

h′
T+1 = g1(WV X)softmax

(
[g2(WKX)]TWQx

′
T+1/

√
do

)
, (14)

where g1(·) and g2(·) will be column-wise here. Here we add augmentations for all tokens instead of
only demonstration ones to maintain uniformity in the semantic space. In experiments, we simply
select MLP for g1 and g2. It’s worth noting that here we only propose the framework, and for different
tasks, the augmentation approach should be specifically designed to adapt them.

Attention Modification inspired by the Negative Samples: Negative samples play a crucial role in
preventing feature collapse in contrastive learning methods while the representation learning process
of ICL only brings a single pair of features closer, lacking the modeling of what should be pushed
apart, which could potentially limit the model’s ability to learn representations effectively. Therefore,
we can introduce negative samples to address this:

L =− 1

ηD

N∑
i=1

(WV x̃i)
T
Wϕ(WKxi), x̃i = xi −

β

|N (i)|
∑

j∈N (i)

xj ,

where N (i) is the set of the negative samples for xi and β is a hyperparameter. Correspondingly, the
attention layer is modified as

h′
T+1 = WV

[
X̃D,XT

]
softmax

(
(WKX)TWQxT+1/

√
do

)
, (15)

where X̃D = [x̃1, x̃2, ..., x̃N ]. Here we simply use other tokens as negative samples and we
emphasize that for specific tasks, an appropriate design of negative samples will be more effective.

5 Experiments

In this section, we design experiments on synthetic tasks to support our findings and more experiments
including on more realistic tasks can be seen in Appendix E. The questions of interest are: (i) Is the
result of ICL inference equivalent to the test prediction of the trained dual model? (ii) Is it potential
to improve the attention mechanism from the perspective of representation learning?

Linear Task Setting: Inspired by Von Oswald et al. [2023a], to validate the equivalence and
demonstrate the effectiveness of the modifications, we firstly train one softmax self-attention layer
using linear regression tasks. We generate the task by s = Wt where every element of W ∈
Rds×dt is sampled from a normal distribution Wij ∼ N (0, 1) and t from uniform distribution t ∼
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U(−1, 1)dt . We set dt = 11 and ds = 1. Then, at each step, we use generated {xi = [ti; si]}N+1
i=1

to form the input matrix X where the last token will be used as the query token and the label part
will be masked, that is, xN+1 = [ti; 0]. Here we consider only one query token (T = 0) and we
denote x′

T+1 = xN+1 to maintain consistency of notation in Section 2.1. Finally, the attention layer
is trained to predict ŝN+1 to approximate the true label sN+1 using mean square error (MSE) loss.

Model Setting: It is worth noting that to facilitate direct access to the dual model, we use positive
random features as kernel mapping functions (Performer architecture [Choromanski et al., 2020]) to
approximate the standard softmax attention, that is, ϕ(x) = ew

Tx−∥x∥2/2 where w ∼ N (0, I). We
set the dimension of the random features as dr = 100(dt + ds) = 1200 to obtain relatively accurate
estimation. After training, the weights of the attention layer have been determined. Thus, given
specified input X , we can construct the dual model f(x) = Wϕ(x) and its corresponding training
data and test input according to Theorem 3.1.

We perform three experiments under different random seeds for linear regression tasks with the
results of one presented in Figure 3. In addition, we also conduct more experiments including these
on trigonometric, exponential synthetic regression tasks and more realistic tasks. More details of
experiments setting and results can be found in Appendix E. We mainly discuss the results on the
linear regression task as follows.

Equivalence Between ICL and Gradient Descent: To answer the first question, we generate the
test input Xtest using the same method as training and obtain the ICL result of the query token h′

T+1.
On the other hand, we use Xtest to train the dual model according to Theorem 3.1 and get the test
prediction ŷtest. The result is shown in the left part part of Figure 3. It can be observed that after
N = 15 epochs training on the dual model, the test prediction ŷtest is exactly equivalent to the ICL
inference result h′

T+1 by one softmax attention layer, which aligns with our analysis in Theorem 3.1.
More detailed experiments can be seen in Appendix E.1.

Analysis on the Modifications: In Section 4, we discussed different modifications to the attention
mechanism from perspectives of contrastive loss, data augmentation and negative samples. Here we
call these modifications regularized models, augmented models and negative models respectively.
More details of modifications for self-attention mechanism can be seen in Appendix D.

For regularized models, we vary different α to investigate the impact on pretraining performance
under the same setting, as shown in the center left part of Figure 3. It can be observed that when α > 0,
the regularized models converges to a poorer result while when α < 0, the model converges faster and
achieves final results comparable to the normal model without regularization (α = 0). At least for this
setting, this is a little contrary to our initial intention of applying regularization to the contrastive loss
where α should be positive. We explain it that the appropriate α contributes to achieving a full-rank
attention matrix as stated in Appendix D, preserving information and accelerating convergence.

For augmented models, we simply choose a single-layer MLP for g1(·) and g2(·) as data augmen-
tations to enhance the value and key embeddings respectively in Eq (14) and we choose GELU
[Hendrycks and Gimpel, 2016] as the activation function. It can be observed in the center right part
of Figure 3 that when we only use g2, that is, only provide augmentation for keys, the model actually
shows slightly faster convergence than other cases. Furthermore, when we use two-layer MLP as
g+2 (x) as a more complicated augmentation function, the result indicates that although the model
initially converges slightly slower due to the increased number of parameters, it eventually accelerates
convergence and achieves a better solution. This indicates that appropriate data augmentation indeed
have the potential to enhance the capabilities of the attention layer.

For negative models, we select the k tokens with the lowest attention scores as negative samples for
each token. From Eq (15), we can see that it is equivalent to subtracting a certain value from the
attention scores corresponding to those negative samples. We vary the number of negative samples
k and β in Eq (15) and the results are shown in the right part of Figure 3. It can be found that the
model has the potential to achieve slightly faster convergence with appropriate settings (k = 3 and
β = 0.1). In fact, it can be noted that in the original attention mechanism, attention scores are always
non-negative, indicating that some irrelevant information will always be preserved to some extent.
However, in the modified structure, attention scores can potentially become negative, which makes
the model more flexible to utilize information. Certainly, as we discussed in Section 4, for different
tasks, more refined methods of selecting augmentations and constructing negative samples may be
more effective and we also leave these aspects for future.
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6 Related Work

Since Transformers have shown remarkable ICL abilities [Brown et al., 2020], many works have
aimed to analyze the underlying mechanisms [Garg et al., 2022, Wang et al., 2023]. To explain
how Transformers can learn new tasks without parameter updates given few demonstrations, an
intuitive idea is to link ICL with (implicit) gradient updates. The most relevant work to ours is
that of Dai et al. [2022], which utilizes the dual form to understand ICL as an implicit fine-tuning
(gradient descent) of the original model under a linear attention setting [Aiserman et al., 1964, Irie
et al., 2022]. They design a specific fine-tuning setting where only the parameters for the key and
value projection are updated and the causal language modeling objective is adopted. In this context,
they find ICL will have common properties with fine-tuning. Based on this, Deutch et al. [2024]
investigate potential shortcomings in the evaluation metrics used by Dai et al. [2022] in real model
assessments and propose a layer-causal GD variant that performs better in simulating ICL. As a
comparison, our research also uses the dual form to analyze the nonlinear attention layer and explores
the specific form of the loss used in the training process. However, we link ICL to the gradient
descent performed on the dual model rather than fine-tuning the original model. The former process
utilizes a self-supervised representation learning loss formalized as Eq (9) determined by the attention
structure itself while performing supervised fine-tuning on the original model is often determined by
task-specific training objectives (or manually specified causal language modeling objective Dai et al.
[2022]). A more formal and detailed comparison can be found in Appendix F.

Additionally, many other works also link ICL with gradient descent, aiming to explore the Trans-
former’s ability to perform gradient descent algorithms to achieve ICL [Bai et al., 2023, Schlag et al.,
2021]. Akyürek et al. [2022] reveal that under certain constructions, Transformer can implement
simple basic operations (mov, mul, div and aff), which can be combined to further perform gradient
descent. Von Oswald et al. [2023a] provide a simple and appealing construction for solving least
squares solutions in the linear attention setting. Subsequently, Zhang et al. [2023a], Ahn et al.
[2023], Mahankali et al. [2023] provide theoretical evidence showing that the local or global minima
will have a form similar to this specific construction proposed by Von Oswald et al. [2023a] under
certain assumptions. These works, both experimentally and theoretically, often focus on specific
linear regression tasks (y = wTx) and specific structured input format where each token takes
the form [x, y] consisting of the input part x and the label part y. In addition, the label part of
the final query to be predicted is masked, represented as [x, 0]. Subsequent works have expanded
this exploration under more complicated setups, including examining nonlinear attention instead
of linear attention[Cheng et al., 2023, Collins et al., 2024], using unstructured inputs rather than
structured ones[Xing et al., 2024], and considering casual or autoregressive setting[Ding et al., 2023,
Von Oswald et al., 2023b]. As a comparison to these works, our work does not target specific tasks
like linear regression; therefore, we do not make detailed assumptions about the model weights
(simply treated as weights after pre-training) or specific input forms. Instead, we aim to view the ICL
inference process from the perspective of representation learning in the dual model. However, we
would like to point out that under these specific weight and input settings, an intuitive explanation
can also be provided from a representation learning perspective (see Appendix F). We also notice that
Shen et al. [2023] experimentally show that there may exist differences between ICL inference in
LLMs and the fine-tuned models in real-world scenarios from various perspectives and assumptions
used in previous works may be strong. As mentioned earlier, our analysis primarily focus on linking
ICL with gradient descent on the dual model of a simplified Transformer rather than fine-tuning the
original model. Analyzing more realistic models will also be our future directions.

7 Conclusion and Impact Statements

In this paper, we establish a connection between the ICL process of Transformers and gradient
descent of the dual model, offering novel insights from a representation learning lens. Based on this,
we propose modifications for the attention layer and experiments under our setup demonstrate their
potential. Although we have made efforts in understanding ICL, there are still some limitations in our
analysis: (1) our work primarily focuses on the simplified Transformer and the impact of structures
like layer normalization, residual connections, and others requires more nuanced analysis; (2) for
more tasks and settings, the proposed model modifications may require more nuanced design and
validation. We leave these aspects for future exploration. And we believe that this work mainly studies
the theory of in-context learning, which does not present any foreseeable societal consequence.
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A Details of Theorem 3.1

We repeat Theorem 3.1 as follows and provide proof and more discussion for it.

Theorem A.1. The query token h′
T+1 obtained through ICL inference process with one softmax

attention layer, is equivalent to the test prediction ŷtest obtained by performing one step of gradient
descent on the dual model f(x) = Wϕ(x). The form of the loss function L is:

L = − 1

ηD

N∑
i=1

(WV xi)
T
Wϕ(WKxi), (16)

where η is the learning rate and D is a constant.

Proof. The derivative of L with respect to W should be:

∂L
∂W

= −

[
N∑
i=1

1

ηD
WV xi ⊗ ϕ(WKxi)

]
.

Thus, after one step of gradient descent , the learned Ŵ will be

Ŵ = W0 − η
∂L
∂W

= W0 +

[
N∑
i=1

1

D
WV xi ⊗ ϕ(WKxi)

]
, (17)

where W0 is the initialization of the reference model and η is the learning rate. So the test prediction
will be

ŷtest = W0ϕ
(
WQx

′
T+1

)
+

[
N∑
i=1

1

D
WV xi ⊗ ϕ(WKxi)

]
ϕ
(
WQx

′
T+1

)
. (18)

On the other hand, from the perspective of ICL process with one attention layer, with Eq (7) in our
mind, we can rewrite Eq (1) as

h′
T+1 = WV Xsoftmax

(
(WKX)TWQx

′
T+1√

do

)

=
1

D′WV [XD,XT ] [ϕ(WKXD), ϕ(WKXT )]
T
ϕ(WQx

′
T+1)

=
1

D′ [VD,VT ] [ϕ(KD), ϕ(KT )]
T
ϕ(q),

where we use [VD,VT ] = WV [XD,XT ], [KD,KT ] = WK [XD,XT ], q = WQx
′
T+1 for sim-

plify and D′ = 1T
Nϕ(KD)Tϕ(q) + 1T

Tϕ(KT )
Tϕ(q) is a constant to normalize the equivalent

attention block. Further, we expand the above equation to connect the inference process of ICL using
softmax attention with the gradient descent as follows

h′
T+1 =

1

D′VTϕ(KT )
Tϕ(q) +

1

D′VDϕ(KD)Tϕ(q)

= W ′
0ϕ(q) +

1

D′

[
N∑
i=1

V
(i)
D ⊗ ϕ(K

(i)
D )

]
ϕ(q)

where W ′
0 = 1

D′VTϕ(KT )
T and V

(i)
D ,K

(i)
D are the i-th column vetors respectively.

Then, in Eq (18), when setting the initialization W0 = W ′
0 and the constant D = D′, we will find

that

ŷtest = W0ϕ(q) +
1

D

[
N∑
i=1

V
(i)
D ⊗ ϕ(K

(i)
D )

]
ϕ(q) = h′

T+1, (19)

which means ŷtest is strictly equivalent to h′
T+1. Thus, we have completed our proof.
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Given a reference model f(x) = Wϕ(x), by comparing Eq (19) and Eq (4), we can easily observe
that the gradient descent on the loss function L applied to f(x) is the dual form of the inference
process of ICL, where V

(i)
D , ϕ(K(i)

D ) and ϕ(q) play the roles of backpropagation signals, training
inputs and test inputs respectively. Recalling the form of Eq (4), we can interpret the W0 as the
initialization of the weight matrix which provide the information under the zero-shot case while the
second part in Eq (19) shows that the demonstration examples in ICL acts as the training samples in
gradient descent. The reference model f(x) = Wϕ(x), initialized with W0, will have test prediction
ŷtest = h′

T+1 after training. This is also why we refer to it as the dual model of the softmax attention
layer. We also note that for different demonstrations, even though the model has the same query input,
the different given demonstrations will result in different output results. This is equivalent to the dual
model performing gradient descent in different directions from the same initialization.

B Extensions to more complex scenarios

In Theorem 3.1, we provided the dual form of gradient descent for the ICL of one softmax attention
layer. Here, we extend the conclusion to more complex scenarios, including one Transformer layer
(attention layer plus one FFN layer) and multiple attention layers.

B.1 Extension to one Transformer Layer

As for one Transformer layer introduced in Section 2.1, we define the new dual model as
f+(x) = Wϕ(x) + b. (20)

We will show that after performing gradient descent on W , the test output ŷtest = f+(WQx
′
T+1)

will be equivalent to x̂′
T+1. Our theorem is given as follows.

Theorem B.1. The output x̂′
N+1 of ICL inference process with one Transformer layer, is strictly

equivalent to the test prediction of its dual model f+(x) = Wϕ(x)+b, where f(x) is trained under
the loss function L formed as

L = − 1

ηD

N∑
i=1

(WFWV xi)
T
(Wϕ(WKxi) + b) , (21)

where η is the learning rate, D is a constant, and WF will be determined once the specified
pre-trained model, demonstrations and query tokens are given.

Proof. Recalling the proof of Theorem 3.1, we can rewrite Eq (1) as

h′
T+1 = W0ϕ

(
WQx

′
T+1

)
+

[
N∑
i=1

1

D
WV xi ⊗ ϕ(WKxi)

]
ϕ
(
WQx

′
T+1

)
(22)

where D = 1T
Nϕ(WKXD)Tϕ(WQx

′
T+1) + 1T

Tϕ(WKXT )
Tϕ(WQx

′
T+1) is a constant to normal-

ize the attention scores and W0 = 1
D (WV XT )ϕ(WKXT )

T . Furthermore, h′
N+1 will be taken as

input for the FFN sublayer and the Eq (2) can be rewritten as
x̂′
T+1 = W2IM (W1h

′
T+1 + b1) + b2 = W2IMW1h

′
T+1 +W2IMb1 + b2,

where IM ∈ Rd×d is a diagonal matrix whose i-th diagonal element will be one if (W1h
′
T+1+b1)i ≥

0 otherwise be zero. We need to note that this process is reasonable: for given demonstration and
query tokens, once the parameters {WQ,WK ,WV ,W1, b1} of the Transformer layer are fixed after
training, IM will be determined implicitly (otherwise, IM would be a function that varies with these
settings). For simplify, we rewrite x̂′

T+1 as

x̂′
T+1 = WFhT+1 + bF ,

where WF = W2IMW1 and bF = W2IMb1 + b2. Furthermore, expanding h′
T+1 in the above

Equation, we get:

x̂′
T+1 = WFW0ϕ

(
WQx

′
T+1

)
+

[
N∑
i=1

1

D
WFWV xi ⊗ ϕ(WKxi)

]
ϕ
(
WQx

′
T+1

)
+ bF

=

[
WFW0 +

N∑
i=1

1

D
WFWV xi ⊗ ϕ(WKxi)

]
ϕ
(
WQx

′
T+1

)
+ bF .

(23)
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On the other hand, we define a reference model:

f+(x) = Wϕ(x) + b,

where ϕ(·) is exactly the mapping function satisfying Eq (7) to approximate the softmax kernel.
Given the loss formed in Eq (21), we can note that the right part in L is exactly the output of this
reference model when taking WKxi as input, that is,

L = − 1

ηD

N∑
i=1

(WFWV xi)
T
(Wϕ(WKxi) + b) = − 1

ηD

N∑
i=1

(WFWV xi)
T
f+ (WKxi) .

We can calculate the derivative of L with respect to W as

∂L
∂W

= − 1

ηD

[
N∑
i=1

WFWV xi ⊗ ϕ(WKxi)

]
.

Suppose that the weight matrix W in the reference model f(x) is initialized as Winit, then using
one step of stochastic gradient descent (SGD) [Amari, 1993] with learning rate η, the weight matrix
W will be updated as

Ŵ = Winit − η
∂L
∂W

= Winit +

[
N∑
i=1

1

D
WFWV xi ⊗ ϕ(WKxi)

]
.

Compared to Eq (23), we can set Winit = WFW0, b = bF and take WQx
′
T+1 as test input. Then,

after one step update to W , the output of the reference model will be

f+(WQx
′
T+1) = Ŵϕ(WQx

′
T+1) + b

=

[
Winit +

N∑
i=1

1

D
WFWV xi ⊗ ϕ(WKxi)

]
ϕ(WQx

′
T+1) + b

=

[
WFW0 +

N∑
i=1

1

D
WFWV xi ⊗ ϕ(WKxi)

]
ϕ
(
WQx

′
T+1

)
+ bF = x̂′

T+1,

which implies that if we initialize the reference model f+(x) = Wϕ(x)+ b with Winit = WFW0,
b = bF , then after one step of gradient descent for W , the test output of f+(WQxN+1) will be
identical to the ICL result of one Transformer layer. Thus, we call the reference model with setting
Winit = WFW0, b = bF as the dual model corresponding to the ICL inference process. Finally,
we complete our proof.

Now, we discuss Theorem B.1 from the following perspectives:

• Training set and test input: In fact, we can observe that the loss function L can be seen as
the sum of inner products of N vector-pairs. In Eq (21), the right vector happens to be the
predicted output ŷ(i)

std = f+(z
(i)
std) = Wϕ(z

(i)
std) + b of the dual model for training input

z
(i)
std = WKxi. Correspondingly, the vector on the left can be regarded as the true label

y
(i)
std = WFWV xi. In other words, it can be seen that the dual model performs one step

SGD given training set {z(i)
std,y

(i)
std}Ni=1 on W using the loss L:

L =
1

ηD

N∑
i=1

(
y
(i)
std

)T
ŷ
(i)
std.

And then taking ztest = WQxi as test input, it finally output the prediction ytest, which
achieves the ICL result x̂N+1. Compared to Theorem 3.1, after introducing the FFN layer,
the main difference is that the labels of the training data become y

(i)
std = WFWV xi instead

of y(i)
std = WV xi. Additionally, compared to f(x), an extra bias b is introduced in the new

dual model f+(x), which also have a different initialization Winit = WFW0 rather than
W0. We also need to note that in the dual model f+(x), only W is trained, while b remains
unchanged after initialization.

17



Figure 4: The representation learning process for the ICL inference by one Transformer layer.

• Potential Low-rankness of WF : Noting that WF = W2IMW1 where W1 ∈ Rdh×d,
W2 ∈ Rd×dh , IM ∈ Rdh×dh (here we assume that di = do = d for simplify), the rank of
WF will satisfy

Rank(WF ) ≤ min {Rank(W1),Rank(W2),Rank(IM )} .

We observe that IM is a diagonal matrix with elements being zero or one, and its rank is
determined by the number of non-zero elements. Here, we can make a mild assumption
that we can set Rank(W1) = Rank(W2) = min{d, dh}. This assumption is quite mild as
even for any random square matrix as it will be non-singular with probability 1. In addition,
we also assume dh > d which is consistent with settings in practice. Therefore, we get
Rank(W1) = Rank(W2) = d, and the upper bound of Rank(WF ) will be

Rank(WF ) ≤ min {d,Rank(IM )} .

Thus, we can find that if we want to avoid losing information, WF should strive to maintain
Rank(IM ) > d which will be more easily achieved as dh becomes larger than d. Otherwise,
Rank(IM ) is likely to gradually decrease with an increase in the number of Transformer
layers. This explains the necessity of setting dh > d in practice. In some cases where
Rank(IM ) < d, meaning that the number of non-zero elements in IM or positive elements
in W1hN+1 + b1 is less than d, the upper bound of Rank(WF ) will be Rank(IM ) and the
lower bound of Rank(WF ) will be given as

Rank(WF ) ≥ Rank(W2IM ) + Rank(IMW1)− Rank(IM ) = Rank(IM ),

which implies the rank of WF will exactly equal to Rank(IM ). We should note that this
condition, i.e., Rank(IM ) < d, is easily satisfied when dh = d or when dh is slightly larger
than d (for example, d < dh < 2d in an expected sense). Thus, we conclude that WF has
the potential low-rank property.

• Representation Learning Lens: For a encoded demonstration representation xi, the key
and value projections will generate a pair of feature WKxi and WV xi to create a certain
distance between data representations in space. And then, on the one hand, a potential low-
rank transformation WF is applied to the WV xi, attempting to compress some information
which increases the difficulty of contrastive learning and forces the model to learn better
features; on the other hand, ϕ(·) projects WKxi into a higher-dimensional space to capture
deeper-level features. Finally, we need to train the weight matrix W , which maps ϕ(WKxi)
back to the original space, aiming to make the mapped vector as close as possible to
WFWV xi. This interpretation is illustrated in Figure 4.

B.2 Extension to Multiple Attention Layers

In this part , we extend Theorem 3.1 to multiple attention layers. Here we adopt the attention layer
based on PrefixLM [Roberts et al., 2019], where the query tokens can compute attention with all
preceding tokens (including itself), while for demonstration ones, attention can be computed between
themselves, excluding the query tokens. Existing work [Ding et al., 2023] has theoretically and
experimentally explained that PrefixLM achieves better results than CasualLM. In this paper, we
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Figure 5: Illustrating the ICL inference process of multiple softmax attention layers from the
perspective of dual models. The layer-wise process of ICL can be viewed as a gradual gradient
descent on the dual model sequence. The datasets used for each gradient descent, including training
data and test input, are obtained from the outputs of the previous dual model before and after training.

assume we have only one query token, that is, there is no query input before the considered query
token. With the assumption that T = 0, to maintain notational simplicity, we use xN+1 to represent
the query token here instead of x′

T+1 and the input will be X = [XD,xN+1]. We assume that there
are L attention layers and the output of the l-th layer X(l) can be expressed as:

H(l) = [H
(l)
D ,h

(l)
N+1] = Atten(H(l−1); W

(l)
Q ,W

(l)
K ,W

(l)
V ),

H
(l)
D = W

(l)
V H

(l−1)
D Softmax

(
(W

(l)
K H

(l−1)
D )TW

(l)
Q H

(l−1)
D√

d

)
,

h
(l)
N+1 = W

(l)
V H(l−1)Softmax

(
(W

(l)
K H(l−1))TW

(l)
Q h

(l−1)
N+1√

d

)
.

where we set H(0) = X = [XD,xN+1] as the initial input. And the final output of the query token
is ĥ(L)

N+1 = h
(L)
N+1. Here, we assume that after training, the parameters W (l)

Q ,W
(l)
K ,W

(l)
V ∈ Rdo×di

are fixed and we set do = di = d.

Next, we extend Theorem 3.1 to the case of multiple softmax attention layers. Formally, we present
our result in the following theorem.

Theorem B.2. Given L softmax attention layers whose parameters {W (l)
Q ,W

(l)
K ,W

(l)
V }Ll=1 are

fixed after training, the ICL output of these layers is equivalent to sequentially performing one step
gradient descent on a sequence of dual models

{
f (l)(x) = W (l)ϕ(x)

}L
l=1

, where the loss function
for the l-th dual model is:

L(l) = − 1

ηD(l)

N∑
i=1

(
W

(l)
V h

(l−1)
i

)T
W (l)ϕ(W

(l)
K h

(l−1)
i ), (24)

where h
(l−1)
i is the output of the (l − 1)-th attention layer for the i-th token, η is the learning rate

and D(l) is a constant. The input for the l-th dual model is generated by the trained (l − 1)-th dual
model.
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Proof. Given H(l−1) as the input for the l-th attention layer, the inference process of h(l)
N+1 is

h
(l)
N+1 = W

(l)
V H(l−1)Softmax

(
(W

(l)
K H(l−1))TW

(l)
Q h

(l−1)
N+1√

d

)

= W
(l)
0 ϕ

(
W

(l)
Q h

(l−1)
N+1

)
+

[
N∑
i=1

1

D(l)
W

(l)
V h

(l−1)
i ⊗ ϕ(W

(l)
K h

(l−1)
i )

]
ϕ
(
W

(l)
Q h

(l−1)
N+1

)
,

where D(l) = 1T
N+1ϕ(W

(l)
K H(l−1))Tϕ(W

(l)
Q h

(l−1)
N+1 ) is a constant to normalize the attention scores

and W
(l)
0 = 1

D(l) (W
(l)
V h

(l−1)
N+1 )ϕ(W

(l)
K h

(l−1)
N+1 )

T . According to Theorem 3.1, we can easily get

the dual model f (l)
init(h) = W

(l)
initϕ(h) where the initialization is W

(l)
init = W

(l)
0 . Given the loss

function L(l) formed as Equation 24 and training set
{
z
(i)
std,y

(i)
std

}N

i=1
where z(i)

std = W
(l)
K h

(l−1)
i and

y
(i)
std = W

(l)
V h

(l)
i , we perform one step SGD with learning rate η on weight matrix W (l) and will get

trained dual model:

f̂ (l)(x) = Ŵ (l)ϕ(x) = (W
(l)
init +∆W (l))ϕ(x)

=

[
W

(l)
0 +

N∑
i=1

1

D(l)
W

(l)
V h

(l−1)
i ⊗ ϕ(W

(l)
K h

(l−1)
i )

]
ϕ(x)

Taking test input as z(l)
test = W

(l)
Q h

(l−1)
N+1 , the prediction f̂ (l)(z

(l)
test) will exactly equal to h

(l)
N+1.

Next, we will show how to obtain H
(l)
D through the trained dual model f̂ (l)(x). And after

W
(l+1)
K ,W

(l+1)
Q ,W

(l+1)
V projections, H(l)

D will constitute the training set as well as the test in-

put for the next dual model f (l+1)
init (x).

Keeping the initialized dual model f (l)
init(x) and the trained one f̂ (l)(x) in mind, we can compute the

demonstration token output h(l)
i (i = 1, 2, ..., N ) of l-th attention layer as

h
(l)
i = W

(l)
V H

(l−1)
D Softmax

(
(W

(l)
K H

(l−1)
D )TW

(l)
Q h

(l−1)
i√

d

)

=

[
N∑
i=1

1

D
(l)
i

W
(l)
V h

(l−1)
i ⊗ ϕ(W

(l)
K h

(l−1)
i )

]
ϕ
(
W

(l)
Q h

(l−1)
i

)
=

D(l)

D
(l)
i

[
N∑
i=1

1

D(l)
W

(l)
V h

(l−1)
i ⊗ ϕ(W

(l)
K h

(l−1)
i )

]
ϕ
(
W

(l)
Q h

(l−1)
i

)
=

D(l)

D
(l)
i

[
W

(l)
init +

N∑
i=1

1

D(l)
W

(l)
V h

(l−1)
i ⊗ ϕ(W

(l)
K h

(l−1)
i )−W

(l)
init

]
ϕ
(
W

(l)
Q h

(l−1)
i

)
=

D(l)

D
(l)
i

[
Ŵ (l) −W

(l)
init

]
ϕ
(
W

(l)
Q h

(l−1)
i

)
=

D(l)

D
(l)
i

[
f̂ (l)(W

(l)
Q h

(l−1)
i )− f

(l)
init(W

(l)
Q h

(l−1)
i )

]
(25)

where D
(l)
i = 1T

Nϕ(W
(l)
K H

(l−1)
D )Tϕ(W

(l)
Q h

(l−1)
i ) is a constant to normalize the attention scores

for h(l)
i . Therefore, once we obtain the trained dual model f̂ (l)(h), we can use the Eq (25) to get the

demonstration token output H(l)
D = [h

(l)
1 ,h

(l)
2 , ...,h

(l)
N ]. These demonstration token outputs, along

with the output h(l)
N+1 for query tokens, will together constitute the training set and test input for

the next dual model f (l+1)
init (h). This process continues layer by layer until we obtain the ultimate

ICL output h(L)
N+1. In summary, the ICL inference process across L attention layers is equivalent to

performing gradient descent on L dual models sequentially. Thus, we complete our proof.

This theorem is a natural extension of Theorem 3.1: when considering the stacking of multiple
attention layers, a sequence of dual models is correspondingly generated. Although these dual
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models have the same form f(x) = Wϕ(x), they have different initializations and datasets. As the
ICL inference process progresses layer by layer between attention layers, we equivalently perform
gradient descent on the dual models one by one. The input H(l) for each attention layer, including
demonstration tokens and query tokens, can be obtained from the test output of the dual models. This
can be illustrated in Figure 5.

C Proof of the Generalization bound

C.1 Proof of Theorem 3.2

In this part, we provide the proof regarding the generalization boundary in Theorem 3.2. We restate
our theorem as follows:

Theorem C.1. Define the function class as F := {f(x) = Wϕ(WKx) | ∥W ∥ ≤ w} and let the
loss function defined as Eq (10). Consider the given demonstration set as S = {xi}Ni=1 where
S ⊆ ST and ST is all possible demonstration tokens for some task T . With the assumption that
∥WV xi∥, ∥Wϕ(WKxi)∥ ≤ ρ, then for any δ > 0, the following statement holds with probability
at least 1− δ for any f ∈ F

L(f̂) ≤ L(f) +O

wρdo
√
Tr(KS)

N
+

√
log 1

δ

N

 . (26)

Proof. Our proof is similar to the Lemma 4.2 in Saunshi et al. [2019], but here we focus on a different
function class. Firstly, we consider the classical generalization bound based on the Rademacher
complexity of the function class which can refer to Theorem 3.1 in Mohri et al. [2018]. For a real
function class G whose functions map from a set Z to [0, 1] and for any δ > 0, if S is a training set
composed by N iid samples {xi}Ni=1, then with probability at least 1− δ

2 , for all g ∈ G

E [g(x)] ≤ 1

N

N∑
i=1

g(xi) +
2RS(G)

N
+ 3

√
log 4

δ

2N
(27)

where RS(G) is the traditional Rademacher complexity. By setting S exactly the demonstration set
and G =

{
gf (x) = − (WV x)

T
Wϕ(WKx)

∣∣∥W ∥ ≤ w
}

, we can apply this bound to our case.

Then, we construct a function class F̃ =
{
f̃(x) = [f(x);WV x] = [Wϕ(WKx);WV x]

∣∣∥W ∥ ≤ w
}

whose functions map from S to R2do . Next, we will first prove RS(G) ≤ 2ρRS(F̃) and to do this,
we need to use the following Lemma:

Lemma C.2 (Corollary 4 in Maurer [2016]). Let Z be any set, and S = {zi}Mi=1 ∈ ZM . Let F̃ be a
class of functions f̃ : Z → Rn and h : Rn → R be L-Lipschitz. For all f̃ ∈ F̃ , let gf̃ = h ◦ f̃ . Then

E
σ∼{±1}M

[
sup
f̃∈F̃

⟨σ, (gf̃|S )⟩

]
≤

√
2L E

σ∼{±1}nM

[
sup
f̃∈F̃

⟨σ, (f̃|S)⟩

]
(28)

where f̃|S =
(
f̃t(zj)

)
t∈[n],j∈[M ]

.

We apply Lemma C.2 to our case by setting Z = Rdi , S to be exactly the demonstration
set, F̃ to be the function class we constructed and n = 2d. We also use h : R2do → R
where h(x) = −⟨x1:do

,xdo+1:2do
⟩ and thus we have gf̃ (x) = h(f̃(x)) = h([f(x);WV x]) =

− (WV x)
T
Wϕ(WKx). We can find that gf (x) = gf̃ (x) and the left side of inequality (28) is

exactly RS(G).

Then we can see that h is
√
2ρ-Lipschitz with the assumption that ∥WV xi∥, ∥Wϕ(WKxi)∥ ≤ ρ and

we have RS(G) ≤ 2ρRS(F̃). Now using Lemma C.2 and the classical generalization bound (27),
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we have that with probability at least 1− δ
2

L(f̂) ≤ L̂(f̂) +O

ρRS(F̃ )

N
+

√
log 1

δ

N

 , (29)

Let f∗ ∈ argminf∈F L(f). According to Hoeffding’s inequality, with probability at least 1− δ
2 , we

have that L̂(f∗) ≤ L(f∗) + 3

√
log 2

δ

2N . Combining this with (29), the fact that L̂(f̂) ≤ L̂(f∗) and
applying a union bound, we can get that

L(f̂) ≤ L(f) +O

ρRS(F̃ )

N
+

√
log 1

δ

N

 . (30)

Next, we give the upper bound for RS(F̃).

RS(F̃) = E
σ∼{±1}2Ndo

[
sup

∥Wj∥≤w

2Ndo∑
t=1

σt(f̃|S)t

]
(Definition of Rademacher complexity)

= E
σ∼{±1}Ndo

 sup
∥W ∥≤w

do∑
j=1

Wj

N∑
i=1

σi,jϕ(WKxi)

 (WV xi is independent of Wj)

≤ E
σ∼{±1}Ndo

 sup
∥W ∥≤w

do∑
j=1

∥Wj∥

∥∥∥∥∥
N∑
i=1

σi,jϕ(WKxi)

∥∥∥∥∥
 (By Cauchy-Schwartz inequality)

≤ wdo E
σ∼{±1}N

[∥∥∥∥∥
N∑
i=1

σiϕ(WKxi)

∥∥∥∥∥
]

(Using the fact that ∥Wj∥ ≤ w)

≤ wdo

√√√√√Eσ∼{±1}N

∥∥∥∥∥
N∑
i=1

σiϕ(WKxi)

∥∥∥∥∥
2
 (By Jensen’s inequality)

= wdoTr(KS)

Substituting the upper bound of RS(F̃) into (30), we will get that

L(f̂) ≤ L(f) +O

wρdo
√
Tr(KS)

N
+

√
log 1

δ

N

 . (31)

Thus we finish our proof.

C.2 Extension to negative models:

One may also wonder whether the ratio of negative samples mentioned in Section 4 will affect the
generalization bounds. In fact, after introducing negative samples and ignoring constant term in Eq
(9), we consider the following representation loss:

L(f) = Ex∼DT

− 1

K

K∑
j=1

(Wϕ(WKx))
T (

WV x−WV x
−
j

) ,

where we consider sampling K negative samples for each xi and x−
j denotes the j-th nega-

tive sample for token x . Correspondingly, the empirical loss will be considered as L̂(f) =

− 1
N

∑N
i=1

1
K

∑K
j=1 (Wϕ(WKxi))

T (
WV xi −WV x

−
ij

)
where x−

ij is the j-th negative sample for
xi. Then, by retaining the other definitions in Section 3.3, corresponding to Theorem 3.2, we can
obtain the generalization bound as

L(f̂) ≤ L(f) +O

wρdo

√
Tr(KS)

(
5

N2
+

1

rN3

)
+

√
log 1

δ

N

 ,
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where r = K
N is excatly the the ratio of the number of negative samples. It can be observed that as

the ratio of negative samples increases, the generalization error decreases. However, we also notice
that 5

N2 > 1
rN3 thus the former term dominates, which means the reduction in generalization error

due to an increased proportion of negative samples is limited. Nevertheless, we do not rule out the
possibility of a tighter generalization bound, which is a promising direction for future research.

Proof Sketch. The proof process is similar to that of Theorem 3.2. The main dif-
ference lies in the fact that we should firstly define the function class G ={
− 1

K

∑K
j=1 (Wϕ(WKxi))

T (
WV xi −WV x

−
j

) ∣∣∥W ∥ ≤ w
}

to use the classical bound. In

addition, we define F̃ =
{
f̃(x) = [f(x);WV x;WV x

−
1 ; ...;WV x

−
K ]
∣∣∥W ∥ ≤ w

}
whose func-

tions map from S to R(K+2)do . Similarly, when using Lemma C.2, we set Z = Rdi , F̃ be
the above function class and n = (K + 2)do. We also use h : R(K+2)do → R defined as
h(x) = − 1

K

∑K
j=1 x

T
1:do

(xdo+1:2do
− x(j+1)do+1:(j+2)do

). Then we notice that

∂h

∂x1:d0

= − 1

K

K∑
j=1

(xd0+1:2do − x(j+1)do+1:(j+2)do
),

∂h

∂xdo+1:2do

= −x1:do ,
∂h

∂x(j+1)do+1:(j+2)do

=
1

K
x1:do .

(32)

With the assumption that ∥WV x∥, ∥Wϕ(WKx)∥ ≤ ρ, we can get that the Frobenius norm of the

Jocabian J of h has ∥J∥2F ≤ 4ρ2 + ρ2 + K
K2 ρ

2 = (5 + 1
K )ρ2. Thus we get that h is

√
5 + 1

K ρ-
Lipschitz. The rest of the proof process is similar to that of Theorem 3.2. Ultimately, we will obtain
the aforementioned generalization error.

D Details and More Discussions for Section 4

In this section, we provide a more detailed discussion on improving the model structure from the
perspective of representation learning especially contrastive learning, which is presented in Section 4
of the main body. And we also point out the corresponding modifications in the self-attention
mechanism, which are adopted in our experiments.

D.1 More Discussion on the Contrastive Loss

Although we have figured out the representation learning loss of the implicit gradient updates, it can
be observed that this loss function has a flaw: due to the lack of normalization for y(i)

std and ŷ(i) when
calculating the cosine distance, the loss can theoretically be optimized to negative infinity. To address
this issue, we introduce regularization to constrain the norm of W , that is,

L = − 1

ηD

N∑
i=1

(WV xi)
T
Wϕ(WKxi) +

α

2η
∥W ∥2F ,

where α is a hyperparameter to balance the two parts. As a result, we can see that the gradient update
for W will be in an exponentially smoothed manner meaning that a portion of the initial part will be
discarded at every step, that is,

W (t) = W (t−1) − η
∂L
∂W

= (1− α)W (t−1) +

N∑
i=1

D−1WV hi ⊗ ϕ(WKhi).

Equivalently, the inference process of ICL can be seen as the first step of the aforementioned update,
and the attention mechanism will be correspondingly adjusted as,

h′
T+1 = (1− α)W0ϕ(q) +D−1

[
N∑
i=1

V
(i)
D ⊗ ϕ(K

(i)
D )

]
ϕ(q),
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which means more demonstration information will be attended to. This will directly result in Eq 13.

This result can be easily extended to self-attention mechanism. As for a self-attention layer, if all
other tokens adopt the same modification, the self-attention layer will become

H = WV Xsoftmax

(
(WKX)TWQX√

do

)
− αWV X

= WV X

[
softmax

(
(WKX)TWQX√

do

)
− αI

]
,

which leads to the model structure incorporating an operation similar to skip connections. Further-
more, to ensure numerical stability, we normalize the attention scores yielding:

H = WV X ·Norm

(
softmax

(
(WKX)TWQX√

do

)
− αI

)
,

where Norm(·) is performed column-wise to ensure that the attention scores sum to 1. The above
modification reduce the attention score of each token to its own information during aggregation.
It is worth noting that, although our initial intention is to impose regularization on the contrastive
loss where α > 0 to prevent it from diverging to negative infinity, we find in experiments that this
modification remains effective even when α is less than 0. We interpret this as possibly stemming from
the fact that an appropriate α helps the attention block become full-rank, thereby better preserving
information, which can be illustrated by Lemma D.1:

Lemma D.1. Let the attention block A ∈ Rn×n. There exists some δ > 0 such that, for any
0 < |α| < δ, the attention block A+ αIn will become full-rank.

Proof. Define f(α) = det(αIn + A), which is a polynomial of degree n in α. Then, f(α)
has only finitely roots. Let α1, α2, . . . , αr be the non-zero roots of f(t). Now, consider δ =
min{|α1|, |α2|, . . . , |αr|}. For 0 < |α| < δ, we can claim that f(α) = det(αIn +A) ̸= 0. Thus,
A+ αIn becomes non-singular (full-rank) and we complete the proof.

Lemma D.1 provides one possible case for appropriate α. In fact, the selection of α can be quite
flexible; for instance, similarly, when δ = max{|α1|, |α2|, . . . , |αr|} and |α| > δ holds, A + αIn
also remains full-rank. Our experimental results related to regularized models will further illustrate
the effectiveness of an appropriate α in enhancing model performance.

We also acknowledge that our modification is relatively straightforward and may not be optimal.
However, we believe that it may be a good choice to make structural improvements to the model from
the perspective of the loss function, or more generally, from an optimization standpoint. For example,
to address the issue of non-normalized y

(i)
std and ŷ(i), we can also modify the loss function from the

perspective of ridge regression as:

L =
1

2ηD

N∑
i=1

∥WV xi −Wϕ(WKxi)∥2F +
α

2η
∥W ∥2F .

And the optimal W ∗ will be

W ∗ =
[
ϕ(WKX)ϕ(WKX)T + αDI

]−1
WV Xϕ(WKX).

Correspondingly, the attention mechanism will be modified to

H = W ∗ϕ(WQX) =
[
ϕ(WKX)ϕ(WKX)T + αDI

]−1
WV Xϕ(WKX)ϕ(WQX), (33)

where we neglect the normalization operation. This result is very similar to the mesa-layer proposed
by Von Oswald et al. [2023b], which optimizes linear attention layers under the auto-regressive setting.
Here, we presented its form on softmax self-attention setting using kernel methods and explained
it from the perspectives of contrastive loss and ridge regression. Although the matrix inversion
calculation in Eq (33) can be computationally expensive, effective methods for computing Eq (33),
including both forward computation and backward propagation, have been thoroughly researched in
Von Oswald et al. [2023b], which contributes to making the above modification practically applicable.
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D.2 More Discussion on the Data Augmentation

In addition to discussing the loss function, the contrastive learning paradigm also offers our some
insights. In the corresponding representation learning process of ICL, we can easily notice that "data
augmentation" is performed using a simple linear mapping, which may be not sufficient for learning
deeper-level features. To address this, we can employ more complicated nonlinear functions for more
complex augmentations. Denoting these two augmentations as g1 and g2, consequently, the process
of contrastive learning will be modified as follows

L = − 1

ηD

N∑
i=1

[g1(WV xi)]
T
Wϕ(g2(WKxi)).

Correspondingly, the gradient update for W will become

W (t) = W (t−1) − η
∂L
∂W

= W (t−1) +

N∑
i=1

D−1g1(WV xi)⊗ ϕ(g2(WKxi)).

And from the perspective of ICL, correspondingly, the last token will be updated as

h′
T+1 = W0ϕ(q) +D−1

[
N∑
i=1

g1(V
(i)
D )⊗ ϕ(g2(K

(i)
D ))

]
ϕ(q).

And by reformulating the above equation we will get Eq (14) in the main body.

Correspondingly, the modification for self-attention layer can be adjusted as,

H = g1(WV X)softmax

(
g2(WKX)TWQX√

do

)
,

where g1(·) and g2(·) will be column-wise here. It is worth noting that here we have only presented
the framework of using nonlinear functions as data augmentations to modify the self-attention layer
and in the simplest case, we can set g1(x) and g2(x) as MLPs (Multi-Layer Perceptrons). However,
in practice, it is encouraged to use data augmentation functions that are tailored to specific data
structures. For example, in the case of CMT [Guo et al., 2022], the used Convolutional Neural
Networks (CNNs) can be considered as a form of "strong data augmentations" suitable for image
datas within our framework. We consider the exploration of various augmentation methods tailored
to different types of data as an open question for future research.

D.3 More discussion on the Negative Samples

Although the gradient descent process corresponding to ICL exhibits some similarities with traditional
contrastive learning approaches without negative samples, there are also significant differences: In
traditional Siamese networks, the augmented representations as positive pairs are further learned
through target and online network that share weights (or at least influence each other using EMA).
The output of the target network is then passed through a predictor to compute the contrastive loss.
In contrast, the representation learning pattern corresponding to ICL indeed performs more simply,
which may potentially limit the ability of the dual model to learn representations fully without
negative samples. To address this, similar to most contrastive learning approaches, we can introduce
negative samples forcing the model to separate the distances between positive and negative samples
at the same time, that is,

L = − 1

ηD

N∑
i=1

(WV xi)
T
Wϕ(WKxi) +

β

ηD

N∑
i=1

1

|N (i)|
∑

j∈N (i)

(WV xj)
T
Wϕ(WKxi)

= − 1

ηD

N∑
i=1

WV

xi −
β

|N (i)|
∑

j∈N (i)

xj

T

Wϕ(WKxi)

= − 1

ηD

N∑
i=1

(WV x̃i)
T
Wϕ(WKxi),
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where x̃i = xi − β
|N (i)|

∑
j∈N (i) xj , N (i) is the set of the negative samples for xi and β is a

hyperparameter. As a result, the gradient descent on W will be modified as

W (t) = W (t−1) − η
∂L
∂W

= W (t−1) +

N∑
i=1

D−1WV x̃i ⊗ ϕ(WKxi).

Correspondingly, the ICL process for ĥN+1 will be

h′
T+1 = W0ϕ(WQx

′
T+1) +D−1

[
N∑
i=1

WV x̃i ⊗ ϕ(WKxi)

]
ϕ(WQx

′
T+1).

And this will directly result in Eq (15) in the main body.

As for a self-attention layer, similarly, we can get the corresponding modification as

H = WV X̃softmax

(
(WKX)TWQX√

do

)
, (34)

where X̃(i) = x̃i. In corresponding experiments, for each token, we simply choose other the k least
relevant tokens as its negative samples, i.e., the k tokens with the lowest attention scores. Noting
that here we simply use other token representations as negative samples for xi. However, there are
more ways to construct negative samples that are worth exploring (for instance, using noise vectors or
tokens with low semantic similarity as negative samples). For specific data structures and application
scenarios, customizing the selection or construction of negative samples may be more effective.

E More Experiments

E.1 More details of Experiments on Linear Task

In this part, we will discuss our experimental setup in more details and provide more results on linear
regression task.

Inspired by Garg et al. [2022] and Von Oswald et al. [2023a], we choose to pretrain a softmax
attention layer before exploring the equivalence proposed by Theorem 3.1. In fact, pretraining is not
mandatory since our theoretical analysis does not depend on any specific weight construction. In
other words, the inference results of ICL and the test prediction of the dual model will still remain
consistent for an attention layer with arbitrary weights or even random initialization. However, for the
convenience of further investigating the impact of subsequent modifications to the model structure
and to better align with real-world scenarios, we still opted for pretraining to let the model acquire
some task-specific knowledge. Additionally, our experiments are conducted in a self-attention setting.
When we focus only on the last token, this is equivalent to considering the case with only one query
token (T = 0) in Section 2.1. The experiments are completed on a single 24GB NVIDIA GeForce
RTX 3090 and the experiments can be completed within one day.

For the linear regression task, we generate the task by s = Wt where every element of W ∈ Rds×dt

is sampled from a normal distribution Wij ∼ N (0, 1) and t is sampled from a Gaussian distribution
x ∼ U(−1, 1)dt . To facilitate more accurate estimation of attention matrices using random features
and considering the limited learning capacity of a single attention layer, we only set a small value
for dt = 11 and ds = 1. Then, at each step, we use generated {xi = [ti; si]}N+1

i=1 to form the input
matrix X while the label part of the query token is masked to be zero, that is, xN+1 = [ti; 0] where
we consider only one query token and we denote x′

T+1 = xN+1 to maintain consistency of notation
in Section 2.1. The softmax attention layer is expected to predict ŝN+1 to approximate the ground
truth value sN+1. We use mean square error (MSE) as the loss function, that is, for each epoch,

L =
1

Nstep

Nstep∑
j=1

∥ŝ(j)N+1 − s
(j)
N+1∥

2,

where ŝ(j)N+1 and s
(j)
N+1 are the prediction and ground truth value at j-th step and Nstep is the number

of steps. We set Nstep = 1024 for N + 1 = 16 which means the total number of tokens remains
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(a) dr = 3 (b) dr = 12 (c) dr = 120 (d) dr = 12000 (e) exact attention

Figure 6: The estimation of the attention matrix by positive random features when varying dr

(a) dr = 3 (b) dr = 12 (c) dr = 120 (d) dr = 12000 (e) exact output

Figure 7: The estimation of the output matrix by positive random features when varying dr

16384. We choose stochastic gradient descent (SGD) [Amari, 1993] as the optimizer and we set
the learning rate to 0.003 for normal and regularized models, while the remaining experiments to
0.005. We also attempt the multi-task scenario, where the input token at each step is generated from
a different task. However, we find it challenging for a single attention layer to effectively learn in
this setting, resulting in disordered predictions. Therefore, our experiments are currently limited to
single-task settings, and the multi-task scenario is worth further investigation in the future.

It is worth noting that we approximate the attention matrix calculation using random features as
kernel mapping function instead of using the traditional softmax function in the self-attention layer
[Choromanski et al., 2020]. The mapping function ϕ : Rdo → Rdr has the form of ϕ(x) =

ew
Tx−∥x∥2/2 where w ∼ N (0, I). Orthogonal random features [Yu et al., 2016, Choromanski et al.,

2020] or simplex random features [Reid et al., 2023] can be chosen to achieve better performance
theoretically. We investigate the impact of changing the dimension of random features dr on the
approximation of attention matrices and output, using Mean Squared Error (MSE) and Mean Absolute
Error (MAE) as evaluation metrics, where we conduct 50 repeated experiments and calculated the
average values for each value of dr, as shown in Figure 8. It can be observed that as the dimension
of random features increases, the approximation performance gradually improves, with both errors
reaching a low level in the end. We visualize the exact attention matrix and compare it with the
estimated attention matrices obtained using different values of dr, as shown in Figure 6. Again, it can
be seen that as dr increases, the approximation of the true attention matrix improves gradually and
similar results can be observed for the analysis of output matrices in Figure 7.

To obtain a more accurate estimation of the attention matrix, we set the output dimension of the
mapping function to be 100 times the input dimension, that is, dr = 100(ds + dt) = 1200. Further-
more, we visualize the exact attention matrix and the output with the approximation results, which
are shown in the Figure 9. As we can see, although some larger values are not estimated accurately
due to the limited dimension of the random features we select, the majority of the information is still
estimated comprehensively well. These findings indicate that our choice of using positive random
features as mapping functions to estimate the true softmax attention and conduct experiments is
relatively feasible.

After the weights WQ, WK , WV of the attention layer have been determined, we generate test N +1
tokens in the same way where the s part of the (N +1)-th token is also set to be zero and finally input
the test tokens into the attention layer to obtain the corresponding predicted ĥN+1 = [t̂

(1)
N+1, ŝ

(1)
N+1].

Here, we also use h′
T+1 = ĥN+1 to maintain the notation consistency in Section 2.1.
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(a) Estimation error of attention ma-
trix vs. dr

(b) Estimation error of attention ma-
trix vs. dr

Figure 8: The error of positive random features in estimating the attention and output matrices as dr
varies.

(a) the exact attention matrix and its approxi-
mation

(b) the exact output and its approximation

Figure 9: The comparison between the exact attention matrix, output and their estimated approxima-
tions using random features under setting N = 16 and dr = 1200.

On the other hand, we construct a dual model f(x) = Wϕ(x) where ϕ(·) is strictly equivalent to the
kernel mapping function used in the attention layer. We transform the first N tokens as the training
set according to Theorem 3.1 and train the dual model using the loss formed by Eq (9). In fact,
according to Theorem 3.1, after we perform one step of gradient descent on this training set, the test
prediction ŷtest = [t̂

(2)
N+1, ŝ

(2)
N+1] of the dual model will strictly equal h′

T+1.

We conduct experiments under the same setup using different random seeds to explore the effects
of various model modifications. The data for all three experiments are generated under identical
conditions. One set of experimental results is presented in the main text, while the results of the other
two sets are shown in the Figure 10. Similar to the discussion in the main text, we can achieve better
performance than the normal model with appropriate parameter settings.

Figure 10: The performance for regularized models (Center Left), augmented models (Center Right)
and negative models (Right) with different settings for different random seeds.
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E.2 More details of Experiments on Different Tasks

In addition to conducting experiments on linear regression tasks, we also extended our experiments
to involve trigonometric and exponential tasks.

E.2.1 More details of Experiments on Trigonometric Tasks

Figure 11: The equivalence between ICL of one softmax attention layer and gradient descent, along
with analysis on different model modifications for trigonometric tasks. Left Part: ∥ŷtest − h′

T+1∥2
as the gradient descent proceeds under setting N = 127; Remaining Part: the performance for
regularized models (Center Left), augmented models (Center Right) and negative models (Right)
with different settings.

For trigonometric task, we generate the task by s = cos(Wt) where cos(·) is element-wise, W ∈
Rds×dt is sampled from the normal distribution Wij ∼ N (0, 1) while t is sampled from the uniform
distribution x ∼ U(0, π)dt . In experiments, we found that for one softmax attention layer, learning
higher-dimensional tasks is challenging. Therefore, we only set dt = 7 and ds = 1. At each step, we
use N + 1 = 128 tokens {xi = [ti; si]}N+1

i=1 and the total number of tokens remains unchanged at
16384. Compared to the setting N +1 = 16 of linear tasks, we observed that for more complex tasks,
the attention layer needs to use more tokens to provide information at each training step. Similarly,
we mask the label part of the last token, that is, sN+1 = 0 and use mean square error (MSE) loss to
train the attention layer. We choose SGD as the optimizer and the learning rate is set as 0.005. The
rest of the settings remain consistent with those used in the linear task. The result for trigonometric
regression task is shown in Figure 11.

Firstly, as shown in the left part of Figure 11, the inference results is of ICL is strictly equivalent
to the prediction of the dual model, that is, ĥN+1 = ŷtest as well as the label part ŝ(1)N+1 = ŝ

(2)
N+1,

aligning with our analysis in Theorem 3.1.

The performance of modified model during training process can be seen in the remaining parts of
Figure 11. For regularized models, as seen in the center left part of figure 11, the models when
α < 0 converge slightly faster and reach better final results compared to the normal model (α = 0).
For augmented models, we use as the same augmentation functions g1 and g2 as the ones in the
linear regression task, that is, g1(x) = g2(x) = σ(Wx) where σ(·) is GELU activation function.
However, for g+2 , we use ELU as the activation function. We can find from the center right part of
Figure 11 that, compared to the normal model, using g1 alone and using g1 and g2 simultaneously as
data augmentations significantly degrade the model’s performance, including convergence speed and
final results. However, using g2 alone yields comparable result with the normal model. Particularly,
when using g+2 , the model accelerates its convergence speed. However, for negative models, the
performance with the selected number of negative samples k and the parameter β is worse than the
normal model, which suggests that our simple approach of selecting those tokens low attention scores
as negative samples is not a reasonable method. Just as we discussed in Section 4, for different tasks,
a more refined strategy for selecting negative samples should be considered.

E.2.2 More details of Experiments on Exponential Tasks

For exponential task, we generate the task by s = exp(Wt) where exp(·) is also element-wise,
W ∈ Rds×dt is sampled from the normal distribution Wij ∼ N (0, 1) while t is sampled from
the uniform distribution x ∼ U(−1, 1)dt . We only set dt = 6 and ds = 1 considering the limited
learning capacity of one softmax attention layer. At each training step, we use N + 1 = 512 tokens
{xi = [ti; si]}N+1

i=1 and the total number of tokens remains unchanged at 16384. Compared to the
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Figure 12: The equivalence between ICL of one softmax attention layer and gradient descent, along
with analysis on different model modifications for exponential tasks. Left Part: ∥ŷtest − h′

T+1∥2
as the gradient descent proceeds under setting N = 511; Remaining Part: the performance for
regularized models (Center Left), augmented models (Center Right) and negative models (Right)
with different settings.

setting N + 1 = 16 of linear tasks and N + 1 = 128 of trigonometric tasks, we also find that for
exponential tasks, the attention layer needs more tokens to provide in-context information at each
training step. The rest of the settings remain consistent with those used in the trigonometric task. The
result for exponential regression task is shown in Figure 12.

Similarly, as shown in the left part of Figure 12, the result ĥN+1 of ICL inference is equivalent to the
test prediction ŷtest of the dual model after training, just as stated in Theorem 3.1. For regularized
models, it can be observed that when α = 16, the model converges faster and achieves better result.
For augmented models, using g1 or g2 alone as data augmentations results in better performance.
However, when both g1 and g2 are used simultaneously, the training process becomes unstable, so we
did not show it in the center right part of Figure 12. For negative model, similar to the case in the
trigonometric task, the different combinations of negative samples’ number k and parameter β do not
show a significant improvement over the normal model, highlighting the importance of the strategy
for selecting negative samples. We leave the exploration of a more refined negative sample selection
strategy when facing various tasks for future consideration.

E.3 More Experiments on Combinations

In addition, we also conduct experiments with their combinations on linear tasks, trigonometric
tasks , and exponential tasks. The results are shown in Figure 13. For linear tasks, a combination
of regularized and augmented modifications is sufficient. However, for the other two tasks, the
results are actually worse than using regularized or augmented modification individually (compared
to Figures 11 and 12). We think this may be due to the ineffective selection of negative samples,
which is amplified when combined. Therefore, when the design of augmentation or negative sample
improvement methods is not effective, we recommend using a single modification method.

Figure 13: Performance of different combinations on linear (Left), exponential (Center), and trigono-
metric (Right) tasks.

E.4 More Experiments on One Transformer Layer

Similar to the experiments with one softmax attention layer, we also conduct experiments on a
Transformer layer (introducing one FFN layer after the attention layer) and trained its dual model
based on Theorem B.1. As shown in Figure 14, the inference result ĥN+1 of ICL remains equivalent
to the test prediction ŷtest of the trained dual model. Furthermore, to validate the potential low-rank
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Figure 14: The equivalence between ICL of one Transformer layer and gradient descent, along with
analysis on upper bound of Rank(WF ). Left: ∥ŷtest − h′

T+1∥2 as the gradient descent proceeds
under setting N = 15; Right: the upper bound of Rank(WF ) when setting d = 12 and varying dh.

property of matrix WF , we explore its upper bound of rank. Noting that WF = W2IMW1 where
W1 ∈ Rdh×d, W2 ∈ Rd×dh , IM ∈ Rdh×dh , the upper bound of Rank(WF ) is

Rank(WF ) ≤ min {d, dh,Rank(IM )} ,
where Rank(IM ) is equivalent to the number of non-zero elements in IM . We fix d = 12 while
varying the values of dh. We generate 1024 sets of Xtest for different tasks and repeat the experiments
5 times. Finally, we calculate the average upper bound of the rank of WF . The results are shown
in the right part of Figure 14, indicating that when dh ≥ 2.75d = 33, the upper bound remains
stable and equals d = 12. Otherwise, when dh is set to a smaller value, WF exhibits clear low-rank
property.

E.5 More Experiments on More Realistic NLP Tasks

We supplement our experiments on more more realistic NLP tasks. We choose the BERT-base-
uncased model (can be downloaded from Huggingface library[Wolf, 2019], hereafter referred to as
BERT[Kenton and Toutanova, 2019]) to validate the effectiveness of modifications to the attention
mechanism and select four relatively smaller GLUE datasets (CoLA, MRPC, STS-B, RTE) [Wang,
2018]. We load the checkpoint of the pre-trained BERT model, where ’classifier.bias’ and ’classi-
fier.weight’ are newly initialized, and then we fine-tune the model to explore the performance of three
attention modifications as well as their combinations. In terms of more detailed experiment settings,
we set the batch size to 32, the learning rate to 2e-5, and the number of epochs to 5 for all datasets.
All experiments are conducted on a single 24GB NVIDIA GeForce RTX 3090. All experimental
results are presented in Table 1. Below, we discuss the various modifications and their performance.

For the regularized modification, we consider different values of α, specifically selected from
{−0.5,−0.1, 0.1, 0.5}. As can be observed in Table 1, except for RTE, the best regularized models
outperform the original model on the other three datasets. However, we also note that when the
absolute value of α is too large, the model’s performance declines significantly, so we recommend
using smaller absolute values for α.

For the augmented modification, we also consider applying more complex “augmentation” functions
to the linear key/value mappings. However, unlike the previous methods used in simulation tasks, we
do not simply select g1 and g2 as MLPs, i.e., g1(WV x) = W2σ(W1WV x). This design is avoided
because it could undermine the effort made during pre-training to learn the weights WV and WK ,
leading to difficulties in training and challenges in comparison. Instead, we adopt a parallel approach,
i.e., g1(WV x) = WV x+ cW2σ(W1x), where c is a hyperparameter to control the influence of the
new branch, σ is the GELU activation function and the hidden layer dimension is set to twice the
original size of WV x. g2(WKx) = WKx+ cW2σ(W1x) follows the same format.

Experimental results show that the best augmented models achieve better performance than the
original model across all four datasets. Notably, augmentation on the value mapping (i.e., using g1
alone) proves to be more effective than other methods, both in terms of performance and the amount
of additional parameters introduced. Using both g1 and g2 introduces more parameters, which is
particularly undesirable for larger models. Thus, under the augmentation methods and experimental
settings we selected, using g1 alone is recommended.

In addition, we do not rule out the possibility of more powerful and efficient augmentation methods.
Our choice of g1 and g2 as parallel MLPs is primarily motivated by the desire to make better use of
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Model Types Dataset CoLA MRPC STS-B RTE
Normal Bert-base-uncased 56.82 90.24/86.27 88.29/87.96 68.23

α = −1.0 0.0 79.01/68.87 57.23/60.16 52.71
α = −0.5 61.42 83.17/74.02 85.28/85.22 57.04
α = −0.1 58.06 89.50/85.05 88.71/88.27 65.70
α = 0.1 58.34 90.59/86.76 88.12/87.81 64.98
α = 0.5 27.01 83.56/73.28 85.25/85.03 59.93
α = 1.0 0.0 81.22/68.38 52.07/55.60 47.29

Regularized
Models

Local Best 61.42 90.59/86.76 88.71/88.27 65.70

Augmented
Models

g1 / c = 0.2 59.85 88.11/83.33 88.56/88.22 68.59
g1 / c = 1 56.51 90.88/87.01 88.96/88.60 71.12
g2 / c = 0.2 56.29 87.65/82.60 88.60/88.24 68.59
g2 / c = 1 58.85 87.74/82.60 88.68/88.32 70.40

g1 & g2 / c = 0.2 57.32 89.62/85.29 88.48/88.19 71.12
g1 & g2 / c = 1 58.30 90.40/86.52 88.83/88.45 68.95

Local Best 59.85 90.88/87.01 88.96/88.60 71.12

Negative
Models

r = 0.1 / β = 0.1 56.22 88.54/83.82 88.25/87.91 65.34
r = 0.2 / β = 0.1 57.92 90.00/85.78 88.22/87.84 66.06
r = 0.3 / β = 0.1 57.92 89.31/84.80 88.26/87.90 67.15
r = 0.1 / β = 0.2 58.92 87.90/83.33 88.34/88.11 63.54
r = 0.2 / β = 0.2 57.13 87.87/83.09 88.59/88.27 64.98
r = 0.3 / β = 0.2 58.14 88.97/84.56 88.64/88.33 66.79

Local Best 58.92 90.00/85.78 88.64/88.33 67.15

Combined
Models

Reg & Aug 56.56 88.54/83.82 88.86/88.60 68.59
Reg & Neg 58.11 88.19/83.33 88.41/88.17 69.31
Aug & Neg 59.07 90.49/86.76 88.59/88.21 70.76

Reg & Aug & Neg 58.92 88.39/83.58 88.32/88.01 67.87
Local Best 59.07 90.49/86.76 88.86/88.60 70.76
Global Best 61.42 90.88/87.01 88.96/88.60 71.12

Table 1: Partial GLUE test results of different modifications. “Local Best" is used to display the
best results for each modification type, where bolded results indicate the performance superior to the
original model. “Global Best" is used to showcase the best results among all modifications. Matthews
correlation, F1 scores/accuracy, Pearson/Spearman correlation, accuracy are reported for CoLA,
MRPC, STS-B, RTE respectively.

the pre-trained weights WK and WV . We have also noticed that this specific augmentation function
design is structurally similar to the Parallel Adapter [He et al., 2021]. However, we would like to
emphasize that our parallel design is just a specific case within this broader augmented modification
framework and this is a new perspective for understanding the Parallel Adapter. As for practical
implementation, the Parallel Adapter method focuses more on efficient training, so it uses fewer
parameters, and the original WV and WK are freezed—only the newly introduced parameters are
trained. In contrast, our approach aims to validate the benefits of introducing stronger nonlinear
augmentation functions into the linear value/key mappings. Therefore, we set a higher hidden layer
dimension (twice that of WV x or WKx) and also train WV and WK simultaneously. This design
is relatively general and does not take into account the specific characteristics of individual tasks. We
still encourage the development of more task-specific augmentation strategies tailored to different
tasks.

For the negative modification, we continue to select tokens with lower attention scores as negative
samples. The parameter r represents the proportion of tokens used as negative samples, while β
indicates the overall reduction in attention scores. We choose r from {0.1, 0.2, 0.3} and β from
{0.1, 0.2}. Under these combinations, the best negative models only outperform the original model
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on CoLA and STS-B, whereas their performance on MRPC and RTE is worse than the original one.
This suggests that our simple approach of considering tokens with low attention scores as negative
samples might be too coarse. A more effective method for constructing negative samples should be
designed, which is a direction worth exploring in the future.

We also consider combining different modification methods. Specifically, we choose α = 0.1,
g1/c = 1 and r = 0.2/β = 0.1 respectively as the basis for combining the three types of modifica-
tions, considering their overall performance across all datasets. The results indicate that under our
settings, the combination of augmented and negative modification achieves the best performance on
CoLA, MRPC, and RTE, while the combination of regularized and augmented modification achieves
the best performance on STS-B. However, their optimal performance is slightly inferior to the best
performance achieved with augmented models alone. Therefore, we conclude that using all three
modifications simultaneously is not necessary. With appropriate hyperparameter choices, using
augmented modification alone or in combination with one other modification is sufficient.

Overall, the experimental results show that our modifications inspired by the representation learning
process are helpful in enhancing performance. This further validates the potential of our approach of
thinking about and improving the attention mechanism from a representation learning perspective.
In addition, we would like to reiterate that more validation across additional tasks and models, and
the development of task-specific augmentation and negative sampling methods are all interesting
directions worth exploring in the future.

F More Details about Related Work

In this section, we provide additional details about the related work in Section 6, especially those
that involve formalization. Dai et al. [2022] interpret ICL as implicit fine-tuning: More specifically,
let X = [XD,XT ] where XD = [x1,x2, . . . ,xN ] denotes the demonstration tokens and XT =
[x′

1,x
′
2, . . . ,x

′
T ] be query tokens. On the one hand, for ICL, they consider the output of q =

WQx
′
T+1 under the linear attention setting as

F̃ICL(q) = WV [XD,XT ](WK [XD;XT ])
Tq

= WV XT (WKXT )
T q +WV XD(WKXD)Tq

= WZSLq + LinearAtten(WV XD,WKXD, q)

= WZSLq +
∑
i

((WV xi)⊙ (WKxi))
T
q

= WZSLq +∆WICLq,

where WZSLq is interpreted as the output in the zero-shot learning (ZSL) where no demonstrations
are given. On the other hand, they consider a specific fine-tuning setting, which updates only the
parameters for the key and value projection, that is,

F̃FT(q) = (WV +∆WV )XXT (WK +∆WK)Tq

= (WZSL +∆WFT)q

where ∆WK and ∆WV denote the parameter updates and they are acquired by back-propagation
from task-specific training objectives [Dai et al., 2022], which is a supervised learning process of
the original model. Considering the similarity in form between F̃ICL and F̃FT , their focus is on
establishing a connection between ICL and implicit fine-tuning on the original model.

As a comparison, we turn our attention to establish a connection between ICL and the gradient
descent process of the dual model, rather than the original model. More specifically, we consider
the dual model f(x) = Wϕ(x) of the nonlinear attention layer, where the weight W are updated
according to the following loss (presented as Eq (9) in Section 3.2):

L = − 1

ηD

N∑
i=1

(WV xi)
TWϕ(WKxi),

where xi is the i-th demonstration token. The prediction output of the trained dual model will be
consistent with the ICL output of the attention layer. The gradient descent process of the dual model
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using this loss can be viewed from a self-supervised learning lens: unlike in supervised fine-tuning,
where the original model is instructed to perform gradient descent using a given objective (loss),
this loss formed as Eq (9) is determined (derived) by the attention mechanism itself and it also does
not require additional "true label" to supervise each token xi (so called self-supervised). Therefore,
modifications to this self-supervised learning loss will in turn cause modifications in the attention
mechanism correspondingly, as we discussed in our work in Section 4. We believe this perspective
offers several benefits:

• By analyzing from the dual perspective, we can transform the forward inference process
into an optimization process. Since optimization processes are well-known and have
established theoretical tools (for example, generalization error as mentioned in Section 3.3),
this transformation can provide reverse insights into analyzing the model mechanisms.

• It can clearly observed that the dual model involves a self-supervised representation learning
process from the dual perspective. Considering that there are lots of mature works in this
area, we can draw on these works to reflect on the attention mechanism, which has also
inspired attention modifications as illustrated in Section 4.

• Intuitively, this explanation might be also reasonable as the original model is not explicitly
instructed to provide the answer under some given objective (e.g., minimizing cross-entropy)
during ICL inference process. Instead, the underlying criterion should be determined by the
model’s own structure (self-supervised) as we mentioned above.

In addition, although we do not target specific tasks like linear regression as previous works mentioned
in Section 6, we would like to point out that under those specific weight and input settings, an intuitive
explanation can also be provided from a representation learning perspective. Here, we take the
linear regression task as well as the weight constructions considered by Von Oswald et al. [2023a]
as an example. Specifically, it assumes that the structured input is H = [hi]

N
i=1 ∈ R(d+1)×(N)

where hi = [xi, yi] is sampled from some linear task y = wTx and the query token will be
hN+1 = [xN+1,−wT

0 xN+1]. And the considered linear self-attention layer will take the constructed
weights and query output as:

WK =WQ =

[
Id×d 0
0 0

]
,WV =

[
0d×d 0
wT

0 −1

]
,P =

η

N
I,

h̃N+1 = hN+1 + P (WV H)(WKH)TWQhN+1,

(35)

where w0 is the underlying initial matrix. Then the label part of h̃N+1 will has the form as
ỹN+1 = −wT

0 xN+1 +∆wTxN+1 = −(wT
0 − η

N

∑N
i=1(w

T
0 xi − yi)x

T
i )xN+1 = −ŷN+1, which

is equivalent to the output −ŷN+1 (multiplied by −1) of the linear layer y = wTx where w
is initialized as w0 after performing one step of gradient descent under mean squared loss L =
1

2N

∑N
i=1 ∥wT

0 xi − yi∥2.

In practice, the underlying initial weight matrix w0 is set to be approximately 0 thus the test input
can be formed as hN+1 = [xi,0] [Von Oswald et al., 2023a]. In addition, when reading out the
label ŷN+1, the test prediction ỹN+1 will be multiplied again by −1, which can be done by a final
projection matrix (or equivalently, P = − η

N I). In this case, we first note that the dual model of the
linear attention layer can be written as f(z) = Wz where W ∈ R(d+1)×(d+1) and similar to Eq (9),
it will be trained under the loss below:

min
W

L = −1

η

N∑
i=1

(PWV hi)
T
WWKhi. (36)

By substituting the corresponding weights in Eq (35) where we replace P = − η
N I for the readout,

the loss can be reformulated as:

min
W

L = − 1

N

N∑
i=1

[0, yi]W

[
xi

0

]
. (37)

Recalling that hi = [xi, yi] is sampled from some linear task y = wTx, we assume that ∥W ∥F ≤
∥w∥2, it can then be easily seen that the optimal solution for Eq (37) will be

W ∗ =

[
0 0
wT 0

]
. (38)
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Furthermore, similar to Section 3.2, we take WQhN+1 as the input where WQ is constructed as
Eq (35) and hN+1 = [xN+1, 0], the optimal dual model will output the result f(WQhN+1) =
W ∗WQhN+1 = [0,wTxN+1] = [0, yN+1] where the label part will be just the answer for the
test query. Additionally, it would also be interesting to explore how these weights converge to the
constructed form in Eq (35) or other forms under this special setting as previous works illustrated
from the perspective of the dual model. Investigating this issue goes beyond the scope of this paper,
and we will leave it for future exploration.
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Answer: [Yes]
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much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations at the end of the main body.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
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only tested on a few datasets or with a few runs. In general, empirical results often
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address problems of privacy and fairness.
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will be specifically instructed to not penalize honesty concerning limitations.
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Answer: [Yes]
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Justification: We confirm that the paper provides the full set of assumptions and a complete
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referenced.
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by formal proofs provided in appendix or supplemental material.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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setup.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided as detailed an explanation as possible for all details in the
appendix.
Guidelines:
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that is necessary to appreciate the results and make sense of them.
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39

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
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from (intentional or unintentional) misuse of the technology.
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11. Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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• The answer NA means that the paper does not use existing assets.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
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Answer: [NA]

Justification: Our paper does not release new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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well as details about compensation (if any)?
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Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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