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Abstract

We study causal representation learning, the task of recovering high-level latent
variables and their causal relationships in the form of a causal graph from low-
level observed data (such as text and images), assuming access to observations
generated from multiple environments. Prior results on the identifiability of causal
representations typically assume access to single-node interventions which is rather
unrealistic in practice, since the latent variables are unknown in the first place. In
this work, we consider the task of learning causal representation learning with data
collected from general environments. We show that even when the causal model
and the mixing function are both linear, there exists a surrounded-node ambiguity
(SNA) [46] which is basically unavoidable in our setting. On the other hand, in
the same linear case, we show that identification up to SNA is possible under mild
conditions, and propose an algorithm, LiNGCReL which provably achieves such
identifiability guarantee. We conduct extensive experiments on synthetic data and
demonstrate the effectiveness of LiNGCReL in the finite-sample regime.

1 Introduction

Artificial intelligence (AI) has achieved tremendous success in various domains in the past decade
[4, 40, 6]. However, current approaches are largely based on learning the statistical structures and
relationships in the data that we observe. As a result, it is not surprising that these approaches often
capture spurious statistical dependencies between different features, resulting in poor performance in
the presence of test distribution shift [30, 22] or adversarial attacks [3, 50].

In view of these pitfalls, a recent line of work has explored the problem of causal representation
learning (CRL) [34], the task of learning the causal relationships between high-level latent variables
underlying our low-level observations. Notably, it is widely believed in cognitive psychology that
humans take a causal approach to distill information from the world and make decisions to achieve
their goals [37, 12, 19]. As a result, there is reason to believe that learning causal representations has
the potential to significantly improve the power of AI, especially on tasks where performance lags far
behind human level [17].
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Despite such promise, a crucial challenge in CRL is the identifiability of the data generating process;
in other words, given the data that we observe, can we uniquely identify the underlying causal model.
It has been shown that given observational data (i.e., i.i.d. data generated from a single environment),
the model is already non-identifiable in strictly simpler settings where the latent variables are known
to be independent [25, 26], or where there is no mixing function and one directly observes the latent
variables [39]. As a result, existing algorithms for CRL with observational data [52, 53, 11] typically
require additional assumptions on the structure of the underlying causal graph. A natural question
that arises is what types of data do we need to acquire to make identification possible in the general
case.

One line of works assumes access to counterfactual data [27, 48, 5], where some form of weak
supervision is typically required. A common assumption here is that one observes data in pairs,
where each pair of data is related via sharing part of the latent representation. However, such data is
hard to acquire since it requires direct control on the latent representation.

Another line of works [1, 49, 7, 47] instead considers an interventional setting, where the learner
observes data generated from multiple different environments. This is arguably a much more realistic
setup and reflects common practices in robotics [24] and genomics [28, 43] applications. However, a
vast majority of identifiability guarantees assume that each environment corresponds to single-node,
hard interventions, which is defined as interventions that isolate a single latent variable from its causal
parents. Again, this is quite a restrictive assumption because of two reasons. First, since the latent
variables are unknown and need to be learned from data, it is unclear how to perform interventions
that only affect one variable. Second, even if one can perform single-node interventions, it may not be
feasible to artificially remove causal effects in the data generating processes. This issue is ubiquitous
in real-world applications as pointed out in Campbell [8], Eberhardt [14], Eronen [15]. Motivated by
these challenges, we make the following contributions in this paper:

• Assuming access to data collected from multiple environments, but not necessarily from
single-node, hard interventions, we identify an intrinsic surrounded-node ambiguity (SNA)
in learning the underlying causal representations. We show in Theorem 3 that SNA is
unavoidable even if (1) both the mixing function and the causal model are known to be
linear and (2) one has access to single-node, soft interventions. This highlights a remarkable
difference with existing literature which shows that perfect identification can be achieved
with hard interventions.

• When the causal model and the mixing function are both linear, we prove in Theorem 1
that identification up to SNA is achievable with O(d) diverse environments (Assumption 4),
where d is the size of the latent causal graph. To the best of our knowledge, this is the first
identification guarantee that applies to fully general environments and makes no assumption
on their relationship or similarity. Interestingly, we also show in Theorem 2 that one would
require Ω(d2) single-node soft interventions to achieve the same identification guarantee,
indicating the benefit of learning from diverse environments.

• We propose an algorithm, LiNGCReL, in Section 5 that provably recovers the ground-truth
model up to SNA (Theorem 4) in the setting of Theorem 1 when perfect information of
the observation distributions is available. To demonstrate the effectiveness of LiNGCReL in
finite-sample regime, we conduct extensive experiments on synthetic data, and our results
reported in Section 6 show that LiNGCReL is capable of recovering the true causal model up
to SNA with high accuracy.

Due to space limit, proofs of all our statements and additional theoretical results are given in the
appendix.

2 Preliminaries

We consider the standard setup of CRL from multiple environments E ∈ E. Let G = (V, E) be the
ground-truth causal graph which is directed and acylic (DAG), where V = [d] and E describes the
causal relationship between different nodes. Each node corresponds to a latent variable zi ∈ R.

For any node i, we let paG(i), chG(i), ansG(i) and ndG(i) to be the set of all parents, children,
ancestors and non-descendants of i in G respectively. We also define paG(i) = paG(i) ∪ {i} and
similarly for chG(i), ansG(i) and ndG(i). Assuming that all probability distributions have continuous
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densities, the joint density of the latent variables z can then be written as

pE(z) =

d∏
i=1

pEi
(
zi | zpaG(i)

)
. (1)

where pEi is the (unknown) latent generating distribution from environment E at node i. Here for a
given vector v, we write vi = e⊤i v, and let vS = (vi : i ∈ S) ∈ R|S|.

The causal graph model with density given by (1) necessarily enjoys the following property:
Definition 1 (Causal Markov Condition). For any node i, conditioned on zpaG(i), zi is independent
of zndG(i). As a consequence, for any node i, j ∈ [d] and S ⊆ [d], if S d-separates i from j (cf.
Definition 7), then zi ⊥⊥ zj | zS .

The latent variables z are unknown to the learner. Instead, the learner has access to observations
x ∈ Rn (n ⩾ d) from all environments E ∈ E that are related to the latent z via an injective mixing
function g:

x = g(z). (2)
The main assumption here that the mixing function is the same across all environments:
Assumption 1. All environments E ∈ E share the same diffeomorphic mixing function g : Rd 7→ Rn.

In CRL, the goal of the learner is to 1) recover the inverse of the mixing function h = g−1 (often
called the unmixing function) which allows recovering the latent variables given any observations,
and, 2) recover the underlying causal graph G. In the remaining part of this paper, we refer to (h,G)
as the causal model to be learned. Obviously, there would be some ambiguities in learning (h,G). For
example, choosing a different permutation of the nodes in the causal graph would lead to a different
model, and so does element-wise transformations on each component hi of h.

A line of recent works show that the ground-truth model can be identified up to these ambiguities
in various settings, assuming access to single-node hard interventions [36, 49, 47]. On the other
hand, some weaker notions of identifiability have also been proposed and studied in the literature
[36, 46, 23] for single-node soft interventions. Here, we provide a generic definition of single-node
soft interventions that we will rely on in this paper.

Definition 2. We say that a collection of environments Ê is a set of (soft) interventions on a subset of
latent variables {zj , j ∈ S} if for any i ∈ [d] and any E1, E2 ∈ Ê, E1 ̸= E2, we have pE1

i = pE2
i if

and only if i /∈ S (the notation pEi comes from (1)). Equivalently, we write IÊz = S.

We note that soft interventions are very different from hard interventions, since they do not remove
causal relationships between latent variables. The goal of this paper is to address the following
question:

What is the best-achievable identification guarantee when hard interventions are not available, and
what are the intrinsic ambiguities?

3 The surrounding set and a notion of identifiability

One may expect that identifiability with soft interventions is not much different from hard interven-
tions, since soft interventions can approximate hard interventions with arbitrary accuracy. However,
we will show that this is not the case. At a high level, hard intervention is more powerful than
soft intervention because it is capable of isolating a latent variable from its direct cause while soft
interventions is not, so soft interventions can sometimes fail to identify the true causal relationship
from a mixture of causal effects.

To quantify what kind of ambiguities may arise, we can define the surrounding set for each node in a
causal graph G as follows:
Definition 3. (46, Definition 3) For two nodes i, j ∈ [d] in G, we say that j is surrounded by i, or
i ∈ surG(j) if i ∈ paG(j), and chG(j) ⊆ chG(i). Moreover, we define surG(j) = surG(j) ∪ {j}.

Intuitively, if there exists some i ∈ surG(j), then ambiguities may arise for the causal variable at
node j, since any effect of j on any of its child k can also be interpreted as a mixture of the effect of i
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and j. In Appendix E we discuss an example with three causal variables to further illustrate such
ambiguities.

i j

i1 j1 j2 j3

chG(j) ⊆ chG(i)

Figure 1: An illustration of Definition 3; here i ∈ surG(j).

Definition 3 naturally induces the following relationship between causal models:

Definition 4. Using the notations in Definition 10, we write (h,G) ∼sur (ĥ, Ĝ) if there exists a
permutations π on [d], and a diffeomorphism ψ : Rd 7→ Rd where the j-th component of ψ, denoted
by ψj(z), is a function of zsurG(j) for ∀j ∈ [d], such that the following holds:

• For any i, j ∈ [d], i ∈ paG (j) if and only if π(i) ∈ paĜ (π(j)), and

• Pπ ◦ ĥ = ψ ◦ h, where Pπ is a permutation matrix satisfying (Pπ)ij = 1 if j = π(i) and
(Pπ)ij = 0 otherwise.

In other words, ∼sur requires that the causal graph to be exactly the same up to some permutation
of nodes, but allows each latent variable vi to be a mixture of zsurG(i). Although not obvious
from definition, one can actually check that ∼sur defines an equivalence relation (see Lemma 11).
Moreover, we will show in the following section that ∼sur is in general the best that we can hope for
in our problem setting.

4 Identifiability theory for linear CRL with general environments

In this section, we consider learning causal models from general environments. Specifically, we
assume that the environmentsEk, k ∈ [K] share the same causal graph, but the dependencies between
connected nodes (latent variables) are completely unknown, and, in contrast with existing literature
on single-node interventions, we impose no similarity constraints on the environments. We begin
our investigation of identifiability in this setting in the context of linear causal models with a linear
mixing function.

4.1 Problem setup

Formally, we assume the following generative model inK distinct environments E = {Ek : k ∈ [K]}
with data generating process

z = Akz +Ω
1
2

k ϵ, x = Gz k ∈ [K], (3)

where the matrix Ak satisfies (Ak)ij ̸= 0 if and only if j → i in G. We refer to (Ak,Ωk) as the
weight matrices of latent variables z in the environment Ek. It is easy to see that Assumption 1 in
our general setup translates into the following assumption:
Assumption 2. The mixing matrix G ∈ Rn×d has full column rank. Equivalently, the unmixing
matrix H = G† has full row rank.

Let Bk = Ω
− 1

2

k (I −Ak), k ∈ [K], then we have ϵ = Bkz = BkHx. Since in the linear case,
there is an easy to see one-to-one correspondence between the matrix H and the un-mixing function
x 7→Hx, we abuse the notation and write (H,G) to represent the model instead of (h,G). Using
hi to denote the i-th row of H , the following lemma translates Definition 4 the the linear setting:

Lemma 1. According to Definition 4, (H,G) ∼sur (Ĥ, Ĝ) if and only if there exists a permutation
π on [d], such that the following statements hold:
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1. For all i, j ∈ [d], i ∈ paG(j) if and only if π(i) ∈ paĜ(π(j)), and

2. For all i ∈ [d], ĥi ∈ span ⟨hj : π(j) ∈ surG(i)⟩.

We also need to make the following assumption on noise.
Assumption 3. The noise vector ϵ ∈ Rd has independent components, at most one component is
Gaussian distributed, and any two components have different distribution.

The non-gaussianity of the noise vectors is a typical assumption in causal discovery within linear mod-
els [9, 39] and is always assumed in the LinGAM setting [38]. The assumption that all components
have a different distribution is not so standard, but is quite natural in real-world scenarios.

4.2 Identifiability guarantee

For each node i ∈ [d] of G, we use wk(i) to be the weight vector of environment Ek at node i, i.e.,
wk(i) =

(
(Ak)ij : j ∈ paG(i)

)
∈ R|paG(i)|. In other words, the structural equation for node i in

environment k is of the form:

zi = wk(i)
⊤zpaG(i) +

√
ωk,i,iϵi (4)

To obtain our identifiability result, the main assumption we need to make is the non-degeneracy of
the weights at each node:

Assumption 4. For each node i ∈ [d] of G, we have aff (wk(i) : k ∈ [K]) = R|paG(i)| where
aff(·) denotes the affine hull. Equivalently, the weights wk(i), k = 1, 2, · · · ,K do not lie in a(∣∣paG(i)∣∣− 1

)
-dimensional hyperplane of R|paG(i)|.

This assumption is quite mild since it only requires the weight vectors to be in general positions, and
it holds with probability 1 if the weights at each node are sampled from continuous distributions.
Moreover, as shown in Lemma 5, it is equivalent to the following assumption.

Assumption 5 (Node-level non-degeneracy). We say that the matrices {Bk}Kk=1 are node-level
non-degenerate if for all node i ∈ [d], we have dim span ⟨(Bk)i : k ∈ [K]⟩ =

∣∣paG(i)∣∣+ 1, where
(Bk)i is the i-th row of Bk.

In the following, we state our main result in this section, which shows that K = d non-degenerate
environments suffices for the model to be identifiable up to ∼sur.
Theorem 1. Suppose thatK ⩾ d and we have access to observations generated from the linear causal
model (H,G) across multiple environments E = {Ek : k ∈ [K]} with observation distributions
{PEx }E∈E, and the data generating processes are given by (3). Let (Ĥ, Ĝ) be any candidate solution
with the hypothetical data generating process

v = Âkv + Ω̂
1
2

k ϵ̂, x = Ĥ†v in the environment Ek

where Ĥ has full row rank, such that

(i) the observation distribution that this hypothetical model generates in Ek is exactly PEk
x ;

(ii) all environments share the same causal graph: ∀k ∈ [K] and i, j ∈ [d], (Ak)ij ̸= 0⇔ j ∈
paG(i), (Âk)ij ̸= 0⇔ j ∈ paĜ(i) and Ωk, Ω̂k are diagonal matrices with positive entries;

(iii) {Bk}Kk=1 and
{
B̂k = Ω̂

− 1
2

k (I − Âk)
}K
k=1

are non-degenerate in the sense of Assump-
tion 5;

(iv) the noise variables ϵ and ϵ̂ satisfy Assumption 3.

Then we must have (H,G) ∼sur (Ĥ, Ĝ).

The proof of Theorem 1 is given in Appendix H.1. In the next section, we will introduce an algorithm,
LiNGCReL, that provably recovers the ground-truth up to ∼sur.
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To the best of our knowledge, this is the first identifiability guarantee in the literature for CRL from
general environments, even for the linear case. Our result is closely related but fundamentally different
from Xie et al. [52, 53], Dong et al. [11] that consider the task of linear CRL using observational
data. As discussed before, with observational data the causal graph can at best be identified up to
Markov equivalence. As a result, one typically requires additional assumptions on the structure of
the causal graph to obtain stronger guarantees. In contrast, we show that with data from multiple
environments, exact recovery of the causal graph is possible without any structural assumptions.

Interestingly, while the fact that existing works focus on single-node interventions seem to suggest
that learning from diverse environments is hard, it turns out that such diversity is actually helpful.
Specifically, we show that in the worst case, Θ(d2) interventions are required for identifying the
ground-truth model under ∼sur:
Theorem 2 (informal version of Theorem 6). There exists a causal graph G with Θ(d2) edges, such
that for any unmixing matrix H ∈ Rd×n with full row rank, any independent noise variables ϵ, and
any 0 < si ⩽

∣∣paG(i)∣∣ , i ∈ [d], the ground-truth model (H,G) is non-identifiable up to ∼sur with si
soft interventions for node i, unless the (ground-truth and intervened) weights of the causal model lie
in a null set (w.r.t the Lebesgue measure).

A formal version and the proof of Theorem 2 can be found in Appendix H.2. On the other hand, by
having d single-node interventions per node, Assumption 5 can be satisfied as long as the weights
are in general positions, so in this case we have (H,G) ∼sur (Ĥ, Ĝ) by Theorem 1. Therefore,
Theorems 1 and 6 together imply that Θ(d2) single-node interventions are necessary and sufficient
for identification up to ∼sur.

Given that Theorem 1 only guarantees identification up to ∼sur that is strictly weaker than full
identification, one might naturally ask whether Theorem 1 can be further improved. Our last theorem
in this section indicates that ∼sur is indeed a fundamental barrier that exists even when we access to
single node, soft interventions.
Theorem 3 (Counterpart to Theorem 1, informal version of Theorem 9). For any linear causal model
(H,G) and any set of environments E = {Ek : k ∈ [K]} such that all conditions in Theorem 1 are
satisfied, there must exists a candidate solution (Ĥ,G) and a hypothetical data generating process
that satisfy the same set of conditions, but

∂vi
∂zj
̸= 0, ∀j ∈ surG(i).

Moreover, if we additionally assume that the environments are groups of single-node soft interventions,
then we can guarantee the existence of (Ĥ,G) and weight matrices which, besides the properties
listed above, are also groups of single-node soft interventions.

5 LinGCReL: Algorithm for linear non-Gaussian causal representation
learning

In this section, we introduce Linear Non-Gaussian Causal Representation Learning (LiNGCReL), an
algorithm that provably recovers the underlying causal graph and latent variables up to ∼sur in the
infinite-sample limit. At this point, it is instructive to recall the celebrated LiNGAM algorithm [38] for
linear causal graph discovery. Different from their setting, we only observe some unknown linear
mixture of the latent variables. Hence, running linear ICA as in LiNGAM only gives us Mk = BkH
rather than the weight matrix Bk itself.

The key idea in our approach is an effect cancellation scheme that allows us to determine the
“remaining degree of freedom” (RDF) of any node (a.k.a. latent variable) given any subset of its
ancestors. This scheme allows us to not only find a topological order of the nodes, but also figure
out direct causes by tracking the changes of the RDF. In the following, we present the main steps of
LiNGCReL in more details.

Suppose that we are given samples of observations X(k) =
{
x
(k)
i

}N
i=1

, k ∈ [K] where x
(k)
i is the

i-th sample from the k-th environment.

Step 1. Recover the matrices Mk = BkH Since ϵ = Bkz = BkHx in the k-th environment, so
we can use any identification algorithm for linear ICA to recover the matrix Mk. Then we properly
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rearrange the rows of Mk so that all Mkx, k = 1, 2, · · · ,K correspond to the same permutation of
noise variables. This step is quite standard and details can be found in Appendix B.1.

Step 2. CRL based on Mk Now we have obtained Mk = BkH , but the unmixing matrix H
is still unknown. We propose Algorithm 3 to learn H and the causal graph G. The main part of
Algorithm 3 contains a loop that maintains a node set S which, we will show later, is ancestral, i.e.,
i ∈ S ⇒ ansG(i) ⊆ S. In each round the algorithm finds a new node i /∈ S such that ansG(i) ⊆ S,
and a subroutine Identify-Parents (Algorithm 2) is used to find all parents of i. After that, we
append i into S and continue until S contains all nodes in G. Finally, the rows of the mixing matrix
H is obtained by intersections of properly-chosen row spaces of Mk.

Both Algorithm 2 and Algorithm 3 include a crucial step, which we call it orthogonal projection, as
described in Algorithm 1. At a high level, it helps determine the minimal RDF for zi after fixing the
latent variables zS , and this exactly corresponds to the number of parents of zi that are not in zS . We
provide a simple example in Appendix E.2 to illustrate why this approach works.

The following result states that Algorithm 3 can recover the ground-truth causal model up to ∼sur:

Theorem 4. Suppose that Mk, k ∈ [K] are perfectly identified in Step 1. Let (Ĥ, Ĝ) be the solution
returned by Algorithm 3, then we must have (H,G) ∼sur (Ĥ, Ĝ).

The full proof of Theorem 4 is given in Appendix H.3. It crucially relies on the following two
propositions that reveal how Algorithm 3 and the subroutine Algorithm 2 work.

Algorithm 1 Orthogonal-projections

1: Input: Ordered set S = {s1, s2, · · · , sm} ⊆ [d], index i /∈ S, matrices Mk ∈ Rd×n, k ∈ [K]
2: Output: Set of vectors {pk}Kk=1
3: for k ← 1 to K do
4: W ← span ⟨(Mk)s : s ∈ S⟩ ▷ (Mk)s is the s-th row of Mk

5: pk ← projW⊥ ((Mk)i)
6: end for

Proposition 1. The following two propositions hold for Algorithm 3:

• ansG(i) ⊆ S ⇔ the if condition in line 8 of Algorithm 3 is fulfilled;

• the set S maintained in Algorithm 3 is always an ancestral set, in the sense that j ∈ S ⇒
ansG(j) ⊆ S.

Proposition 2. Given any ordered ancestral set S that contains paG(i) for some i /∈ S, Algorithm 2
returns a set Pi ⊆ S that is exactly paG(i).

Algorithm 2 Identify-Parents

1: Input: An ordered set S = {s1, s2, · · · , sm} ⊆ [d], a node i /∈ S and matrices Mk, k ∈ [K]
2: Output: The parent set Pi of node i
3: Pi ← ∅
4: for m′ ← 0 to m do
5: {pk}Kk=1 ← Orthogonal-projections

(
{sj : j ⩽ m′}, i, {Mk}k∈[K]

)
6: rm′ ← dim span ⟨pk : k ∈ [K]⟩
7: if m′ ⩾ 1 and rm′ = rm′−1 − 1 then
8: Pi ← Pi ∪ {m′}
9: end if

10: end for

6 Experiments

In this section, we present our experimental setup and results for LiNGCReL. Note that LiNGCReL as
described in the previous section only works in the population regime. When the number of samples
is limited, two main challenges in implementing LiNGCReL are to accurately compute the dimension
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Algorithm 3 Learn-Causal-Model

1: Input: Matrices Mk, k ∈ [K]

2: Output: The edge set E on the vertex set [d] and the mixing matrix Ĥ
3: S ← ∅; ▷ S is an ordered set of nodes
4: E ← ∅; ▷ E is the edge set
5: while |S| < d do
6: for i /∈ S do
7: {pk}Kk=1 ← Orthogonal-projections

(
S, i, {Mk}k∈[K]

)
8: if dim span ⟨qk : k ∈ [K]⟩ = 1 then
9: break ▷ Proposition 1 guarantees that such an i must exist

10: end if
11: end for
12: Pi ← Identify-Parents(S, i)
13: S ← S ∪ {i}
14: E ← E ∪ {(j, i) : j ∈ Pi}
15: end while
16: for i = 1 to d do
17: Ei ← span ⟨(Mk)i : k ∈ [K]⟩
18: end for
19: for i = 1 to d do
20: ĥi ← any non-zero vector in

(
∩j:(i,j)∈EEj

)
∩ Ei

21: end for
22: Ĥ ←

[
ĥ⊤
1 , ĥ

⊤
2 , · · · , ĥ⊤

d

]⊤

of a subspace (line 6 of Algorithm 2 and line 8 of Algorithm 3), and to find a vector in the intersection
of multiple subspaces (line 20, Algorithm 3). Due to space limit, the implementation details are
described in Appendix B.2.

Experimental setup. We generate the independent noise variables from generalized Gaussian
distributions pβ(x) ∝ exp

(
− |x|β

)
with parameters βk = 0.2k2, k = 1, 2, · · · , d, multiplied by

normalization constants to make their variances equal to 1. The ground-truth causal graph is generated
by first fixing a total order of the vertices, say 1, 2, · · · , d, then add directed edges i → j(i < j)
according to i.i.d. Bernoulli(p) distributions, where p ∈ (0, 1). The non-zero entries of matrices Bk

and H are all generated independently from Gaussian distributions. For simplicity, we focus on the
case n = d since recovery of the latent graphs only requires information from d components of x.

Metrics of estimation error. Since CRL seeks to learn both the causal graphs and the latent variables,
for each output of our algorithm we first check if it exactly recovers the ground-truth causal graph.
Then, recall that the latent variables and the observations are related by z = Hx, given any output
unmixing matrix Ĥ from Algorithm 3, we define the relative estimation error ∆i for zi as the solution
of the following optimization problem:

min ∥∆∥∞ s.t.∆i =

∥∥∥projspan⟨hj :j∈surG(i)⟩(
ˆ̂
hi)
∥∥∥
2∥∥∥ ˆ̂hi∥∥∥

2

,

ˆ̂
H = PĤ for some signed permutation matrix P .

(5)

where signed permutation is allowed here since the noise distribution in our experiments is symmetric
and the order of latent variables zi, i = 1, 2, · · · , d does not matter. We refer to the errors ∆i defined

in (5) as the SNA error. The SNA error measures how much of the row ˆ̂
hi that we learn is contained

in the span of the ground-truth rows hj , j ∈ surG(i). Indeed, recall that given any observation x, the

ground-truth latent variable is z = Hx while our algorithm outputs v̂i =
ˆ̂
h⊤
i x, so the SNA error

essentially captures whether the recovered latent variable is close to some linear mixture of latent
variables in the effect-dominating set of i. When the SNA error is zero for some node i, we know that
the recovered latent variable at node i is exactly a linear mixture of the ground-truth latent variables
in surG(i), according to Lemma 1.
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(a) d = K = 5 (b) d = 5,K = 20

(c) d = K = 8 (d) d = K = 10

1

2 3

4 5

(e) An example causal graph in our experiment

i surG(i) SNA error True error

1 ∅ 2.8e-3 2.8e-3
2 {1} 4.0e-3 9.6e-2
3 ∅ 3.4e-3 3.4e-3
4 {3} 1.1e-2 0.99
5 {3} 1.4e-2 0.41

(f) Result for identifying Figure 2e by running
LiNGCReL

Figure 2: First two rows: plots of SNA Error and graph recovery accuracy achieved by LiNGCReL
as functions of sample size (per environment) for different choices of graph size d and number of
environments K. Third row: an example of causal graph generated in our experiments, and the
estimation error of LiNGCReL for each node.

We also define the true error for estimating each latent variable. Formally, let ˆ̂
H be the unmixing

matrix that corresponds to the solution of (5), then we define the true estimation error ∆̃i of zi as

∆̃i =
∥∥∥(I − hih

⊤
i

) ˆ̂
hi

∥∥∥
2
. (6)

Results. We randomly sample 100 causal models with size d = 5, 30 causal models with size d = 8
ad 30 causal models of size d = 10. In light of Theorem 1, for each d ∈ {5, 8, 10}, we sample data
from K = d randomly chosen environments; for d = 5 we also consider K = 20 to study how
different choices of K can affect the result. We run LiNGCReL for each model with different sample
sizes, compute the SNA error and true error of the obtained solution from (5) and (6) respectively for
each latent variable, and check whether the ground-truth causal graph is exactly recovered.

Figure 2 shows how the average SNA error (over all latent variables) and the accuracy of graph
recovery changes when sample size grows. We can see LiNGCReL successfully recovers about 80%
of all models within each category, and the median of the average SNA error is smaller than 1%.
Moreover, by comparing Figure 2a with Figure 2b, one can observe that if we fix the total number
of samples but choose a larger K (i.e., fewer samples per environment), LiNGCReL can still achieve
the same level of performance compared with the choice K = d. Intuitively, this is because K ≫ d
vectors sampled from an r(r ⩽ d) dimensional subspace are unlikely to approximately lie in an
(r−1)-dimensional subspace, so that the calculation of line 6 of Algorithm 2 and line 8 of Algorithm 3
can be more accurate. We leave a better and quantitative understanding of the trade-off between d
and K to future work.

SNA error v.s. true error. To understand the implication of our theory, we dive deeper by looking
into the learning outcome of LiNGCReL on a specific model, of which the causal graph is shown in

9



Figure 2e. In Figure 2f, we list the surrounding set of each node and the corresponding SNA error and
true error. We can see that if surG(i) = ∅, the two errors equal and both are small, but if surG(i) ̸= ∅,
the true error is much larger than the SNA error. This indicates that LiNGCReL indeed learns the
ground-truth model up to ∼sur, as Theorem 1 predicts.

7 Conclusions

This paper studies the limit of learning identifiable causal representations using data from multiple
environments. When hard interventions are not available, we provide theory and algorithm for
identification up to SNA, and also show that SNA is an intrinsic ambiguity in our setting.

It is interesting to further investigate the setting where we do not assume that the causal model
is linear. Moreover, it is important to understand the concrete form of available interventions in
real-world applications. For instance, it is suggested that for single-cell genomics, the intervention is
sometimes a "mixture" of hard and soft interventions, and sometimes can even reverse the direction
of an edge [43]. Modelling such more complicated interventions appears to be crucial to reveal the
underlying causal mechanisms in real-world problems.
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A Related works

The interventionist approach to causation For the problem of causal graph discovery, it is well-
known that the underlying causal structure is non-identifiable given only “passively observed”
(equivalently, i.i.d.) data alone. As a result, randomized controlled experiments [16] is often used to
infer causality. These experiments typically take the form of interventions [41, 31], i.e., manipulations
on the “natural state” of the system of interest. Early works [51, 42] define the “hard” (also called
“surgical” or “arrow-breaking”) interventions in which the value of the intervened variable is entirely
determined by the experimenter, thereby removing the dependence of this variable on its direct causes.
This type of intervention is arguably the most natural one to consider, and following this definition, a
line of works explore sufficient conditions for designing experiments that guarantee identifiability of
the causal model in various settings [10, 45, 13, 20, 18].

Intervention v.s. passive observation While extensive works demonstrate the success of the
interventionist approach, it faces several key challenges that significantly limit its applicability.
First, Eberhardt [14] finds that in the presence of unobserved variables, certain causal structures are
indistinguishable if we only perform hard interventions. This issue can be resolved by performing
soft interventions i.e., interventions that do not remove the dependency on direct causes but only
changes the conditional distribution. Second, as pointed out in [44], interventions — whether hard or
soft — are often expensive or even infeasible to perform in practice. For example, a psychological
intervention is likely to affect multiple psychological variables simultaneously Eronen [15]. As a
result, [44] returns to the “passive observation” setting but with multiple datasets with overlapping
latent variables.

Interventional causal representation learning Motivated by the interventionist literature in causal
graph discovery, a recent line of works [1, 36, 46, 49, 7, 54, 47] consider performing interventions to
resolve the non-identifiability issue in causal representation learning [25]. Roughly speaking, these
result indicate that identification (possibly with some ambiguities) is possible if one can perform
intervention on every latent variable. However, it is unclear how to perform such interventions in
practice, given that the underlying latent variables are unknown. Khemakhem et al. [21], Lu et al.
[29], Roeder et al. [32] do not require single-node interventions to achieve identifiability, but assumes
that the joint distribution of latent variables in each environment lie in a certain exponential family.
This assumption can be understood as a prior on the latent variables, but it is unclear when or why it
is reasonable to make in reality. Recently, Ahuja et al. [2] considers learning causal representations
from multiple domains that relate to each other via an invariance constraint on the subset S of stable
latent variables, and they prove identification up to affine mixtures within S.

B Experiment details for Section 6

B.1 Details for step 1 in Section 5

Since ϵ = Bkz = BkHx in the k-th environment, so we can use any identification algorithm for
linear ICA to recover the matrix Mk. Note that while standard linear ICA algorithms only apply to
the case where n = d, for n > d we can arbitrarily choose d principal components of x to reduce it
to the n = d case. This is without loss of generality, since when n > d there is redundant information
in x.

After recovering Mk for each k by running linear ICA, we still do not know whether each Mkx
corresponds to the same permutation of the ground-truth noise variables ϵ. To resolve this issue, we
choose test function Ψ mapping any distribution on R to a deterministic real value, which we expect
to take different values for different ϵi’s. We choose Ψ(P) = P [|X| ⩽ 1] in our experiments. For
all k ⩾ 2, we calculate the Ψ value of each component of the d-dimensional empirical distribution
P̂k = 1

N

∑N
i=1 1Mkx

(k)
i

, and choose a permutation πk to rearrange them in increasing order. Then, we
rearrange the columns of Mk using the same permutation πk. This procedure would asymptotically
produce correct alignments as long as Ψ(ϵi), i ∈ [d] are different, and we find that it empirically
works well.

Alternatively, this alignment step can be done as follows: for each pair of environments (E1, Et),
and for each pair of nodes (i, j), we calculate the distribution distance between ϵi in environment
E1 and ϵj in environment Et, based on some notion of distribution distance (e.g. kernel maximum
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mean discrepancy). Then we find the min-cost perfect matching, where the cost of an edge is the
distribution distance.

B.2 Details for the implementation of LiNGCReL in the finite-sample regime

Although LiNGCReL provably works in the population regime, it faces several challenges when there
is only a finite number of samples:

• First, since rank is not a continuous function, it is sensitive to finite-sample estimation
errors. In our implementation of Algorithm 3, in each iteration we instead choose i /∈ S
that has the largest ratio between the first and second singular values of [q1, q2, · · · , qK ].
And in line 6 of Algorithm 2, we introduce a hyper-parameter tl such that the matrix
[q1, q2, · · · , qK ] is considered to have rank rm′−1 if its rm′-th singular value is smaller
than tl. Since the smallest singular value of a random matrix A ∈ RK×m(K ⩾ m) is
at the order of

√
K −

√
m− 1 with high probability [33], when K = d one shall choose

tl ∼
√
d −
√
d− 1 = O

(
1√
d

)
. On the other hand, for larger K we can correspondingly

choose a larger tl. Note that a small tl potentially has the risk of being dominated the
noise in the estimation, which means that we need more samples per environment to reduce
the noise. In contrast, for larger tl the estimation is more robust to noise and we can use
fewer samples.

• Second, finite-sample estimation errors of Mk make it harder to obtain hi in Algorithm 3
of Algorithm 3. We implement this step in the following way: first let Qj be the orthogonal
projection matrix ontoE⊥

j i.e., Q⊤
j x = projE⊥

j
(x), then choose hi to be the singular vector

of
∑
j:(j,i)∈E or j=iQ

⊤
j Qj that corresponds to the smallest singular value (including zero).

Indeed, in the noiseless case we would have
(∑

j:(j,i)∈E or j=iQ
⊤
j Qj

)
hi = 0 if and only

if hi ∈
(
∩j:(i,j)∈EEj

)
∩ Ei.

C Further experiment results

SNA error v.s. true error We plot the SNA error v.s. true error achieved by LiNGCReL in Figure 3.
We observe that

• For most nodes, SNA error is exactly equal to the true error and both errors are small, indi-
cating that the corresponding latent variables have been successfully learned by LiNGCReL.

• The remaining nodes typically have true error much larger than SNA error. This indicates
that there exists some ambiguities at these nodes in the sense that surG(i) ̸= ∅. Note that
the true error for many nodes are close to 1; one possible reason is that one selects the
wrong singular vector in the second part of Appendix B.2, so that it is orthogonal to the
ground-truth vector.

Sensitivity of LiNGCReL to the hyperparameter tl We examine how different choices of tl would
affect the performance of LiNGCReL. Specifically, we run LiNGCReL on the 100 models with size
d = 5 and number of environments K = 5 sampled in Section 6 with tl ∈ {0.1, 0.15, 0.2, 0.25, 0.3}
and the results are reported in Figure 4. We can see that the permance is actually quite sensitive to tl.
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Figure 3: Comparing SNA error with true error for the 500 latent variables in the 100 graphs of size
d = 5 that we sample in Section 6.

Figure 4: Performance of LiNGCReL as a function of tl. tl= 0.15 achieves the best performance in
terms of both SNA error and graph recovery accuracy.

D Background on causal representation learning

It is common to assume some axioms on what kind of (conditional) dependency information is
encoded in a causal graph (see 41, Section 3.4 for a detailed discussion). The most natural one is the
Causal Markov Condition introduced in Definition 1 that gives sufficient conditions for conditional
independence via d-separation. We introduce the formal definition of d-separation below:

Definition 5 (paths and colliders). Let i, j be two nodes of a DAG G, a path is a sequence of nodes
i0 = i, i1, · · · , ik = j such that there is an edge (in either direction) between ij and ij+1, j =
0, 1, · · · , k − 1. A node ij is called a collider on this path if ij ∈ chG(ij−1) ∩ chG(ij+1).

Definition 6 (blocked path). A path in a DAG G between node i and node j is said to be blocked by a
node set S if either of the following holds:

• there exists a node v on the path that is in S but not a collider, or

• there exists a node v on the path that is a collider, but none of its descendants (including
itself) are in S.

Definition 7 (d-separation). For a DAG G with node set [d], any two nodes i ̸= j are said to be
d-separated by a set S ⊂ [d] \ {i, j} if all paths from i to j are blocked by S.

The minimality condition states that there is no redundant edges in the causal graph, and is a natural
consequence of the Occam’s Razor Principle.

Assumption 6 (Causal minimality, 41, Section 3.4.2). For latent variables z, removing any edge
from G would render violation of the causal Markov condition Definition 1. In other words, let G1
be the graph obtained by removing any single edge from G, then there must exist i ∈ [d] such that
zi ̸⊥⊥ zndG1

(i) | zpaG1
(i).
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The faithfulness condition states that the Causal Markov Condition actually entails all (conditional)
independence in the latent variables.

Assumption 7 (Faithfulness, 41, Section 3.4.3). Every (conditional) independence in the latent
variables z is entailed by the Causal Markov Condition applied to G. In other words, zi ⊥⊥ zj |
zS ⇔ i, j are d-separated by S.

Existing works have explored different notions of identifiability. For observational data, it is well
known that Markov equivalence of graphs is an intrinsic ambiguity that one cannot resolve:

Definition 8 (Markov equivalence/Faithful Indistinguishability, 41, Section 4.2). If two DAGs encodes
the same set of dependency relations, we say that they are Markov equivalent.

Any DAG G induces a partial order on its nodes which we denote by ≺G . In the special case when
for all i ̸= j, either i ≺G j or j ≺G i holds, we say that ≺G is a total order. This partial order is
equivalent to the transitional closure of the graph, as defined below:

Definition 9 (Transitional closure). Given any DAG G, its transitional closure Ḡ is defined to be the
graph obtained by connecting all edges i→ j where i is an ancestor of j in G.

When ≺G is a total order, each pair of nodes are connected by a directed edge in its transitive closure
Ḡ. Such Ḡ is often called a tournament in graph theory.

In the following, we list different forms of identifiability that appear in the literature:

Definition 10 (different notions of identifiability). Let H : Rn ⊇ X 7→ Rd be the space of
diffeomorphic mappings from observation to latent, and G be the space of all DAGs with d nodes,
then for h, ĥ ∈ H and G, Ĝ ∈ G, we write

(i) [36, 23] (h,G) T∼G (ĥ, Ĝ) if there exists a permutation π on [d] such that π(G) and Ĝ have
the same transitional closure;

(ii) [49, 47] (h,G) ∼CRL (ĥ, Ĝ) if we actually have G = Ĝ for the ϕ defined above.

Given an equivalence relation ∼ onH×G, we say that a causal model (h,G) is identifiable under
∼ if any candidate solution (ĥ, Ĝ) satisfies (ĥ, Ĝ) ∼ (h,G). The notion of identification up to T∼G,
as shown in Seigal et al. [36] with single-node soft interventions on linear causal models, is highly
related to this paper. Compared with their result, our ∼sur guarantee is must stronger, since not only
the causal graph can be fully recovered, but the latent variables can be identified up to mixtures of the
effect-dominating sets as well.

E Illustrating examples for our theory and algorithm

E.1 An example for understanding the SNA ambiguity

We provide a simple example below to illustrate the SNA ambiguity discussed in Section 3.

Example 1. Let G be a causal graph with d = 3 nodes and edges 1→ 2 and 2→ 3. We have access
to observations from a set of environments E. It turns out that there is no way to distinguish between
the following two structural equation models:

z1 = ϵE1 v1 = ϵE1

z2 = fE2 (z1, ϵ
E
2 ) v2 = fE2 (v1, ϵ

E
2 )

z3 = fE3 (z2, ϵ
E
3 ) v3 = v2 + fE3 (v2, ϵ

E
3 )

x = z = (z1, z2, z3)
⊤ x = (v1,v2,v3 − v2)

⊤

where ϵEi , i = 1, 2, 3 are independent noise variables, if we do not change the causal graph G, no
matter what environment E that we have.

This issue does not exist when we assume access to hard interventions on node 3, which effectively
removes the edge 2→ 3. Specifically, with hard intervention on z3, the variables z2 and z3 become
independent. But by definition, v2 = z2 and v3 = z2 + z3 must be dependent, so this intervention
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cannot be realized by any hard intervention on v3, thereby providing a way to distinguish between
the above models.

Without node 3, the same ambiguity would arise on node 2. However, node 3 can help us to overcome
this ambiguity, thanks to the fact that node 2 is the only causal parent of node 3. Suppose for example
that v2 = m(z1, z2) is some mixture of z1 and z2, then v3 = f̂E3

(
v2, ϵ

E
3

)
= f̂E3

(
m(z1, z2), ϵ

E
3

)
.

Since all environments share the same mixing function, v3 must be some deterministic function ψ3(z)
of z, where ψ3 is the same across all environment E. Hence, we have

f̂E3
(
m(z1, z2), ϵ

E
3

)
= ψ3

(
z1, z2, f

E
3 (z2, ϵ

E
3 )
)

(7)

Now we note that the dependencies of LHS on z1 and z2 are through a single scalar-valued function
m, but since we would have different fE3 ’s in different environments, this in general does not hold for
the RHS. Therefore, any causal model with latent variable v2 as a mixture of z1 and z2 cannot be
equivalent to the ground-truth model.

According to Definition 3, in Example 1 we have surG(1) = surG(2) = ∅ but surG(3) = {2}.

E.2 An example for the main idea behind LiNGCReL

To illustrate our main algorithm on how we can recover the graph G and the matrix H , we first
provide some intuition using a simple three-node example:
Example 2. Let G be the graph with d = 3 nodes and edges 1→ 2, 1→ 3 and 2→ 3, so that each
Bk is of form

Bk =

× 0 0

× × 0

× × ×

 ⇝ bk1
⇝ bk2
⇝ bk3

(8)

We can identify the graph as follows: first, for i ∈ {1, 2, 3}, look at the space Wi spanned by the rows
(Mk)i, k ∈ [K]. If dimWi = 1, we know that i is a source node (i.e., paG(i) = ∅) in G. Otherwise
it is not, due to Assumption 5. Hence we can know that node 1 is a source node.

In our example, there is no other node that satisfies this requirement. We then proceed to search for
some i ̸= 1 such that the projection of Wi onto W⊥

1 has dimension 1. If this holds, then one can
show that paG(i) = {1}. Otherwise, i must have parents other than 1.

It turns this requirement is satisfied for node 2 since dim
(
projh1

span ⟨h1,h2⟩
)
= 1, but is not

satisfied for node 3 since dim
(
projh1

span ⟨h1,h2,h3⟩
)
⩾ 2 (by Lemma 4). Hence we know that

paG(2) = {1}.
Finally, it remains to determine paG(3). To do this, we first note that dimW3 = 3. Then we project
W3 onto W⊥

1 and W⊥
2 respectively, and the resulting dimensions are 2 and 1. As we rigorously

show in Proposition 2, a decrease of the dimension exactly indicates finding a new parent. Thus we
have paG(3) = {1, 2}, completing the recovery of the graph.

Finally, we recover the unmixing matrix H (and thus the latent variables) by noticing that h1 ∈W1,
h2 ∈ W2 ∩W3 and h3 ∈ W3. Ambiguities would arise at nodes 2 and 3, which are exactly the
nodes that have non-empty effect-dominating sets.

F Auxiliary lemmas

Lemma 2. For any family of m-dimensional vectors {vk}Kk=1 and {zk}Kk=1 if vk = zkT and
T ∈ Rm×m is invertible, then

dim span ⟨vk : k ∈ [K]⟩ = dim span ⟨zk : k ∈ [K]⟩
Theorem 5 (Darmois-Skitovic Theorem). Let ϵi, i ∈ [d] be independent random variables and
X =

∑d
i=1 αiϵi, Y =

∑d
i=1 βiϵi. If X ⊥⊥ Y , then for ∀i ∈ [d], αiβi ̸= 0 ⇒ ϵi is Gaussian

distributed.
Lemma 3. Suppose that ϵ = (ϵ1, · · · , ϵd) is a d-dimensional random vector with independent
components such that Var(ϵi) = 1,∀i ∈ [d], and there exists an invertible and non-diagonal matrix

M such that Mϵ
d
= ϵ, then at least one of the following statements must hold:
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(1) there exists at least two Gaussian variables in ϵ1, · · · , ϵd;

(2) M is a permutation matrix and there exists 1 ⩽ i < j ⩽ d such that ϵi
d
= ϵj .

Proof. Suppose that (1) does not hold, then there is at most one Gaussian variable in ϵ1, · · · , ϵd. We
assume WLOG that ϵ1, · · · , ϵd−1 are all non-Gaussian. Then by the Darmois-Skitovic Theorem, we
know that for ∀1 ⩽ j < k ⩽ [d] and i ∈ [d− 1], Mji ·Mki = 0⇒ there is at most one non-zero
entry in each of the first d− 1 columns of M .

Assume that Mki,i ̸= 0, i ∈ [d − 1]. Since M is invertible, we know that ki, i ∈ [d − 1]
must be different. Let kd be the remaining element in [d] that does not appear in ki, i < d, then
(Mϵ)kd = Mkd,dϵd, while (Mϵ)ki = Mki,iϵi + Mki,dϵd. Since the components of Mϵ are
independent, it is easy to see that Mid ̸= 0,∀i ̸= kd. In other words, M only has non-zero entries at
(ki, i), i ∈ [d].

Since Var(ϵi) = 1, we know that M must be a signed permutation matrix. Finally, let π be
the permutation on [d] such that Mi,π(i) ̸= 0. Since M is not diagonal, π must have a cycle
(i1, i2, · · · , ik) with length k ⩾ 2, so that ϵi1 , · · · , ϵik all have the same distribution, which implies
that (2) holds, as desired.

Lemma 4. Let V1,V2 be two subspaces of Rd such that V1∩V2 = {0}, and PV ⊥
1

be the orthogonal

projection onto V ⊥
1 , then we have that dim(V2) = dim

(
PV ⊥

1
V2

)
.

Proof. Obviously we have dim(V2) ⩾ dim
(
PV ⊥

1
V2

)
. On the other hand, let u1,u2, · · · ,um

be a basis of V2, then wi = PV ⊥
1
ui, i = 1, 2, · · · ,m are also independent. Indeed, suppose

that λi, i = 1, 2, · · · ,m satisfy
∑m
i=1 λiwi = 0, then PV ⊥

1
(
∑m
i=1 λiui) = 0, implying that∑m

i=1 λiui ∈ V1. However, we know that V1 ∩ V2 = {0}, so λ1 = · · · = λm = 0. This concludes
the proof.

Lemma 5. Assumption 4 is equivalent to Assumption 5.

Proof. The main observation is that for each k ∈ [K], (Bk)i only has non-zero entries at the j-th
coordinate where j ∈ paG(i). Moreover, let w̃k(i) be the vector consisting of these entries, then

w̃k(i) = (Ωk)
− 1

2
ii (−wk(i), 1). Hence,

dim span ⟨(Bk)i : k ∈ [K]⟩ = dim span ⟨(−wk(i), 1) : k ∈ [K]⟩ .

Suppose that Assumption 4 holds, then for ∀x ∈ R|paG(i)|, there exists λk ∈ R, 1 ⩽ k ⩽
∣∣paG(i)∣∣

such that
∑
k λk = 1 and

∑
k λkwk(i) = x. Hence,

(x, 1) =
∑
k

λkw̃k(i) ∈ span ⟨(Bk)i : k ∈ [K]⟩ .

This immediately implies that span ⟨(Bk)i : k ∈ [K]⟩ = R|paG(i)|+1, so that Assumption 5 holds.

Conversely, suppose that Assumption 5 holds, then for ∀x ∈ R|paG(i)|, there exists λk ∈ R, 1 ⩽
k ⩽

∣∣paG(i)∣∣ such that
∑
k λkw̃k(i) = (x, 1). Hence we have

∑
k λkwk(i) = x and

∑
k λk = 1,

implying Assumption 4.

G Properties of effect-domination sets

Lemma 6. • j ∈ surG(i) if and only if chG(i) ⊆ chG(j);

• when i ̸= j, j ∈ surG(i) if and only if chG(i) ⊆ chG(j).

Proof. If j ∈ surG(i), by definition i ∈ chG(j) and chG(i) ⊆ chG(j), so that chG(i) ⊆ chG(j).
Conversely, chG(i) ⊆ chG(j) implies that i ∈ chG(j) and chG(i) ⊆ chG(j), so j ∈ surG(i). This
proves the first claim.
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To prove the second claim, assume that chG(i) ⊆ chG(j) holds but chG(i) ⊆ chG(j) does not hold,
then we must have j ∈ chG(i). since j ̸= i, we have j ∈ chG(i), but then i /∈ chG(j), which is a
contradiction. Hence chG(i) ⊆ chG(j) and the conclusion follows from the first claim.

Lemma 7. Let G be a DAG and i be its node, then for ∀j ∈ paG(i), we have surG(j) ⊆ paG(i).

Proof. Let k ∈ surG(j), then by definition we have chG(j) ⊆ chG(k). In particular, we have
i ∈ chG(k)⇒ k ∈ paG(i).

Lemma 8. Let G be a DAG and i be its node, then for ∀j ∈ surG(i), we have surG(j) ⊆ surG(i).

Proof. Let k ∈ surG(j), then by definition we have chG(j) ⊂ chG(k). We also know that chG(i) ⊂
chG(j), so chG(i) ⊂ chG(k), implying that k ∈ surG(i).

Lemma 9. If M ∈M0
sur(G), then M−1 ∈M0

sur(G).

Proof. Assume WLOG that the nodes of G satisfy i ∈ paG(j)⇒ i < j (otherwise we can choose
a different index of the nodes and correspondingly swap some rows and columns of M ). Since
i ∈ surG(j)⇒ i ∈ paG(j), it follows that M must be lower triangular and the diagonal entries are
nonzero.

Let N = M−1, then for ∀i ∈ [d], we have

d∑
j=1

NijMjℓ = 0, ∀ℓ /∈ surG(i). (9)

Since M ∈M0
sur(G), we have Mjℓ = 0 for ∀j such that ℓ /∈ surG(j). By Lemma 8, if j ∈ surG(i),

then ℓ /∈ surG(i) necessarily implies that ℓ /∈ surG(j). Hence the left hand side of (9) is essentially a
sum over j /∈ surG(i), i.e., ∑

j /∈surG(i)

NijMjℓ = 0, ∀ℓ /∈ surG(i).

Viewing the above as a system of linear equations in Nij , j /∈ surG(i), the coefficient matrix
(Mjℓ)j,ℓ∈/∈surG(i) must be invertible since it is a sub-matrix of the invertible lower-triangular matrix
M . As a result, we necessary have Nij = 0,∀j /∈ surG(i). Finally, N = M−1 must be invertible,
so N ∈M0

sur(G) as desired.

Lemma 10. Suppose that ψ : Rd 7→ Rd is a diffeomorphism and G be a DAG, such that for ∀i ∈ [d],
ψi(z) is a function of zsurG(i). Then for ∀j ∈ [d], (ψ−1)j(v) is a function of vsurG(j).

Proof. Let Jz = Jψ(z) be the Jacobian matrix of ψ. Since ψ is a diffeomorphism, Jz is invertible
for any z ∈ Rd. Moreover, our assumption implies that (Jz)ij = 0,∀j /∈ surG(i), so Jz ∈M0

sur(G).
By Lemma 9, J−1

z ∈M0
sur(G). But J−1

z is exactly the Jacobian matrix of ψ−1 at v = ψ(z), hence
it follows that (ψ−1)j(v) is only a function of vsurG(j), as desired.

Lemma 11. The binary relation ∼sur defined in Definition 4 is an equivalence relation.

Proof. It is obvious that (h,G) ∼sur (h,G) holds for any model (h,G).

Suppose that (h1,G1) ∼sur (h2,G2), then there exists a permutation π on [d] and a diffeomorphism
ψ : Rd 7→ Rd where ψi(z) is a function of zsurG1

(i), such that i ∈ paG1
(j) ⇔ π(i) ∈ paG2

(π(j))

and Pπ ◦ h2 = ψ ◦ h1. Then we can write P−1
π ◦ h1 = ψ̂ ◦ h2 where ψ̂ = P−1

π ◦ ψ−1 ◦ Pπ.
By Lemma 10, we know that

(
ψ−1

)
j
(v) is a function of vsurG1

(j), so (ψ̂)j is a function of
vπ(surG1

(j)) = vsurG2
(j), implying that (h2,G2) ∼sur (h1,G1).
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Finally, let (h1,G1) ∼sur (h2,G2) and (h2,G2) ∼sur (h3,G3), then we can write

Pπ ◦ h2 = ψ ◦ h1 and Pπ̂ ◦ h3 = ψ̂ ◦ h2

where: for ∀i ∈ [d], ψi(z) is a function of zsurG1
(i), ψ̂i(z) is a function of zsurG2

(i), i ∈ paG1
(j)⇔

π(i) ∈ paG2
(π(j)) and i ∈ paG2

(j)⇔ π̂(i) ∈ paG2
(π̂(j)). Then, we can write

Pπ ◦ Pπ̂ ◦ h3 = Pπ ◦ ψ̂ ◦ P−1
π ◦ ψ ◦ h1.

Since ψ̂i(z) is a function of zsurG2
(i), we deduce that

(
Pπ ◦ ψ̂ ◦ P−1

π

)
i
(z) is a function of zsurG1

(i).

Hence,
(
Pπ ◦ ψ̂ ◦ P−1

π ◦ ψ
)
i
(z) =

(
Pπ ◦ ψ̂ ◦ P−1

π

)
i
(ψ(z)) is a function of ψsurG1

(i)(z). The

definition of ψ implies that for each j ∈ surG1(i), ψj(z) is a function of zsurG1
(j). By Lemma 8,

we have ∪j∈surG1
(i)surG1

(j) ⊆ surG1
(i). Hence

(
Pπ ◦ ψ̂ ◦ P−1

π ◦ ψ
)
i
(z) is still a function of

zsurG1
(i). Moreover, we also have i ∈ paG1

(j)⇔ π(i) ∈ paG2
(π(j))⇔ π̂ ◦ π(i) ∈ paG2

(π̂ ◦ π(j)),
so by definition, (h1,G1) ∼sur (h3,G3), as desired.

H Omitted proofs from Section 4 and Section 5

H.1 Proof of Theorem 1

According to the assumption, we have that ϵ = BkHx and ϵ̂ = B̂kĤx, so that ϵ =

BkH(B̂kĤ)†ϵ̂,∀k ∈ [K]. By Lemma 3, we know that for each k, Pk := BkH(B̂kĤ)† is

a signed permutation matrix, so that ϵ = Pk ϵ̂. Since for any i ̸= j, ϵ̂i
d

̸= ϵ̂j , we must have
|P |1 = |P |2 = · · · = |P |K =: P and ϵ = P ϵ̂, where |M | denotes the resulting matrix by taking
the absolute value of all entries in M . Thus, we can WLOG assume that ϵ = ϵ̂, since otherwise we
can permute the noise variables ϵ̂, and also permute the rows of Bk correspondingly. In other words,
suppose that the permutation matrix |P | has |P |ki,i = 1, i ∈ [d], then we can assign to each node i
in Ĝ a new index ki and work with the new indices.

In this case, by Lemma 3 we have BkH = ΣkB̂kĤ,∀k ∈ [K] or equivalently ΣkB̂k = BkT ,
where T = HĤ† ∈ Rd×d, and Σk is a diagonal matrix with diagonal entries in {+1,−1}. Let
ˆ̂
Bk = ΣkB̂k, then the rows of ˆ̂

Bk equals (up to sign) to the rows of B̂k.

To summarize, we now know that i) ˆ̂
Bk = BkT , k ∈ [K], ii) (Bk)ij ̸= 0 ⇔ j ∈ paG(i), and

similarly, ( ˆ̂Bk)ij ̸= 0 ⇔ j ∈ paĜ(i), and iii) Both {Bk} and
{
ˆ̂
Bk

}
satisfy the node-level non-

degeneracy assumption Assumption 5. For any two such matrices that satisfy such a set of conditions,
it must necessarily be true that G = Ĝ.

Lemma 12 (Graph Identifiability). Consider any two sets matrices { ˆ̂Bk}k∈[K] and {Bk}k∈[K] and
associated graphs G, Ĝ. If these sets and graphs satisfy that:

1. ˆ̂
Bk = BkT , k ∈ [K];

2. (Bk)ij ̸= 0⇔ j ∈ paG(i), and similarly, ( ˆ̂Bk)ij ̸= 0⇔ j ∈ paĜ(i).

3. Both {Bk} and
{
ˆ̂
Bk

}
satisfy the node-level non-degeneracy assumption Assumption 5.

then it must hold that G = Ĝ.

Proof. We prove this via induction on the size of the graph d. Note that here G = Ĝ is not up to
permutation and our statement is equivalent to paG(i) = paĜ(i),∀i ∈ [d].

If d = 1, i.e., G = Ĝ obviously holds since both are graphs with only 1 node.
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Suppose that for all graphs G of size d − 1, the graph Ĝ satisfying all given assumptions must
necessarily be equal to G. Now, we consider the case that G has d nodes. WLOG we can assume
that the nodes of G are properly indexed such that i ∈ paG(j) ⇒ i < j, so Bk, k ∈ [K] are

lower-triangular matrices. (However, it is currently unknown whether ˆ̂
Bk are also lower-triangular.)

By our assumption that i ∈ paG(j)⇒ i < j, the node d in G has no child. Thus we can write

Bk =

(
B−
k 0

bk ck

)
,T =

(
T− ×
× ×

)
and ˆ̂

Bk = BkT =

(
ˆ̂
B−
k ×
× ×

)
where B−

k ,T ,
ˆ̂
B−
k = B−

k T
− ∈ R(d−1)×(d−1), bk ∈ Rd−1, ck ∈ R and × denotes irrelevant entries.

Let A−
k , Â

−
k ,Ω

−
k and Ω̂−

k be the top-left (d − 1) × (d − 1) sub-matrices of Ak, Â,Ωk and Ω̂k

respectively, and G− and Ĝ− are graphs obtained by deleting node d and all related edges from G and
Ĝ. Then it is easy to see that(

A−
k

)
ij
̸= 0⇔ j ∈ paG−(i) and

(
Â−
k

)
ij
̸= 0⇔ j ∈ paĜ−(i). (10)

Moreover,(
B−
k 0

bk ck

)
= Bk = Ω

− 1
2

k (I −Ak) =

( (
Ω−
k

)− 1
2 0

0 ×

)(
I −A−

k ×
× ×

)
=

( (
Ω−
k

)− 1
2 (I −A−

k ) ×
× ×

)
so that B−

k =
(
Ω−
k

)− 1
2 (I −A−

k ). Similarly, we have ˆ̂
B−
k =

(
Ω̂−
k

)− 1
2

(I − Â−
k ).

We can also verify that
{
B−
k

}K
k=1

and
{
ˆ̂
B−
k

}K
k=1

are node-level independent in the sense of As-

sumption 5. We only prove this for
{
ˆ̂
Bk

}K
k=1

; the arguments used for {Bk}Kk=1 are exactly the same

as the first case considered below. Now for each i ∈ [d− 1], let Ri ∈ RK×d be the matrix whose

k-th row is the i-th row of ˆ̂
Bk, and R−

i ∈ RK×(d−1) be the matrix whose k-th row is the i-th row of
ˆ̂
B−
k , then obviously Ri is of form

[
R−
i , ri

]
. We consider two cases:

• Case 1.d /∈ paĜ(i) This means that the last entry of the i-th row of ˆ̂
Bk is zero. Thus ri = 0,

and rank
(
R−
i

)
= rank (Ri) =

∣∣paĜ(i)∣∣ = ∣∣paĜ−(i)
∣∣, where the second equality follows

from Assumption 5.

• Case 2.d ∈ paĜ(i) In this case we have rank
(
R−
i

)
⩾ rank (Ri) − 1 =

∣∣paĜ(i)∣∣ − 1 =∣∣paĜ−(i)
∣∣. Due to our assumption on Âk and the relationship ˆ̂

B−
k =

(
Ω̂−
k

)− 1
2

(I − Â−
k ),

we know that each row of R−
i , namely the i-th row of some ˆ̂

Bk only has
∣∣paĜ(i)∣∣− 1 =∣∣paĜ−(i)

∣∣ non-zero entries, so that rank
(
R−
i

)
=
∣∣paĜ−(i)

∣∣ holds.

Since we have shown that the matrices B−
k and ˆ̂

B−
k satisfy the three properties that we assume for

induction with T replaced by T− and G, Ĝ replaced by G−, Ĝ− respectively, by induction hypothesis,
we can thus deduce that G− = Ĝ−. To prove G = Ĝ it remains to show that the dependency of node
d on the remaining nodes are the same in G and Ĝ.

First, we show that chĜ(d) = ∅. Suppose in contrary that there is some i ∈ chĜ(d), then
∣∣paG(i)∣∣ =∣∣paG−(i)

∣∣ = ∣∣paĜ−(i)
∣∣ = ∣∣paĜ(i)∣∣− 1. Recalling that (B)i denotes the i-th row of matrix B, we

have
dim

(
span

〈(
ˆ̂
Bk

)
i
: 1 ⩽ k ⩽ K

〉)
= dim (span ⟨(Bk)i : 1 ⩽ k ⩽ K⟩)

⩽
∣∣paG(i)∣∣+ 1 <

∣∣paĜ(i)∣∣+ 1,
(11)

where the first inequality follows from
(
ˆ̂
Bk

)
i
= (Bk)i T and Lemma 2, the second holds since

each (Bk)i has nonzero elements only at coordinates in j ∈ paG(i), and the last one holds since
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∣∣paG(i)∣∣ = ∣∣paĜ(i)∣∣ − 1. However, (11) contradicts the non-degeneracy condition Assumption 5
that we assume for matrices B̂k, k ∈ [K] in the statement of the theorem. Therefore we have
chĜ(d) = ∅ = chG(d).

Second, by a similar argument comparing the number of nonzero elements in the last row of Bk and
ˆ̂
Bk, we can also deduce that ∣∣paG(d)∣∣ = ∣∣paĜ(d)∣∣ .
Indeed, since

(
ˆ̂
Bk

)
d
= (Bk)d T , by Lemma 2 we have

dim
(
span

〈(
ˆ̂
Bk

)
d
: 1 ⩽ k ⩽ K

〉)
= dim (span ⟨(Bk)d : 1 ⩽ k ⩽ K⟩)

However, since we assume that Assumption 5 is satisfied for {Bk}Kk=1 and
{
B̂k

}K
k=1

, we know that

the LHS and RHS of the above equation are equal to
∣∣paG(d)∣∣ + 1 and

∣∣paĜ(d)∣∣ + 1 respectively,
implying (12).

Third, we show that paG(d) = paĜ(d). Suppose the contrary, let ℓ be the smallest element in
paG(d)∆paĜ(d), where A∆B := (A \B) ∪ (B \A). Recall that while G and Ĝ are originally not
symmetric as nodes are topologically sorted according to G, now we have shown that G− ≡ Ĝ− and
that chG(d) = chĜ(d) = ∅, so we can assume WLOG that ℓ ∈ paG(d) and ℓ /∈ paĜ(d), and the

other case can be handled symmetrically. Since Bk is lower triangular and (Bk)jj = (Ωk)
− 1

2
jj ̸=

0,∀j ∈ [d], the top-left ℓ× ℓ sub-matrix of Bk, which we denote by [Bk]ℓ,ℓ, must be invertible. This

implies that
{
[Bk]

⊤
ℓ,ℓ λ : λ ∈ Rℓ

}
= Rℓ, so we can always find coefficients λkj , j ∈ [ℓ] such that

the first ℓ entries of the vector (Bk)d −
∑ℓ
i=1 λki(Bk)i ∈ Rd are all zero. Since ˆ̂

Bk = BkT and

T is invertible, we have
(
ˆ̂
Bk

)
d
−
∑ℓ
j=1 λkj

(
ˆ̂
Bk

)
j
=
(
(Bk)d −

∑ℓ
j=1 λkj (Bk)j

)
T ,∀k ∈ [K]

and

dim

span

〈(
ˆ̂
Bk

)
d
−

ℓ∑
j=1

λkj

(
ˆ̂
Bk

)
j
: k ∈ [K]

〉 = dim

span

〈
(Bk)d −

ℓ∑
j=1

λkj (Bk)j : k ∈ [K]

〉
⩽
∣∣paG(d) \ [ℓ]∣∣+ 1.

Here, the inequality holds because for any coordinate t ∈ [d],(Bk)d −
ℓ∑
j=1

λkj (Bk)j


t

=

{
0 if t ⩽ ℓ

(Bk)d,t otherwise
(12)

where we note that Bk is lower-triangular and thus (Bk)j,t = 0,∀j ⩽ ℓ, t > ℓ. This implies that(
(Bk)d −

∑ℓ
j=1 λkj (Bk)j

)
t

is nonzero only if t > ℓ and t ∈ paG(d).

On the other hand, let S =
(
paĜ(d) ∩ [ℓ]c

)
∪ {d}, then

dim

span

〈(
ˆ̂
Bk

)
d
−

ℓ∑
j=1

λkj

(
ˆ̂
Bk

)
j
: k ∈ [K]

〉 ⩾ dim

span

〈( ˆ̂Bk

)
d
−

ℓ∑
j=1

λkj

(
ˆ̂
Bk

)
j


S

: k ∈ [K]

〉
= dim

(
span

〈((
ˆ̂
Bk

)
d

)
S
: k ∈ [K]

〉)
= |S|.

where we recall that uS denotes the vector (ui : i ∈ S) ∈ R|S|. Here the first equality holds due to
the same reason as (12), and the second follows from Assumption 5. To see why this is the case, note
that Assumption 5 implies that the K ×

(∣∣paG(d)∣∣+ 1
)

having ((Bk)d)paG(d) as the k-th row has
full column rank, so that the sub-matrix obtained by extracting columns corresponding to the node
set S also has full column rank.
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We have shown that
∣∣paĜ(d) ∩ [ℓ]c

∣∣ = |S| ⩽
∣∣paG(d) ∩ [ℓ]c

∣∣ + 1 =
∣∣paG(d) ∩ [ℓ]c

∣∣. On the
other hand, recall that by our choice of ℓ, we have

∣∣paG(d) ∩ [ℓ− 1]
∣∣ = ∣∣paĜ(d) ∩ [ℓ− 1]

∣∣ and
ℓ ∈ paG(d) \ paĜ(d). Putting these together, we have

∣∣paG(d)∣∣ > ∣∣paĜ(d)∣∣. However, we know
from (12) that

∣∣paG(d)∣∣ = ∣∣paĜ(d)∣∣, leading to a contradiction. Hence, such ℓ shouldn’t exist and we
must have paG(d) = paĜ(d), completing the induction step for graphs of size d.

By the principle of induction, we have shown that G = Ĝ holds for any graphs under given assump-
tions.

Now that we have established that G = Ĝ, we prove the remaining part of the theorem. Note that for

any i, j ∈ [d] such that i /∈ paG(j), we have (Bk)ji = (
ˆ̂
Bk)ji = 0,∀k ∈ [K]. Since ˆ̂

Bk = BkT ,
we have ∑

ℓ∈paG(j)

(Bk)jℓTℓi = 0.

By Assumption 5, the above implies that Tℓi = 0 for ∀ℓ ∈ paG(j). In short, we have argued that if
there exists j such that i /∈ paG(j) and ℓ ∈ paG(j), then Tℓi = 0.

This implies that Tℓi is non-zero only if c̄hG(ℓ) ⊆ c̄hG(i). Since v = Tz, we have vℓ =∑d
i=1 Tℓizi =

∑
i∈[d]:c̄hG(ℓ)⊆c̄hG(i) Tℓizi. Note that when i ̸= ℓ, c̄hG(ℓ) ⊆ c̄hG(i) is equivalent to

i ∈ surG(ℓ), so vℓ only depends on zsurG(ℓ) by Lemma 6, as desired.

H.2 Formal version and proof of Theorem 2

In previous works [36, 54], it is common to consider single-node soft interventions in the following
sense:

Assumption 8. For ∀2 ⩽ k ⩽ K, there exists ik ∈ [d], such that the structural equation in
environment k satisfies (4) satisfies wk(i) = w1(i) and ωk,i,i = ω1,i,i for ∀i ̸= ik.

Let Si = {k : 2 ⩽ k ⩽ K, ik = i} , i ∈ [d] and si = |Si|. Suppose that G has e =
∑d
i=1

∣∣paG(i)∣∣
edges, then we can view the weight vectors {(wk(i), ωk,i,i) : k = 1 or i = ik} as elements of the
Euclidean space Re+

∑K
k=2|paG(ik)| × Rd+K−1

+ . Under Assumption 8, the models can be fully
determined by these weight vectors. The following result states that if we restrict ourselves to
single-node interventions, then in the worst case, Θ(d2) interventions are required.

Theorem 6. There exists a causal graph G with Θ(d2) edges, such that for any unmixing matrix
H ∈ Rd×n with full row rank, any independent noise variables ϵ, and any si > 0, i ∈ [d] such
that si ⩽

∣∣paG(i)∣∣ for some i, the following holds: except from a null set of the weight space

Re+
∑K

k=2|paG(ik)| × Rd+K−1
+ (w.r.t the Lebesgue measure), there must exist a candidate solution

(Ĥ, Ĝ) and a hypothetical data generating process

∀k ∈ [K], v = Âkv + Ω̂
1
2

k ϵ, x = Ĥ†v

such that

(i′) the unmixing matrix Ĥ ∈ Rd×n has full row rank;

(ii′) ∀k ∈ [K] and i, j ∈ [d], (Âk)ij ̸= 0 ⇔ j ∈ paĜ(i) and Ω̂k is a diagonal matrix with
positive entries;

(iii′) for ∀2 ⩽ k ⩽ K, the weight matrices Âk, Ω̂k of environment Ek are from a single-node
soft intervention on E1 on node ik, in the sense of Assumption 8,

but G is non-isomorphic to Ĝ.

In this subsection we give the full proof of Theorem 6. We say that S ⊆ Rm is a null set if it has zero
Lebesgue measure. Obviously, any hyperplanes in Rm are null sets. We will also need the following
simple lemma:
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Lemma 13. Suppose that m ∈ Z+ and V is a subspace of Rm. Then for any set of vectors ui ∈
Rm, i = 1, 2, · · · , n that does not lie in V , there must exists v ∈ Rm such that u⊤

i v ̸= 0,∀i ∈ [n]
but v ∈ V ⊥, where V ⊥ is the orthogonal space of V .

Proof. Let wi be the orthogonal projection of ui onto V ⊥. Since ui /∈ V , we know that wi ̸= 0.
The solution space of each equation w⊤

i v = 0 in V ⊥ must then be a proper subspace of V ⊥.
Equipped with the Lebesgue measure, all these spaces are null sets in V ⊥, so one can always choose
a v ∈ V ⊥ that does not lie in any of these solution spaces. Such v satisfies all the requirements.

We choose G to be the graph with i→ j for ∀1 ⩽ i < j ⩽ d, so that G has d(d−1)
2 edges. Suppose

that i0 ∈ [d] satisfies si ⩽
∣∣paG(i)∣∣− 1, then we must have i0 ⩾ 2, so there is an edge 1→ i0 in G,

Let Ĝ be the resulting graph obtained via removing the edge 1→ i0 in G, then G and Ĝ are clearly
non-isomorphic.

Note that the i-th row of Bk can be written as ω− 1
2

k,i,i (ei − (Ak)i). Let’s choose an lower-triangular
matrix T = (tij)

d
i,j=1 ∈ Rd×d with columns ti, i ∈ [d] such that the following holds:

(ei − (Ak)i)
⊤
tj =


= 0, ∀k ∈ {1} ∪ Si0 , j = 1 and i = i0
> 0, ∀i = j and k ∈ {1} ∪ Si
̸= 0, ∀ remaining (i, j, k) ∈ {k = 1, j < i} ∪ {k ⩾ 2, i = ik, j < i}

(13)
and

tii ̸= 0, ∀i ∈ [d]. (14)

We now show that: except from a null set in the weight space, such T can always be chosen. To see
why this is the case, we first consider all the constraints on t1:

(ei − (Ak)i)
⊤
t1 =


= 0, ∀k ∈ {1} ∪ Si0 and i = i0
> 0, ∀i = 1 and k ∈ {1} ∪ Si
̸= 0, ∀ remaining (i, k) ∈ {k = 1, i > 1} ∪ {k ⩾ 2, i = ik > 1}

(15)

Now let V = span ⟨ei − (Ak)i : k ∈ {1} ∪ Si0 and i = i0⟩ andR be the set of pairs (i, k) specified
in the second and third row of (15). For ∀(i, k), let wk(i) be the weight vector of node i in the
environment k, i.e., the vector of nonzero entries in (Ak)i. Then for ∀(i, k) ∈ R, the following set
(as a subset of the weight space)⋃

k∗∈{1}∪Si0

{ei0 −wk∗(i0) ∈ span ⟨ei −wk(i), ei0 −wk′(i0) : k
′ ∈ {1} ∪ Si0 \ {k∗}⟩} (16)

must be a null set. Thus

E =
⋃

(i,k)∈R

⋃
k∗∈{1}∪Si0

{ei0 −wk∗(i0) ∈ span ⟨ei −wk∗(i), ei0 −wk′(i0) : k
′ ∈ {1} ∪ Si0 \ {k∗}⟩}

(17)
is also a null set. For any weights that are not in E, we necessarily have

ei −wk(i) /∈ span ⟨ei − (Ak)i : k ∈ {1} ∪ Si0 and i = i0⟩ = V , (i, k) ∈ R.

Let U = {ei −wk(i) : (i, k) ∈ R}, then we can apply Lemma 13 to deduce that there exists t1 such
that

(ei − (Ak)i)
⊤
t1 =

{
= 0, ∀k ∈ {1} ∪ Si0 and i = i0
̸= 0, ∀ remaining (i, k) ∈ {k = 1} ∪ {k ⩾ 2, i = ik}

(18)

Note that the only difference between (18) and (15) is that the latter one further requires that

(e1 − (Ak)1)
⊤
t1 > 0, ∀k ∈ {1} ∪ Si.

while the former only guarantees that these terms are nonzero. However, recall that (Ak)ij ̸= 0⇒
j ∈ paG(i) ⇒ j < i, so the above essentially says that t11 > 0. This can be easily guaranteed by
replacing the solution t1 we obtained satisfying (18) with −t1 if needed.
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Assuming that the weights do not lie in the null set E we have shown that t1 can always be chosen
to satisfy all constraints imposed on it. We now proceed to choose the remaining entries of T . The
remaining entries in t1 can be chosen arbitrarily. For tj , j > 1, we note that the remaining constraints
in (13) that need to be satisfied consist of the "nonzero" part and the "positivity" part. The positivity
constrains can always be satisfied by choosing a sufficiently large tjj for j > 1.

After choosing the tj’s satisfying the positivity constraints, the nonzero constraints along with (14)
are easy to fulfill by slightly perturbing tj if they are violated; since each of these constraints are only
violated in a zero-measure set of the weight space. Hence, we have shown that except a null set E in
the weight space, there always exists some T satisfying (13). Such T must be invertible since it is
lower-triangular and its diagonal entries are nonzero. Now let Ĥ = T−1H and Ω̂k be the diagonal
matrix with entries ω̂k,i,i = t−2

ii · ωk,i,i, i ∈ [d] and

Âk = I − Ω̂
1
2

kΩ
− 1

2

k (I −Ak)T . (19)

First since T is invertible and H has full rank, Ĥ must also have full row rank. Second,

(Âk)ij =


1− ω̂

1
2

k,i,iω
− 1

2

k,i,itii = 0 if j = i

−ω̂
1
2

k,i,iω
− 1

2

k,i,i (ei − (Ak)i)
⊤
tj = 0 if j > i

−ω̂
1
2

k,i,iω
− 1

2

k,i,i (ei − (Ak)i)
⊤
tj if j < i.

where we again recall that both Ak and T are lower-triangular. From (13) we can see that

• When i = i0 and j = 1, we have

– (Âk)i0,1 = 0 if k ∈ {1} ∪ Si0 , and
– (Âk)i0,1 = (Â1)i0,1 = 0 if k /∈ {1} ∪ Si0 , by definition of Si0 and Assumption 8.

• When i > j and (i, j) ̸= (i0, 1), we have

– (Âk)ij ̸= 0 if k = 1 or i = ik, which directly follows from (13), and
– (Âk)ij = (Â1)ij ̸= 0, by Assumption 8.

To summarize, for each k, (Ak)ij ̸= 0⇔ j ∈ paG(i) and (i, j) ̸= (i0, 1).

Finally, let ŵk(i) be the weight vector of node i in environment k in the hypothetical model i.e., the
vector of nonzero entries in (Ak)i, and TS be the submatrix of T by selecting the rows and columns
in the index set S, then by (19) we have that

ω̂k,i,i = t−2
ii · ωk,i,i, ω̂

1
2

k,i,iω
− 1

2

k,i,iwk(i)TpaG(i) =

{
ŵk(i) if i ̸= i0

[0, ŵk(i)] if i = i0
(20)

By our assumption, for ∀k ⩾ 2, i ̸= ik ⇒ wk(i) = w1(i) and ωk,i,i = ω1,i,i. Thus (20) imply that
∀k ⩾ 2, i ̸= ik ⇒ ŵk(i) = ŵ1(i) and ω̂k,i,i = ω̂1,i,i. In other words, a single-node intervention on
node ik in environment k in the ground-truth model corresponds to a single-node intervention on
node ik in environment k in the hypothetical model, thereby completing the proof.

H.3 Proof of Theorem 4

We first prove two lemmas.
Lemma 14. ∀i ∈ [d], we have span ⟨(Mk)i : k ∈ [K]⟩ = span

〈
hj : j ∈ paG(i)

〉
.

Proof. Since (Mk)i = (Bk)iH , and (Bk)ij ̸= 0 ⇔ j ∈ paG(i), we can see that (Mk)i ∈
span

〈
hj : j ∈ paG(i)

〉
. On the other hand, since H is invertible, by Assumption 5 we have

dim span ⟨(Mk)i : k ∈ [K]⟩ = dim span ⟨(Bk)i : k ∈ [K]⟩ =
∣∣paG(i)∣∣. Thus we must have

span ⟨(Mk)i : k ∈ [K]⟩ = span
〈
hj : j ∈ paG(i)

〉
.

Lemma 15. Let Ŝ be an ancestral set of graph G and V̂k = span
〈
(Mk)s : s ∈ Ŝ

〉
, k ∈ [K]. Then

we have V1 = V2 = · · · = VK = span
〈
hs : s ∈ Ŝ

〉
.
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Proof. Recall that Mk = BkH , so for ∀s ∈ Ŝ, the s-th row of Mk can be written as

(Mk)s =

d∑
t=1

(Bk)stht =
∑

t∈paG(s)

(Bk)stht ∈ span
〈
hs : s ∈ Ŝ

〉
(21)

where the last equation is because Ŝ is ancestral ⇒ paG(s) ⊆ Ŝ. Thus, for ∀k ∈ [K],

V̂k = span
〈
(Mk)s : s ∈ Ŝ

〉
⊆ span

〈
hs : s ∈ Ŝ

〉
. On the other hand, recall that both Bk

and H have full rank, so Mk has full row rank as well, which implies that dimVk = |S| =
dim span

〈
hs : s ∈ Ŝ

〉
. Hence, Vk = span

〈
hs : s ∈ Ŝ

〉
,∀k ∈ [K].

The following two propositions show that our algorithm always maintain an ancestral set, recursively
adds a new node into the set and correctly identifies its parents.

Proposition 3 (Proposition 1 restated). The following two propositions hold for Algorithm 3:

• ansG(i) ⊆ S ⇔ the if condition in line 8 of Algorithm 3 is fulfilled;

• the set S maintained in Algorithm 3 is always an ancestral set, in the sense that j ∈ S ⇒
ansG(j) ⊆ S.

Proof. At the starting point, we have S = ∅ which is obviously an ancestral set. Now suppose that
after the ℓ-th iteration, S = {s1, s2, · · · , sℓ} is an ancestral set. In the following, we show that
ansG(i) ⊆ S ⇔ the if condition in line 8 is fulfilled. This would immediately imply that there
always exists a node i that can be added into S in the (ℓ+ 1)-th iteration, and that after adding i, S is
still an ancestral set.

Suppose that ansG(i) ⊆ S for some i /∈ S, by Lemma 14 we know that (Mk)i ∈
span

〈
hj : j ∈ paG(i)

〉
, so there exists αk ∈ R such that (Mk)i − αkhi ∈ span

〈
hj : j ∈ paG(i)

〉
.

Moreover, since (Mk)i =
∑
j∈paG(i)(Bk)jjhj , (Bk)ii = ω

− 1
2

k,i,i ̸= 0 and H has full row rank by
assumption, we must have (Mk)i /∈ span

〈
hj : j ∈ paG(i)

〉
and so αk ̸= 0. Thus, we have by the

linearity of the projection operator

qk := projV ⊥
k

((Mk)i) = projV ⊥
k

((Mk)i − αkhi) + projV ⊥
k

(αkhi) = αkprojV ⊥
k

(hi) .

Recall that all the Vk’s are the same and equal span ⟨hs : s ∈ S⟩ by Lemma 15. So
dim span ⟨qk : k ∈ [K]⟩ ⩽ 1. Since H has full row rank, we have hi /∈ span ⟨hs : s ∈ S⟩ = Vk,
so that dim span ⟨qk : k ∈ [K]⟩ = 1 holds, which is exactly the if condition in line 8.

Conversely, suppose that there is an i /∈ S such that ansG(i) ⊈ S but dim span ⟨qk : k ∈ [K]⟩ = 1
holds. Since S is ancestral, we know that there must be some j ∈ paG(i) such that j /∈ S.
Since ei and ej both have support on the coordinates in paG(i), by Assumption 5 we know that
span⟨ei, ej⟩ ⊆ span⟨(Bk)i : k ∈ [K]⟩, so that span⟨hi,hj⟩ = span⟨ei, ej⟩H ⊆ span⟨(Bk)i :
k ∈ [K]⟩H = span⟨(Mk)i : k ∈ [K]⟩. Since dim span ⟨qk : k ∈ [K]⟩ = 1, there must exist some
vector u ∈ Rn and αi, αj ∈ R such that hi − αiu,hj − αju ∈ Vk = span⟨hs : s ∈ S⟩. Since
i, j /∈ S and H has full row rank, we can deduce that hi,hj /∈ span⟨hs : s ∈ S⟩, and so both of αi
and αj are non-zero. Hence αjhi − αihj ∈ span⟨hs : s ∈ S⟩, which is impossible since we know
that H has full row-rank.

Proposition 4 (Proposition 2 restated). Given any ordered ancestral set S that contains paG(i) for
some i /∈ S , Algorithm 2 returns a set Pi ⊆ S that is exactly paG(i).

Proof. As we have shown in Proposition 1, for each possible input (S, i) to Algorithm 2, both
S and S ∪ {i} are ancestral sets, so that ansG(i) ⊆ S. Similarly one can see that inside the set
S := {s1, s2, · · · , sm}, all the ancestors of sj are contained in {s1, s2, · · · , sj−1}. In the following,
we show that ∀m′ ∈ {0, . . . ,m}, rm′ =

∣∣paG(i)− {sj : j ⩽ m′}
∣∣ (*).
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By Lemma 15 we have W1 = W2 = · · · = WK = span
〈
hsj : j ⩽ m′〉. Let t1, t2, · · · , tℓ be

elements of paG(i) that are not in {sj : j ⩽ m′}, then

rm′ = dim span ⟨pk : k ∈ [K]⟩ = dim

(
proj

span⟨hsj
:j⩽m′⟩⊥span ⟨(Mk)i : k ∈ [K]⟩

)
= dim

(
proj

span⟨hsj
:j⩽m′⟩⊥span

〈
hj : j ∈ paG(i)

〉)
(by Lemma 14)

= dim

(
proj

span⟨hsj
:j⩽m′⟩⊥span ⟨ht1 ,ht2 , · · · ,htℓ⟩

)
= ℓ (by Lemma 4 and non-degeneracy of H)

which proves (*). From (*) it is easy to see that m′ ∈ paG(i) (and thus in paG(i) since i /∈ S) if and
only if rm′ = rm′−1 − 1.

Now we conclude the proof of Theorem 4. Propositions 1 and 2 directly imply that Algorithm 3 is able
to exactly recover the ground-truth causal graph G. It remains to show that Line 20 in Algorithm 3
produces the correct ĥi’s. By Lemma 14 we know that Ej = span

〈
hℓ : ℓ ∈ paG(j)

〉
, so

∩j∈chG(i)Ej = ∩j∈chG(i)span
〈
hℓ : ℓ ∈ paG(j)

〉
= span ⟨hℓ : ℓ ∈ surG(i)⟩ .

where the last step holds because H has full row rank and ∩j∈chG(i)paG(j) = surG(i) by definition.

Hence, each ĥi is a linear combination of hℓ, ℓ ∈ surG(i), completing the proof.

I Identification limit of general causal models with soft interventions

While Theorem 1 guarantees identifiability with general environments, it only applies to linear causal
models. In this section, we show that if we have access to single-node soft interventions, then we can
identify general non-parametric causal models up to ∼sur. To obtain our identifiability result, we also
require that the environments are non-degenerate in the following sense:
Definition 11 (Non-degeneracy set of interventions). Let p̂k

(
zi | zpaG(i)

)
, k ∈ [Ki] be conditional

probability densities at node i, then {p̂k}Ki

k=1 is said to be non-degenerate on node i at point ẑ ∈ Rd
if all these conditional densities are well-defined and positive at ẑ, and the matrix[

∂ (p̂1/p̂k)

∂zj

]
2⩽k⩽Ki,j∈p̄aG(i)

∣∣∣∣∣
z=ẑ

∈ R(Ki−1)×(|paG(i)|+1)

has full row rank. Moreover, we say that {p̂k}Ki

k=1 is non-degenerate in a point set O if for all ẑ ∈ O,
it is non-degenrate at ẑ.

The following lemma shows how Definition 11 is related to Assumption 5 in the linear setting:

Lemma 16. Suppose that p̂k(z) =
∏d
i=1 p̂k

(
zi | zpaG(i)

)
, k ∈ [K] be probability distribu-

tions of latent variables z generated from the linear causal models (3), such that for ∀i ∈ [d],
p̂k
(
zi | zpaG(i)

)
, k ∈ [K] are non-degenerate on node i in the sense of Definition 11. Then the

corresponding matrices Bk, k ∈ [K] satisfy Assumption 5.

Now we are ready to state our main result in this section:
Theorem 7. Suppose that we have access to observations generated from multiple environments
{PEX}E∈E. Let

(
ĥ, Ĝ

)
be any candidate solution with data generated according to Assumption 1

with latent variables v = ĥ(x) and joint distribution qE with factors qEi . Assuming that

(i) the joint densities {pE(z)}E∈E are continuous differentiable on Rd with common support
Oz , and {qE(v)}E∈E are continuous differentiable on Rd with common support Ov;

(ii) we have access to multiple single-node soft interventions on each node with unknown targets:
there exists a partition E = ∪di=1Ei such that IEi

z = {π(i)}, IEi
v = {π′(i)},∀i ∈ [d] for

some unknown permutations π and π′ on [d];
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(iii) the intervention distributions on each node are non-degenerate in the sense of Defini-
tion 11: there exists Nz ⊆ Oz and Nv ⊆ Ov satisfying No

z = No
v = ∅ where So

denotes the interior of a set S, such that for all i ∈ [d],
{
pEi (·) : E ∈ Eπ−1(i)

}
(resp.{

qEi (·) : E ∈ Eπ′−1(i)

}
) is non-degenerate on node i in Oz \Nz (resp. Ov \Nv).

Then we must have (h,G) ∼sur (ĥ, Ĝ).

Previous works on the identifiability of non-parametric causal models typically require that all the
joint distributions are supported on the whole space Rd [49, 23, 47]. In contrast, we only assume that
the densities have common and unknown support across all interventions.

Theorem 7 can be regarded as a soft-intervention version of 49, Theorem 4.3, which assumes access
to hard interventions and only need two paired interventions per node. While they are able to show
full identifiability, we show in the following that identifiability up to ∼sur is the best we can hope for
with soft interventions.

Theorem 8 (Counterpart to Theorem 7, informal version of Theorem 10). For any causal model
(h,G) and any set of environments E = {Ek : k ∈ [K]} such that all conditions in Theorem 7 are
satisfied, there must exists a candidate solution (ĥ,G) and a hypothetical data generating process
that satisfy the same set of conditions, but

∂vi
∂zj
̸= 0, ∀j ∈ surG(i).

Finally, the ambiguity still exists if we additionally assume standard axioms such as causal minimality
(Assumption 6) and faithfulness (Assumption 7) on the causal model.

I.1 Proof of Lemma 16

Let wk(i) ∈ R|paG(i)| be the vector obtained by removing all zero entries in the i-th row of
Ak and ωk,i,i be the i-th diagonal entry in Ωk , then for the k-th environment we have zi =

wk(i)
⊤zpaG(i) + ω

1
2

k,i,iϵi, so that

p̂k
(
zi | zpaG(i)

)
= ω

− 1
2

k,i,ipϵi

(
ω
− 1

2

k,i,i(zi − ⟨wk(i), zpaG(i)⟩)
)

where pϵi(·) is the density of ϵi. As a result, we have

∇ p̂1
p̂k

(
zi | zpaG(i)

)
=
p̂1
p̂k

(
zi | zpaG(i)

)
· ∇ log

p̂1
p̂k

(
zi | zpaG(i)

)
=
p̂1
p̂k

(
zi | zpaG(i)

)
· [ci1(1,−w1(i))− cik(1,−wk(i))]

where for convenience we use ∇ to denote the gradient with respect to all variables zpaG(i), and

cik = ω
− 1

2

k,i,i ·
p′ϵi
pϵi

(
ω
− 1

2

k,i,i(zi − ⟨wk(i), zpaG(i)⟩
)

(we omit the dependency on z for simplicity).

Definition 11 implies that span ⟨ci1(1,−w1(i))− cik(1,−wk(i)) : 2 ⩽ k ⩽ K⟩ = R|paG(i)|+1,
thus it holds that span⟨(1,−wk(i)) : k ∈ [K]⟩ = R|paG(i)|+1 as well. By definition of Bk, this
immediately implies that dim (span ⟨(Bk)i : k ∈ [K]⟩) =

∣∣paG(i)∣∣+ 1 as desired.

I.2 Proof of Theorem 7

Define τ := ĥ ◦ h−1 : Rd 7→ Rd, then we have that v = τ (z). Since both h and ĥ are diffeomor-
phisms by assumption, so is τ . To avoid confusion, in this section we use z (resp. v) to denote
random variables while using ẑ (resp. v̂) to denote (deterministic) vectors.

Let Ej =
{
E

(j)
k : k ∈ [Kj ]

}
be the j-th collection of environments according to our assumption.

We first prove the following lemma:

Lemma 17. Ov = τ (Oz).
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Proof. By the change of variable formula [35], for ∀ẑ ∈ Rd and ∀E ∈ E we have pE(ẑ) =
qE(v̂) |detJτ (ẑ)|, where v̂ = τ (ẑ). Since τ is a diffeomorphism, we must have |detJτ (ẑ)| ≠ 0,
so ẑ ∈ Oz ⇔ v̂ = τ (ẑ) ∈ Ov , concluding the proof.

Lemma 18. Let ẑ ∈ Oz . For ∀j ∈ [d] and 2 ⩽ k ⩽ Kj , we have

p
E

(j)
k

j

p
E

(j)
1

j

(
ẑj | ẑpaG(j)

)
=
q
E

(j)
k

j

q
E

(j)
1

j

(
v̂j | v̂paĜ(j)

)
, (22)

where v̂ = τ (ẑ) ∈ Ov .

Proof. Since v = τ (z), by the change-of-measure formula [35] we have that for ∀ẑ ∈ Oz ,

d∏
i=1

pEi
(
ẑi | ẑpaG(i)

)
= pE(ẑ) = qE(v̂) |detJτ (ẑ)| =

d∏
i=1

qEi

(
τi(ẑ) | τpaĜ(i)(ẑ)

)
|detJτ (ẑ)|

(23)

for all E ∈ Ej , where v̂ = τ (ẑ). By Assumption (ii) and Definition 2, we know that pE
1
k

i = p
E

(1)
1

i ⇔
i ̸= 1 and qE

1
k

i = q
E

(1)
1

i ⇔ i ̸= 1 for all k > 1. Thus, we have that

d∏
i=1

p
E

(j)
k

i

(
ẑi | ẑpaG(i)

)
p
E

(j)
1

i

(
ẑi | ẑpaG(i)

) =
p
E

(j)
k

j

p
E

(j)
1

j

(ẑj | ẑpaG(j))

and
d∏
i=1

q
E

(j)
k

i

(
v̂i | v̂paĜ(i)

)
q
E

(j)
1

i

(
v̂i | v̂paĜ(i)

) =
q
E

(j)
k

j

q
E

(j)
1

j

(v̂j | v̂paG(j)).

Since the LHS of the above two equations are the same by (23), the RHS must also be the same,
concluding the proof.

We assume WLOG that the vertices of G are labelled such that i → j ⇒ i < j, and that π(i) =
i,∀i ∈ [d]. Also we can assume the nodes are fixed and only consider how they are connected, i.e.,
π′(i) = i,∀i ∈ [d]. 1

Lemma 19. We have (τ (Nz))
o
=
(
τ−1(Nv)

)o
= ∅.

Proof. The result immediately follows from the assumption that No
z = No

v = ∅ and that τ is a
diffeomorphism.

For any vertex set V , we use GV to denote its corresponding induced subgraph of G. We first prove
the following statements by induction on j:

(1) ∀i ̸= j, i ∈ paG(j)⇔ i ∈ paG′ (j);

(2) ∀j ∈ [d], there exists a continuously differentiable function ϕi such that vj = ϕj
(
zpaG(j)

)
.

Moreover, ∂ϕj

∂zj
̸≡ 0 (i.e., not always zero).

(3) ∀j ∈ [d], there exists a continuously differentiable function Υj such that vpaG(j) =

Υj(zpaG(j)).

For j = 1, by assumption paG(j) = ∅. Lemma 18 implies that for any ẑ ∈ Oz ,

p
E

(1)
k

1

p
E

(1)
1

1

(ẑ1) =
q
E

(1)
k

1

q
E

(1)
1

1

(
v̂1 | v̂paĜ(1)

)
,∀2 ⩽ k ⩽ K1. (24)

1This is also WLOG because we now have groups of soft interventions where each group corresponds to a
single node, so we can just relabel the node in Ĝ that corresponds to the i-th group as node i.
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Then for ∀i ∈ paĜ (1), taking the partial derivative w.r.t vj gives

∂

∂v̂i

q
E

(1)
k

1

q
E

(1)
1

1

(
v̂1 | v̂paĜ(1)

)
=

pE(1)
k

1

p
E

(1)
1

1

′

(ẑ1)·
∂ẑ1
∂v̂i
⇒ ∇vpaĜ(1)

q
E

(1)
k

1

q
E

(1)
1

1

(
v̂1 | v̂paĜ(1)

)
=

pE(1)
k

1

p
E

(1)
1

1

′

(ẑ1)·∇vpaĜ(1)
ẑ1.

Thus,

rank

∇vpaĜ(1)

q
E

(1)
k

1

q
E

(1)
1

1

(
v̂1 | v̂paĜ(1)

)
: 2 ⩽ k ⩽ K1

 ⩽ 1.

Note that the above inequality holds for ∀v̂ ∈ Ov. If paĜ(1) ̸= ∅, then this would contradict the
non-degeneracy assumption (iii) which implies that the above matrix should have rank ⩾ 2 at some
point v̂ ∈ Ov . Hence we must have paĜ(1) = ∅, implying that (1) holds for j = 1.

Taking the derivative of both sides of (24) w.r.t zi, i ⩾ 2 implies that

(
q
E

(1)
k

1

q
E

(1)
1

1

)′

(v̂1) · ∂v̂1

∂ẑi
= 0. By

our assumption (iii), for ∀v̂ ∈ Ov \Nv, there exists 2 ⩽ k ⩽ K1 such that

(
q
E

(1)
k

1

q
E

(1)
1

1

)′

(v̂1) ̸= 0,

and thus we have ∂v̂1

∂ẑi
= 0,∀ẑ ∈ τ−1 (Ov \Nv). Since τ is a diffeomorphism, we can deduce that

τ−1 (Ov \Nv) = Oz \ τ−1 (Nv) and
(
τ−1 (Nv)

)o
= ∅ by Lemma 19. As a result, we actually

have ∂v̂1

∂ẑi
= 0,∀ẑ ∈ Oz . Hence in Oz there exists a continuous differentiable function ϕ1 such that

v1 = ϕ1(z1), proving (2). Finally, (3) directly follows from (2) since paG(1) = ∅, concluding the
proof for j = 1.

Now suppose that the statement holds up to j − 1, and we need to prove it for j. Again by Lemma 18
we have for ∀ẑ ∈ Oz that

p
E

(j)
k

j

p
E

(j)
1

j

(
ẑj | ẑpaG(j)

)
=
q
E

(j)
k

j

q
E

(j)
1

j

(
v̂j | v̂paĜ(j)

)
, ∀2 ⩽ k ⩽ Kj . (25)

For all i /∈ paG(j), taking partial derivative w.r.t. zi gives

0 =
∑

ℓ∈paĜ(j)

∂

∂v̂ℓ

q
E

(j)
k

j

q
E

(j)
1

j

(
v̂j | v̂paĜ(j)

)
· ∂v̂ℓ
∂ẑi

, ∀2 ⩽ k ⩽ Kj ,

i.e., ∇vpaĜ(j)

q
E

(j)
k

j

q
E

(j)
1

j

(
v̂j | v̂paĜ(j)

)
: 2 ⩽ k ⩽ Kj

⊤
∂v̂paĜ(j)

∂ẑi
= 0.

Similar to the j = 1 case, by assumption (iii), we know that the above corfficient matrix has full row

rank for ∀v̂ ∈ Ov \Nv, so for ∀z ∈ τ−1 (Ov \Nv) = Oz \ τ−1 (Nv), we have
∂v̂paĜ(j)

∂ẑi
= 0.

Since
(
τ−1(Nv)

)o
= ∅ by Lemma 19, for all ẑ ∈ Nz we can choose a sequence of points

ẑ(i), i = 1, 2, · · · in Oz such that ẑ(i) → ẑ. Since τ is a diffeomorphism, its derivatives are

continuous and we can deduce that
∂v̂paĜ(j)

∂ẑi
= limℓ→+∞

∂v̂
(ℓ)

paĜ(j)

∂ẑ
(ℓ)
i

= 0. As a result,
∂v̂paĜ(j)

∂ẑi
= 0

actually holds for all z ∈ Oz . Hence, there exists a continuous differentiable function Υj such that
vpaĜ(j) = Υj

(
zpaG(j)

)
.

By our assumption, paG(j) ⊆ [j−1]. Suppose that paĜ(j) ⊈ {i : i < j}, let ℓ ∈ paĜ(j)\{i : i < j},
then by induction hypothesis, v̂t = τt(ẑ), ẑ ∈ Oz , t = 1, 2, · · · , j, ℓ are all functions of ẑ1, · · · , ẑj .
Since τ is a diffeomorphism and Oz is the support of the distributions pE , E ∈ E, we can deduce
that the support of the latent variables (vt : t = 1, 2, · · · , j, ℓ) lie on a submanifold with dimension
⩽ j, which is impossible since v is supported on the open set Ov ⊆ Rd by assumption (i).
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Hence, we must have paĜ(j) ⊆ {i : i < j}. Furthermore, if there exists i ∈ paĜ(j) such that
i /∈ paG(j) , then the induction hypothesis implies that ∂vi

∂zi
̸≡ 0, but vi is a function of zpaG(j) as

previously derived, which is also a contradiction. Thus we actually have paĜ(j) ⊆ paG(j).

In a completely symmetric manner, we can take the derivatives of (25) w.r.t. vi,∀i ∈ paĜ(j) and
obtain that paG(j) ⊆ paĜ(j). Hence, paĜ(j) = paG(j), completing the proof of (1) and (3) for the
j case.

Finally, if ∂vj

∂zj
≡ 0, then by (3) and the induction hypothesis, v1, · · · ,vj are all functions of z[j−1],

which implies that (v1, · · · ,vj) lies on a submanifold with dimension ⩽ j − 1, again contradicting
assumption (i). Thus ∂vj

∂zj
̸≡ 0. This completes the proof of our inductive step.

To recap, we now know that

• G = Ĝ, and

• For ∀i ∈ [d], there exists a function Υi such that vpaG(i) = Υi
(
zpaG(i)

)
.

It remains to show that for ∀k ∈ paG(i) \ surG(i), Υi doesn’t depend on zk.

By definition, if k ∈ paG(i) \ surG(i), we know that there exists j ∈ chG(i) such that j /∈ chG(k).
We have shown that vi, as a component of vpaG(j), is a function of zpaG(j). By the choice of k, we
have k /∈ paG(j), so that vi does not depend on zk. The conclusion follows.

J Omitted Proofs for Theorem 3 and Theorem 8

In this section we provide detailed proofs of main ambiguity results.

Definition 12. We say that a matrix M ∈ Rd×d is effect-respecting for a causal graph G, or
M ∈ Msur(G), if Mij ̸= 0 ⇔ j ∈ surG(i). We also write M ∈ M0

sur(G) if M is invertible and
Mij ̸= 0⇒ j ∈ surG(i). Finally, we write M ∈Msur(G) if Mij ̸= 0⇒ j ∈ surG(i).

Remark 1. By definitionM0
sur(G) is the set of all matrices M where Mij ̸= 0,∀j /∈ surG(i), so

it can be identified as Rd+dG where dG =
∑d
i=1 |surG(i)|. Equipped with the Lebesgue measure,

we haveMsur(G) ⊂M0
sur(G) ⊂Msur(G) andMsur(G) \Msur(G) is a null set. In the remaining

part of this section, we will use measure-theoretic statement for M ∈Msur(G) in the above sense.

We first present a result that serves as a good starting point to understand why this is the case. It
states that latent representations that are equivalent under ∼sur are essentially generated from the
same causal graph.

Proposition 5. Let M be an invertible matrix such that Mij ̸= 0 ⇒ j ∈ surG(i). Suppose that
the latent variables z ∈ Rd are generated from any distributions pi

(
zi | zpaG(i)

)
, i ∈ [d] with

joint density p(z) =
∏d
i=1 pi

(
zi | zpaG(i)

)
, then the joint density of v = Mz can be written as

q(v) =
∏d
i=1 qi

(
vi | vpaG(i)

)
for some density functions qi, i ∈ [d].

J.1 Proof of Proposition 5

We first prove the following lemma:

Lemma 20. Let M ∈ M0
sur(G) and latent variables v = Mz, then for ∀i ∈ [d], there exists

invertible matrices Mi and M−
i such that vpaG(i) = M−

i zpaG(i) and vpaG(i) = MizpaG(i).

Proof. ∀j ∈ paG(i), we know that vj is a linear function of zℓ, ℓ ∈ surG(j). By Lemma 7, we know
that surG(j) ⊆ paG(i), so each vj , j ∈ paG(i) is a linear function of zpaG(i). Thus we can write
vpaG(i) = MizpaG(i). In the following we argue that Mi is invertible. Let π be a permutation on
paG(i) such that k ∈ paG(ℓ)⇒ π(k) < π(ℓ) (such π can always be chosen since G is acyclic), then
we can write (

v̂π(j) : j ∈ paG(i)
)⊤

= M̃i

(
ẑπ(j) : j ∈ paG(i)

)⊤
(26)
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where M̃i is an upper triangular matrix with non-zero diagonal entries by our choice of M . Since
Mi can be obtained from M̃i be exchanging a few rows and columns, Mi is invertible as well.

Similarly, using the fact that ∀j ∈ paG(i), surG(j) ⊆ paG(i), we can prove the existence of an
invertible matrix M−

i such that vpaG(i) = M−
i zpaG(i).

Returning to the proof of Proposition 5. Assume WLOG that the nodes of G are ordered in a way
such that i ∈ paG(j)⇒ i < j, so that M is a lower-triangular matrix. The joint density of v can be
written as

q(v) =

d∏
i=1

q (vi | v1, · · · ,vi−1) .

Since v = Mz and M is lower triangular and invertible (hence, with non-zero diagonals), we know
that (v1,v2, · · · ,vi−1) is an invertible linear function of (z1, z2, · · · , zi−1) and (v1,v2, · · · ,vi) is
an invertible linear function of (z1, z2, · · · , zi). Let v̂ = Mẑ ∈ Rd, then we have

q (v̂i | v̂1, · · · , v̂i−1) =
q(v̂1, v̂2, · · · , v̂i)
q(v̂1, v̂2, · · · , v̂i−1)

=
p(ẑ1, ẑ2, · · · , ẑi) detM̂1:i,1:i

p(ẑ1, ẑ2, · · · , ẑi−1) detM̂1:i−1,1:i−1

∝ p(ẑ1, ẑ2, · · · , ẑi)
p(ẑ1, ẑ2, · · · , ẑi−1)

= p (ẑi | ẑ1, · · · , ẑi−1) = pi
(
ẑi | ẑpaG(i)

)
,

where M̂1:i,i:i denotes that top-left submatrix of M̂ of size i× i, and the last step follows from the
causal Markov condition (Definition 1). On the other hand, let qi

(
v̂i | v̂paG(i)

)
be the conditional

density of vi on its parents at v̂ ∈ Rd. For ∀j ∈ paG(i), from v = Mz we know that vj is a linear
function of zsurG(j). By Lemma 20 we know that v̂paG(i) is a linear function of ẑpaG(i) and v̂paG(i)

is a linear function of ẑpaG(i), so that

q
(
v̂paG(i)

)
∝ p

(
ẑpaG(i)

)
and q

(
v̂paG(i)

)
∝ p

(
ẑpaG(i)

)
and

qi
(
v̂i | v̂paG(i)

)
∝
p
(
ẑpaG(i)

)
p
(
ẑpaG(i)

) = pi
(
ẑi | ẑpaG(i)

)
.

Hence, we have qi
(
v̂i | v̂paG(i)

)
∝ q (v̂i | v̂1, · · · , v̂i−1), so that

q(v̂) =

d∏
i=1

qi
(
v̂i | v̂paG(i)

)
∝

d∏
i=1

qi
(
v̂i | v̂paG(i)

)
.

Since both sides integrate to 1, it turns out that they are equal, as desired.

J.2 Formal version and proof of Theorem 3: the linear case

Theorem 9 (Counterpart to Theorem 1). For any causal model (H,G) and any set of environments
E = {Ek : k ∈ [K]}, suppose that we have observations

{
PEX
}
E∈E

satisfying Assumption 1:

∀k ∈ [K], z = Akz +Ω
1
2

k ϵ, x = H†z

such that

(i) the unmixing matrix H ∈ Rd×n has full row rank;

(ii) ∀k ∈ [K] and i, j ∈ [d], (Ak)ij ̸= 0 ⇔ j ∈ paG(i) and Ωk is a diagonal matrix with
positive entries;

(iii)
{
Bk = Ω

− 1
2

k (I −Ak)
}K
k=1

are node level non-degenerate in the sense of Assumption 5,

then there must exist a candidate solution (Ĥ,G) and a hypothetical data generating process

∀k ∈ [K], v = Âkv + Ω̂
1
2

k ϵ, x = Ĥ†v

such that
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(i′) the unmixing matrix Ĥ ∈ Rd×n has full row rank;

(ii′) ∀k ∈ [K] and i, j ∈ [d], (Âk)ij ̸= 0 ⇔ j ∈ paG(i) and Ω̂k is a diagonal matrix with
positive entries;

(iii′)
{
B̂k = Ω̂

− 1
2

k (I − Âk)
}K
k=1

are node level non-degenerate in the sense of Assumption 5,

but
∂vi
∂zj
̸= 0, ∀j ∈ surG(i).

Finally, if we additionally assume that

(iii) the environments are groups of single-node interventions: there exists a partition E =
∪di=1Ei such that IEi

z = {i} (see Definition 2),

then we can guarantee the existence of (Ĥ,G) and weight matrices which, besides the properties
listed above, also satisfy

(iii′) for the same partition E = ∪di=1Ei, we have IEi
v = {i}.

In other words, additionally assuming that the environments are from single-node interventions does
not resolve the ambiguity.
Remark 2. Compared with our identifiability guarantee Theorem 1, Theorem 9 actually demonstrates
a stronger form of impossibility. Specifically, it states that the SNA cannot be resolved even if both
the ground-truth causal graph and the noise variables are known.

We define
v = Mz (27)

where M is an effect-respecting matrix. At this point we do not make any other restrictions on M ,
but we will specify the appropriate choise of M later.

By assumption, the latent variables in the k-th environment are generated by

z = Akz +Ω
1
2

k ϵ,

then v = M(I −Ak)
−1Ω

1
2

k ϵ. Let Ω̂k be the diagonal matrix with entries M2
ii · (Ωk)ii, i ∈ [d] and

Âk = I − Ω̂
1
2

kΩ
− 1

2

k (I −Ak)M
−1, then v = Âkv + Ω̂

1
2

k ϵ. Note that the choice of Ω̂k here is to
that the diagonal entries of Âk are zero, as we show below. It remains to show that: for almost all
M ∈M0

sur(G), it holds for ∀k ∈ [K] that (Âk)ij = 0⇔ j /∈ paG(i).

For the⇐ direction, since M ∈M0
sur(G), M−1 ∈M0

sur(G) as well. Thus, ∀j /∈ paG(i) we have[
(I −Ak)M

−1
]
ij
=

d∑
ℓ=1

(I −Ak)iℓ · (M−1)ℓj =
∑

ℓ∈paG(i)∩{ℓ′:j∈surG(ℓ′)}

(I −Ak)iℓ · (M−1)ℓj

=

{
0 if j /∈ paG(i)

(M−1)ii if j = i

where the last step holds because ∀ℓ ∈ [d], ℓ ∈ paG(i), j ∈ surG(ℓ)⇒ j ∈ pai, and when j = i, the
only such ℓ is ℓ = i. Hence, we can see that our choice of Âk satisfies(

Âk

)
ij
=

{
0− 0 = 0 if j /∈ paG(i)

1− ω̂
1
2

k,i,iω
− 1

2

k,i,i(M
−1)ii = 0 if j = i,

so
(
Âk

)
ij
̸= 0⇒ j ∈ paG(i).

Conversely, for ∀j ∈ paG(i),

(Âk)ij = 0⇔
∑

s∈paG(i)

(I −Ak)is(M
−1)sj = 0⇔

∑
s∈paG(i)

(−1)s(I −Ak)is detM
−
sj = 0 (28)
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where M−
sj is the (d− 1)× (d− 1) matrix obtained by removing the s-th row and j-th column of M ,

and the second step in the equation above follows from the fact that M−1 = det(M)−1adj(M),
where adj(M) denotes the adjugate matrix of M whose (i, j)-th entry is (−1)i+j detM−

ij .

(28) holds if only if M takes values on a lower-dimensional algebraic manifold of its embedded
space Rd+dG (see Remark 1). As a result, for almost every M ∈ M0

sur(G), v is generated from a
linear causal model with graph G as defined in (3). Moreover, let B̂k = BkM

−1, k ∈ [K] , so that
ϵ = B̂kv in the k-th environment. Then for all nodes i ∈ [d] and S ⊆ pa(i) ∪ {i}, we have

dim span
〈(

B̂k
⊤
ei

)
S
: k ∈ [K]

〉
= dim span

〈
M−⊤ ((B⊤

k ei
)
S
: k ∈ [K]

)〉
= dim span

〈(
B⊤
k ei

)
S
: k ∈ [K]

〉
=
∣∣paG(i)∣∣+ 1,

implying that B̂k, k ∈ [K] satisfy Assumption 5.

Now we have shown that for almost every M ∈ M0
sur(G), we can construct a hypothetical data

generating process with latent variables v = Mz that satisfies all requirements in Theorem 9. Choose
an arbitrary M that is inMsur(G), then we have that

∂vi
∂zj
̸= 0, j /∈ surG(i).

Finally, if we additionally assume single-node interventions, ∀k, ℓ ∈ Ei, we have that (Bk)j ̸=
(Bℓ)j ⇔ j = i. For any M ∈M0

sur(G) (and specifically the M that we have already chosen above),
we have (B̂k)j = (Bk)jM

−1 and (B̂ℓ)j = (Bℓ)jM
−1,∀j ∈ [d]. Thus, (B̂k)j ̸= (B̂ℓ)j ⇔ j = i

as well, implying that Ei is also a group of single-node interventions on v, concluding the proof.

J.3 Formal statement and proof of Theorem 10: the non-parametric case

Theorem 10 (Counterpart to Theorem 7). For any causal model (h,G) and any set of environments
E, suppose that we have observations

{
PEX
}
E∈E

satisfying Assumption 1:

∀E ∈ E, z ∼ pE(ẑ) =
d∏
i=1

pEi
(
ẑi | ẑpaG(i)

)
,x = h−1(z)

such that

(i) all densities pEi are continuously differentiable and the joint density pE is positive every-
where;

(ii) the environments are groups of single-node interventions: there exists a partition E =
∪di=1Ei such that IEi

z = {i};

(iii) the intervention distributions on each node are non-degenerate: ∀i ∈ [d], the set of distribu-
tions

{
pEi : E ∈ Ei

}
satisfy Definition 11 at any point ẑ ∈ Rd,

then there must exist a candidate solution (ĥ,G) and a hypothetical data generating process

∀E ∈ E,v ∼ qE(v̂) =
d∏
i=1

qEi
(
v̂i | v̂paG(i)

)
,x = ĥ−1(v)

such that

(i′) all densities qEi are continuously differentiable and the joint density qE is positive every-
where;

(ii′) for the same partition E = ∪di=1Ei, we have IEi
v = {i};

(iii′) ∀i ∈ [d], the set of distributions
{
qEi : E ∈ Ei

}
satisfy Definition 11 at any point v̂ ∈ Rd,
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but
∂vi
∂zj
̸= 0, ∀j ∈ surG(i).

Remark 3. Similar to the case of Theorem 9, Appendix J.3 also establishes a stronger form of
identifiability. First, it is assumed that the causal graph G is known. Second, we only focus on a
special case of the setting of Theorem 7 by assuming that the support is the whole space, and the
non-degeneracy condition Definition 11 holds at any point. Even in this case, we show that our
identification guarantee up to SNA cannot be improved.

We state and prove a stronger version of Theorem 10:
Theorem 11. For any causal model (h,G) and any set of environments E, suppose that we have
observations

{
PEX
}
E∈E

satisfying Assumption 1:

∀E ∈ E, z ∼ pE(z) =
d∏
i=1

pEi
(
zi | zpaG(i)

)
, x = h−1(z)

such that

(i) all densities pEi are continuously differentiable and the joint density pE is positive every-
where;

(ii) the environments are groups of single-node interventions: there exists a partition E =
∪di=1Ei such that IEi

z = {i};

(iii) the intervention distributions on each node are non-degenerate: ∀i ∈ [d], the set of distribu-
tions

{
pEi : E ∈ Ei

}
satisfy Definition 11,

then there must exist a candidate solution (ĥ,G) and a hypothetical data generating process

∀E ∈ E, v ∼ qE(v) =
d∏
i=1

qEi
(
vi | vpaG(i)

)
, x = ĥ−1(v)

such that

(i′) all densities qEi are continuously differentiable and the joint density qE is positive every-
where;

(ii′) for the same partition E = ∪di=1Ei, we have IEi
v = {i};

(iii′) ∀i ∈ [d], the set of distributions
{
qEi : E ∈ Ei

}
satisfy Definition 11,

but
∂vi
∂zj
̸= 0, ∀j ∈ surG(i).

Finally, if we additionally assume minimality (Assumption 6) and/or faithfulness (Assumption 7) of
all pE’s, we can guarantee the existence of (ĥ,G) and qE’s satisfying minimality and/or faithfulness
in addition to the properties listed above. In other words, assuming minimality and/or faithfulness
does not resolve the ambiguity.

Proof. We define
v = Mz (29)

where M is an effect-respecting matrix. At this point we do not make any other restrictions on M ,
and we will choose appropriate M later. By Lemma 20, there exists invertible matrices Mi and M−

i

such that vpaG(i) = M−
i zpaG(i) and vpaG(i) = MizpaG(i), so for all environment E ∈ E we have

qEi (vpaG(i)) = pEi (zpaG(i)) ·
∣∣det(M−

i )−1
∣∣ , qEi (vpaG(i)) = pEi (zpaG(i)) ·

∣∣det(Mi)
−1
∣∣

so that

qEi
(
vi | vpaG(i)

)
= pEi

(
zi | zpaG(i)

) ∣∣detM−1
i

∣∣∣∣det(M−
i )−1

∣∣ , ∀i ∈ [d]. (30)
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In the following, assuming that
(
pEi : E ∈ E

)
satisfies any of the listed assumptions, we show that(

qEi : E ∈ E
)

satisfies the same assumption as well.

Firstly, (30) immediately implies that the density of v is continuous differentiable and positive
everywhere. Secondly, ∀k, ℓ ∈ Ei, we have that

pEk
j

(
zj | zpaG(j)

)
= pEℓ

j

(
zj | zpaG(j)

)
⇔ j = i.

By (30) it is easy to see that
qEk
j

(
vj | vpaG(j)

)
= qEℓ

j

(
vj | vpaG(j)

)
⇔ j = i

as well, i.e., qk, k ∈ Ei are single-node interventions on vi according to Definition 2.

Thirdly, we verify the non-degeneracy condition for qEi ’s. Indeed we have for ∀k ⩾ 2 that

∇vpaG(i)

qE1
i

qEk
i

(
vi | vpaG(i)

)
=
∂zpaG(i)

∂vpaG(i)
∇zpaG(i)

qE1
i

qEk
i

(
zi | zpaG(i)

)
= M−1

i ∇zpaG(i)

qE1
i

qEk
i

(
zi | zpaG(i)

)
.

Since Mi is invertible, the above equation and the non-degeneracy of pEk , k ∈ [K] immediately
implies that non-degeneracy of qEk , k ∈ [K].

Thus, for arbitrary M ∈Msur(G), we have constructed a hypothetical data generating process with
latent variable v = Mz that satisfies all given conditions. It remains to show that such construction
is still possible under additional minimality and faithfulness conditions.

Claim 1. There exists a neighbourhood O of the identity matrix I inMsur(G) (in the sense of
Remark 1) such that for ∀M ∈ O∩M0

sur(G), pEk , k ∈ [K] satisfy Assumption 7⇒ qEk , k ∈ [K]
satisfy Assumption 7.

For ∀i, j not d-separated by S ⊆ [d], for all k ∈ [K] there exists ẑ ∈ Rd such that
∆

(i,j,S)
k = pEk (ẑi, ẑj | ẑS) − pEk (ẑi | ẑS) pEk (ẑj | ẑS) ̸= 0. By continuous differen-

tiability of pEk , we know that there exists δ
(i,j,S)
k > 0 such that for all M ∈ Msur(G)

such that ∥M − I∥F ⩽ δ
(i,j,S)
k , the density of the variable v = Mz satisfies

qEk (v̂i, v̂j | v̂S) ̸= qEk (v̂i | v̂S) qk (v̂j | v̂S) for v̂ = Mẑ, which implies that vi and vj

are dependent given vS . Now choose δ = mink,i,j,S δ
(i,j,S)
k > 0, then for all M ∈ Msur(G) such

that ∥M − I∥F ⩽ δ, the resulting distributions qEk , k ∈ [K] satisfy assumption Assumption 6.

Claim 2. There exists a neighbourhood O of I inMsur(G) (in the sense of Remark 1) such that
for almost all M ∈ O ∩M0

sur(G), pEk , k ∈ [K] satisfies Assumption 6⇒ pEk , k ∈ [K] satisfies
Assumption 6.

The proof is similar to the previous statement. Since Assumption 6 causal minimality is satisfied for
z, for ∀k ∈ [K], i ∈ [d], let Gij be the resulting graph obtained by removing the edge j → i from G,
then there must exists some αijk ∈ [d] such that zαijk

̸⊥⊥ zndGij
(αijk) | zpaGij

(αijk). Hence, there

exists ẑijk ∈ Rd such that

pEk

(
ẑijkαijk

| ẑijkpaGij
(αijk)

)
pEk

(
ẑijkndGij

(αijk)
| ẑijkpaGij

(αijk)

)
̸= pEk

(
ẑijk
ndGij

(αijk)
| ẑijkpaGij

(αijk)

)
.

By continuous differentiability of pEk , there exists δ(i,j)k > 0 such that for all M ∈ M̄sur(G) such
that ∥M − I∥F ⩽ δ

(i,j)
k , the density qEk

ij of the variable v̂ijk = Mẑijk satisfies

qEk

(
v̂ijkαijk

| v̂ijkpaGij
(αijk)

)
qEk

(
v̂ijkndGij

(αijk)
| v̂ijkpaGij

(αijk)

)
̸= qEk

(
v̂ijk
ndGij

(αijk)
| v̂ijkpaGij

(αijk)

)
.

for v̂ijk = Mẑijk. This implies that removing the edge j → i in G would break the causal
Markov condition for qEk . Now let δ = mink,i,j δ

(i,j)
k > 0, then for all M ∈ M̄sur(G) such that

∥M − I∥F ⩽ δ, the resulting distributions qEk , k ∈ [K] satisfy assumption Assumption 1.

Combining the above two statements and what we have proven before, it is straightfoward to see that
one can choose some M ∈Msur(G) in a small neighbourhood of I that satisfies all the requirements,
completing the proof.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction provide the readers a sense of our main results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We compare with existing works in the introduction and the related work
sections.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Rigorous proofs are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We introduce our experimental setup in details.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Code will be released after review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: we run experiments on 100 random causal graphs and report the overall
accuracy.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: The experiments do not require huge computational resources and can be run
on a local computer.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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