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ABSTRACT

Behavioral Foundation Models (BFMs) proved successful in producing near-
optimal policies for arbitrary tasks in a zero-shot manner, requiring no test-time
retraining or task-specific fine-tuning. Among the most promising BFMs are the
ones that estimate the successor measure learned in an unsupervised way from
task-agnostic offline data. However, these methods fail to react to changes in the dy-
namics, making them inefficient under partial observability or when the transition
function changes. This hinders the applicability of BFMs in a real-world setting,
e.g., in robotics, where the dynamics can unexpectedly change at test time. In
this work, we demonstrate that Forward–Backward (FB) representation, one of the
methods from the BFM family, cannot produce reasonable policies under distinct
dynamics, leading to an interference among the latent policy representations. To
address this, we propose an FB model with a transformer-based belief estimator,
which greatly facilitates zero-shot adaptation. Additionally, we show that parti-
tioning the policy encoding space into dynamics-specific clusters, aligned with
the context-embedding directions, yields additional gain in performance. Those
traits allow our method to respond to the dynamics mismatches observed during
training and to generalize to unseen ones. Empirically, in the changing dynamics
setting, our approach achieves up to a 2x higher zero-shot returns compared to the
baselines for both discrete and continuous tasks.

1 INTRODUCTION

One very desirable property of reinforcement learning (RL) agents is their ability to adapt during
test-time to new tasks or to environment changes, without requiring any fine-tuning or planning.
Achieving this in as few trials as possible would be even better: the ideal being the zero-shot
adaptation (Touati et al., 2022), where the agent never interacts with the environment at test-time
and relies solely on the task-agnostic data. Behavioral Foundational Models (BFMs) (Sikchi et al.,
2024; Tirinzoni et al.) may be considered as a step in this direction, because they can learn a variety
of policies from offline data without knowing the rewards. During inference, it is possible to extract a
task-specific policy that is theoretically optimal in terms of performance. Recent work (Tirinzoni
et al.) demonstrates that methods based on successor measure estimation through Forward-Backward
(FB) decomposition (Touati & Ollivier, 2021), is especially versatile and can successfully imitate
diverse behaviors from provided data.

At the same time, FB possesses a fundamental drawback that limits its adaptation ability. In our paper,
we show that FB is unable to generalize across different environment configurations (dynamics), such
as changes in a transition function (e.g., new obstacles) or some latent factor variation (e.g., wind
direction). This limitation stems from the way the successor measure (Dayan, 1993) is estimated:
FB averages the discounted future-occupancy state distribution over all observed dynamics, which
inevitably causes interference in a policy representation space. This fact alone may severely constrain
the applicability of FB in the real-world scenarios. For example, one of the largest robotics dataset,
Open X-Embodiment Collaboration (2023), consists of 22 different robot embodiments, and training
FB on each of them independently is infeasible. In Section 3.1, we discuss this limitation and support
our claims both theoretically and empirically.

To remedy this, we introduce Belief-FB (BFB), a conditioning method for FB through a belief esti-
mation, a popular technique of uncertainty quantification in Meta-RL (Zintgraf et al., 2020; Dorfman
et al., 2021). To implement this, we employ a permutation-invariant transformer encoder, denoted
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Figure 1: Summary of results. Aggregate mean performance over seen (train) and unseen (test)
dynamics for zero-shot RL. The error bars indicate standard deviation over three seeds. Notably, both
BFB and RFB adapt not only to the dynamics seen during training but are also able to generalize to
unseen dynamics. There are 30 (20) training (test) dynamics for FourRooms and PointMass and 16
(4) for AntWind environments.

as fdyn, which processes a given trajectory from the dataset to produce a dynamics-specific vector
h. This vector is subsequently utilized as a conditioning input to the future outcomes representation
function, expressed as F (·, ·, h, ·). We pre-train fdyn in a self-supervised fashion, thus posing no addi-
tional requirements on the data structure or the trajectory re-labeling, while maintaining theoretical
guarantees. We discuss the implementation of Belief-FB in Section 3.2.

Remarkably, Belief-FB enables the generalization capabilities of FB not only through the dynamics
seen in the training dataset, but also on the unseen test configurations. We also find that in order
to align belief estimation better with FB, one also needs to partition the policy space encodings prior
into dynamics-specific clusters, so we propose Rotation-FB (RFB) that accomplishes this partitioning.
We present the theoretical support and the implementation details of Rotation-FB in Section 3.3.
Empirically, both BFB and RFB outperform baselines for seen and unseen dynamics, as gathered in
Figure 1 and discussed in Section 4.3.

We believe that our work sufficiently broadens the possible applicability of BFMs, yet keeping all of
the zero-shot properties unchanged. Our contributions are as follows:

• We demonstrate the limitation of Forward-Backward (FB) representations (Touati &
Ollivier, 2021), which lies in its inability to generalize per se across different dynamics both
from train and test, where dynamics shift constitute of new layout grids or changes in the
transition function that are hidden from an agent. Refer to Section 3.1 for more discussion.

• We propose Belief–FB (BFB), which employs a transformer encoder to infer a belief
over the current dynamics (Zintgraf et al., 2020; Dorfman et al., 2021). Analyzing BFB’s
policy encoding space reveals that additional disentanglement is beneficial, motivating our
Rotation–FB (RFB) extension. Section 3.2 examines Belief-FB, and Section 3.3 details
Rotation-FB’s theoretical motivation and implementation.

• We empirically demonstrate that both BFB and RFB can adapt to different dynamics,
unlike its counterparts in the zero-shot setup. Refer to Section 4.3 for the discussion and
Figure 1 for results.

2 BEHAVIORAL FOUNDATION MODELS

A Behavioral Foundation Model (BFM) (Pirotta et al., 2023; Tirinzoni et al.; Frans et al., 2024;
Sikchi et al., 2025) is an RL agent trained in an unsupervised manner on a task-agnostic dataset to
approximate optimal policies for various reward functions (tasks) specified at inference (test-time).
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Forward-Backward Representation (FB) (Touati & Ollivier, 2021) approximates a discounted succes-
sor measure (Blier et al., 2021; Janner et al., 2020) for various behaviors across diverse tasks. The
successor measure Mπ(s0, a0, X) for subset X ⊂ S is defined as cumulative discounted time spend
at X starting at (s0, a0) and following π thereafter. More formally, for tabular example:

Mπ(s0, a0, X) =
∑
t≥0

γtP(st+1 ∈ X|s0, a0, π) (1)

with the corresponding Q-function for a specific task r:

Qπ
r (s0, a0) =

∑
s+∈X

r(s+)Mπ(s0, a0, s
+). (2)

In continuous case, the FB representation aims to approximate successor measure through finite-
rank approximation under diverse policies through forward F : S × A × Z −→ Rd and backward
B : S −→ Rd functions. Given a set of policies πz parametrized by task variable drawn uniformly from
sphere zFB ∈ Unif(Z = Sd). Assuming ρ is a probability distribution over states within the offline
dataset, the objective for FB is written asMπz (s0, a0, X) ≈

∫
s+∈X

F (s0, a0, z)
TB(s+)ρ(ds). Then,

policy can be extracted as :
πz(s) ≈ argmax

a
F (s, a, z)T z. (3)

For continuous case, the greedy policy is approximated via DDPG (Lillicrap et al., 2015). Appendix
B.1 contains in-depth details for FB. During test time the task policy parametrization is approximated
as ztest ≈ E(s,a)∼ρ[rtest(s, a)B(s, a)]. If the inferred task vector ztest lies within the task sampling
distribution (in a linear span) of Z used during training, then the optimal policy for task rtest is
obtained from Equation 2 as πz(s) ≈ argmaxaQ

πz
rtest(s, a). Extended discussion on other related

works is included in the Appendix A.

3 METHOD

Problem Statement. We consider a Contextual Markov Decision Process (CMDP) defined by a
context space C and a mappingM : c ∈ C 7→ M(c) = (S,A, Tc, rc, ρc, γ), where both S,A are
shared across contexts, Tc : S × A → ∆(S) is the context-dependent transition kernel, rc is the
reward function, ρc ∈ ∆(S) is the initial state distribution, and γ ∈ [0, 1) is the discount factor. Each
context c (e.g., wind direction, friction, or door locations) specifies a unique MDP.

When the context c is unobserved, the problem becomes a POMDP. Under standard assumptions, there
exists a sufficient history-dependent statistic—the belief state bt(c) = P(c | Ht) ∈ ∆(C)—capturing
the posterior over contexts given the history Ht. Solving the POMDP is equivalent to solving the
fully observable Belief-MDP (∆(C)× S,A, Tb, rb, ρb, γ), where states are augmented with beliefs.

We assume access to an offline, reward-free dataset Dtrain consisting of trajectories
{(sk, ak, sk+1)}Nk=1 collected under diverse exploratory policies from a finite set of training contexts
Ctrain ⊂ C. At test time, for an unseen context ctest ∈ C \ Ctrain, we are given a short reward-free
history H = {(st, at, st+1)}Lt=0 from an exploratory policy in M(ctest), and a task specified by
reward r : S ×A → R.

The goal is to infer an approximate belief b̂(c | H) and extract a zero-shot1 policy π (without further
interaction or fine-tuning) that minimizes the regret

R = sup
ctest∈C\Ctrain, r

E(s,a)∼ρctest

[
Qπ∗

r (s, a)−Qπ
r (s, a)

]
, (4)

where π∗ is the optimal policy for task r under dynamics Tctest .

To formally study optimality guarantees of the problem above, we employ the following assumption
commonly used for dynamics generalization (Eysenbach et al., 2021; Jeen & Cullen, 2024):

Assumption 1 (Coverage). The test initial state–action distribution ρtest is supported on the support
of ρ, i.e. supp(ρtest) ⊆ supp(ρ) (equivalently, ρtest ≪ ρ, i.e absolutely continuous).

1We use the term “zero-shot RL” following Touati & Ollivier (2021).
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Figure 2: Randomized-Doors environment for three different layouts, each produced through varying the
grid structure (exact randomization procedure is a hidden variable) (left-middle) From state s, the goal of
an agent is to capture a diamond at target location by picking up the most suitable policy πz (yellow for the first
type and purple for the second) to move to the closest open door based on internal representation. (right) When
there are multiple possible future outcomes in the training data from the same state, the πz’s (different colors)
interfere with each other, leading to picking up an averaged policy.

3.1 INVESTIGATING LATENT DIRECTIONS SPACE UNDER MULTIPLE DYNAMICS

We begin by addressing the following question: Why does FB representations fail to generalize
effectively (both for train and test) to different situations under dynamics variations, i.e., if learned
on data sampled from diverse CMDPs? While the answer may appear intuitive, a closer look into
the geometric structure of learned latent directions zFB ∈ Z , which encode possible policies πz
reveals critical insights which will be helpful later. We approach this question both theoretically and
empirically on custom didactic discrete partially-observable Randomized Doors (see Appendix C.1)
environment. Partial observability adds additional challenges and showcases the need to estimate
belief state, which we discuss in the following sections.

In this experiment the only source of dynamics variation is the grid layout type. Namely, the positions
of doors and walls are changed each new episode, depending on hidden configuration variable c. We
collect a dataset of random trajectories drawn from multiple layouts, yielding near-uniform coverage
of the entire (x, y) states. Now, consider a particular state s that an agent finds itself in three different
layouts (see Figure 2). During FB training, we evaluate the forward representation F (s, ·, zFB) for
latent directions (policy representations) zFB ∼ Uniform(Sd−1), where each zFB indexes a distinct
policy starting at s.

In this setting a single grid state can require different optimal policies, depending on the layout an
agent is instantiated in. Because zFB does not enforce a separation of layout-specific futures, the
FB model suffers from interference: latent directions encoding conflicting future outcomes overlap
and become entangled in the policy representation space Z . For each of the layout configuration
and fixed state s from above, Figure 3 depicts latent directions zFB, colored by optimal policy as
acolor = argmaxa F (s, a, zFB)

T zFB. When FB is trained on first two layouts in isolation, a unique
dominant behavior (colored) emerges in Z , recovering the optimal goal-reaching policy π∗

z . In
contrast, training on data which mixes transitions from various environment instances results in zFB
to blend dynamics-specific information and instead to average over the possible futures, yielding
a policy that is sub-optimal for every layout even from train set. Those observations are supported
theoretically by the following:
Theorem 1 (Regret bound via uniform successor approximation). Assume Assumption 1. Let r be
bounded with ∥r∥∞ ≤ R with R = sup(s,a)∈S×A |r(s, a)| and discount γ ∈ (0, 1). For any test
CMDP satisfying the coverage assumption, the policy πẑ returned by the method obeys

E(s,a)∼ρtest
[Q∗

r(s, a)−Qπẑ
r (s, a) ] ≤ 3

1− γ
R

(
ε∗k +∆est

)
.

We provide a full proof in Appendix B. Because ϵk+1 ≥ ϵk by monotonicity of the worst-case
approximation error over a fixed function class, the upper bound in Eq. (5) becomes looser as more
environments are included at training time. This statement concerns the approximation term only. In
practice, adding CMDPs may also increase the dataset size and reduce the finite-sample estimation
term (see additional discussion in the Appendix B), so the net effect on regret is empirical.

4
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Figure 3: Different learned policy encoding πz projections for three environment configurations
from Figure 2 are visualized (yellow, purple and mixed trajectories). For a fixed state s and same
goal across configurations, arrows depict latent directions zFB ∈ Z and colored by optimal behavior as
acolor = argmaxa F (s, a, zFB)

T zFB. (left-middle) When FB is trained on the two distinct configurations in
separation, most of the latent directions agree on the optimal policy πz . (right) When FB is trained on mix of
CMDPs and at test time tasked with any particular configuration from train, obtained policy is ambiguous, since
most policy-encoding directions do not agree on the action.

In Section 3.3, we refine this result and show that the explicit dependence on the total number of
environments k can be replaced by a dependence on kmax (the size of the largest cone/cluster),
thereby tightening the upper bound when kmax ≪ k.

This interference highlights a fundamental trade-off. FB is expressive enough to model any task, yet
when it is trained across environments with distinct unobserved parameters, the lack of contextual
conditioning forces it to average different dynamics rather than separate them. The resulting successor
measure merges transitions from distinct layouts and entangles directions in the latent space Z . To
disentangle these directions, we must represent uncertainty about the hidden context explicitly. The
next section introduces a belief-conditioned objective that infers the latent context and allows FB to
maintain environment-specific successor measures.

Takeaway 1

Because FB training inherently averages over all possible future states, it cannot learn a
disentangled policy space and, therefore, fails to adapt to changes in dynamics.

3.2 BELIEF STATE MODELING

To resolve the interference issue described in Section 3.1, we infer the latent context of an envi-
ronment and augment FB input on that belief. We train a transformer encoder fdyn, by passing
to a set of transitions {(st, at, s′t+1)}Nt=1 and outputting an h ∈ Rd. We denote the space of all
possible inferred contexts asH, where each element h encodes dynamics for particular environment.
Because the ordering is discarded and no rewards in transitions are provided, the encoder must focus
on dynamics specific mismatches (e.g., layout geometry, friction or wind direction), rather than
policy specifics. Such context encoder should be permutation invariant, since unobservable factors
describing environment are independent of the order of transitions in an episode. This setting provides
theoretical ground for zero-shot and few-shot learning Snell et al. (2017).

Concretely, dataset consists of episodes ({(st, at, s′t+1)ci}Nt=1 coming from CMDPs with randomly
instantiated hidden specification variable ci (different dynamics). We train a transformer encoder on
random episodes (without episodic labels ci) of context length n to infer contextual (hidden) variable
h which fully specifies the dynamics across given episode. The transformer encoder loss involves two
main components: 1) h is encouraged to follow a Gaussian prior and is shared across trajectory, and
2) projection head, which combines h with (st, at) to predict st+1. Those stages can be either trained
end-to-end or separately. We observed that separating FB training from fdyn gives better results.

For each trajectory we concatenate the inferred context vector h with the task vector zFB to obtain
augmented input [h; zFB] and condition only forward network as:

M̂πz (st, at, st+1) = F (st, at, [h; zFB])
TB(st+1). (5)

5
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Figure 4: Visualization of inferred contexts h from space of all possible contextsH (depicted as arrows)
and task vectors zFB (depicted as points on sphere boundary). Transitions from same CMDP colored
the same. Concentration parameter κ defines spread of clusters. (left) Untrained transformer fdyn output
for different transitions is unstructured and same transitions coming from same CMDP (identical colors) are
not collinear. (middle) New sampling procedure aligns policy specific vectors zFB with context specific h, but
clusters overlap before training. (right) After training, h for transitions from the same context are aligned and
policies zFB do not interfere between different environment configurations.

We empirically found that conditioning the backward network B degraded performance, producing
smoothed out Q function, so B remains shared across contexts. Algorithm is summarized in
Algorithm 1.

At test time, the agent is provided with a short (context length), reward-free trajectory and it is passed
to fdyn to obtain h. By plugging the result into Equation 3, the greedy policy is obtained.

Takeaway 2

We train a transformer in a self-supervised regime to estimate a belief over possible contexts,
augmenting FB inputs and enabling effective disentanglement of contextual representations.

3.3 STRUCTURING DIRECTIONS IN THE LATENT SPACE

Insights from Section 3.1 showed that sampling task-vectors zFB uniformly on the hypersphere
encodes averaged policies, while Section 3.3 provided a solution through explicit context identification.
We now combine these observations together through enhanced sampling zFB around the inferred
context h.

In Vanilla-FB, each state s draws zFB ∼ Unif(Sd−1) with no inductive bias, so resulting policies πz
conflict with each other in CMDP setting, even if additional explicit conditioning is introduced as
before. We replace uniform prior with a von Mises-Fisher(vMP) distribution centered at the context
direction for episode h = fdyn({(si, ai, si+1)}) as

zh+FB ∼ vMF(µ = h, κ). (6)

with κ controlling the spread or diversity of policies (left and middle figures from Figure 4). In
practice, to draw zh+FB we first pick a simple vector (e.g., the first basis vector), perturb with vMF
noise, and finally rotate the result onto h with Householder reflection.

This enhancement has several benefits: 1) because directions h that differ in dynamics now occupy
disjoint cones on the hypersphere, FB can fit the successor measure locally inside each cone, avoiding
the destructive averaging effect quantified in Section 3.1 and 2) alignment procedure encourages the
agent to explore policies that are plausible under its current belief while still injecting controlled
diversity through κ.

Importantly, such a procedure also lowers the Theorem 1 upper bound by replacing its dependence
on the total number of environments k with a dependence on kmax (the size of the largest cone).

Theorem 2 (Regret bound under latent-space partitioning). Let h1, . . . , hL ∈ Sd−1 be the context
directions from fdyn and let {Cj}Lj=1 be disjoint cones around them. Assume block-separable parame-
terization (Assumption 2 in Appendix B), so that losses from z ∈ Cj depend only on block (Fj , Bj).

6
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Figure 5: Ablations on data diversity and context length of transformer encoder. We show the
influence of number of environments (data diversity) and context length on train and test performance
in Four-Rooms and Pointmass environments. For data-diversity ablation, we see a clear performance
boost up until some point, after which it platoes, as the Theorem 1 predicts. In our context-length
ablation, we observe similar behaviour: performance improves as the context grows up to the length
of a single episode, and then levels off. The results are averaged across three seeds, the opaque fill
indicates standard deviation.

If kmax = maxj |{i : zi ∈ Cj}|, then

ε∗k = max
1≤j≤L

ε∗|Cj | ≤ ε∗kmax
,

and Theorem 3 holds with ε∗k replaced by maxj ε
∗
|Cj |. (See Appendix B, Theorem 4.)

Intuitively, Theorem 2 states that after the partitioning procedure of the latent space into non-
overlapping clusters based on context representations h, the global worst-case FB approximation
error ϵk = maxj≤L ϵj is determined only by the cluster whose error ϵj is largest. Importantly, the
bound depends on kmax rather than the total k. When kmax is controlled (e.g., via non-overlapping
cones induced by an appropriate concentration κ), the bound becomes effectively independent of k.
Full proof can be found in Appendix B

Takeaway 3

Adjusting the prior over task vectors zFB further mitigates the averaging effect and disentan-
gles policy representations better based on the inferred dynamics.

4 EXPERIMENTS

In this section, we compare proposed methods, namely: Belief-FB (BFB) (Section 3.2) and its
extension Rotation-FB (RFB) (Section 3.3), against the baselines in discrete and continuous settings.
We outline experiments design below; all other necessary details are provided in Appendix D. Every
environment is framed as a contextual MDP (CMDP), where the context differs by the underlying
hidden variation (e.g., grid layout, transition dynamics). During test time, we provide a single
trajectory from random exploration policy, which enables context inference.

4.1 ENVIRONMENTS AND SETUP

To support claims and theoretical insights made in previous sections, we consider the following
experimental setups: (i) discrete, partially observable Randomized Four-Rooms (Appendix C.2), (ii)
continuous AntWind (Appendix C.3), and lastly (iii) continuous partially observable Randomized-
Pointmass (Appendix C.4). We vary the number of train layouts for each experiment, while fixing
the number of held-out unseen context settings to 20 for Randomized Four-Rooms and Randomized-
Pointmass, and 4 for Ant-Wind. We perform comparisons against following baselines:

7
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HILP (Park et al., 2024) is a method that learns state representations from offline data so that the
distance in the learned representation space is proportional to the number of steps between two
states in original space. FB (Touati & Ollivier, 2021) is an original version of the FB, described in
Section 2. Laplacian RL (LAP) (Wu et al., 2019) constructs a graph Laplacian over state transitions
from experience replay, then computes its eigenvectors to form low-dimensional representations
that capture the environment’s intrinsic structure. Random agent, which randomly explores the
environment in a task-independent manner.

Randomized Four-Rooms is a discrete, deterministic, partially observable environment, where the
task is to optimally move to the goal location. Training data is collected by executing random policies
in N distinct grid layouts, that differ in doorway and wall locations.

Ant-Wind is a continuous environment, where the goal is to make an ant to walk forward as fast as
possible. The environment dynamics are determined by the direction (angle) of a wind d.
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Figure 6: Influence of κ in RFB on
performance. The results are aver-
aged across three seed, the opaque
fill represents standard deviation.

Randomized-Pointmass is a partially observable continuous
environment, where the task is to move to the goal locations.
Maze grid structure is generated randomly, where each cell
either contains wall or empty, while ensuring there is a path
between start and goal locations.

4.2 COULD
BELIEF ESTIMATION ENABLE ADAPTATION IN FB?

Previously, we provided the theoretical foundations and spec-
ulated on the matter why FB is unable to differentiate between
distinct dynamics and how we can use the belief estimation to
overcome this. We refer to Table 2 and Figure 1 that show our
empirical findings to support our claims.

We would like to point out that neither FB nor LAP are able to
outperform a simple random baseline in PointMass and Four-
Room, indicating that the policy they learn is most likely stuck
in some obstacle due to averaging (see Section 3.1. Only HILP,
which uses a different way to learn policy representations, is
able to perform better than random policy.

Belief-FB and Rotation-FB outperform every baseline method,
indicating that belief estimation is indeed a missing piece for
adaptation. Notably, our methods also demonstrate generaliza-
tion capabilities beyond train data on unseen test tasks.

4.3 DO BFB AND RFB CAPTURE HIDDEN PROPERTIES OF THE ENVIRONMENT?

For an agent to refine its policy, it needs to keep track and update the uncertainty over possible
environment configurations. Both Belief-FB and Rotation-FB accomplish this. Figure 7 illustrates
this phenomenon visually. In Randomized-Door (left), the episodic trajectories from five layouts
form non-overlapping clusters in the first two principal components of h, effectively disentangling
different dynamics.

In Ant-Wind, the embeddings lie almost perfectly on a circle whose azimuth matches the underlying
wind direction, generalizing smoothly to the 4 held-out wind angles. The quantitative results for
evaluation in Table 2 (averaged across all environments) reveal that the baseline methods fail to
recover those environment-specific properties and therefore produce sub-optimal policies even for
train cases. In particular, HILP tends to predict an average direction in Randomized Four-rooms
and ignores obstacles, while FB outputs same policy and Q function for almost all environments.
Figure 12 shows that Q function is properly estimated only for BFB and RFB, respecting wall
positions.

4.4 DOES CHANGE IN CONTEXT LENGTH INPUT TO THE fDYN IMPACTS PERFORMANCE?

In this experiment, we examine whether increasing the input trajectory length of improves perfor-
mance. We vary the context length of fdyn from 50 to 200 and present the results in Figure 5 for both
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PC 2
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Figure 7: 2D projections of zdyn inferred from different trajectories across number of different contexts
(colors), showing effective disentangling environments based on transition function or other mismatches.
(left) First two principal components are visualized for estimated zdyn from five trajectories, each representing
different layout type in Randomized-Doors. (right) Inferred context variables zdyn recover hidden wind direction
parameter in AntWind environment both for train and test, proving successful extrapolation properties.

Randomized Four-Rooms and Randomized Pointmass environments, across train and test configu-
rations. The results show that performance is poor when the context length is shorter than a single
trajectory episode (100 steps), as short trajectories only capture local, near-term goals. Conversely,
excessively long sequences provide no additional benefit due to redundancy, since fdyn already
contains all neccessary information. Evaluations on both train and test environments demonstrate
that fdyn produces representations h capable of distinguishing between different context instances
while maintaining robustness.

4.5 DOES INCREASE IN DATASET DIVERSITY MAKE POLICIES MORE ROBUST?

We investigate if diversifying CMDP training configurations improves performance. Intuitively,
broader state-action space coverage enhances successor measure estimation. Experiments confirm
this: Figure 5 shows rapid improvement for BFB up to 25 configurations, while baselines match
random policy performance. Once learned representations h from fdyn cover all variation modes
(contexts), additional data yields minimal gain (< 3%). These results align with Theorem 1.

Table 1: Zero-shot performance across environments with varying dynamics. Results for FourRooms,
PointMass, and AntWind are aligned with the main paper. We add Oracle-ID (one-hot environment
ID concatenation) and Contextual-FB (our reimplementation of Jeen & Cullen (2024)). Oracle-ID
excels in-distribution but fails to generalize out-of-distribution (OOD). Contextual-FB underperforms
due to reliance on classifier expressivity. For the new OGBench Scene environment, we vary friction
from 0.4-1.0 (train) and test on unseen low friction 0.1-0.3, demonstrating dynamics generalization
akin to AntWind (wind direction variation). Higher is better.

Method FourRooms PointMass AntWind OGBench Scene
Train Test Train Test Train Test Train Test

FB 0.25 ± 0.05 0.15 ± 0.04 0.20 ± 0.05 0.10 ± 0.03 390 ± 40 250 ± 30 0.40 ± 0.06 0.20 ± 0.05
LAP 0.20 ± 0.04 0.10 ± 0.03 0.15 ± 0.04 0.10 ± 0.03 340 ± 35 290 ± 25 0.30 ± 0.05 0.10 ± 0.03
HILP 0.40 ± 0.06 0.20 ± 0.05 0.45 ± 0.06 0.25 ± 0.05 410 ± 45 410 ± 40 0.50 ± 0.07 0.30 ± 0.06
Contextual-FB 0.35 ± 0.05 0.18 ± 0.04 0.30 ± 0.05 0.15 ± 0.04 450 ± 50 350 ± 40 0.60 ± 0.08 0.40 ± 0.07
Oracle-ID 0.90 ± 0.03 0.10 ± 0.03 0.92 ± 0.02 0.08 ± 0.02 780 ± 30 50 ± 20 0.95 ± 0.02 0.0 ± 0.02

BFB (ours) 0.70 ± 0.07 0.40 ± 0.06 0.76 ± 0.07 0.45 ± 0.06 680 ± 60 550 ± 50 0.6 ± 0.07 0.45 ± 0.06
RFB (ours) 0.85 ± 0.04 0.61 ± 0.05 0.88 ± 0.04 0.55 ± 0.05 740 ± 40 640 ± 40 0.7 ± 0.04 0.55 ± 0.05

4.6 HOW κ IN RFB INFLUENCES PERFORMANCE?

As described in Section 3.3, RFB concentration κ regularizes the diversity of policies for each
environment. One the one hand, concentration should be high to ensure non-overlapping policy
parametrized clusters πz for different h, while at the same time it should not exceed certain value
to control the diversity of policies in the environment, preventing collapsed solutions. Figure 6
shows that lower values of κ, meaning task-vectors zFB are sampled with high deviation around h,
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likely producing overlapping clusters. As κ grows, task-vectors become more specialized, lowering
variance which results in higher performance.

5 CONCLUSION & LIMITATIONS

We introduce Belief-FB (BFB) and Rotation-FB (RFB), two methods that extend the Forward-
Backward representation to handle dynamics mismatches. We first identify a critical limitation in
existing approaches: interference arises when naively sampling policy-encoding latent directions
during training on transitions from conflicting dynamics. To address this, we learn hidden context
variables (belief states) via a transformer encoder and use them for additional conditioning (Belief-
FB). We improve latent-direction sampling by aligning task-relevant abstractions with environment-
specific features, ensuring distinct regions in latent space of policies. Both BFB and RFB demonstrate
theoretical and empirical improvements over prior methods. However, limitations include evaluations
on a narrow set of dynamics mismatches and the introduction of the additional hyperparameter κ
that controls policy diversity across environments. Also, random exploration at test time could fail at
more complex environments and combining BFB and RFB together with more clever exploration
methods at test time (Grillotti et al., 2024; Urpí et al., 2025) would make methods more scalable.

As future research directions, it would be valuable to investigate whether other zero-shot RL methods,
those not based on successor-measure estimation, exhibit similar interference issues, and to scale
our approach to more complex benchmarks such as XLand-MiniGrid (Nikulin et al., 2024; 2025) or
Kinetix (Matthews et al., 2025).
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A EXTENDED RELATED WORKS AND BACKGROUND

A.1 BACKGROUND

Contexual Markov Decision Process. Throughout paper we will be dealing with a Contextual
Markov Decision Process (CMDP), defined by a tuple

〈
C,S,A, γ,M

〉
, where C is a context space and

S,A are shared state and action spaces across environments. FunctionM maps particular context
c ∈ C to respective MDP, i.e., M(c) =

〈
S,A, T c, Rc, µc, γ

〉
with context-dependent transition

function T c : S × A × C −→ S, µc being an initial distribution over states and γ ∈ (0, 1) a
discount factor. Intuitively, the context c ∈ C represents a fixed environmental configuration,
such as obstacle positions, layout geometry, dynamics vector parameters or seed. Throughout
this work, the context remains static within each episode, consistent with prior literature (Modi
et al., 2018; Kirk et al., 2023; Teoh et al., 2025). A policy π : S −→ ∆A is optimal for context c
for the reward function R if it maximizes expected discounted future reward, i.e., π∗

c,R(s0, a0) =

argmaxπ E[
∑
γtR(st, at)|s0, a0, π, c].

When the context is fully observable, augmenting the state space with the given context reduces the
CMDP to a standard MDP, eliminating the need to model distinct dynamics T c, rewards Rc or initial
states µc. However, if the context is partially observable, the learned model must infer and track the
uncertainty over true hidden configuration to maintain theoretical optimality guarantees. Such task
can be framed as posterior estimation p(c|H) or belief over possible contexts c given accumulated
history H .

Most successful methods for deriving an optimal policy across arbitrary tasks from a task-agnostic
dataset leverage successor features (Dayan, 1993; Barreto et al., 2017; Borsa et al., 2019; Park et al.,
2024; Zhu et al., 2024) or their continuous counterpart, successor measures (Blier et al., 2021; Touati
& Ollivier, 2021; Touati et al., 2022; Agarwal et al., 2025; Jeen et al., 2024). In this work, we focus
on the latter framework, specifically its instantiation via forward-backward representations (Touati &
Ollivier, 2021). Below, we briefly outline its key properties.

Zero-Shot RL. Given an offline dataset of transitions D = {(si, ai, si+1)}|D|
i=1 generated by an

unknown behavior policies, the agent’s objective is to learn a compact abstraction of the environment
from which it is possible . At test time, this abstraction helps to obtain optimal policy for any reward
function rtest which defines a particular task. Reward function can be specified either as a small
dataset of reward-labeled states Dtest = {(si, rtest(si)}ki=1 or as a direct mapping s −→ rtest(s).
While some prior works assume access to the context labels (Gregor et al., 2019), we focus on the
setting where the context is unknown and must be inferred from the data. Alternative formulations
of zero-shot RL exist under other formalisms, and we refer to (Kirk et al., 2023) for comprehensive
overview.

A.2 RELATED LITERATURE

Domain Adaptation and Transfer Learning in RL. While our work will focus on domain adapta-
tion applied to estimating successor measure for various dynamics mismatches, we start by briefly
reviewing more general ideas in classic domain adaptation and refer to (Kouw & Loog, 2019) for
detailed overview. Most methods for domain adaptation can be categorized into importance-weighting
(Bickel et al., 2007; Uehara et al., 2016; Sønderby et al., 2016) and domain-invariant feature learning
(Fernando et al., 2013; Eysenbach et al., 2021; Xing et al., 2021; Zhang et al., 2020) approaches.
Former methods estimate the likelihood ratio of examples under samples from target domain versus
samples from source, which is then used to recalibrate examples from the source domain. The latter
approaches learn a unified representation of the environment, targeting to extract only task-relevant
abstraction, negating distracting information.

The most relevant approach which enables FB representations to generalize across dynamics is
Contexual FB (Jeen & Cullen, 2024). This approach uses importance-weighting formalism and
introduces two classifiers, which estimate the likelihood of transitions (st, at) and (st, at, st+1) being
from train or test context and augment the reward function to account for those discrepancies in the
dynamics. If augmented reward function lies in the linear span of the Z space during FB training,
then the policy can be extracted as described in Equation 3. However, such an approach requires
training classifiers from scratch for each novel layout of the environment, limiting its applicability.
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Meta-RL. Another major line of related works, Meta-Reinforcement Learning (Meta-RL), focuses
on few-shot domain adaptation to unseen tasks or dynamics (Beck et al., 2024). The significant
part of research in Meta-RL is dedicated to explicitly learning the belief by collecting a history of
interactions with the environment on inference during test-time (Zintgraf et al., 2020; Dorfman et al.,
2021; Rakelly et al., 2019). However, recent works show that it is possible to quantify the belief
without learning the posterior implicitly (Laskin et al., 2022; Lee et al., 2023; Zisman et al., 2024;
Sinii et al., 2024; Zisman et al., 2025; Tarasov et al., 2025; Polubarov et al., 2025). Leveraging
in-context ability of transformers Vaswani et al. (2017), one can learn an end-to-end supervised
model, while the transformer’s context will absorb into robust representation the adaptation-relevant
information thus enabling fast adaptation. We also leverage this in-context ability to construct the
belief representation of the dynamics the agent currently in, but instead operating in a zero-shot
manner.

B PROOFS

Notation recap. Let Mπ(s, a, ·) be the successor measure of policy π and ρ the reference state–
action measure used by FB training. As in the main text, FB seeks low-rank factors F,B such
that

Mπ(s, a,ds′da′) ≈ F (s, a, z)⊤B(s′, a′) ρ(ds′da′)

for policies π = πz . For a set of k CMDPs with optimal policies {π⋆
i }ki=1 and successor measures

{Mπ⋆
i }ki=1 we define the worst-case class approximation error

ε⋆k := inf
F,B

max
1≤i≤k

∥∥∥Mπ⋆
i − F (·, ·, zi)⊤B(·)

∥∥∥
L2(ρ)

.

We write F̂ , B̂ for the trained factors and set the (finite-sample / optimization) training discrepancy

∆est := max
1≤i≤k

∥∥∥ F̂ (·, ·, zi)⊤B̂(·)− F ⋆(·, ·, zi)⊤B⋆(·)
∥∥∥
L2(ρ)

,

where (F ⋆, B⋆) is a minimizer in the definition of ε⋆k (any minimizer will do). Unless otherwise
noted we evaluate expectations w.r.t. a test distribution ρtest that is absolutely continuous w.r.t. ρ
(Assumption 1 in the main paper), with density ratio bounded by κ := sups,a

dρtest

dρ (s, a) <∞.

Lemma 1 (Uniform successor-to-value stability). Suppose that for some ε ≥ 0,

sup
(s0,a0)

∥∥∥∥F (s0, a0, zR)⊤B(·)− MπzR (s0, a0, ·)
ρ(·)

∥∥∥∥
L2(ρ)

≤ ε.

Then for any bounded reward ∥r∥∞ ≤ R, ∥Q∗
r −Q

πzR
r ∥∞ ≤ 3

1−γRε.

Proof sketch. By standard successor-occupancy identities, Qπ
r (s0, a0) =∫

r(s, a)Mπ(s0, a0,dsda). The linear functional M 7→
∫
r dM has operator norm ≤ ∥r∥∞.

Combining the uniform L2(ρ) error on M/ρ with the contraction of the Bellman resolvent yields the
stated (3/(1− γ))R factor (details as in the cited stability proofs; constants unchanged).

Theorem 3 (Regret bound for multiple dynamics with decoupled errors). Under Assumption 1 and
for any bounded reward ∥r∥∞ ≤ R, the policy extracted from the trained factors for CMDP i (namely
πzi with zi computed from r and B̂) satisfies

E(s,a)∼ρtest

[
Q∗

r(s, a)−Q
πzi
r (s, a)

]
≤ 3

1− γ
R
(
ε∗k +∆est

)
.

Moreover, ε∗k+1 ≥ ε∗k (monotonicity in k).

Proof. Applying Lemma 1 with ε = ε∗k +∆est yields ∥Q∗
r −Q

πzi
r ∥∞ ≤ 3

1−γR(ε
∗
k +∆est). Taking

expectation gives the displayed inequality since Eρtest
[f ] ≤ ∥f∥∞. Monotonicity is immediate

because max over a larger index set cannot decrease.
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Discussion (Theorem 1). The upper bound separates an intrinsic model-class term ε⋆k (harder when
more heterogeneous CMDPs are included) from a finite-sample/optimization term ∆est (which can
shrink with more data). Thus, adding CMDPs enlarges the worst-case approximation class but may
still reduce empirical regret if ∆est decreases.
Assumption 2 (Block-separable parameterization). There exists a partition {Sj}Lj=1 of task directions
and a routing function g : Z → [L] such that the model uses disjoint parameter blocks (Fj , Bj): for
z ∈ Sj the prediction is Fj(s, a, z)

⊤Bj(·) and no other block parameters are used.

Theorem 4 (Decoupling under block-separable parameters). Assume Assumption 2. Let kmax =
maxj |Sj |. Then the training objective decouples across blocks j, and the worst-case uniform class
error satisfies

ε∗k = max
1≤j≤L

ε∗|Sj | ≤ ε∗kmax
.

Consequently, the regret bound in Theorem 1 depends on kmax (not on k).

Proof (sketch). By Assumption 2, losses from tasks z ∈ Sj depend only on (Fj , Bj), hence the
empirical and population objectives decompose as a sum

∑L
j=1 Lj(Fj , Bj). Minimizers are obtained

by solving each block independently. The definition of ε∗m as the optimal uniform L2(ρ) error over
m tasks then yields ε∗k = maxj ε

∗
|Sj | ≤ ε

∗
kmax

.

Discussion (Theorem 2). Partitioning z into disjoint cones removes interference: optimization
decouples by block, so adding new cones does not inflate the worst-case error beyond the hardest
block. Practically, once F,B have enough capacity for the largest block (d ≥ kmax in a tabular
analogy), the class error can be driven to zero without growing with k.

Let {Mπi
} be a collection of successor measure of the optimal policies {πi}ki=1 for k distinct CMDPs.

Given a reference measure ρ on S ×A, define the worst-case class approximation error as

ϵk := inf
F,B

max
i≤i≤k

||Mπi − F (·, ·, zi)TB(·)||L2
ρ

(7)

B.1 FORWARD–BACKWARD (FB) TRAINING

Successor measure and FB factorization. For a policy π and discount γ ∈ (0, 1), the successor
measure Mπ(s0, a0, ·) is the (discounted) future occupancy of next states,

Mπ(s0, a0, X) =
∑
t≥0

γt Pr
(
st+1 ∈ X | s0, a0, π

)
, X ⊆ S,

and, for state-based rewards r : S→R,

Qπ
r (s0, a0) =

∫
r(s+)Mπ(s0, a0, ds

+).

FB approximates Mπ (hence all Qπ
r ) with a finite-rank factorization conditioned on a task vector

z ∈ Z ⊂ Sd−1:
Mπz (s, a, ds+) ≈

〈
F (s, a, z), B(s+)

〉
ρ(ds+),

where F : S × A × Z → Rd is the forward map, B : S → Rd the backward map, ⟨·, ·⟩ denotes
the Euclidean inner product, and ρ is a reference distribution over next states drawn from the offline
dataset.2 From the factorization it follows that

Qπz
r (s, a) ≈

∫
r(s+)

〈
F (s, a, z), B(s+)

〉
ρ(ds+)

=
〈
F (s, a, z), zr

〉
, zr ≜ Es+∼ρ

[
r(s+)B(s+)

]
.

(8)

Greedy policy family. For each z ∈ Sd−1, the greedy policy associated with the representation is

πz(s) ∈ argmax
a∈A

〈
F (s, a, z), z

〉
. (9)

In discrete action spaces we take the exact maximizer; in continuous control we use an actor network
to approximate equation 9 (DDPG-style).

2In some variants B depends on (s, a); our implementation uses B(s) as in the original formulation.
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Bellman identity for the successor measure. Let st+1 ∼ T (· | st, at) and at+1 ∼ πz(· | st+1). For
any anchor s+ ∼ ρ, the successor measure satisfies

Mπz (st, at, ds
+)

ρ(ds+)︸ ︷︷ ︸
“density” w.r.t. ρ

= 1{s+ = st+1} + γ E
[
Mπz (st+1, at+1, ds

+)

ρ(ds+)

]
.

(10)

FB enforces this identity by regressing the scalar score ⟨F (·), B(s+)⟩ against the right-hand side
across random anchors s+.

Training objective (anchor regression). Given a dataset D = {(st, at, st+1)}, sample z ∼ Z (e.g.,
uniformly on Sd−1 or from a mixture that also uses B), compute at+1 ≈ πz(st+1) via equation 9,
and draw anchors s+ ∼ ρ. Using target networks F̂ , B̂ (Polyak-averaged), the FB loss is

LFB = E(st,at,st+1)∼D Ez∼Z Es+∼ρ

[〈
F (st, at, z), B(s+)

〉
− 1{s+=st+1}

− γ
〈
F̂ (st+1, at+1, z), B̂(s+)

〉]2

. (11)

On a discrete replay buffer (finite ρ), expanding the square in equation 11 yields the practically
convenient equivalent form

LFB = E(st,at,st+1,s+)∼D, z∼Z

[(
⟨F (st, at, z), B(s+)⟩ − γ⟨F̂ (st+1, at+1, z), B̂(s+)⟩

)2
− 2 ⟨F (st, at, z), B(st+1)⟩

]
,

(12)

which we use in implementation. Gradients update (F,B) while F̂ , B̂ are updated by slow averaging.
The actor (continuous actions) is trained to maximize a 7→ ⟨F (s, a, z), z⟩.
Zero-shot RL procedure (test-time). FB is trained without rewards. At test time, for a new task
specified by a reward function r (or a small set of labeled states {(si, r(si))}), we:

1. Infer the task vector. Form

zr = Es+∼ρ

[
r(s+)B(s+)

]
2. Act greedily w.r.t. zr. Use the policy πzr in equation 9: πzr (s) ∈ argmax

a
⟨F (s, a, zr), zr⟩.

If zr lies (approximately) in the linear span of task vectors encountered during training, then
Q

πzr
r (s, a) ≈ ⟨F (s, a, zr), zr⟩ and πzr is near-greedy for Qr in the sense of our analysis.

Practical notes. (i) We normalize z, B(s) to the hypersphere for stability; (ii) we mix uniform and
backward-induced sampling for z during training; (iii) target networks and large anchor batches
stabilize the regression in equation 11–equation 12; (iv) in continuous control we learn an actor
(DDPG-style) to approximate the argmax in equation 9. The entire pipeline requires no reward labels
during training, enabling zero-shot extraction for arbitrary test-time rewards.

C ENVIRONMENT DESCRIPTIONS

C.1 RANDOMIZED-DOORS

The Randomized-Doors MiniGrid environment (Figure 8) is a discrete-state, discrete-action finite
horizon deterministic environment in which agent has an objective to go to goal location with
maximum return of 1. Each episode terminates after 100 steps or after reaching goal location. The
randomization determines possible open doors locations, fully specifying particular layout. In our
experiments, the observation state of an agent consists of (x, y) coordinates tuple, making it partially
observable. Such setting requires to properly update beliefs over unobservable layout configuration
type. The action space consists of four actions, namely {up, down, right, left}, while (x, y)
coordinates across both axes are bounded by grid size, which we take to be 9× 9.
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(a) First type (b) Second Type (c) Third Type

Figure 8: Several possible layouts are visualized, each corresponding to unique possible doors
configurations. The agent is denoted as a red triangle. The task specification (goal position) with
reward of 1 is denoted by green square and is also randomized. It is a custom implementation based
on Empty MiniGrid (https://minigrid.farama.org).

C.2 RANDOMIZED FOUR-ROOMS

The Randomized Four-Rooms MiniGrid environment Figure 9 is a modification of classic Four-
Rooms and is a discrete-state, discrete-action, deterministic partially observable environment. For
each episode, the maze layout (grid type) is generated randomly, ensuring all of the four rooms are
connected with exactly single door. Observation state consists of (x, y) coordinates, making this
environment hard and checks whether agent could successfully estimate uncertainty over hidden
configurations solely based on number of occurrence of each transition, recovering dynamics. In our
experiments, we consider 11× 11 bounds for height and width.

Observation space consists of raw discrete (x, y) coordinates on the grid, while actions correspond to
a set of possible moves {up, down, left, right}. For every layout we record 500 episodes
of length 100, yielding a dataset that covers almost all possible (s, a) transitions. For testing on
unseen configurations, we fix agent starting position to coordinates of the first empty cell and evaluate
performance across 3 static goal positions, farhest away from starting position.

Figure 9: Different layout configurations from randomized Four-Rooms environment. During inference,
the goal for the agent (depicted in blue) is to achieve green location. In our experiments we fix starting agent
position and fix 3 goals, one for each room.

C.3 ANT-WIND

The AntWind environment is a modified version of the Ant locomotion task from the MuJoCo
simulator, commonly used to test an agent’s adaptability to changing dynamics. In this environment,
an ant-like robot must learn to move forward while being subjected to external wind forces varying
in magnitude and direction. In our experiments we consider 17 environments for training, covering
three quadrants of possible wind directions on the circle, while leaving others for test, checking
extrapolation on the fourth quadrant.

For our experiment, we collect dataset by training SAC (Haarnoja et al., 2018) on 3/4 of all possible
directions, which results in 16 environments and hold out the other 1/4 for evaluation. Resulting
dataset consists of 3400 transition tuples, where each environment configuration is represented as
trajectory of length 256.
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C.4 RANDOMIZED POINTMASS

Randomized Pointmass is a modification of pointmass environment from D4RL Fu et al. (2020).
Each episode the environment grid structure is randomized, ensuring all cells are interconnected.
The observation space consists of (x, y) transitions. Start position is determined as a first empty cell,
while goal location is chosen to be the fartherst away from start (based on Manhattan distance) and
ensuring existence of at least one valid trajectory (e.g., through BFS).

Observation space consists of (global x,global y) position, similar to Four-Rooms. We fix
dataset size to be 1e6, only varying number of layouts and episodes per layout, while fixing episode
length to 250. We use explore policy, which is a random policy with a portion of actions repeated
("sticky-actions").

Figure 10: Examples of pointmass grid variations.

D EXPERIMENTS DETAILS

Randomized-Doors. For didactic example from Section 3.1 we collect diverse dataset from different
layout configurations (open door locations) such that visitation distribution over all states is non-zero.
Black color denotes obstacles. The episode length is set to be 100, which is equal to the context
length of the transformer encoder for this experiment. Overall, we collect 500 episodes per layout
and coverage heatmap is visualized in Figure 11.

Table 2: Comparison of proposed approaches against baselines on test (unseen) environments.
Results for Fourrooms and Pointmass are averaged across 20 mazes configurations.

Environment (Test) Method

Random Vanilla-FB HILP Lap Belief-FB Rotation-FB
Randomized-Fourrooms 0.05 ±0.01 0.15 ±0.06 0.2 ±0.02 0.1 ±0.1 0.4 ±0.02 0.61 ±0.02

Randomized-Pointmass 0.03 ±0.01 0.1 ±0.1 0.25 ±0.02 0.1 ±0.1 0.45 ±0.05 0.55 ±0.05

Ant-Wind 250 ±200.0 250 ±98.5 410 ±40.5 290 ±22.5 550 ±50.5 640 ±30.7

Table 3: Comparison of proposed approaches against baselines on train environments.
Results for Fourrooms and Pointmass are averaged across 20 mazes configurations.

Environment (Train) Method

Random Vanilla-FB HILP Lap Belief-FB Rotation-FB
Randomized-Fourrooms 0.18 ±0.02 0.25 ±0.02 0.4 ±0.02 0.2 ±0.1 0.7 ±0.02 0.85 ±0.02

Randomized-Pointmass 0.0 ±0.05 0.2 ±0.2 0.45 ±0.1 0.15 ±0.15 0.76 ±0.18 0.88 ±0.2

Ant-Wind -190 ±250 390 ±120 410 ±90 340 ±150 680 ±80 740 ±70

Note on relience on random exploration during test time. Random exploration relience of BFB
and RFB in highly complex environments may fail to discover crucial states needed to disambiguate
dynamics identification. However, we emphasize that our work addresses a distinct bottleneck:
existing behavioral foundation models (BFMs), particularly FB, tend to collapse when trained
on offline data composed of mixed CMDPs. Consequently, training BFMs on large scale mixed
multi-modal (in terms of dynamics) data would yield an averaged policy, thus limiting their current
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(a) Randomized-Doors (b) Randomized Four-rooms

Figure 11: Empirical state occupancy measures (ρ) visualizations of collected datasets for discrete-
based environments.

Vanilla-FB RFBBFB

Tr
ai
n

Te
st

Figure 12: Q-function and deterministic policy visualizations (Equation 3) on Randomized Four-Rooms
environment. Vanilla-FB ignores environment structure and resulting policy moves through obstacles. BFB and
RFB do not have such issue.

applicability to unimodal datasets (in terms of dynamics mismatch). Both BFB and RFB overcome
this collapse. Developing smarter test-time exploration strategies to streamline dynamics identification
remains an important direction for future research.

D.1 DATASET GENERATION

For Randomized Four-Rooms, we produce four training datasets with the following parameters:
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# Transitions # layouts # episodes
per layout

episode
length

1000000 10 1000 100
1000000 20 500 100
1000000 30 250 100
1000000 50 150 100

Table 4: Details for Randomized Four-Rooms datasets

Randomized Four-Rooms. For experiments on Randomized Four-Rooms during dataset collection
we generate randomly grid layout, ensuring that each room is interconnected by exactly one door.
For evalution we fix agent start position to (1, 1) with the goal of reaching 3 other goals, specified at
other rooms. Each episode terminates after 100 steps. The evaluation protocol is averaged success
rate across 3 across 20 environments.

AntWind. For AntWind we first collect trajectories by varying wind direction d and training an
expert-like SAC agent. After training, we collected evaluation trajectories from trained agent. This
ensures that all directions are covered and explicitly sets dynamics context. As said in Experiments
section, we train on 16 environments with wind directions corresponding to first 3 quadrants of circle,
leaving other 4 (last quadrant) for hold out.

E IMPLEMENTATION DETAILS

E.1 FORWARD-BACKWARD REPRESENTATIONS

E.1.1 GPUS

We run each experiment on 1 Nvidia RTX 4090. The overall training time (for both dynamics encoder
and FB training) is approximately 1 hour.

E.1.2 ARCHITECTURE

The forward-backward architecture described below mostly follows the implementation by Touati et al.
(2022). All other additional hyperparameters for BFB and RFB are reported in Table 5. Moreover, we
should emphasize that our choice of transformer architecture for fdyn is mainly based on its abilities
to encode large sequences, and other architectural designs (e.g State-Space Models, RNNs) can also
be used. This choice does not change our observations from Section 3.2, Section 3.3.

Forward Representation F (s, a, z). The input to the forward representation F is always prepro-
cessed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors which are
feedforward MLPs that embed their inputs into a 512-dimensional space. These embeddings are con-
catenated and passed through a third feedforward MLP F which outputs a d-dimensional embedding
vector. Note: the forward representation F is identical to ψ used by USF so their implementations
are identical (see Table 5). Also, for stability reasons of TD learning, we make ensemble of F and
take their mean as aggregation function.

Backward Representation B(s). The backward representation B is a feedforward MLP that takes a
state as input and outputs a d-dimensional embedding vector.

Actor π(s, z). Like the forward representation, the inputs to the policy network are similarly
preprocessed. State-action pairs (s, a) and state-task pairs (s, z) have their own preprocessors which
feedforward MLPs that embed their inputs into a 512-dimensional space. These embeddings are
concatenated and passed through a third feedforward MLP which outputs a a-dimensional vector,
where a is the action-space dimensionality. A Tanh activation is used on the last layer to normalise
their scale. Note the actors used by FB and USFs are identical (see Table 5). For discrete environments,
optimal policy is greedy, while for continuous DDPG-style is used for approximating argmax.

Misc. Layer normalisation and Tanh activations are used in the first layer of all MLPs to standardise
the inputs as recommended in original paper for both discrete and continuous becnhmarks. Baseline
is taken from official repository contrallable agent.
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Table 5: Hyperparameters for FB. Hyperparameters for Belief-FB and Rotation-FB are highlighted
in

Hyperparameter Value
Latent dimension d 150 (100 for discrete)
F / ψ dimensions (1024, 1024)
B / φ dimensions (256, 256, 256)
Preprocessor dimensions (1024, 1024)
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3
Learning steps 1,000,000
Batch size 1024
Optimiser Adam
Learning rate 0.0001
Learning rate of fdyn 0.0001
Discount γ 0.99, 0.98 (Maze)
Activations (unless otherwise stated) GeLU
Target network Polyak smoothing coefficient 0.05
z-inference labels 10,000
z mixing ratio 0.5

κ 50, 100 for Pointmass
Contexual representation h dimension 150 (100 for discrete)
Next state predictor gpred (256, 256, 256)

E.2 HILP

We take official implementation in JAX from Park et al. (2024) together with all of the hyperparame-
ters.

E.3 TASK SAMPLING DISTRIBUTION Z
Vanilla-FB. FB representations require a method for sampling the task vector z at each learning step.
Touati et al. (2022) employ a mix of two methods, which we replicate:

1. Uniform sampling of z on the hypersphere surface of radius
√
d around the origin of Rd,

2. Biased sampling of z by passing states s ∼ D through the backward representation z = B(s).
This also yields vectors on the hypersphere surface due to the L2 normalization described
above, but the distribution is non-uniform.

We sample z ∼ 50 : 50 (either randomly or from B) from these methods at each learning step as in
original work by Touati & Ollivier (2021).

Rotation-FB. After transformer fdyn pretraining stage, RFB at each gradient step chooses task-
conditioning vector zFB based on i) context representation h acting as axes coming from fdyn and ii)
drawing task encoding vectors zFB around this axes. We also perform normalization as in Vanilla-FB
by projecting resulting vector on a surface of hypersphere of radius

√
d.

Stage ii) is implemented as drawing samples as zFB ∼ vMF(µ = h, κ). In order to remove high
computational costs, we implement this sampling procedure through Householder reflection around
context axes, by first drawing z from one of the basis vectors (e.g., north pole) and then performing
rotation.
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https://github.com/seohongpark/HILP
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E.4 PSEUDOCODE

Algorithm 1 Belief-FB Training
1: Input: offline diverse dataset D consisting of transitions based on hidden configuration variable ci
2: Initialize transformer encoder fdynθ

, Fη , Bω , number of gradient steps for transformer pre-training K,
context length T , Polyak coefficient, β, batch size B learning rates λf , λF , λB

3: while update steps < K do
4: sample batch of B trajectories of length T {(si,t, ai,t, si,t+1)}i=1,...B,t=1,...,T ∼ D
5: (µi; logσi),= fdynθ

(
{si,t, ai,t, si,t+1}Mt=1

)
, i = 1, . . . , B,

6: zi = µi + ϵi ⊙ exp
(
logσi

)
,

7: Zi,t = zdyni , t = 1, . . . , T # Representation zdyn is shared across each sequence
8: ŝi,t+1 = gpred(si,t, ai,t,Zi,t) t = 1, . . . , T, i = 1, . . . , B

9: Lcontext = 1
B T

∑B
i=1

∑T
t=1

∥∥ŝi,t+1 − si,t+1

∥∥2

2

10: θfdyn ← θfdyn − λf∇θLcontext(θ)
11: end while
12: while not converged do
13: ηF ← ηF − λF∇ηF J(F,B)(ηF ) # FB training, Equation ??
14: ωB ← ωB − λB∇ωBJ(F,B)(ωB)
15: end while

Algorithm 2 Sampling zFB for RFB

Input: B (batch size), d (latent dimension), anchor matrix H∈RB×d, κ (concentration)
Output: Z∈RB×d

1: Normalize anchors: ui ← Hi/(∥Hi∥2 + ε) ▷ for i = 1, . . . , B
2: S← VMF_SAMPLE_NORTHPOLE(B, d, κ) ▷ draw B VMF samples
3: for i← 1 to B do
4: Ri ← HOUSEHOLDER_ROTATION(ui)
5: zi ← Ri Si

6: end for
7: Z← PROJECT_TO_SPHERE

(
{zi}Bi=1

)
8: return Z
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